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On negative eigenvalues of
1D Schrödinger operators with
δ
′-like potentials
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In this paper, we investigate negative eigenvalues of exactly solvable quantum
models, particularly one-dimensional Hamiltonians with δ′-like potentials used
to represent localized dipoles. These operators arise as norm resolvent limits of
Schrödinger operators with suitably regularized potentials. Although the limiting
operator is bounded below, we show that the approximating operators may
possess a finite but arbitrarily large number of negative eigenvalues that diverge
to −∞ as the regularization parameter vanishes. This phenomenon illustrates a
spectral instability of Schrödinger operators with δ′-like singularities.
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1 Introduction

The aim of this study is to establish the existence and describe the asymptotic
behavior of negative eigenvalues of one-dimensional Schrödinger operators that serve as
regularizations of formal Hamiltonians involving δ and δ′ potentials. These questions arise
in the construction and analysis of exactly solvable models in quantum mechanics, a topic
that continues to draw considerable attention in the literature (see Albeverio et al. [1] and
Albeverio and Kurasov [2], as well as comprehensive reference lists therein, covering works
up to the early 2000s).

Some point interactions (i.e., pseudopotentials supported on discrete sets) naturally
lead to well-defined, exactly solvable models; others, however, exhibit essential ambiguities
in defining the corresponding Hamiltonians. A notable example of this contrast is provided
by the δ and δ′ potentials. In the case of the δ potential, the differential equation
−y′′ + αδ(x)y = λy is well-posed in the space of distributions D′(R) and has a
two-dimensional solution space. In contrast, the equation −y′′ + αδ′(x)y = λy is ill-
posed in D′(R) and admits only the trivial solution when α 6= 0. Moreover, while every
reasonable regularization of Hamiltonians involving the δ potential yields the same exactly
solvable model, the δ′ potential is sensitive to the regularization procedure, and different
approximations may lead to different point interactions. As a result, the choice of the
exactly solvable model for δ′ potentials is not determined by mathematical considerations
alone. However, it must reflect the specifics of the particular physical experiment—a feature
that only enriches the study of exactly solvable models.

In this study, we demonstrate a further distinction between the δ and δ′ potentials,
this time concerning the spectral properties of their regularized Hamiltonians. Natural
approximations of both the δ and δ′ potentials by regular potentials yield operator families
that converge in the norm resolvent topology to semi-bounded limits. However, we show
that in contrast to δ-like perturbations, δ′-like perturbations lead to operator families that
are not uniformly bounded from below as the regularization parameter tends to zero.
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As a consequence, such regularized Hamiltonians can possess a
finite (but arbitrarily large) number of low-lying eigenvalues that
diverge to negative infinity. We explicitly determine the number
of these eigenvalues and describe their asymptotic behavior in the
singular limit.

The rest of the article is organized as follows. Section 2
gives a brief overview of studies on exactly solvable models
for Hamiltonians with δ and δ′ potentials. In Section 3, we
derive conditions under which Schrödinger operators with δ′-like
potentials possess low-lying eigenvalues that diverge to negative
infinity as the regularization parameter tends to zero. Section 4
introduces methods for estimating the number of such eigenvalues
and shows, in particular, that the emergence of a discrete spectrum
is closely related to zero-energy resonances for the corresponding
Schrödinger operators. In Section 5, we investigate how the non-
trivial interaction of δ-like and δ′-like perturbations leads to the
emergence of a negative eigenvalue with a finite limit as the
perturbation parameter tends to zero. Finally, Section 6 contains
the proofs of Theorems 3 and 4 on the asymptotic behavior
of eigenvalues.

2 Short review of exactly solvable
models for δ and δ

′ potentials

In this section, we review existing approaches to constructing
exactly solvable quantum mechanical models for one-dimensional
Hamiltonians with pseudopotentials involving the Dirac δ-function
and its derivative δ′.

The simplest case is the formal (pseudo-)Hamiltonian

− d2

dx2
+ αδ(x), α ∈ R. (2.1)

Any reasonable method of associating a self-adjoint Hamiltonian
to Equation 2.1—such as form-sum, generalized sum method,
approximation by regular potentials—yields the same operator H,
acting as Hy = −y′′ on the domain

domH =
{

y ∈ W2
2 (R \ 0) : y(+0) = y(−0),

y′(+0)− y′(−0) = αy(0)
}

.

In other words, the distributional potential αδ(x) in the one-
dimensional Schrödinger operator results in the point interaction
imposing the interface condition

(

y(+0)
y′(+0)

)

=
(

1 0
α 1

)(

y(−0)
y′(−0)

)

. (2.2)

Moreover, this model serves as a good approximation in the
norm resolvent sense of the Schrödinger operators with integrable
potentials of special form. Specifically, given a real-valued function
U of compact support such that

α =
∫

R

U(x) dx,

the scaled potentials Uε(x) = ε−1U(ε−1x) converge in the space
of distributions D′ to the distribution αδ(x) as ε → 0, and the
corresponding operators

− d2

dx2
+ ε−1U(ε−1x)

converge to H in the norm resolvent sense [1, Theorem I.3.2.3],
i.e., their resolvents converge in operator norm to the resolvent
of H. Similar convergence results hold even in the presence of
background potentialsW, i.e., for operators of the form

− d2

dx2
+W(x)+ αδ(x).

One should not expect that every pseudopotential gives rise
to a unique point interaction. Certain pseudopotentials are highly
sensitive to the way they are approximated, and the δ′ potential
is one of them. In physics, the symbol δ′ is often used to
describe a strongly localized dipole-type potential, such as a high
narrow barrier followed by a deep well. Let V be an integrable
function with compact support and a finite first moment; then, the
sequence ε−2V(ε−1x) converges in D′, as ε → 0, if and only if
∫

R
V(x) dx = 0, and in that case

ε−2V(ε−1x) → βδ′(x), (2.3)

where β = −
∫

R
xV(x) dx. For this reason, we refer to such families

of scaled potentials as δ′-like.
The question of how to correctly define the formal Hamiltonian

− d2

dx2
+ βδ′(x) (2.4)

has a long and intricate history. As mentioned earlier, difficulties
arise already at the level of interpreting the differential expression
in Equation 2.4, since the equation −y′′ + βδ′(x)y = λy admits
only the trivial solution in the space of distributionsD′. Indeed, the
product δ′(x)φ(x) is well defined in D′ only if φ is continuously
differentiable, and in that case, it is equal to the distribution
φ(0)δ′(x) − φ′(0)δ(x). However, any non-trivial solution y of the
above equation would have to be discontinuous at the origin since
its second derivative y′′ = βδ′(x)y − λy would necessarily include
a δ′ term. In this case, the product δ′(x)y(x) is not defined in D′,
making the equation invalid.

Moreover, the operator in Equation 2.4 cannot be rigorously
defined using standard approaches such as the form-sum or
generalized sum methods, or as a relatively bounded perturbation
of the free Hamiltonian. For this reason, it is natural to
approach this problem via regularization: one considers families of
Schrödinger operators of the form

Hε = − d2

dx2
+ ε−2 V(ε−1x), domHε = W2

2 (R),

with δ′-like potentials ε−2 V(ε−1x) as a starting point for studying
physical phenomena associated with zero-range dipoles. The
construction of exactly solvable models for such dipole interactions
is thus reduced to analyzing the limits of Hε as ε → 0.

It has been shown that the operator familyHε indeed converges
in the norm resolvent sense as ε → 0. In a seminal paper, Šeba [3]
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argued that the limiting operator is the free Hamiltonian D0

decoupled at the origin by the Dirichlet condition, namely

D0y = −y′′, domD0 =
{

y ∈ W2
2 (R \ 0) : y(0) = 0

}

. (2.5)

According to this result, no meaningful definition of a Schrödinger
operator with a δ′-potential would be possible since the limit
D0 is completely impenetrable to a quantum particle and is
independent of the specific form of the function V . However, this
conclusion contradicts the findings of Zolotaryuk et al. [4–7], who
analyzed transmission probabilities through piecewise constant δ′-
like potentials and observed examples of quantum tunneling. These
results prompted the revision of Šeba [3]; it was later rigorously
proved in Golovaty and Hryniv [8] that the operatorD0 is the norm
resolvent limit of Hε only in the so-called non-resonant case, while
in the resonant case, the situation is different.

We begin by recalling the relevant definitions [9–11]. The
operator − d2

dx2
+ V is said to have a zero-energy resonance if the

equation v′′ = Vv admits a non-trivial solution v that is bounded
on the entire real line. Such a solution is called a half-bound state,
and the potentialV is then referred to as resonant. Every half-bound
state v has finite, non-zero limits v± at±∞, and the ratio

θ = v+
v−

is uniquely determined by V . As proved in [8] (see also Golovaty
and Man’ko [12] and Golovaty et al. [13]), if the potential V is
resonant, then the familyHε converges in the norm resolvent sense
as ε → 0 to the self-adjoint operator

H(θ) = − d2

dx2
, domH(θ) =

{

y ∈ W2
2 (R \ 0) :

y(+0) = θy(−0), θy′(+0) = y′(−0)
}

.

We call H(θ) the Schrödinger operator with δ′θ potential, with θ
specifying the above interface conditions.

Regardless of whether the family ε−2V(ε−1x) converges in
D′ as ε → 0 or not, the Schrödinger operators Hε converge
in the norm resolvent sense to either H(θ) or D0 depending on
whether V is resonant or non-resonant. Moreover, there is no
functional dependence between the constant β appearing in the
distributional limit (Equation 2.3) and the interface parameter θ in
the point interaction

(

y(+0)
y′(+0)

)

=
(

θ 0
0 θ−1

)(

y(−0)
y′(−0)

)

(2.6)

corresponding to H(θ). Two different resonant, zero-mean
potentials V may produce the same β but different values of
θ , and conversely, the same θ may arise for different β . It is
worth noting that Kurasov [14, 15] was the first to establish a
connection between the δ′-potential and the point interactions
described by Equation 2.6.

In Golovaty [16, 17], it was proved that the approximations of
pseudo-Hamiltonians− d2

dx2
+ αδ(x)+ βδ′(x) by the Hamiltonians

− d2

dx2
+ ε−1U(ε−1x)+ ε−2 V(ε−1x)

with every regular functions U and V also converge in the norm
resolvent topology. If V is non-resonant, the operators converge to
D0. However, if V is resonant with a half-bound state v, then the
limiting operator is associated with point interaction, producing the
interface conditions

(

y(+0)
y′(+0)

)

=
(

θ 0
η θ−1

)(

y(−0)
y′(−0)

)

, (2.7)

where

θ = v+
v−

, η = 1

v−v+

∫

R

Uv2 dx. (2.8)

A comprehensive study of exactly solvable models with point
interactions (Equation 2.7) has been done by Gadella et al. [18–
20]. Besides the approximation of pseudopotentials by regular
potentials, there are other methods to construct exactly solvable
models: e.g., the method of self-adjoint extensions has been used
by Nizhnik [21, 22], and the distributional approach has been
proposed by Lunardi et al. [23, 24].

We note that the point interactions characterized by the
interface conditions

(

y(+0)
y′(+0)

)

=
(

1 β
0 1

)(

y(−0)
y′(−0)

)

,

commonly referred to as δ′-interactions, are also sometimes
interpreted as models of the formal δ′ potential. Exner, Neidhardt,
and Zagrebnov [25] proposed a refined potential approximation of
such interactions using a family of three δ-like potentials centered
at the points ±a and 0, with the separation distance a tending to
zero in a carefully coordinated way with the coupling constants.
Further contributions in this direction include the works of Cheon
and Shigehara [26], Zolotaryuk [27], and Albeverio et al. [28–
30]; see also the recent publication [31]. Although the potential
families in Exner et al. [25] do not converge to δ′ in the sense of
distributions, the term “δ′-interactions” can be partially justified by
interpreting δ′ as a finite-rank perturbation; see Albeverio et al. [32]
and Kuzhel and Nizhnik [33] for further discussion.

Let 〈 · , · 〉 be the dual pairing between the Sobolev spaces
W−s

2 (R) and Ws
2(R). Since δ(x)y(x) = y(0)δ(x) = 〈δ, y〉δ(x), the

formal operator (Equation 2.1) can be written as

− d2

dx2
+ α〈δ, · 〉δ(x). (2.9)

This shows that the δ-potential can be interpreted as a rank-
one perturbation of the free Hamiltonian, and the standard
theory of regular finite-rank perturbations yields the same exactly
solvable model as in Equation 2.2. In the physical literature, the δ′-
interaction is typically associated with rank-one perturbation of the
free Hamiltonian as in Equation 2.9 but with δ′ in place of δ [1,
Ch. 1.4]:

− d2

dx2
+ β〈δ′, · 〉δ′(x). (2.10)

The more general results of Albeverio and Nizhnik [34] and
Albeverio et al. [32] imply that there exist regular potentials
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φε ,ψε ∈ L2(R) converging to δ′ in D′ such that the rank-one
perturbations of the free Hamiltonian,

− d2

dx2
+ β〈φε , · 〉ψε(x),

converge to Equation 2.10 in the strong resolvent topology as
ε → 0. The difference, in terms of spectral effects, between the
perturbation of the so-called 1D conic oscillator consisting of a
mixed potential αδ + βδ′ and the one with the δ′-interaction in
Equation 2.10 was investigated in detail in Fassari et al. [35].

However, the model (Equation 2.10) is not directly related to
the formal expression (Equation 2.4) with a δ′-potential. Indeed, if
the product δ′(x)y(x) is well defined in the distributional sense, then

δ′(x)y(x) = y(0)δ′(x)− y′(0)δ(x).

Using this identity, the formal expression (Equation 2.4)
can be interpreted as a rank-two perturbation of the free
Schrödinger operator:

− d2

dx2
+ β〈δ, · 〉δ′(x)+ β〈δ′, · 〉δ(x).

In Golovaty [36, 37], the norm resolvent convergence of the
regular Hamiltonians

− d2

dx2
+ (gε , ·) fε + (fε , ·) gε + ε−1U

(

x
ε

)

.

was studied. Here, fε and gε are sequences of real- or complex-
valued functions in C∞

0 (R) such that fε → δ′ and gε → δ in the
distributional sense, and (·, ·) denotes the inner product in L2(R).
Under suitable assumptions on fε , gε , and the potential U, such
operators were shown to approximate the two-parameter family of
point interactions defined by the interface conditions

(

y(+0)
y′(+0)

)

=
(

µ ̹

0 µ−1

)(

y(−0)
y′(−0)

)

.

Although there is no established theory of distributions
on metric graphs, the notions of δ-like and δ′-like potentials
can be naturally extended to this setting. The construction
of exactly solvable models on quantum graphs, as well as
the approximation of singular vertex couplings—including
mixed αδ′ + βδ interactions—has been explored in Cheon
and Exner [38], Man’ko [39], Exner and Manko [40], and
Golovaty [41].

The above results illustrate the richness of approaches
to modeling point interactions and exactly solvable models
in quantum mechanics. While δ-potentials admit a canonical
interpretation, the situation becomes especially delicate when
the formal δ′-potential is involved, as different approximations
may lead to different exactly solvable models. The choice of
the appropriate limit operator is, therefore, not unique and
must be guided by the physical or mathematical context of
the problem.

3 Existence of low-lying eigenvalues
for δ

′-like potentials

Let us consider the family of operators

Hε = − d2

dx2
+W(x)+ ε−1U(ε−1x)+ ε−2 V(ε−1x), (3.1)

with the domain W2
2 (R), where U, V , and W are compactly

supported L∞(R)-potentials. This restriction on the potentials
avoids unnecessary technical complications; however, the results
remain valid for a significantly broader class of potentials
(cf. [13] for an example of how this constraint can be relaxed).
We are interested in the emergence of negative eigenvalues in
Hamiltonians due to δ-like and δ′-like perturbations. Accordingly,
we assume that W ≥ 0, so that the unperturbed operator H0 =
− d2

dx2
+W is non-negative and has a purely continuous spectrum.

As follows from the result of Golovaty [16], the operators Hε

converge in the norm resolvent sense as ε → 0. If the potential V
is resonant, i.e., possesses a half-bound state v (see Section 2), then
Hε converge to the operator

H = − d2

dx2
+W, domH =

{

φ ∈ W2
2 (R \ {0}) :

φ(+0) = θφ(−0), φ′(+0) = θ−1φ′(−0)+ ηφ(−0)
}

, (3.2)

where θ and η are given by Equation 2.8. In the non-resonant case,
the family converges to the operatorD0 = − d2

dx2
+W subject to the

Dirichlet boundary condition at the origin as in Equation 2.5. Both
H andD0 can be interpreted as perturbations of the operatorH0 by
point interactions at the origin.

If the potential V is zero, then the family Hε is uniformly
bounded from below as ε → 0. This follows from the fact that
the δ-like perturbation is form-bounded relative H0, with relative
bound a < 1, so that there is a b > 0 such that

∀φ ∈ W2
2 (R) : ε−1(U(ε−1·)φ,φ

)

≤ a(H0φ,φ)+ b(φ,φ).

In this case, as we show below, the operators Hε may have at
most one eigenvalue, and this eigenvalue converges to a finite limit
as ε → 0.

In contrast, when V is not identically zero, although the
limiting operators H and D0 are semibounded from below, the
family Hε is generally not uniformly bounded from below. Thus,
the familyHε may exhibit eigenvalues that diverge to −∞ as ε →
0; we refer to such eigenvalues as low-lying eigenvalues.

The following result characterizes precisely when such
eigenvalues may occur.

Theorem 1. Let Hε be the family of operators defined by

Equation 3.1. Then, the operatorsHε admit low-lying eigenvalues as

ε → 0 if and only if the potential V is not identically zero and

∫

R

V dx ≤ 0.

Moreover, the number of such eigenvalues is finite.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2025.1615447
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Golovaty and Hryniv 10.3389/fams.2025.1615447

Proof. Assume that the potential V is not identically zero and
that

∫

R
V dx ≤ 0. By [42, Th.XIII.110], the operator H =

− d2

dx2
+ V has then at least one negative eigenvalue −ω2, and

we let u be a corresponding normalized eigenfunction. Denote
by Wε(x) = W(x) + ε−1U(ε−1x) + ε−2 V(ε−1x) the perturbed
potential in Equation 3.1 and introduce the quadratic form

aε[φ] =
∫

R

(

|φ′(x)|2 +Wε(x)|φ(x)|2
)

dx.

Then, the scaled function uε(x) = ε−1/2u
(

x
ε

)

belongs to L2(R) and
has norm one. A direct computation shows that

ε2aε[uε] =
∫

R

(

|u′(t)|2+V(t)|u(t)|2
)

dt+ε
∫

R

U
(

x
ε

)

|uε(x)|2 dx

+ ε2
∫

R

W(x)|uε(x)|2 dx = −ω2(1+ O(ε)),

as ε → 0. Therefore, for all sufficiently small ε, one has aε[uε] ≤
− 1

2ω
2ε−2, and we conclude from the minimax principle that there

exists an eigenvalue λε ofHε such that λε ≤ − 1
2ω

2ε−2.
Assume now that

∫

R
V dx > 0. Then, for sufficiently small

ε > 0, the integral
∫

R

Wε(x) dx = ε−1
∫

R

V(x) dx+
∫

R

U(x) dx+
∫

R

W(x) dx

is positive, and again by [42, Th. XIII.110] the operator Hε has no
negative eigenvalues.

LetNε be the number of negative eigenvalues ofHε . It is known
(see, e.g., [43, Th. 5.3], [44, Th. 7.5], [9, 45]) that the inequality

Nε ≤ 1+
∫

R

|x| |W−
ε (x)| dx

holds, where f− = min{f , 0} is the negative part of a function f .
In view of the assumption W ≥ 0, the negative part W−

ε comes
only from the V and U terms, and we estimate the integral above
as follows:

∫

R

|x| |W−
ε (x)| dx = ε−2

∫

R

|x| |V− ( x
ε

)

+ εU− ( x
ε

)

| dx

≤
∫

R

|t| |V−(t)| dt + ε
∫

R

|t| |U−(t)| dt.

The right-hand side remains bounded uniformly in small ε, and
thus Nε is bounded as ε → 0, which completes the proof.

Relatively (form-) bounded symmetric perturbations preserve
semi-boundedness of the perturbed operator; see [46, Th. IV.4.11,
Th. VI.1.38]. However, even if a family of self-adjoint operators Aε
converges in the norm resolvent sense as ε → 0 to a self-adjoint
operator A that is bounded from below, the family Aε may fail
to be uniformly bounded from below. Even if each operator Aε is
individually semi-bounded, its lower bound may diverge to −∞
as ε → 0. A classic example due to Rellich [46, Ex. IV.4.14] gives
such an operator familyAε with a single eigenvalue tending to−∞.
The family of operators Hε with δ′-like perturbations provides a
much stronger illustration of this effect. WhileHε converges in the
norm resolvent topology to a self-adjoint operator that is bounded
from below, the number of eigenvalues that diverge to −∞ as
ε → 0 can be arbitrary but finite. In the next section, we describe
the procedure for counting these low-lying eigenvalues.

4 Counting the number of low-lying
eigenvalues

Let us consider the Schrödinger operators

Tα = − d2

dx2
+ αV(x), domTα = W2

2 (R), (4.1)

with a real coupling constant α. We denote by R(V) the set of all
values of α for which the potential αV is resonant. For each non-
zero function V ∈ L∞(R) with compact support, the set R(V) is
a countable subset of R with accumulation points at +∞ and/or
−∞ [47].

We now recall the following definition [9]. Let A and B be
self-adjoint operators, with B relatively A-compact. Suppose that
(a, b) is a spectral gap of A and that b ∈ σess(A). If there exists an
eigenvalue eα of the perturbed operator A+ αB in the gap (a, b) for
all α > 0, and if eα → b− 0 as α → 0, then α = 0, which is called
a coupling constant threshold. Klaus [9] established a connection
between resonant potentials and such coupling constant thresholds.
Both phenomena are closely related to the emergence of negative
eigenvalues in Schrödinger operators.

Suppose that a Schrödinger operator − d2

dx2
+ V has a

zero-energy resonance with a corresponding half-bound state v.
According to Klaus [9, Th. 3.2], if U is a real-valued potential
such that

∫

R

Uv2 dx < 0,

then the perturbed operator H̹ = − d2

dx2
+ V + ̹U , ̹ > 0, has

a coupling constant threshold at ̹ = 0 and possesses a unique
threshold eigenvalue λ̹ obeying the asymptotics λ̹ = −a2̹2 +
O(̹3), as ̹ → 0, where the coefficient a is given by

a = 1

v2− + v2+

∫

R

Uv2 dx. (4.2)

By reversing the direction of ̹ , we conclude that as ̹ increases
from zero, the operator H̹ acquires a negative eigenvalue that
detaches from the bottom of the continuous spectrum.

Without loss of generality, we may assume that the support
of the potential V is contained in the interval (−1, 1). We now
consider the spectral Regge problem with spectral parameter ω [48]:

−d2u

dx2
+ (V(x)+ ω2)u = 0, x ∈ (−1, 1),

du

dx
(−1)− ωu(−1) = 0,

du

dx
(1)+ ωu(1) = 0.

(4.3)

A complex numberω is called an eigenvalue of the Regge problem if
there exists a non-trivial solution u of Equation 4.3, in which case u
is a corresponding eigenfunction.

Theorem 2. The number of low-lying eigenvalues of Hε is equal to

each of the following:

(i) the number of negative eigenvalues of the

operator T1 = − d2

dx2
+ V(x);

(ii) the number of points in the set R(V) belonging to the

interval (0, 1);
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(iii) the number of positive eigenvalues ω of the Regge problem

(Equation 4.3).

Proof. (i) Consider the family of Schrödinger operators

Sε = − d2

dx2
+ V(x)+ εU(x)+ ε2W(εx)

with domainW2
2 (R). This family is uniformly bounded from below

and converges to the operator T1 in the norm-resolvent sense
as ε → 0. Suppose that T1 has n eigenvalues −ω2

1 , . . . ,−ω2
n.

Then, for sufficiently small ε, the operators Sε have exactly n

eigenvalues −ω2
1,ε , . . . ,−ω2

n,ε such that ωj,ε → ωj. Since Hε is
unitarily equivalent to ε−2Sε , it follows that Hε has exactly n

negative eigenvalues −ε−2ω2
1,ε , . . . ,−ε−2ω2

n,ε , each diverging to
−∞ as ε → 0.

(ii)⇔(i) The operator T0 = − d2

dx2
has no eigenvalues. Suppose

that the set R(V) ∩ (0, 1) is non-empty, and let α1 be its smallest
element. We write

Tα = − d2

dx2
+ α1V(x)+ (α − α1)V(x),

and let v1 be a half-bound state corresponding to the resonant
potential α1V . Then,

∫

R

Vv21 dx = − 1

α1

∫

R

v′1
2
dx < 0,

and the operator Tα has an eigenvalue

λα = −a21(α − α1)2 + O((α − α1)3)

for α > α1, where a1 is given by Equation 4.2 with v = v1
and U = V .

As the parameter α increases, it may pass through further
points inR(V) ∩ (0, 1), and at each such crossing, the operator Tα
acquires a new simple eigenvalue. Since no negative eigenvalue can
get absorbed by the continuous spectrum as α increases [9], this
gives a total count of the negative eigenvalues of T1.

(iii)⇔(i) Suppose ω > 0 is an eigenvalue of the Regge
problem with the corresponding eigenfunction u. Then, −ω2

is an eigenvalue of the operator T1, with the corresponding
eigenfunction

ψ(x) =















u(−1) eω(x+1), if x < −1,

u(x), if |x| ≤ 1,

u(1) e−ω(x−1), if x > 1.

(4.4)

Conversely, if ψ is an eigenfunction of T1 corresponding to
eigenvalue −ω2, then, since suppV ⊂ (−1, 1), we have ψ(x) =
a−eωx for x ≤ −1 and ψ(x) = a+e−ωx for x ≥ 1. This implies
that ψ satisfies the boundary conditions in Equation 4.3, and its
restriction to (−1, 1) is an eigenfunction of the Regge problem
(Equation 4.3) with eigenvalue ω > 0.

Theorem 2 is of practical importance because solving the Regge
problem on a finite interval or computing the resonance set R(V)
is typically much easier than directly counting the eigenvalues of a
Schrödinger operator on the real line. Another useful observation is

that by replacingV with cV for sufficiently large c > 0, we canmake
the number of negative eigenvalues of T1—and hence the number
of low-lying eigenvalues ofHε—arbitrarily large.

The following theorem describes the two-term asymptotic
expansion of the low-lying eigenvalues, which are constructed and
justified in Section 6.

Theorem 3. Assume that the Schrödinger operator T1 = − d2

dx2
+ V

has n eigenvalues −ω2
1 < −ω2

2 < · · · < −ω2
n < 0 with

eigenfunctions v1, v2, . . . , vn. Then, the operator family Hε has n

low-lying eigenvalues λε1 < λε2 < · · · < λεn with asymptotics

λεk = −ε−2

(

ωk + ε
∫

R
U|vk|2 dx

2ωk‖vk‖2

)2

+O(1), as ε → +0. (4.5)

The corresponding eigenfunctions vk,ε converge to zero in the weak

topology.

We mention that one of the reasons why low-lying eigenvalues
do not obstruct the norm resolvent convergence of Hε is that the
corresponding eigenfunctions converge weakly to zero in L2(R).

5 Negative eigenvalues generated by
δ-like potentials

As shown in the previous section, the emergence of low-
lying eigenvalues is caused by a δ′-like perturbation, and the
number of these eigenvalues is determined by the profile V of
the approximating δ′-like potential. However, negative eigenvalues
may also arise from δ-like perturbations, whether or not a δ′-like
component is present in the operators Hε . In such cases, at most
one negative eigenvalue may appear, and it always has a finite limit
as ε → 0.

The Schrödinger operator

Sα = − d2

dx2
+W(x)+ αδ(x)

with a δ-potential of intensity α ∈ R acts by Sαy = −y′′ +Wy on
its natural domain

dom Sα =
{

y ∈ W2
2 (R \ 0) : y(+0) = y(−0),

y′(+0)− y′(−0) = αy(0)
}

.

So defined Sα is self-adjoint and has an absolutely continuous
spectrum filling the positive half-line R+, while its negative
spectrum consists of at most one eigenvalue. We recall that the
unperturbed operator S0 = − d2

dx2
+W(x) is non-negative.

Lemma 1. Assume W ∈ L∞(R) is a non-negative function of

compact support. Then, there exists α0 ∈ (−∞, 0) such that, for all

α < α0, the operator Sα has exactly one negative eigenvalue.

Proof. If W = 0, then the operator Sα is non-negative for α ≥ 0,
while for α < 0, it has a unique eigenvalue λ = − α2

4 with the
normalized eigenfunction

ψα(x) =
√

|α|
2 e

α|x|
2 ,
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see Albeverio et al. [1, Th.3.1.4]. For a genericW, we take an α < 0
and find that

(Sαψα ,ψα) = (−ψ ′′
α ,ψα)+ (Wψα ,ψα)

= −α
2

4
+ |α|

2

∫

R

W(x)eα|x| dx.

Since
∫

R
W(x)eα|x| dx → 0 as α → −∞ by the Lebesgue

dominated convergence theorem, we conclude that the value

(Sαψα ,ψα) =
|α|
4

(

α + 2

∫

R

W(x)eα|x| dx
)

becomes negative for negative α of large enough absolute value. As
a result, for such α, the operator Sα has a negative eigenvalue. This
eigenvalue is unique because Sα is a rank-one perturbation of the
non-negative operator S0.

Lemma 1 remains valid for positive potentialsW such that

∫

R

W(x)eα|x| dx <∞, for all α < 0;

for example, for potentials with polynomial growth at infinity.
Moreover, the above arguments suggest an explicit way to construct
α0. The function

f (α) = α + 2

∫

R

W(x)eα|x| dx (5.1)

is monotonically increasing in α ∈ (−∞, 0], f (0) > 0 and f

becomes negative as α → −∞. Thus, f has a unique non-positive
zero α0. Since (Sαψα ,ψα) = |α|

4 f (α), we conclude that the operator
Sα has a unique negative eigenvalue for all α < α0.

Example 1. Consider the family of operators

Sα = − d2

dx2
+ b2(1+ sin x)+ αδ(x)

Since
∫

R
(1 + sin x)eα|x| dx = − 2

α
for α < 0, the zero of f in

Equation 5.1 satisfies α2 = 4b2. Hence, Sα has a unique negative
eigenvalue for all α < −2|b|.

Example 2 (Cf. [49, 50]). Let Sα be the harmonic oscillator
perturbed by the δ potential:

Sα = − d2

dx2
+ kx2 + αδ(x), k > 0.

In this case, the zero of f is a negative root of α4 = 8k, since

∫

R

x2eα|x| dx = − 4

α3
, α < 0.

Therefore, the operator Sα has a unique negative eigenvalue for all
α < −23/4k1/4.

When V = 0, the operators

Hε = − d2

dx2
+W(x)+ ε−1U(ε−1x), (5.2)

are uniformly bounded from below and converge in the norm
resolvent sense to Sα with α =

∫

R
U dx. This convergence, in

particular, implies the convergence of negative eigenvalues; our
next objective is to obtain a more precise asymptotic formula
(proved in Section 6).

Theorem 4. Suppose that W and U are L∞(R)-functions of

compact support, and that W is non-negative. If
∫

R
U dx < α0,

where the threshold value α0 is the root of Equation 5.1, then the

operator Hε of Equation 5.2 has a unique negative eigenvalue λε
satisfying the asymptotics

λε = λ+ ε
(

1

2
ψ(0)2

∫∫

R2
U(t)|t − τ |U(τ ) dτ dt

+ ψ(0)
(

ψ ′(−0)+ ψ ′(+0)
)

∫

R

tU(t) dt

)

+ O(ε2), ε → 0.

(5.3)

Here,ψ is a real-valued, L2(R)-normalized eigenfunction of Sα , with

α =
∫

R
U dx, corresponds to the unique negative eigenvalue λ.

Moreover, the normalized eigenfunctions ψε of Sε can be chosen

in such a way that ψε → ψ in L2(R).

If the potential W is even, then the ground state λε

has asymptotics

λε = λ+ 1

2
εψ(0)2

∫∫

R2
U(t)|t − τ |U(τ ) dτ dt + O(ε2),

since the eigenfunction ψ is also even and therefore ψ ′(−0) +
ψ ′(+0) = 0. If W = 0 and

∫

R
U dx < 0, the asymptotic formula

(Equation 5.3) becomes

λε = −1

4

(∫

R

U(t) dt + 1

2
ε

∫∫

R2
U(t)|t − τ |U(τ ) dτ dt

)2

+O(ε2)

and coinsides with the Abarbanel–Callan–Goldberger formula up
to the factor ε2. The formula arises when studying the weakly
coupled Hamiltonians − d2

dx2
+ γU, their negative eigenvalues, and

the absorption of such eigenvalues, as γ → 0, by a continuous
spectrum [51].

Now, suppose that the potential V is non-zero. If V is non-
resonant, then the behavior of the negative spectrum of Hε is
described by Theorem 3. However, if the shape V of the δ′-
perturbation is resonant, then under certain conditions on the δ-
perturbation, the operator Hε may have—in addition to low-lying
eigenvalues—an extra eigenvalue that has a finite limit as ε → 0.
We recall that in the resonant case, the norm resolvent limit ofHε

as ε → 0 is the operatorH given by Equation 3.2, with constants θ
and η determined by V and U via Equation 2.8.

Lemma 2. Let W be a non-negative function in L∞(R) of compact

support. If ηθ < 0 and the condition

∫ +∞

0

(

W(−x)+ θ2W(x)
)

dx <
|ηθ |
2

(5.4)

holds, then the operator H defined by Equation 3.2 has a unique

negative eigenvalue.
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Proof. Assume first that W = 0. Integration by parts, on account
of the interface conditions, yields

(Hy, y) = ‖y′‖2 + θη|y(−0)|2,

thus for θη ≥ 0, the operator H is non-negative. In contrast, if
θη < 0, thenH has a unique eigenvalue

λ = − η2θ2

(θ2 + 1)2
(5.5)

with the normalized eigenfunction

9(x) =
√
2|ηθ |
θ2+1

·







e
− ηθ

θ2+1
x

for x < 0,

θe
ηθ

θ2+1
x

for x > 0,

as can be verified by straightforward calculations.
Now consider the case of arbitrary W ∈ L∞(R), and let the

constants θ and η from Equation 2.8 satisfy θη < 0. Using the
function9 defined above, we find that

(H9 ,9) = (W9 ,9)− η2θ2

(θ2 + 1)2
.

Therefore,H has a negative eigenvalue if

(W9 ,9) <
η2θ2

(θ2 + 1)2
.

This inequality is equivalent to

∫ +∞

0

(

W(−x)+ θ2W(x)
)

e
− 2|ηθ |
θ2+1

x
dx <

|ηθ |
2

,

which is guaranteed under condition (Equation 5.4).

Theorem 5. Assume that V is resonant with a half-bound state v,

and that the potentials W and U satisfy the conditions W ≥ 0 and

∫ +∞

0

(

v2−W(−x)+ v2+W(x)
)

dx < −1

2

∫

R

Uv2 dx. (5.6)

Then, for ε small enough, the operatorHε has a negative eigenvalue

λε converging, as ε → 0, to the negative eigenvalue of the operator

H defined by Equation 3.2, where the parameters θ and η are given

by Equation 2.8.
If W = 0 and

∫

R
Uv2 dx < 0, then this eigenvalue λε

has asymptotics

λε = − 1

(v2− + v2+)2

(∫

R

Uv2 dx

)2

+ O(ε), ε → 0. (5.7)

Proof. Inequality (Equation 5.6) and asymptotic formula
(Equation 5.7) are equivalent forms of Equations 5.4, 5.5
when evaluated for the specific values θ and η. In addition,
inequality (Equation 5.6) ensures that ηθ < 0. Indeed, it implies
that

∫

R
Uv2 dx < 0, and since

ηθ = 1

v2−

∫

R

Uv2 dx,

we conclude that ηθ < 0. The convergence Hε → H in the
norm resolvent sense as ε → 0 then guarantees that Hε has a
negative eigenvalue λε approaching the unique negative eigenvalue
ofH.

6 Asymptotic expansions of
eigenvalues

In this section, we derive asymptotic formulas (Equations 4.5,
5.3) by constructing and justifying formal asymptotic expansions
of the eigenvalues. For the sake of definiteness, we assume that the
supports of U and V are contained in (−1, 1).

6.1 Formal asymptotics

We start with asymptotics (Equation 5.3). The equation

−d2yε

dx2
+
(

W(x)+ ε−1 U(ε−1x)
)

yε = λεyε

on R \ (−ε, ε) reads

− d2yε

dx2
+W(x)yε = λεyε , (6.1)

while after rescaling (−ε, ε) to (−1, 1) and introducing wε(t) =
yε(εt), one gets

− d2wε

dt2
+ ε2W(εt)wε + εU(t)wε = ε2λεwε (6.2)

on (−1, 1). In addition, the components yε and wε must satisfy the
matching conditions

wε(±1) = yε(±ε), w′
ε(±1) = εy′ε(±ε).

We look for approximations of eigenvalues and eigenfunctions
of the form

λε ∼ λ0 + ελ1, (6.3)

yε(x) ∼ Yε(x) =















y0(x)+ εy1(x), if |x| > ε,

w0(ε−1x)+ εw1(ε−1x)

+ε2w2(ε−1x), if |x| < ε,

(6.4)

where y0 6= 0. Substituting the approximations into Equations 6.1,
6.2), we find that y0 and y1 satisfy the equations

−d2y0

dx2
+W(x)y0 = λ0y0, −d2y1

dx2
+W(x)y1 = λ0y1 + λ1y0

on R \ {0}, while the fast-variable components w0, w1, and w2 are
solutions to the boundary value problems

d2w0

dt2
= 0,

dw0

dt
(−1) = 0,

dw0

dt
(1) = 0; (6.5)

d2w1

dt2
= U(t)w0,

dw1

dt
(−1) = y′0(−0),

dw1

dt
(1) = y′0(+0);

(6.6)

d2w2

dt2
= U(t)w1 + (W(0)− λ0)w0,

dw2

dt
(−1) = y′1(−0)− y′′0 (−0), (6.7)

dw2

dt
(1) = y′1(+0)+ y′′0 (+0).
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Furthermore, the equalities

w0(−1) = y0(−0), w0(1) = y0(+0), (6.8)

w1(−1) = y1(−0)− y′0(−0), w1(1) = y1(+0)+ y′0(+0) (6.9)

hold. In view of Equations 6.5, 6.8, w0 is a constant function
and therefore y0(+0) = y0(−0). Set w0(t) = y0(0). Problem
(Equation 6.6) can be solved if and only if

dw1

dt
(1)− dw1

dt
(−1) = y0(0)

∫ 1

−1
U(τ ) dτ ,

which yields the second interface condition for y0:

y′0(+0)− y′0(−0) = αy0(0), α =
∫

R

U(τ ) dτ . (6.10)

Therefore, the leading terms y0 and λ0 of Equations 6.3, 6.4 solve
the problem

−d2y0

dx2
+W(x)y0 = λ0y0 on R \ {0},

y0(+0) = y0(−0), y′0(+0)− y′0(−0) = αy0(0).

Since y0 must be a non-trivial solution, we conclude that λ0 is
an eigenvalue of Sα and y0 is the corresponding (real-valued)
eigenfunction; we denote it by ψ and normalize by ‖ψ‖ = 1.
Moreover, problem (Equation 6.6) is solvable now, and the solution
w1 is defined up to a constant.

Integrating twice the equation for w1 and using the relations
w′
1(−1) = ψ ′(−0) and w1(−1) = y1(−0) − ψ ′(−0), we arrive at

the formula

w1(t) = ψ(0)

∫ t

−1
(t − τ )U(τ ) dτ + ψ ′(−0)t + y1(−1), (6.11)

which on account of w1(1) = y1(+0)+ ψ ′(+0) yields

y1(+0)+ ψ ′(+0) = ψ(0)

∫ 1

−1
(1− τ )U(τ ) dτ + ψ ′(−0)+ y1(−0).

Set α1 =
∫

R
τU(τ ) dτ . Then, y1(+0) − y1(−0) = −α1ψ(0), by

Equation 6.10.
To get the second interface relation for y1, we integrate the

equation for w2 and find that

w′
2(1)− w′

2(−1) =
∫ 1

−1
U(t)w1(t) dt + 2(W(0)− λ0)ψ(0).

We assume that W is continuous in the vicinity of x = 0, and this
implies that

ψ ′′(+0) = ψ ′′(−0) = (W(0)− λ0)ψ(0).

Combining this with the boundary conditions in Equations 6.7,
6.11, we obtain

y′1(+0)− y′1(−0) = αy1(−0)+ α1ψ ′(−0)+ γψ(0),

where

γ =
∫

R

∫ t

−∞
U(t)(t − τ )U(τ ) dτ dt.

So, we get the boundary value problem for y1:

− d2y1

dx2
+W(x)y1 = λ0y1 + λ1ψon R \ {0}, (6.12)

y1(+0)− y1(−0) = −α1ψ(0), (6.13)

y′1(+0)− y′1(−0)− αy1(−0) = α1ψ
′(−0)+ γψ(0). (6.14)

Observe that the solution y1, if it exists, is determined up to
adding a multiple of ψ ; therefore, by the Fredholm alternative, the
above non-homogeneous problem is solvable only when some extra
conditions are met. To derive them, we multiply Equation 6.12
by the eigenfunction ψ and then integrate by parts twice
to get

ψ(0)
(

y′1(+0) − y′1(−0)− αy1(−0)
)

− ψ ′(+0)
(

y1(+0)− y1(−0)
)

= λ1

∫

R

ψ2(x) dx.

Relations (Equations 6.13, 6.14) result in the expression

λ1 = γψ2(0)+ α1ψ(0)(ψ ′(−0)+ ψ ′(+0))

for the second term in asymptotics (Equation 5.3).
We seek an approximation of the low-lying eigenvalues and the

corresponding eigenfunctions of the form

√

−λε ∼ ωε = ε−1(ω + ε̹), (6.15)

yε(x) ∼ Yε(x) =















e
(ω+ε̹)x

ε , if x < −ε,
u(ε−1x)+ εw(ε−1x), if |x| < ε,

(a+ bε)e−
(ω+ε̹)x

ε , if x > ε,

(6.16)

where ω > 0. On the region R \ (−ε, ε), the function Yε
satisfies (Equation 6.1) up to terms with a small norm in L2(R).

For instance, only the term W(x)e
(ω+ε̹)x

ε remains if x < −ε, and
its norm in L2(−∞, 0) is of order O(ε1/2). By substituting Yε into
Equation 6.2 and matching the terms at x = ±ε, we obtain

−d2u

dt2
+ (V(t)+ ω2)u = 0,

−d2w

dt2
+ (V(t)+ ω2)w = −(2ω̹ + U(t))u,

u(−1) = e−ω ,
du

dt
(−1) = ωe−ω ,

u(1) = ae−ω ,
du

dt
(1) = −aωe−ω ,

w(−1) =− ̹e−ω , dw

dt
(−1) = ̹(1− ω)e−ω ,

w(1) =(b− a̹)e−ω ,
dw

dt
(1) = (a̹(ω − 1)− bω)e−ω .

(6.17)
The relations for u can be written as

−d2u

dt2
+ (V(t)+ ω2)u = 0, t ∈ (−1, 1), (6.18)

du

dt
(−1)− ωu(−1) = 0,

du

dt
(1)+ ωu(1) = 0, (6.19)

which is the Regge problem (Equation 4.3). We assume that ω is
an eigenvalue of the problem with real-valued eigenfunction u.
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Recall that−ω2 is an eigenvalue of the operator T1 of Equation 4.1
with the eigenfunction ψ given by Equation 4.4. We also
have a = u(1)/u(−1).

From Equation 6.17, we similarly obtain the problem for w:

−d2w

dt2
+ (V(t)+ ω2)w = −(2ω̹ + U(t))u, t ∈ (−1, 1),

(6.20)

dw

dt
(−1)− ωw(−1) = ̹u(−1),

dw

dt
(1)+ ωw(1) = −̹u(1).

(6.21)

The problem is generally unsolvable because ω is an eigenvalue
of the homogeneous problem (Equations 6.18, 6.19). In this
situation, however, the free parameter ̹ can be chosen so that the
problem admits solutions.

Solvability condition of Equations 6.20, 6.21 has the form

̹ = −
∫ 1
−1 Uu

2 dt

u2(−1)+ u2(1)+ 2ω‖u‖2 .

When ω > 0, then the denominator can be written as 2ω‖ψ‖2,
with the eigenstate ψ of Equation 4.4 resulting in

̹ = −
∫

R
U|ψ2(x)| dx
2ω‖ψ‖2 .

With ̹ as above, there exists a solution w of Equations 6.20, 6.21
defined up to the additive term cu. Finally, we can calculate

b = u(−1)w(1)− u(1)w(−1)

u2(−1)
.

Observe that the right hand side of the latter expression is
independent of the chosen partial solution w. Hence, we have
formally obtained asymptotics (Equation 4.5).

6.2 Justification of asymptotics

We now justify the asymptotic representations for λε and yε by
constructing a so-called quasimode for the operatorHε . Let A be a
self-adjoint operator in aHilbert space L. A pair (µ,φ) ∈ R×domA

is called a quasimode of A with accuracy ǫ if ‖φ‖L = 1 and
‖(A− µI)φ‖L ≤ ǫ.

Lemma 3 ([52, p.139]). Assume (µ,φ) is a quasimode of A with

accuracy ǫ > 0 and that the spectrum of A in the interval [µ −
ǫ,µ+ ǫ] is discrete. Then there exists an eigenvalue λ of A such that

|λ− µ| ≤ ǫ.

Moreover, if the interval [µ−1,µ+1] contains precisely one
simple eigenvalue λ with normalized eigenvector u, then

‖φ − eiau‖ ≤ 2ǫ1−1 (6.22)

for some real number a.
A quasimode of Hε can be constructed based on the

approximation Yε . Note, however, that the function Yε defined

by Equation 6.4 is not smooth enough to belong to the
domain domHε , as it has jump discontinuities at the points
x = ±ε. Nevertheless, all these jumps are small due to the
construction; namely,

∣

∣[Yε]−ε
∣

∣+
∣

∣[Yε]ε
∣

∣+
∣

∣[Y ′
ε]−ε

∣

∣+
∣

∣[Y ′
ε]ε
∣

∣ ≤ cε2, (6.23)

where [ · ]x denotes the jump of a function at the point x.
Suppose the functions ζ and η are smooth outside the origin,

have compact supports contained in [0,∞), and ζ (+0) = 1,
ζ ′(+0) = 0, η(+0) = 0, η′(+0) = 1. We introduce the function

rε(x) = [Yε]−ε ζ (−x− ε)− [Y ′
ε]−ε η(−x− ε)

− [Yε]ε ζ (x− ε)− [Y ′
ε]ε η(x− ε),

which has the jumps at ±ε that are negative of those of Yε .
Therefore, the function ŷε = Yε + rε is continuous on R along
with its derivative and consequently belongs to W2

2 (R). Moreover,
‖ŷε‖ = 1 + O(ε) as ε → 0, because the main term y0 =
ψ is normalized in L2(R). The corrector function rε is small,
because rε is identically zero on (−ε, ε), and Equation 6.23 makes
it obvious that

max
|x|≥ε

∣

∣r(k)ε (x)
∣

∣ ≤ cε2, k = 0, 1, 2.

A straightforward computation shows that a pair
(

λ0+λ1ε, ŷε
)

is a
quasimode ofHε with accuracy of order O(ε2), i.e., ‖Hε ŷε − (λ0 +
λ1ε)ŷε‖ ≤ cε2‖ŷε‖. Hence,

|λε − (λ0 + λ1ε)| ≤ Cε2,

where λε is an eigenvalue ofHε . Since λε is a simple eigenvalue, the
corresponding eigenfunction yε can be chosen so that yε → y0 in
L2(R), by Equation 6.22. Theorem 4 is proved.

The proof of Theorem 3 is similar, with one key difference. The
approximation given by Equations 6.15, 6.16 is not sufficient
to construct a quasimode of Hε with sufficiently small
accuracy. It is, therefore, necessary to refine the approximation
as follows:

√

−λε ∼ ωε = ε−1(ω + ε̹1 + ε2̹2 + ε3̹3),

yε(x) ∼ Yε(x) =























eωεx, if x < −ε,
u
(

x
ε

)

+ εu1
(

x
ε

)

+ε2u2
(

x
ε

)

+ ε3u3
(

x
ε

)

, if |x| < ε,

(a+ a1ε + a2ε
2 + a3ε

3)e−ωεx, if x > ε,

after which the construction proceeds as in the case of Theorem 4.

7 Concluding remarks

Exactly solvable models of quantum mechanics with point
interactions provide useful approximations for short-range
interactions between particles. In particular, δ- and δ′-type
potentials serve as mathematical abstractions representing
idealized phenomena such as sharply localized charges or dipoles.
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However, while these models facilitate rigorous quantitative
analysis, they do not always preserve the qualitative behavior of the
corresponding regular systems.

For example, Hamiltonians with δ-potentials capture well the
spectral and qualitative behavior of regular Hamiltonians with
sharply localized attractive wells; in particular, the unique bound
state of the regular system persists in the limit model. In contrast,
Hamiltonians with localized dipoles may possess arbitrarily many
negative eigenvalues, while the corresponding exactly solvable
model with δ′θ -potential has none. We stress that, in both settings,
the exactly solvable models arise as norm resolvent limits of families
of regular Schrödinger operators as the regularization parameter
tends to zero.

Our results show that despite norm resolvent convergence
to a bounded below operator with δ′θ -potential, the family
of approximating Hamiltonians with localized dipoles is not
uniformly bounded below: their low-lying eigenvalues diverge
to −∞ as the regularization parameter tends to zero. This
demonstrates that even the strongest form of convergence of
Hamiltonians does not ensure that the spectral or qualitative
properties of the real physical models are reflected in the idealized
limit. Therefore, while exactly solvable models offer powerful tools
for quantitative analysis, caution is needed when interpreting their
qualitative features as representative of the physical systems they
are meant to approximate.
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