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The study of infectious disease dynamics across various hierarchical levels

and scales of organization has gained significant attention in the realm of

mathematical biology. We develop an individual-based network multiscale

model of foot-and-mouth disease (FMD) in cattle based on the replication-

transmission relativity theory at whole living organism level. An important

feature of individual-based network multiscale models is that they incorporate

heterogeneity in [i.] host susceptibility to infection, [ii.] the ability of hosts to

transmit pathogen to other hosts, [iii.] host immune response, and [iv.] host

behaviour. Numerical simulations are conducted to demonstrate the influence

of model parameters designated for controlling, eliminating, and eradicating

FMD. Results indicate that microscale parameters such as the clearance rate of

virus, ωi and the macroscale parameters like the transmission rate between the

cattle, βij are crucial for implementing interventions (vaccination and quarantine

respectively). Additionally, the analysis of the network degree distribution

indicates the absence of hubs due to lack of a heavy tail on the histogram.

KEYWORDS

network modeling, foot-and-mouth disease, multiscale modeling, stochastic

di�erential equations, spatial network

1 Introduction

The study of infectious disease dynamics across various hierarchical levels and

scales of organization has gained significant attention in the realm of mathematical

biology. This surge in interest has been facilitated by an innovative approach known as

multiscale modeling, which provides fresh perspectives on the dynamics of infectious

disease systems. The fundamental ideas of multiscale modeling of infectious disease

systems have been elucidated by recent publications [1–5]. Further, these ideas have

been underpinned by a biological relativity theory that provides a theoretical framework

for development of such multiscale models [6]. A key postulate of this biological

relativity theory is that any infectious disease system is organized into seven main
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levels of hierarchical level of organization namely: the cell

level, the tissue level, the organ level/microcommunity level, the

microecosystem level, the host level, the macrocommunity level,

and the macroecosystem level [3]. The dynamics of pathogen from

one scale of organization to another at any of these seven levels

of organization necessarily involves a replication-transmission

multiscale cycle of pathogen replication at microscale and pathogen

transmission at macroscale. Another fundamental postulate of

this biological relativity theory is that at any of these levels of

organization, the multiscale models that can be developed fall

into five main categories [3]: (i) the hybrid multiscale models

(HMSMs), (ii) nested multiscale models (NMSMs), (iii) embedded

multiscale models (EMSMs), (iv) individual-based multiscale

models (IMSMs), and (iv) coupled multiscale models (CMSMs).

However, the category of individual-based multiscale models is

further classified into four main classes namely [3]: network

modeling individual-based multiscale models (NETW-IMSMs),

empirical data modeling individual-based multiscale models

(EMPI-IMSMs), simulation modeling individual-based multiscale

models (SIMU-IMSMs), and hybrid individual-based multiscale

models (BRID-IMSMs). This study is about the development of

network modeling individual-based multiscale models. Further,

network modeling individual-based multiscale models can be

formulated using any of the five graph-theoretic techniques which

include: lattice network models, scale-free network models, spatial

network models, random network models and smallworld network

models [7]. Applications of network models include transportation

and mobility networks, internet, mobile phone networks, power

grids, social and contact networks, neural networks. In the realm

of infectious diseases, a network consists of nodes (vertices) and

links (edges), where nodes represent individuals (humans, animals,

plants, computers, farms, patches, etc.) who are either susceptible

to infection or capable of transmitting infections, and links denote

interactions between individuals that may facilitate transmission.

This study presents an individual-based network model of foot-

and-mouth disease (FMD) based on the replication-transmission

relativity theory [6]. The multiscale model which integrates the

within-host and between-host dynamics of FMD in cattle. An

important feature of individual-based networkmodelingmultiscale

models is heterogeneity in (i) host susceptibility to infection, (ii)

the ability of hosts to transmit pathogen to other hosts, (iii) host

immune response, (iv) host behavior [5]. Furthermore, the within-

host submodel is implemented to describe the entire infectious

disease system across both the within-host scale and between-

host scale. Therefore, the main aim of this study is to establish

the influence of heterogeneity, using an individual-based spatial

network multiscale model, on disease dynamics for an infection.

To the best of our knowledge, there is currently no individual-

based multiscale network model in the existing literature that

utilizes the replication-transmission relativity theory and considers

the interaction between two scales at any level of an infectious

disease system. The dynamics of FMD in the cattle population

consists of various transmission routes of FMDV at between-host

scale including air-borne spread, animal-to-animal contact and

contamination of the environment [8, 9]. Globally, FMD is known

to have caused major losses in the agricultural sector as well as

tourism [10]. In Africa, FMD is regarded as the most significant

economic animal illness impacting regional trade in livestock,

wildlife, and various agricultural goods [11]. The usual control

measures of FMD include (i) movement restriction of animals,

animal products and fomites; (ii) quarantine; (iii) culling of

detected infected animals, (iv) surveillance and tracing to establish

the source and path of the infection, and (v) vaccination [12] with

the latter having a significant impact in controlling FMD [13, 14].

However, all these control measures have their own limitations in

combating FMD in cattle [15]. A key aspect of multiscale dynamics

is the replication-transmission relativity theory which states that

at any hierarchical level of organization of an infectious disease

system there is no priviledge or absolute scale which will determine

disease dynamics, only interactions between the microscale and

macroscale [6].

Previously, multiscale modeling of FMD in cattle at host

level has been established. This was done by formulating hybrid

multiscale models (HMSMs) such as Bradhurst et al. [16] and

individual-based multiscale models (IMSMs) such as Kao et al.

[17] and Kostova-Vassilevska [18]. The contributions made by

the HMSMs in Bradhurst et al. [16] and IMSMs in Kao et al.

[17] and Kostova-Vassilevska [18] have given new insights into

the impact of health interventions against FMD, however, there

are some vital limitations of these multiscale categories when

compared with the individual-based network modeling multiscale

model described in this paper. The HMSMs cannot be utilized to

establish heterogeneity in (i) host susceptibility to infection, (ii)

the ability of hosts to transmit pathogen to other hosts, (iii) host

immune response, and (iv) host behavior. On the other hand, the

IMSMs in Kao et al. [17] and Kostova-Vassilevska [18] did not

address the reciprocal influence of themicroscale andmacroscale at

any hierarchical level of infectious disease systems. It is important

to note that some of the mathematical models of FMD infection

are single-scale models [18–20]. However, single scale models are

only confined to one component of the replication-transmission

multiscale cycle of infectious disease systems.

The rest of the contents of this paper is organized in the

following way. In Section 2, we present the network modeling

individual-based model for FMD in cattle. The mathematical

analysis of the network modeling individual-based model is done

in Section 3. In Section 4, the network modeling individual-based

model is analyzed numerically to validate some of the analytical

results obtained in Section 3. Finally, the conclusions of the study

are presented in Section 5.

2 The individual-based multiscale
model for FMD

The formulation of this model involves differential equations

illustrating the initial transmission of FMDV taking into account

immune response and then placing the cattle population in a spatial

network. The model we develop is an extension of the wihin-

host model developed by Howey et al. [20], who investigated the

dynamics of this disease in cattle. For each individual i there is

interplay between antibody, Ai, virions in blood, Vi, interferon,
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FIGURE 1

Schematic diagram of FMD dynamics in a network. For each

individual i there is interplay between antibody, Ai, virions in blood,

Vi, interferon, Ii, uninfected epithelial cells, Ui, infected epithelial

cells, Fi, non-infectious material denoted by Ji, virus-antibody

complexes, Ci and protected cells, Pi.

Ii, uninfected epithelial cells, Ui, infected epithelial cells, Fi, non-

infectious material denoted by Ji, virus-antibody complexes, Ci and

protected cells, Pi. Given below is the set of differential equations:

dVi

dt
= ζiFi − φAiωiVi +

n
∑

i6=j,j=1

βijVj, (1)

dFi

dt
= ǫiUiVi − ζiFi, (2)

dUi

dt
= −κiUi

(

Ii −
µi

ξi

)

, (3)

dPi

dt
= κiUi

(

Ii −
µi

ξi

)

, (4)

dIi

dt
= µi − ξiIi + φUi (U)ηiCi, (5)

dAi

dt
= φVi (V , J)φAi , (6)

dCi

dt
= φAiωi(Vi + Ji)− σiCi, (7)

dJi

dt
= γiζiFi − φAiωiJi (8)

where

βij = β
(

1− δij
)

e−α|i−j|,

δij is Kronecker’s delta, β and α are non-negative. Small values

of α implies a widespread influence of infection while bigger values

of α implies local spread. The elements βji of the transmission

matrix B, representing the strength of transmission from j to i

depend on spatial factors. β represents the overfall strength of

transmission [21].

The model is illustrated by the schematic diagram in Figure 1

and the model variables are summarized in Table 1. Equation 1 of

multiscale model system represents the concentration of infectious

virion in blood. The first term on the right hand side represents

the infected epithelial cells that burst to release more infectious

virion in the blood. The second term is the infectious virion

cleared as it complexes with antibody. The Equation Equation 2

of multiscale model system represents the infected epithelial cells

created at a rate of ǫiUiVi. The last part of Equation 2 is the

infected epithelial cells which burst to become infectious virion.

Equation 3 of multiscale model system represents proportion of

the uninfected epithelial cells that become protected by interferon

from infection when interferon is above background level, µi/ξi.

Equation 4 of multiscale model system represents the proportion of

protected epithelial cells. These cells are recruited from uninfected

cells when interferon is above background level, µi/ξi. Equation 5

of multiscale model system represents interferon which is produced

at rate, ηiCi, corresponding to the virus-antibody complexes,

Ci. Equation 6 of multiscale model system represents antibody

production in relation to the virus that must be neutralized.

Equation 7 of multiscale model system represents infectious virion

and non-infectious material that has been neutralized by antibody.

The last part of Equation 7 is the clearance of virus-antibody

complex. In Equation 8 of multiscale model system the first part

is the recruitment of non-infectious material from infected cells.

The second part is the non-infectious material that is neutralized

by antibody.

3 Mathematical analysis of the
individual-based multiscale model of
FMD dynamics

3.1 Feasible region of the model

The model that we formulate has to be biologically meaningful.

Therefore, we establish the non-negativity and boundedness of all

the state variables as well as their solutions, respectively, in the

region 8, where

8 =
{

(Ui,Vi, Fi, Pi, Ii,Ai,Ci, Ji) ∈ R
8
+

}

, i = 1, .., n (9)

3.1.1 Positivity of solutions
Theorem 3.1. A non-negative solution

(

Vi(t), Fi(t),Ui(t),

Pi(t), Ii(t),Ai(t),Ci(t), Ji(t)
)

exists for all t ≥ 0

Proof.The positivity of solutions of themultiscale model system

(Equations 1–8) is proved using the integrating factor technique.

We consider Equation 1 in the multiscale model system

dVi

dt
= ζiFi − φAiωiVi +

n
∑

j=1,i6=j

βijVj (10)

We re-write Equation 10 as follows

dVi

dt
+ φAiωiVi = ζiFi +

n
∑

j=1,i6=j

βijVj (11)

The integrating factor for Equation 11 is
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Integrating factor (IF) = e
∫ t
0 φAiωids = eφAiωit (12)

When we multiply Equation 11 by the integrating factor eφAiωit

to get

eφAiωit
dVi

dt
+ eφAiωitφAiωiVi = eφAiωit



ζiFi +

n
∑

j=1,i6=j

βijVj



 (13)

From the product rule we obtain

d

dt
(eφAiωit .Vi) = eφAiωit



ζiFi +

n
∑

j=1,i6=j

βijVj



 (14)

We integrate both sides of Equation 14 with respect to t and

obtain

eφAiωit .Vi(t) = eφAiωi(0).Vi(0)+

∫ t

0
eφAiωis



ζiFi(s)+

n
∑

j=1,i6=j

βijVj(s)



 ds

(15)

Dividing both sides of Equation 15 by the integrating factor

eφAiωit we get

Vi(t) = e−φAiωit .



Vi(0)+

∫ t

0
eφAiωs



ζiFi(s)+

n
∑

j=1,i6=j

βijVj(s)



 ds



 ≥ 0

(16)

Similarly, the results for Equations 2, 5, 7, and 8 of the

multiscale model systemcan also be obtained by the integrating

factor technique.

We now consider Equation 3 of the multiscale model system

dUi

dt
= −κiUi

(

Ii −
µi

ξi

)

(17)

Positivity of the solution of Equation 3 of the multiscale model

system is proved using the separation of variables as follows

1

Ui
dUi = −κi

(

Ii −
µi

ξi

)

dt (18)

We integrate both sides of Equation 14 with respect to t to get

∫ t

0

1

Ui
dUi = −κi

∫ t

0

(

Ii(s)−
µi

ξi

)

ds (19)

Integrating the left side gives

ln
Ui(t)

Ui(0)
= −κi

∫ t

0

(

Ii(s)−
µi

ξi

)

ds (20)

Removing ln we have the following result

Ui(t) = Ui(0)exp

{

−κi

∫ t

0

(

Ii(s)−
µi

ξi

)

ds

}

≥ 0 (21)

Positivity of Equation 4 of the multiscale model systemis

proved by integrating both sides of Equation 22.

dPi

dt
= κiUi

(

Ii −
µi

ξi

)

(22)

This gives

∫ t

0
dPi =

∫ t

0
κiUi(s)

(

Ii(s)−
µi

ξi

)

ds (23)

We get the following result

Pi(t) = Pi(0)+

∫ t

0
κiUi(s)

(

Ii(s)−
µi

ξi

)

ds ≥ 0 (24)

since the protected cells Pi are recruited from uninfected cells when

interferon Ii is above background level, µi
ξi
, that is, Ii(t) >

µi
ξi
.

Similarly, the result of Equation 6 of the multiscale model system

is a positive solution since both φVi (V , J) and φAi are positive

constants.

Consequently, Vi(t) ≥ 0, Fi(t) ≥ 0, Ui(t) ≥ 0, Pi(t) ≥ 0,

Ii(t) ≥ 0, Ai(t) ≥ 0, Ji(t) ≥ 0 and Ci(t) ≥ 0 for all time t > 0.

3.1.2 Boundedness of solutions
We show that all eight equations are ultimately bounded for

t ≥ 0. From the Equation 3 of the multiscale model system, the

viral infection reduces the population of the uninfected cells so

that at the onset of the infection, the population of uninfected cells

must be greater or equal to the total cell population at t > 0.

The population of uninfected cells is also reduced as a proportion

of the cells become protected. Equation 5 of the multiscale model

system reduces to µi
ξi

while the remaining equations reduce to zero

at disease-free equilibrium.

This leaves Equation 3 of the multiscale model system given by

dUi

dt
= −κiUi

(

Ii −
µi

ξi

)

(25)

Ui(t) = Ui(0)exp

{

−κi

∫ t

0

(

Ii(s)−
µi

ξi

)

ds

}

(26)

Initially, the interferons equal to µi
ξi
. However, when the

interferons are above background level, that is, µi
ξi

is implies that
(

Ii(s)−
µi
ξi

)

> 0. Therefore, from Equation 26 we have

lim
t→∞

supUi(t) ≤ lim
t→∞

supUi(0) = Ui(0) = Ni (27)

Thus, the multiscale model system (Equations 1–8) is bounded

above by Ni and bounded below by 0. Since the multiscale model

system (Equations 1–8) is positive and bounded, it is well-posed

(epidemiologically and mathematically) in the region 8.

3.2 Determination of disease free
equilibrium and its stability

3.2.1 The disease-free equilibrium point
In order to establish the disease-free equilibrium point of the

multiscale model system in the disease compartment we set the
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right-hand side of the Equations 1–8 of multiscale model system to

zero.When the equilibrium is disease-free then infectious virions in

the blood of an individual will not exist resulting no transmission of

infection. Therefore, the disease-free equilibrium of the multiscale

model system (Equations 1–8) is given by

E0 =
(

U0
i ,V

0
i , F

0
i , P

0
i , I

0
i ,A

0
i ,C

0
i , J

0
i

)

=

(

Ni, 0, 0, 0,
µi

ξi
, 0, 0, 0

)

,

i = 1, ..., n (28)

where Ni, a constant, is the initial number of uninfected epithelial

cells. A0
i = 0 since this is the time during which virus replication is

not yet observable.

3.2.2 The model reproductive number
The reproductive number, R0 is described as the average

number of secondary infections generated by an infectious

individual host brought into an entirely susceptible population

[22, 23]. It is an important parameter which helps to examine

outbreak of disease. For the vast majority of disease outbreaks, if

R0 < 1, this implies that the outbreak dies out, while when R0 >

1, this implies that the outbreak persists. For FMDV infection

in cattle, R0 describes the anticipated number of cattle FMDV

infections generated by an individual animal throughout the whole

cycle of virulence of the animal placed in a totally susceptible

cattle population. Hence, R0 quantifies transmission of FMDV

from animal to animal. In order to evaluate the basic reproductive

number we implement the next generation operator approach [22].

The multiscale model system (Equations 1–8) can be expressed as

follows:











dX
dt

= f (X,Y ,Z),
dY
dt

= g(X,Y ,Z),
dZ
dt

= h(X,Y ,Z),

(29)

where

X = (Ui, Pi)

Y = (Ji,Ci,Ai, Ii)

Z = (Fi,Vi).

The elements of X stand for the number of susceptibles as well

as other groups of non-infectious individuals. The elements of Y

stand for the number of infected individuals who are unable to

transmit the disease. The elements of Z stand for the number of

infected individuals able to transmit the disease. We define g̃(X∗,Z)

from Castillo-Chavez et al. [22] by

g̃(X∗,Z) = ǫiNiVi
ζi

Suppose A = DZh(X
∗, g̃(X∗, 0), 0) so that A is expressed as

A = M − D.

Then from Equations 1 and 2 of multiscale model system A

becomes

A =





n
∑

i6=j,j=1

βij − φAiωi ζi

ǫiNi −ζi



 (30)

with

M =





n
∑

i6=j,j=1

βij 0

ǫiNi 0



 (31)

and

D =

[

φAi (t)ωi ζi

0 −ζi

]

(32)

Therefore, the inverse of matrix D is

D−1 =

[

1
φAiωi

1
φAiωi

0 1
ζi

]

(33)

When we multipleM and D−1 we get

MD−1 =





n
∑

i6=j,j=1

βij 0

ǫiNi 0





[

1
φAiωi

1
φAiωi

0 1
ζi

]

(34)

This simplifies to

MD−1 =







n
∑

i 6=j,j=1
βij+ǫiNi

φAiωi
0

ǫiNi
ζi

0






(35)

R0 is the spectral radius (dominant eigenvalue) of MD−1 and

so we have the following expression

R0 = ρ
(

MD−1
)

R0i =

n
∑

i6=j,j=1

βij + ǫiNi

φAiωi
(36)

R0 = max {R0i} (37)

Therefore, the reproductive number R0, is composed of

microscale and macroscale disease parameters ǫ,ω and βij

respectively. When we refer to the formulation for R0 from

Equation 36 we can gather the following.

(i) The macroscale transmission parameter, βij from Equation 36

which represents the strength of transmission between

individuals j and i due to their separation distance, contributes

to the spread of FMD infection. The constant α controls the

strength of transmission such that when α is small then the

probability of transmission βij from j to i is high and for bigger

values of α the transmission between individuals is low.

(ii) The microscale transmission parameters ǫi, the infection rate of

epithelial cells as well as ωi, which controls rate of clearance of

virus from Equation 36 have an effect on the spread of virus.

The immune response, including ωi, helps to reduce FMDV

transmission.

Therefore, it can be concluded that both macroscale and

microscale factors have an impact on the spread of FMDV.
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3.2.3 Local stability of the disease free
equilibrium (DFE)

In this section we establish the local stability of disease-free

equilibrium of the multiscale model system (Equations 1–8).

E0 =
(

U0
i ,V

0
i , F

0
i , P

0
i , I

0
i ,A

0
i ,C

0
i , J

0
i

)

=

(

Ni, 0, 0, 0,
µi

ξi
, 0, 0, 0

)

,

i = 1, ..., n (38)

where Ni, a constant, is the initial number of uninfected epithelial

cells.

The Jacobian matrix of the multiscale model system

(Equations 1–8) can be calculated at the disease-free equilibrium

state to give:

J(E0) =



























d2 d6 0 0 0 0 0 0

d7 −d6 0 0 0 0 0 0

0 0 0 0 −d4 0 0 0

0 0 0 0 d4 0 0 0

0 0 0 0 −d8 0 d3 0

0 0 0 0 0 0 0 0

d1 0 0 0 0 0 −d9 d1
0 d5 0 0 0 0 0 −d1



























(39)

where







































































d1 = φAiωi,

d2 = −φAiωi +
n
∑

i6=j,j=1

βij,

d3 = φUi (U)ηi,

d4 = κiNi,

d5 = γiζi,

d6 = ζi,

d7 = ǫiNi,

d8 = ξi,

d9 = σi

(40)

In order to establish the stability of the disease-free equilibrium

we evaluate the eigenvalues of the Jacobian matrix (Equation 39).

Given below is the characteristic equation for the eigenvalues.

λ3
(

−d8 − λ
) (

−d9 − λ
) (

−d1 − λ
) [(

d2 − λ
) (

−d6 − λ
)

− d6d7
]

= 0 (41)

We have three zero eigenvalues and λ1 = −d8, λ2 = −d9, λ3 =

−d1. We now consider the remaining expression

[(

d2 − λ
) (

−d6 − λ
)

− d6d7
]

= 0 (42)

λ2 +
(

−d6 + d2
)

λ + d6
(

−d2 − d7
)

= 0 (43)

λ2+





n
∑

i6=j,j=1

βij − ζi − φAiωi



 λ+ζi



φAiωi −

n
∑

i6=j,j=1

− ǫiNi



 = 0

(44)

λ2 +





n
∑

i6=j,j=1

βij −
(

ζi + φAiωi

)



 λ + ζiφAiωi (1−R0) = 0(45)

P(λ) = λ2 + 81λ + 82 = 0 (46)

where







81 =
n
∑

i6=j,j=1

βij −
(

ζi + φAiωi

)

,

82 = ζiφAiωi (1−R0)

(47)

We use the Routh-Hurwitz Criterion and for this particular

case, we define the following matrices whose elements are the

coefficients of the polynomial P(λ) in the Equation 46.

{

H1 = (81) , H2 =

[

81 1

0 82

]

(48)

We evaluate the determinant of H1, we get



































det (H1) = |81|

= 81

=
n
∑

i6=j,j=1

βij −
(

ζi + φAiωi

)

> 0,

for
n
∑

i6=j,j=1

βij >
(

ζi + φAiωi

)

(49)

The determinant of H2 is

det (H2) =

[

81 1

0 82

]

(50)



























= 8182

=

(

n
∑

i6=j,j=1

βij −
(

ζi + φAiωi

)

)

ζiφAiωi (1−R0) > 0,

for
n
∑

i6=j,j=1

βij >
(

ζi + φAiωi

)

andR0 < 1

(51)

We note that all the coefficients 81 and 82 of the polynomial

P(λ) are greater than zero whenever
n
∑

i6=j,j=1

βij >
(

ζi + φAiωi

)

and R0 < 1. Furthermore, all the determinants of the matrices

H1 and H2 are positive if and only if
n
∑

i6=j,j=1

βij >
(

ζi + φAiω
)

and R0 < 1. Therefore, all the roots of the polynomial P(λ)

are either negative or have negative real parts. All eigenvalues

of the multiscale model system (Equations 1–8) will be zero or

negative. Due to the existence of zero eigenvalues, further analysis

on the stability of E0 is performed by implementing the center

manifold theorem in Section 3.3.3. From the proof of Theorem 3.6

the analysis establishes that the disease-free equilibrium point

E0, of the model system (Equations 1–8) is locally asymptotically

stable whenever R0 < 1 and unstable otherwise. This result is

summarized as follows.

Theorem 3.2. The disease-free equilibrium point E0, of the

multiscale model system (Equations 1–8) is locally asmptotically

stable wheneverR0 < 1 and unstable otherwise.
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3.2.4 Global stability of the disease-free
equilibrium

To determine the global stability of DFE of the multiscale

model system (Equations 1–8), we use (Theorem 2) in Van den

Driessche and Watmough [24] to establish that the DFE is globally

asymptotically stable wheneverR0 < 1 and unstable whenR0 > 1.

In this section, we write down two conditions that when satisfied,

also warrant the global asymptotic stability of the disease-free state.

Therefore, writing the multiscale model system (Equations 1–8) in

the following way we get:

{

dX
dt

= F(X,Z),

dZ
dt

= G(X,Z), G(X, 0) = 0
(52)

where X = (Ui, Pi) stands for all uninfected components

and Z = (Vi, Fi, Ii,Ai,Ci, Ji) stands for all infected and infectious

components;

U0 = (X∗; 08) whereX
∗ =

(

Ni,
µi

ξi

)

, i = 1, ..., n (53)

stands for the disease-free equilibrium of the multiscale model

system (Equations 1–8). In order to ensure that the equilibrium

is globally asymptotic stable, the conditions (H1) and (H2) below

should be satisfied [22]:

(H1) For dX
dt

= F(X, 08),X
∗ is globally asymptotically stable

(g.a.s);

(H2) G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ R
8
+,

A ∈ M(6 × 6) where the Jacobian A = ∂G
∂Z = DZG(X

∗, 08) is an

M-matrix (the off diagonal elements of A are nonnegative) and R
8
+

is the region where the model makes biological sense.

Here we have

F(X, 08) =





−κiUi

(

Ii −
µi
ξi

)

κiUi

(

Ii −
µi
ξi

)



 (54)

Interferon production, Ii is stopped when most of the uninfected

cells are protected.

Therefore, we can deduce from Equation 54 that X∗ =
(

Ni;
µi
ξi

)

is globally asymptotically stable.

G(X,Z) =























ζiFi − φAiωiVi +
n
∑

i6=j,j=1

βijVj

ǫiUiVi − ζiFi
µi − ξiIi + φUi (U)ηiCi

φVi (V , J)φAi

φAiωi(Vi + Ji)− σiCi

ωiζiFi − φAiωiJi























(55)

A =























n
∑

i6=j,j=1

βij − φAiωi ζi 0 0 0 0

ǫiNi −ζi 0 0 0 0

0 0 −ξi 0 φUi (U)ηi 0

0 0 0 0 0 0

φAiωi 0 0 0 −σi φAiωi

0 γiζi 0 0 0 −φAiωi























(56)

Therefore we have

G(X,Z) =



















ζiFi − φAiωiVi +
∑n

i6=j.j=1 βijVj

ǫiUiVi − ζiFi
µi − ξiIi + φUi (U)ηiCi

φVi (V , J)φAi

φAiωi(Vi + Ji)− σiCi

ωiζiFi − φAiωiJi



















=























n
∑

i6=j,j=1

βij − φAiωi ζi 0 0 0 0

ǫiNi −ζ 0 0 0 0

0 0 −ξi 0 φUi (U)ηi 0

0 0 0 0 0 0

φAiωi 0 0 0 −σi φAiωi

0 γiζi 0 0 0 −φAiωi























Z − Ĝ(X,Z)

(57)

Ĝ(X,Z) =



















Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)

Ĝ4(X,Z)

Ĝ5(X,Z)

Ĝ6(X,Z)



















=



















0

ǫiNiVi − ǫiUiVi

0

0

0

0



















(58)

=



















0

ǫiVi(Ni − Ui)

0

0

0

0



















(59)

The result clearly shows that A is an M-matrix, as it has non-

negative off diagonal elements. Since 0 ≤ Ui ≤ Ni, then it implies

that Ĝ(X,Z) ≥ 0. It is also clear that the disease-free equilibrium

point X∗ =
(

Ni;
µi
ξi

)

is globally asymptotically stable (GAS)

equilibrium of dX
dt

= F(X, 0). Hence, the disease-free equilibrium

E0 = (X∗, 08) is globally asymptotically stable.

Theorem 3.3. The disease-free equilibrium of the multiscale model

system (Equations 1–8) is globally asymptotically stable if R0 ≤ 1

and the assumptions (H1) and (H2) are satisfied.

Remark 3.4. This result rules-out the existence of backward

bifurcation in this model setting since the disease-free equilibrium

is globally-asymptotically stable whenR0 ≤ 1.

3.3 The endemic equilibrium and its
stability

At the endemic equilibrium the cattle population is invaded by

the FMD virus. The endemic equilibrium is given as follows:

E∗ =
(

U∗
i ,V

∗
i , F

∗
i , P

∗
i , I

∗
i ,A

∗
i ,C

∗
i , J

∗
i

)

, i = 1, ..., n (60)
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satisfies



































































0 = ζiF
∗
i − φAiωiV

∗
i +

n
∑

i6=j,j=1

βijV
∗
j ,

0 = ǫiU
∗
i V

∗
i − ζiF

∗
i ,

0 = −κiU
∗
i

(

I∗i −
µi
ξi

)

,

0 = κiU
∗
i

(

I∗i −
µi
ξi

)

,

0 = µi − ξiI
∗
i + φUi (U)ηiC

∗
i ,

0 = φVi (Vi, Ji)φAi ,

0 = φAiωi(V
∗
i + J∗i )− nσiC

∗
i ,

0 = γiζiF
∗
i − φAiωiJ

∗
i

(61)

for all U∗
i ,V

∗
i , F

∗
i , P

∗
i , I

∗
i ,A

∗
i ,C

∗
i , J

∗
i > 0, i = 1, ..., n.

3.3.1 The endemic equilibrium
The endemic value of the proportion of uninfected cells is given

by

U∗
i =

φAiωiV
∗
i −

n
∑

i6=j,j=1

βijV
∗
j

ǫiV
∗
i

(62)

We deduce from Equation 62 that the equilibrium state

associated with the proportion of uninfected cells is proportional to

the rate at which virus is cleared, the amount of antibody produced,

the strength of transmission between individuals within a spatial

network as well as the rate of infection of cells in the blood. The

endemic value of infected cells is expressed as follows:

F∗i =

φAiωV
∗
i −

n
∑

i6=j,j=1

βijV
∗
j

ζi
(63)

We deduce from Equation 63 that the equilibrium state related

to the infected cells corresponds to the rate of infected cells

bursting, the amount of antibody produced, the strength of

transmission between individuals within a spatial network, the rate

of infection of cells in the blood and to the clearance rate of virus.

The endemic value of the non-infectious material is given by

J∗i =
γiζiF

∗
i

φAiωi
(64)

We deduce from Equation 64 that the equilibrium state

associated with the non-infectious material from the burst infected

cells is proportional to the rate at which the virus is cleared, the

amount of antibody produced and the rate of infected cells bursting.

The endemic value of the virus-antibody complex is given by

C∗
i =

φAiωi(V
∗
i + J∗i )

σi
(65)

We deduce from Equation 65 that the equilibrium state related

to virus-antibody complex corresponds to the amount of antibody

produced, the rate of clearance of virus-antibody complexes and the

clearance rate of the virus. The endemic value of virions in blood is

given by

V∗
i =

ζiF
∗
i

ǫiU
∗
i

(66)

We deduce from Equation 66 that the equilibrium state

associated with virions in blood corresponds to the rate of bursting

of infected cells as well as the rate of infection of cells from the

blood. The endemic value of the interferon is given by

I∗i =
µi

ξi
+

φUi (U)ηiC
∗
i

ξi
(67)

We deduce from Equation 67 that the equilibrium state

associated with the background production of interferon,

background clearance of interferon as well as production rate of

interferon. Therefore, the endemic equilibrium of the multiscale

model system (Equations 1–8) given by Equations 62–67 depend

on both microscale and macroscale parameters.

3.3.2 The existence of the endemic equilibrium
state

This section gives some solutions regarding the existence

of an endemic equilibrium for the multiscale model system

(Equations 1–8) implementing the threshold parameter,R0.

Theorem 3.5. The multiscale model system (Equations 1–8)

formulated in terms of proportions has at least one endemic

equilibrium solution given by

E∗ =
(

U∗
i ,V

∗
i , F

∗
i , P

∗
i , I

∗
i ,A

∗
i ,C

∗
i , J

∗
i

)

, i = 1, ..., n (68)

with U∗
i ,V

∗
i , F

∗
i , P

∗
i , I

∗
i ,A

∗
i ,C

∗
i , J

∗
i all non-negative for all i =

1, ..., n, whose existence and properties are determined by the

threshold parameterR0 where

R0i =

n
∑

i6=j,j=1

βij + ǫiNi

φAiωi
(69)

Proof. Let E∗ =
(

U∗
i ,V

∗
i , F

∗
i , P

∗
i , I

∗
i ,A

∗
i ,C

∗
i , J

∗
i

)

, i = 1, ..., n

be a constant solution of themultiscalemodel system (Equations 1–

8). We can simply present U∗
i , F

∗
i , P

∗
i , I

∗
i ,A

∗
i ,C

∗
i , J

∗
i in terms of V∗

i

in the form



























U∗
i =

φAiωi(1−R0i)+ǫiNi

ǫi
,

F∗i =
V∗
i [φAiωi(1−R0i)+ǫiNi]

ζi
,

I∗i =
µiσi+φUi (U)ηi(V

∗
i φAiωi+γiV

∗
i [φAiωi(1−R0i)+ǫiNi])

ξiσi
,

C∗
i =

V∗
i φAiωi+γiV

∗
i [φAiωi(1−R0i)+ǫiNi]

σi

(70)

We substitute the equations in (Equation 70) into the

expression for Vi to give the following:
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dVi

dt
= ζiFi − φAiωiVi +

n
∑

i6=j,j=1

βijVj (71)

= V∗
i [φAiωi(1−R0i)+ ǫiNi]− φAiωiV

∗
i +

n
∑

i6=j,j=1

βijV
∗
j

= V∗
i [φAiωi(1−R0i)+ ǫiNi − φAiωi +

n
∑

i6=j,j=1

βij] (72)

where V∗
i 6= 0

Consequently, there exists one unique endemic equilibrium for

the multiscale model system (Equations 1–8) wheneverR0 > 1.

3.3.3 Local stability of the endemic equilibrium
In this section we find the local asymptotic stability of the

endemic steady state of the multiscale model system (Equations 1–

8)through the implementation of the center manifold theory

detailed in Castillo-Chavez et al. [22]. Therefore, by applying

the theory we change variables of the multiscale model system

(Equations 1–8). We now set Vi = x1, Fi = x2, Ui = x3, Pi = x4,

Ii = x5, Ai = x6, Ci = x7 and Ji = x8. We also apply the vector

notation x = (x1, x2, x3, x4, x5, x6, x7, x8)
T so that the multiscale

model system (Equations 1–8) can be expressed as follows:

dx

dt
= f(x, ǫ∗) (73)

where

f = (f1, f2, f3, f4, f5, f6, f7, f8) (74)

Therefore, the multiscale model system (Equations 1–8) can be

rewritten as

dx1

dt
= f1 = ζix2 − φAiωix1 +

∑

i6=j,j=1

βijx1,

dx2

dt
= f2 = ǫix3x1 − ζix2,

dx3

dt
= f3 = −κix3

(

x5 −
µi

ξi

)

,

dx4

dt
= f4 = κix3

(

x5 −
µi

ξi

)

,

dx5

dt
= f5 = µi − ξix5 + φUi (U)ηix7, (75)

dx6

dt
= f6 = φVi (Vi, Ji)φAi ,

dx7

dt
= f7 = φAiωi(x1 + x8)− σix7,

dx8

dt
= f8 = γiζix2 − φAiωix8

The approach encompasses calculating the Jacobian matrix of

the multiscale system (Equation 75) at the disease-free equilibrium

E0 signified by J(E0). The matrix corresponding to the multiscale

system (Equation 75) evaluated at the disease-free equilibrium is

given by

J(E0) =



























d2 d6 0 0 0 0 0 0

d7 −d6 0 0 0 0 0 0

0 0 0 0 −d4 0 0 0

0 0 0 0 d4 0 0 0

0 0 0 0 −d8 0 d3 0

0 0 0 0 0 0 0 0

d1 0 0 0 0 0 −d9 d1
0 d5 0 0 0 0 0 −d1



























(76)

where







































































d1 = φAiωi,

d2 = −φAiωi +
n
∑

i6=j,j=1

βij,

d3 = φUi (U)ηi,

d4 = κiNi,

d5 = γiζi,

d6 = ζi,

d7 = ǫ∗Ni,

d8 = ξi,

d9 = σi

(77)

By making use of an approach similar to the approach in

Section 3.2.3, we can obtain the basic reproductive number of the

multiscale system (Equation 75) given by

R0i =

n
∑

i6=j,j=1

βij + ǫ∗Ni

φAiωi
(78)

Setting ǫ = ǫ∗ as the bifurcation parameter and also, letting

R0 = 1 and determining ǫ∗ in Equation 78, this gives

ǫ∗ =

φAiωi −
n
∑

i6=j,j=1

βij

Ni
(79)

We can highlight that the linearized system of the transformed

equations (Equation 75) with bifurcation point ǫ∗ has a simple

zero eigenvalue. Consequently, the center manifold theory [22]

can be utilized to examine the dynamics of the multiscale system

(Equation 75) close to ǫ∗.

Theorem 3.6. Consider the following general system of ordinary

differential equations with parameter φ:

dx

dt
= f (x,φ) (80)

f :Rn × R → R. f :C2
(

R2 × R
)

.

where 0 is an equilibrium of the system, that is, f (0,φ) = 0 for

all φ, and assume that
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(A1) A = Dxf (0, 0) = ((dfi/dxj)(0, 0)) is a linearization matrix of

the multiscale system (Equation 75) around the equilibrium

0 with φ evaluated at 0. Zero is a simple eigenvalue of A, and

other eigenvalues have negative real parts.

(A2) matrix A has a right eigenvector u and a left eigenvector v

corresponding to the zero eigenvalues.

Let fk be the kth component of f and



















a =
n
∑

k,i,j=1

ukvivj
∂d2fk

∂dxi∂dxj
(0, 0),

b =
n
∑

k,i,j=1

ukvi
∂d2fk

∂dxi∂dφ
(0, 0),

(81)

The local dynamics of Equation 80 around 0 are totally

governed by a and b and are summarized as follows.

(i) a > 0 and b > 0. When φ < 0 with |φ| ≪ 1, 0 is locally

asymptotically stable, and there exists a positive unstable

equilibrium: when 0 < φ ≪ 1, 0 is unstable and there exists a

negative and locally asymptotically stable equilibrium.

(ii) a < 0 and b < 0. When φ < 0 with |φ| ≪ 1, 0 is unstable,

when 0 < φ ≪ 1, 0 is asymptotically stable, and there exists a

positive unstable equilibrium.

(iii) a > 0 and b < 0. When φ < 0 with |φ| ≪ 1, 0

is unstable, and there exists a locally asymptotically stable

negative equilibrium; when 0 < φ ≪ 1, 0 is stable and a

positive unstable equilibrium appears.

(iv) a < 0 and b > 0. When φ changes from negative to positive, 0

changes its stability from stable to unstable. Correspondingly

a negative unstable equilibrium becomes positive and locally

asymptotically stable.

To implement Theorem 3.6, the following calculations are

necessary (note that ǫ∗ is the bifurcation parameter instead of φ

in Theorem 3.6).

When R0 = 1, we can demonstrate that the Jacobian matrix

of the multiscale system (Equation 75) at ǫ∗ (denoted by Jǫ∗ ) has

a right eigenvector corresponding to the zero eigenvalue expressed

below:

u = (u1, u2, u3, u4, u5, u6, u7, u8)
T , (82)

such that



























d2 d6 0 0 0 0 0 0

d7 −d6 0 0 0 0 0 0

0 0 0 0 −d4 0 0 0

0 0 0 0 d4 0 0 0

0 0 0 0 −d8 0 d3 0

0 0 0 0 0 0 0 0

d1 0 0 0 0 0 −d9 d1
0 d5 0 0 0 0 0 −d1





















































u1
u2
u3
u4
u5
v6
v7
v8



























=



























0

0

0

0

0

0

0

0



























(83)

where























































u1 = 1,

u2 = 1,

u3 = 0,

u4 = u4 > 0,

u5 = 0,

u6 = u6 > 0

u7 = 0,

u8 =
γiζi

φAiωi

(84)

Furthermore, the left eigenvector of the jacobian matrix in

Equation 76 corresponding to the zero eigenvalue at ǫ∗ such that

[

v1 v2 v3 v4 v5 v6 v7 v8

]



























d2 d6 0 0 0 0 0 0

d7 −d6 0 0 0 0 0 0

0 0 0 0 −d4 0 0 0

0 0 0 0 d4 0 0 0

0 0 0 0 −d8 0 d3 0

0 0 0 0 0 0 0 0

d1 0 0 0 0 0 −d9 d1
0 d5 0 0 0 0 0 −d1



























=
[

0 0 0 0 0 0 0 0
]

(85)

and satisfying the condition v.u = 1.

From Equation 85 we obtain:

v = (v1, v2, v3, v4, v5, v6, v7, v8)
T , (86)

where



























































v1 =

[

−(d1d6+d5d7)ζiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
] ,

v2 =

[

(d2d5−d1d6)ǫ∗NiφAiωi
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
] ,

v3 = v3 > 0,

v4 = 0,

v5 = 0

v6 = 0,

v7 = 0,

v8 = 0

(87)

When we determine the dot product v.u = 1 we obtain















































v.u = v1.u1 + v2.u2

=

(

[

−(d1d6+d5d7)ζiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

)

+

(

[

(d2d5−d1d6)ǫ∗NiφAiωi
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

)

=

(

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

)

= 1

(88)

We now calculate the parameters of bifurcation a and b,

by determining the value of the nonzero second-order mixed

derivatives of F in regard to the variables and ǫ∗ to get the signs

of a and b. The sign of a corresponds to the following nonvanishing

partial derivatives of F:

{

∂2f2
∂x3∂x1

=
∂2f2

∂x1∂x3
= ǫ∗

∂2f4
∂x3∂x5

=
∂2f4

∂x5∂x3
= κi

(89)
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Similarly, the sign of b corresponds to the following non-

vanishing partial derivatives of F:

∂2f2

∂x1∂ǫ∗
= x3 = Ni (90)

Substituting Equations 84, 87, and 89 into Equation 81, we get







a = 2u2v3v1
∂2 f2

∂x3∂x1

= 2

[

−(d1d6+d5d7)ζiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
] ǫ∗v3

(91)

On the other hand, when we substitute Equations 84, 87, and 90

into Equation 81, we get







b = u2v1
∂2 f2

∂x1∂ǫ∗

=

[

−(d1d6+d5d7)ζiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]

[

−(d1d6+d5d7)ζiφAiωi+(d2d5−d1d6)ǫ∗NiφAiωi+d6(d2+d7)γiζiǫ∗Ni
]Ni

(92)

When d2d5 > d1d6 then a > 0 and b > 0. It

follows that the FMD multiscale model (Equation 75) exhibits

a backward bifurcation whenever the threshold parameter R0

crosses unity. This shows the co-existence of disease-free and

endemic equilibrium at R0 slightly less than unity. Implementing

Theorem 3.6, item (i), enables us to establish the following result

which is only valid for R0 > 1 but near 1. When forward

bifurcation occurs, the condition R0 < 1 is usually a necessary

and sufficient condition for disease eradication, however, it is

no longer sufficient when a backward bifurcation occurs. In the

case of backward bifurcation there exists a subcritical transcritical

bifurcation at R0 = 1 and a saddle-node bifurcation at R0 =

R
sn
0 < 1. On the other hand, when d2d5 < d1d6 then a < 0 and

b < 0. Implementing Theorem 3.6, item (ii), enables us to establish

the following result which is only valid forR0 > 1 but near 1.

Theorem 3.7. The FMD endemic steady state of model

system (Equations 1–8) guaranteed by Theorem 3.6 is locally

asymptotically stable forR0 > 1 near 1.

4 Numerical analysis

This section presents computer simulations for the multiscale

model system’s (Equations 1–8) behavior performed using Python

program version 3.6 on the Windows 10 operation system.

The numerical simulations of the multiscale model system

(Equations 1–8) were carried out to explain some of the systematic

results that we obtained. We used the estimated parameter values

presented in Table 2 for sensitivity and numerical analysis. A

certain amount of the parameter values implemented in the

simulations are results from publications and the others are

estimates. The following are initial conditions implemented for

these simulations: Vi(0) = 10, Fi(0) = 0,Ui(0) = 500, Pi(0) =

0, Ii(0) = µi
ξi
,Ai(0) = 0,Ci(0) = 0, Ji(0) = 0 for each individual

i. We considered a population of n = 100 individuals in a

spatial network.

TABLE 1 Description of individual-based multiscale model variables for

the ith individual.

Variable Description Units Initial value

Fi Infected cells TCID50 ml−1 0

Ci Virus-antibody

complexes

TCID50 ml−1 equiv. 0

Pi Protected cells Cell 0

Ui Uninfected cells Cell 1

Ai Antibody LPBE-titer 0

Vi Conc. of virions in

blood

TCID50 ml−1 0

Ji Non-infectious

material

TCID50 ml−1 equiv. 0

Ii Interferon IU ml−1 µ

ξ

B = [βij] =















0 0.2 0.1 0.4 0.05

0.1 0 0.3 0.2 0.1

0.1 0.2 0 0.1 0.15

0.1 0.1 0.2 0 0.3

0.2 0.1 0.3 0.4 0















(93)

The matrix B in Equation 93 is a transmission matrix with

elements βij, describes the transmission strength from individual

i to individual j and β11 = β22 = β33 = β44 = β55 = 0.

From Table 3 R0 = max {R0i} = R02 = 1.94.

4.1 Sensitivity analysis

4.1.1 Local sensitivity analysis
We now perform sensitivity analysis to evaluate the relative

change in the basic reproduction number,R0 when the microscale

and macroscale parameters of the model system (Equations 1–

8) change. We made use of the normalized forward sensitivity

index of the basic reproduction number, R0 of the model system

(Equations 1–8) to each of the model parameters. The normalized

forward sensitivity index of a variable to a parameter is typically

defined as “the ratio of the relative change in the variable to the

relative change in the parameter” [25]. Hence, if we let R0 be a

differentiable function of the parameter u, then the normalized

forward sensitivity index ofR0 at u is defined as

ŴR0
u =

∂R0

∂u
×

u

R0
(94)

where the quotient u/R0 is applied to normalize the coefficient

by removing the effect of units [26]. From R0 defined in

Equation 37 and the parameter values in Table 3 we obtain

the following
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TABLE 2 Model parameter values corresponding to the transmission dynamics of FMD.

Symbol Description Range explored Value Unit References

ǫi Rate of infection of cells from the blood [0.003; 0.05] 0.03 TCID50mlh−1 [20]

ζi Bursting rate of infected cells [0 ;1] 0.23 h−1 [20]

γi Non-infectious material per TCID50ml−1 [0.001, 0.5] 0.01 None [20]

σi Rate of clearance of virus-antibody complexes [0.00001; 0.2] 0.009 h−1 [20]

ηi Rate at which interferon is produced per

complexes

[0.01; 0.5] 0.03 TCID−1
50 mlh−1 [20]

κi Protection rate of uninfected cells [0.0001; 0.1] 0.001 cell−1h−1 [20]

µi Interferon rate of production [0.001; 0.5] 0.06 IU ml−1 h−1 [20]

ξi Interferon rate of clearance [0.001; 0.1] 0.056 h−1 [20]

φAi Production rate of antibody [0; 100] 10 LPBE-titer h−1 [20]

βij Transmission rate of FMDV virus between hosts [0.001; 0.9] 0.5 Estimate

ωi Clearance rate of virus [0.0033; 0.3] 0.06 LPBE-titer−1 [20]

TABLE 3 Model parameter values forR0 of five individuals.

i ǫi Ni φAi ωi R0i

1 0.003 10 10 0.3 1.27

2 0.009 20 20 0.1 1.94

3 0.01 200 300 0.01 1.90

4 0.02 80 100 0.033 1.61

5 0.05 50 1000 0.02 0.31







































Ŵ
R0
ǫ2 = N2ǫ2

∑5
i 6=j,j=1 βij+ǫ2N2

= 0.0463917526 > 0

Ŵ
R0
N2

= N2ǫ2
∑5

i 6=j,j=1 βij+ǫ2N2
= 0.0463917526 > 0

Ŵ
R0
β21

=
β21

∑5
i 6=j,j=1 βij+ǫ2N2

= 0.0257731959 > 0

Ŵ
R0
ω2 = −1 < 0

Ŵ
R0
φA2

= −1 < 0

(95)

The reproduction number is most sensitive to the changes on

the microscale parameter ω2, rate at which virus is cleared in

individual 2. This implies that with prophylaxis interventions the

virus can be cleared at a much faster rate. Since Ŵ
R0
ω2 = −1,

increasing ω by 10% decreases the reproduction number by 10%. A

similar argument is applied to φA2 to production rate of antibodies.

The reproduction number also shows some notable sensitivity to

changes on another microscale parameter ǫ2, the infection rate

of cells from the blood in individual 2. This implies an increased

lysis of cells leading to significant pathogen shedding and spread

of FMD throughout the population. Since Ŵ
R0
ǫ2 = +0.046391726,

increasing ǫ2 by 10% also increases the reproduction number by

0.4639%. A similar argument is also applied to N2 and β21. The

sensitivity analysis is summarized in Table 4.

4.1.2 Global sensitivity analysis
This section presents the analysis of sensitivity for the FMDV

transmission indicators obtained from the multiscale model to

TABLE 4 Sensitivity indices of model reproduction numberR0 to

parameters for model system (Equations 1–8), evaluated at the parameter

values presented in Table 3.

Parameter Description Sensitivity
index with
positive
sign

Sensitivity
index with
negative

sign

β21 Rate of

transmission

from 1 to 2

+0.0257731959

ǫ2 Infection rate of

cells from the

blood in

individual 2

+0.0463917526

ω2 Controls the rate

at which virus is

cleared

–1

N2 Initial number of

uninfected

epithelial cells

+0.0463917526

φA2 Production rate

of antibody

-1

the model parameters. The transmission indicator we consider

is the basic reproductive number, R0 that generally describes

the dynamics for a disease at the beginning of an infection.

For any particular epidemic model that illustrates the disease

dynamics within a particular population, a sensitivity analysis study

is important to perform since it enables us to establish model

parameters which can be marked for control, elimination as well

as eradication of disease. Therefore, the analysis of sensitivity

of the FMDV metric R0, in relation to the variation of FMD

multiscale model parameters is carried out by implementing Latin

Hypercube Sampling and Partial Rank Correlation Coefficients

(PRCCs). In order to explore the influence of each model

parameter on the basic reproduction number, R0 we performed

1,000 simulations per run. The results of sensitivity of R0 to
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FIGURE 2

Tornado plot of partial rank correlation coe�cients (PRCCs) of the multiscale model parameters that impact the FMDV transmission indicator R0.

the model parameters are presented by the Tornado plot in

Figure 2.

According to the sensitivity analysis results of R0 to the

multiscale model system’s (Equations 1–8) parameters obtained in

Figure 2, we deduce these outcomes:

(a) The multiscale model system’s (Equations 1–8) parameters

have both positive PRCCs and negative PRCCs. This implies

that parameters with positive PRCCs will increase the value of

R0 as they are increased, where as parameters with negative

PRCCs will decrease the value for R0 as they are increased.

For example, an increase in a parameter such as rate of

infection of cells from the blood, ǫi at the within-host level will

consequently increase the value of R0, and also increasing a

parameter such as rate at which virus is cleared, ωi leads to

decrease inR0.

(b) The FMDV transmission metric R0 is extremely sensitive to

five of the disease parameters of the multiscale model system

(Equations 1–8), ( βij,Ni,φi,ωi, ǫi). We note that R0 indicates

spread of FMDV during the beginning of the outbreak. The

following conclusions regarding sensitivity ofR0 to the FMDV

multiscale model system’s (Equations 1–8) parameters can be

established.

(i) Since R0 is significantly sensitive to (βij,Ni,φi,ωi, ǫi), this

implies that caution must be applied on the accuracy of

these five FMDVmultiscale model system’s (Equations 1–8)

parameters during the collection of data if the effectiveness

and usefulness of the FMDV multiscale model system

(Equations 1–8) is to be intensified.

(ii) In view of the fact that R0 is responsive to the

transmission rate between the cattle, βij (the between-host

level parameter) it implies that FMD interventions such as

quarantines would be more effective to control the spread of

FMD infection at the beginning of the outbreak.

(iii) Since R0 is significantly sensitive to the initial susceptible

epithelial cells, Ni (the within-host level parameter) and

the rate of infection of cells from the blood, ǫi this implies

that FMD interventions such as vaccination (which reduces

susceptible epithelial cells within the cattle) would be more

effective to control the spread of FMD infection at the

beginning of outbreak.

(iv) Since R0 is significantly sensitive to the rate of production

of antibodies, φAi and rate at which FMDV virus is cleared,

ωi this implies that FMD interventions such as vaccination

(which increases the rate of antibody production and

clearance of FMDV virus) would be more effective to

control the spread of FMD infection at the beginning

of outbreak.

4.2 Numerical simulations of the multiscale
model of FMD transmission dynamics

This section enables us to implement numerical simulations to

substantiate some outcomes obtained from the sensitivity analysis

for R0 and analytical results of the multiscale model. Applying

the multiscale model parameter values obtained from Table 2
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FIGURE 3

Graphs of numerical results of the model system (Equations 1–8) demonstrating the advancement with time of (a) concentration of virions in the

blood for individual 1, V1, (b) concentration of virions in the blood for individual 2, V2, (c) infected cells for individual 1, F1, (d) infected cells for

individual 2, F2 for variant values of infection rate of cells from the blood for individual 1, ǫ1 : ǫ1 = 0.003, ǫ1 = 0.03 and ǫ1 = 0.3.

we carried out the numerical simulations. We demonstrate the

impact of five FMD transmission parameters (βij,Ni,φi,ωi, ǫi)

on the multiscale model variables Vi, Fi,Ui, Pi, Ii,Ai,Ci, Ji. These

parameters were only selected because they are significantly

sensitive toR0.

4.2.1 Influence of within-host scale parameters
of the FMD multiscale model dynamics

In this section, we demonstrate by implementing numerical

simulations the impact of within-host scale parameters

Figure 3 represents the graphs of numerical results of model

system (Equations 1–8) demonstrating the progression in time

of (a) concentration of virions in the blood for individual 1,

V1, (b) concentration of virions in the blood for individual 2,

V2, (c) infected cells for individual 1, F1, (d) infected cells for

individual 2, F2 for variant values of infection rate of cells from

the blood for individual 1, ǫ1 : ǫ1 = 0.003, ǫ1 = 0.03 and ǫ1 =

0.3. From these results we can see that as the rate of infection

of cells from the blood for individual 1, ǫ1 increases, there is

significant increase in the concentration of virions in the blood for

individual 1, concentration of virions in the blood for individual

2, infected cells for individual 1, infected cells for individual 2.

These results reflect that interventions such as vaccination of cattle

will reduce the rate of infection of cells from the blood leading

to a reduced risk of transmission of FMD for the individual in

the community.

Figure 4 demonstrates the impact of variation of rate at which

virus is cleared, ω1 :ω1 = 0.006,ω1 = 0.06 and ω1 = 0.6

on the within-host scale variables Vi, Fi,Ui, Pi, Ii,Ai,Ci, Ji. The

outcomes demonstrate that a decrease in ω is related to an

increment in the within-cattle scale variables (Vi, Fi, Ii,Ci, Ji). An

increment in the within-cattle scale variables like Vi and Fi
implies that there is an increase in FMDV shedding into the

environment and an increase in the strength of transmission

of FMDV, β , throughout the cattle population. The within-host

scale variables Ii,Ci,Ai represent the early immune response

which intensifies as rate at which virus is cleared decreases.

These results reflect that interventions such as vaccination of

cattle will increase the clearance rate of virus leading to a

reduced risk of transmission of FMD for each individual in the

community. This can be justified by Equation 36, which shows

that when the clearance rate of virus is increased, the value of

R0 decreased.

4.2.2 Influence of between-host scale
parameters of the FMD multiscale model
dynamics

Figure 5 represents the graphs of numerical results of the

model system (Equations 1–8) demonstrating the advancement

with time of all model variables for variant values of rate

of transmission of virus from individual 2 to individual 1,

β21 :β21 = 0.003,β21 = 0.03 and β21 = 0.3. Results
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FIGURE 4

Graphs of numerical results of the model system (Equations 1–8) demonstrating the advancement with time of (a) concentration of virions in the

blood for individual 1, V1, (b) concentration of virions in the blood for individual 2, V2, (c) infected cells for individual 1, F1, (d) infected cells for

individual 2, F2 for variant values of rate at which virus is cleared for individual 1, ω1 :ω1 = 0.006,ω1 = 0.06 and ω1 = 0.6.

FIGURE 5

Graphs of numerical results of the model system (Equations 1–8) demonstrating the advancement with time of (a) concentration of virions in the

blood for individual 1, V1, (b) concentration of virions in the blood for individual 2, V2, (c) infected cells for individual 1, F1, (d) infected cells for

individual 2, F2 for variant values of rate of transmission of virus from individual 2 to individual 1, β21 :β21 = 0.003,β21 = 0.03 and β21 = 0.3.
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FIGURE 6

The network visualization based on the degree distribution of 50

cattle.

indicate that as the rate of transmission of virus from individual

2 to individual 1 increases, there is an increase in the within-

cattle scale variables such as V1 and F1. Intervention strategies

such as quarantines would be more effective in reducing the

rate of transmission. This can be justified by Equation 36,

which shows that when the rate of transmission of virus

from individual 2 to individual 1 is decreased, the value of

R0 decreased.

Figure 6 represents a network visualization based on the degree

distribution of 50 cattle as a result of data generated by stochastic

simulation approach (source code: Appendix B). The nodes

represent cattle in the network and links represent the possible

transmissions. The nodes with the highest node degree (number of

connections) may indicate the presence of hubs or super-spreaders.

Therefore, if hubs exist, targeted interventions such as isolation or

vaccination (which reduces susceptible epithelial cells within the

cattle) would have a positive impact in controlling the spread of

FMD in cattle. Furthermore, the network has a uniform or Poisson

distribution of node degree which implies there is lack of clustering

and degree correlation that is observed in other complex networks.

Figure 7 represents a degree distribution histogram which

visualizes how node degrees (number of connections) are

distributed in a network. Since the histogram is not heavy-tailed,

this does not indicate the existence of super-spreaders or hubs.

Therefore, targeted intervention such as vaccination to vulnerable

groups would impact positively in controlling the spread of FMD

in the cattle population.

Figure 8 shows scatterplots visualizing relationships between

various pairs of variables in the FMD multiscale model. For

example, there is a strong negative correlation between Infected

cells and Interferons. This shows the impact of immune response

since the infected cells decrease as the interferons are activated.

Furthermore, there is a negative correlation between Infected cells

and Virions. This is because as the infected cells burst, their

population is reduced resulting in increased amounts of virions

in the blood. Therefore, intervention strategies such as vaccination

would help to combat the spread of FMD in cattle.

Figure 9 consist of the graphs (in black) representing the

means of the dynamics for 50 cattle and the graphs (in blue)

representing the dynamics of each individual animal for Infected

cells (Fi), Virions in blood, (Vi), Interferon, (Ii) and Virus-

Antibody Complexes, (Ci). The graphs indicate heterogeneity in:

host susceptibility to infection, the ability of hosts to transmit

pathogen to other hosts and host immune response for the 50 cattle

(source code: Appendix A). Therefore, targeted interventions such

as vaccination and isolation of the vulnerable group would have

more impact in combating the spread of FMD.

Figure 10 shows a correlation heatmap of model variables

(Fi,Vi, Pi,Ui). Results show that there is a negative correlation

between Infected cells and Virions. This is because as the

infected cells burst, their population is reduced resulting in

increased amounts of virions in the blood. Furthermore, there

is a positive correlation between Protected cells and Uninfected

cells. This is because as the population of protected cells

increases, the population of uninfected cells will also increase.

Therefore, intervention strategies such as vaccination (which

reduces susceptible epithelial cells within the cattle) would help to

combat the spread of FMD.

Figure 11 shows the contact matrix with various transmission

probabilities. The darkest color represents the highest transmission

probability and lightest color represents the lowest transmission

probability. Therefore, targeted intervention strategies such as

vaccination or quarantine of vulnerable groups would be more

effective in combating the spread of FMD.

4.3 Mean-field approximation
(homogeneous mixing) of multiscale model

We now consider the mean-field approximation, a

simplification used to reduce complex interactions into an

averaged effect. This can be compared with the multiscale model

system (Equations 1–8) to explore similarities or deviations.

dV

dt
= < k > ζF − φAωV , (96)

dF

dt
= ǫUV− < k > ζF, (97)

dU

dt
= −κU

(

I −
µ

ξ

)

, (98)

dP

dt
= κU

(

I −
µ

ξ

)

, (99)

dI

dt
= µ − ξ I + φU (U)ηC, (100)

dA

dt
= φV (V , J)φA, (101)

dC

dt
= φAω(V + J)− σC, (102)
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FIGURE 7

The network degree distribution in the cattle population.

FIGURE 8

The relationships between various pairs of variables.
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FIGURE 9

The graphs (in black) represent the means of the dynamics for 50 cattle and the graphs (in blue) represent the dynamics of each individual animal for

Infected cells (Fi), Virions in blood, (Vi), Interferon, (Ii) and Virus-Antibody Complexes, (Ci).

dJ

dt
= γ ζF − φAωJ (103)

where < k > is the average degree (number of contacts)

in the network. The model variables and parameters in model

system (Equations 1–8) have been simplified from the model

variables and parameters in model system (Equations 1–8). The

numerical simulation of the model system (Equations 1–8) is given

in Figure 12.

Figure 12 consists of the graphs representing the dynamics

of Infected cells, (F), Virions in blood, (V), Interferon, (I), and

Virus-Antibody Complexes, (C). Results indicate that the graphs

(in black) for model system (Equations 1–8) representing the

means of the dynamics for 50 cattle in Figure 9 do not deviate

from the mean-field predictions in model system (Equations 1–

8). It is also important to highlight that multiscale models

such as coupled multiscale models and nested multiscale models

are examples of mean-field approximations which require more

detailed comparison in future studies.

4.4 E�ects of stochasticity on the model

In this section we introduce a white noise (dWQ/dt) (that is,

W(t) is a Brownian motion), where Q = {Vi, Fi,Ui, Pi, Ii,Ai,Ci, Ji},

into multiscale model system (Equations 1–8) which becomes







































































dVi =

[

ζiFi − φAiωiVi +
n
∑

i6=j

βijVj

]

dt + σViVidWV (t),

dFi = [ǫiUiVi − ζiFi] dt + σFiFidWF(t),

dUi =
[

−κiUi

(

Ii −
µi
ξi

)]

dt + σUiUidWU (t),

dPi =
[

κiUi

(

Ii −
µi
ξi

)]

dt + σPiPidWP(t),

dIi =
[

µi − ξiIi + φUi (U)ηiCi

]

dt + σIi IidWI(t),

dAi =
[

φVi (V , J)φAi

]

dt + σAiAidWA(t),

dCi =
[

φAiωi(Vi + Ji)− σiCi

]

dt + σCiCidWC(t),

dJi =
[

γiζiFi − φAiωiJi
]

dt + σJi JidWJ(t)

(104)

We set W(t) = WV (t),WF(t),WU (t),WP(t),WI(t),WA(t),

WC(t),WJ(t) an 8-dimensional Wiener process that is defined on

this probability space. Further, the constants σVi , σFi , σUi , σPi , σIi ,

σAi , σCi , σJi and non-negative and describe the intensities of the

stochastic pertubations. Let us assume that the components of the

1-dimensional Wiener processWi are mutually independent. It can

be shown that the SDE model (Equation 104) has at least a unique

global solution in order for the model to have meaning and also

that the solution will always remain positive whenever the initial

conditions are positive. Let us consider the following theorem.

Proposition 1. For Equation 104 and any initial value in R
8
+, there

is a unique solution

L = (Vi, Fi,Ui, Pi, Ii,Ai,Ci, Ji) where i = 1, ..., n of the system
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FIGURE 10

The correlation of di�erent pairs of model variables (Fi,Vi,Pi,Ui).

FIGURE 11

The contact matrix with various transmission probabilities. The darkest color represents the highest transmission probability and lightest color

represents the lowest transmission probability.
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FIGURE 12

The graphs represent the dynamics of Infected cells, (F), Virions in blood, (V), Interferon, (I), and Virus-Antibody Complexes, (C).

(Equation 104) for t ≥ 0 which will remain in R
8
+ with

probability one.

Figure 13 demonstrates the graphs of numerical results of

infectious virions in blood in the 1st individual,V1 of the multiscale

SDE model system (Equation 104) with the ODE multiscale model

system (Equations 1–8) solutions. For the Stochastic differential

equation the intensity of the stochastic pertubations σ = 0.3. The

solution for the stochastic multiscale model is obtained using the

Milsten method.

Figure 14 demonstrates the graphs of numerical results of the

infected cells in the 1st individual, F1 of the multiscale SDE

model system (Equation 104) with the ODE multiscale model

system (Equations 1–8) solutions. For the Stochastic differential

equation the intensity of the stochastic pertubations σ = 0.3. The

solution for the stochastic multiscale model is obtained using the

Milsten method.

5 Discussion and conclusions

The primary contribution of this study to scientific

understanding is the development of an individual-based

multiscale network model, grounded in the replication-

transmission relativity theory, which integrates the within-host

and between-host dynamics of infectious disease systems. It

incorporates the pathogen replication cycle at the within-host

FIGURE 13

Graphs of numerical results of infectious virions in blood in the 1st

individual, V1 of the multiscale SDE model system (Equation 104)

with the ODE multiscale model system (Equations 1–8) solutions.

For the Stochastic di�erential equation the intensity of the

stochastic pertubations σ = 0.3.

level, utilizing Foot-and-mouth disease (FMD) in cattle as a case

study. A key characteristic of individual-based multiscale network
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FIGURE 14

Graphs of numerical results of the infected cells in the 1st individual,

F1 of the multiscale SDE model system (Equation 104) with the ODE

multiscale model system (Equations 1–8) solutions. For the

Stochastic di�erential equation the intensity of the stochastic

pertubations σ = 0.3.

models is the variation in (i) host susceptibility to infection, (ii)

the capability of hosts to transmit the pathogen to others, (iii) the

immune response of hosts, and (iv) host behavior. Based on the

sensitivity analysis, it is evident that the reproduction number

is influenced by certain parameters, including the transmission

rate among cattle (a between-host parameter), the initial count of

susceptible epithelial cells, the rate at which cells become infected

from the blood, the antibody production rate, and the rate at

which the FMD virus is eliminated (within-host parameters). This

suggests that interventions for FMD, such as vaccination (which

activates the immune response to eliminate the FMD virus and

thus lowers replication), along with bio-security measures like

disinfecting vehicles, equipment, and footwear, as well as isolating

new animals prior to their introduction, would be more effective in

curbing the spread of FMD at the onset of an outbreak. Numerical

simulations were conducted to demonstrate the influence of

model parameters designated for controlling, eliminating, and

eradicating FMD. The results of the simulations suggest that

non-pharmacological strategies such as disinfection, quarantine,

wildlife management, surveillance, and early detection can be

utilized to reduce the transmission rate of FMDV within the

cattle population. Additionally, the analysis of the network degree

distribution indicates the absence of hubs due to lack of a heavy tail

on the histogram. It is also important to highlight that the network

has a uniform or Poisson distribution of node degree which implies

lack of clustering and degree correlation that is observed in other

complex networks such as scale-free and small-world.

This research offers valuable insights to mathematical modelers

regarding the integration of varying scales across all levels

of biological hierarchy. The primary focus of this study was

the development and analysis of an individual-based multiscale

network model. However, future research will incorporate

more realistic complex networks such as scale-free networks

characterized by a few highly connected nodes (hubs) and many

nodes with few connections. These hubs (super-spreaders) might

be responsible for a disproportionately large number of disease

transmissions.
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