
Frontiers in Applied Mathematics and Statistics 01 frontiersin.org

Modelling longitudinal cognitive 
test data with ceiling effects and 
left skewness
Denitsa Grigorova 1,2*, Dean Palejev 2,3 and Ralitza Gueorguieva 4 
for the Alzheimer's Disease Neuroimaging Initiative
1 GATE Institute, Sofia University, Sofia, Bulgaria, 2 Faculty of Mathematics and Informatics, Sofia 
University, Sofia, Bulgaria, 3 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 
Sofia, Bulgaria, 4 Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, 
CT, United States

Cognitive tests such as the Mini Mental State Examination (MMSE) may result 
in data with discrete and skewed distributions that necessitate proper statistical 
models for valid inference. We review different longitudinal approaches to model 
cognitive decline data in older individuals and provide recommendations for 
model choice and result interpretation. We used data from the Alzheimer’s Disease 
Neuroimaging Initiative study and focused on MMSE scores as response variable 
collected on up to four visits over a two-year period in older individuals (mean 
age 73 years). At baseline individuals were classified as having Alzheimer’s disease 
(AD), early or late mild cognitive impairment, subjective memory concern, or 
being cognitively normal. We considered generalized additive models for location, 
scale and shape (GAMLSS) with binomial/beta-binomial response distribution and 
parametric/non-parametric random effects, selected the best model and used 
graphs for illustration. Binomial model with non-parametric random intercept and 
slope fit the data the best according to the Bayesian Information Criterion. The 
three-way interaction between time, age and diagnostic group was statistically 
significant suggesting that AD individuals had the steepest cognitive decline 
among all groups, especially in younger individuals. Furthermore, males and 
APOE4 carriers had worse cognitive performance, while more educated people 
had better cognitive performance compared to less educated. Various plots are 
used to illustrate and aid in interpretation of the results. GAMLSS are an appropriate 
class of models providing interpretable results for repeatedly measured cognitive 
test data. We recommend that they are used more widely, accompanied by effect 
estimation, statistical testing and visualizations for illustration.
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1 Introduction

Cognitive skills like memory, problem-solving activities and speed processing deteriorate 
with age (1). One of the widely used cognitive tests for measuring cognitive abilities is the Mini 
Mental State Examination (MMSE) (2). The questions in the test are designed to assess the 
subject’s cognitive ability in cognitive domains such as language, orientation in time and place, 
memory, attention. The MMSE score is the sum of the correct answers to these questions. 
MMSE is an indicator of the cognitive skills of the individual and a test often used in screening 
for Alzheimer’s disease (AD) (3).
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The Alzheimer’s Disease Neuroimaging Initiative (ADNI)1 
provides longitudinal measurements on MMSE, i.e., measurements on 
the same individuals over time. ADNI is “a longitudinal multicenter 
study designed to develop clinical, imaging, genetic, and biochemical 
biomarkers for the early detection and tracking of Alzheimer’s Disease 
(AD).” Its first goal is to “detect the disease at the earliest possible stage 
(pre-dementia) and identify ways to track the disease’s progression 
with biomarkers.”

One very distinctive feature of the MMSE score is that the 
cognitively normal individuals very easily obtain the maximum 
number of the points (30) or very close to it which creates a ceiling 
effect with excess observations at or close to 30 (4). Low values of the 
test (the minimal possible value is 0) are rarely observed. In statistical 
terms these two features of the data are characterized as left skewness 
and ceiling effect and lead to challenges in finding appropriate 
statistical model for such outcome as MMSE.

Standard linear mixed effects models (LMM) are often used for 
modelling MMSE data longitudinally. These models could 
be appropriately applied to such data in samples consisting mostly of 
people with cognitive impairment because the ceiling effect might not 
be present, e.g., as in Andel et al. (5). But when the study sample 
consists of normal individuals, for example in Jutten et al. (6) the 
LMM might not be appropriate due to presence of ceiling effect in 
the data.

Transformations are sometimes used to normalize the data, e.g., 
Jacqmin-Gadda et al. (7) applied transformations but this approach 
might not always solve the problem with the ceiling effect because the 
equal values in the original scale remain equal in the transformed 
scale. If there is a relatively large percentage of healthy individuals in 
a sample, the resulting distribution would still have a pronounced 
ceiling effect and would fail the assumption of normal distribution 
even after transformation.

Models for discrete data such as the binomial or beta-binomial 
model are expected to fit better than the standard linear model 
because they can handle both features of such data: skewness and 
ceiling effects. Recall that the MMSE score is a sum of the correct 
answers to multiple questions. If the questions could be considered 
independent with the same probability of a correct answer, then the 
total MMSE score would follow a binomial distribution. However, the 
independence assumption does not necessarily hold since the 
correctness of individual’s answer to one question might be related to 
the correctness of their answer to another question resulting in 
increased between-subject variability. When there is more variability 
in the data that cannot be captured by the binomial model, a more 
appropriate model could be  the beta-binomial. The latter model 
suggests that the binomial parameter is a random variable itself that 
follows beta distribution. This model has more parameters that allow 
more flexibility in modelling the variance of the outcome. In our work 
we consider binomial and beta-binomial models for longitudinal data, 
but both models are used for cross-sectional MMSE data as well.

In longitudinal data scenarios, we  also need additional 
modifications of the models compared to cross-sectional data. One of 
the main characteristics of longitudinal data is the correlation between 
repeated observations on the same subject. In contrast to the possible 

1  http://adni.loni.usc.edu/

correlation of questions within individual, herein we  refer to the 
correlation between MMSE scores collected on the same individual 
over time. Mixed effects models (8), take into account this within-
subject correlation of the data via random effects which take the same 
value within individual and potentially different values for different 
individuals. These additional terms in the model are typically assumed 
to have a parametric distribution (e.g., normal). They are introduced 
to capture between-individual variability regarding different starting 
points and different slopes over time with random intercept and 
random slope terms, respectively, that vary continually within the 
population of individuals. The well-known class of models with 
parametric random effects but with a variety of distributions for the 
outcome including binomial is called Generalized Linear Mixed 
Models (GLMM) (9) and they generalize LMM for normal data.

Another option for the distribution of the random effects in 
longitudinal data is to consider them non-parametric, i.e., to assume 
that random effects take a number of possible values (also called mass 
points) with particular probabilities for each. The number of mass 
points is not known in advance and it has to be determined from the 
data relying on some criterion, for example Akaike Information 
Criterion (AIC) (10) and/or Bayesian Information Criterion (BIC) 
(11). We want to note that both criteria (AIC and BIC) are used for 
model selection in a much broader context, not only for selecting the 
number of mass points.

Both binomial and beta-binomial models with non-parametric 
random effects are special cases of the generalized additive models for 
location, scale and shape (GAMLSS) (12). Here we present those two 
models with parametric/non-parametric random effects. We believe 
that from a theoretical perspective this is the most appropriate 
approach for longitudinal discrete data such as the MMSE which is 
characterized with left-skewness and ceiling effects. We use the models 
to estimate the effects of level of cognitive impairment and age on 
cognitive functioning over time, while controlling for gender, years of 
education, marital status, number of copies of allele 4 of the APOE 
gene in the ADNI data. We  focus on model selection, parameter 
estimation and assessment of model fit. We emphasize interpretability 
and provide several visual and analytical aids for understanding 
the results.

2 Materials and methods

2.1 Participants

Our study sample in the motivating data consists of 1945 
individuals that form five groups according to their diagnosis at 
baseline: Alzheimer’s disease (AD, n = 342); late mild cognitive 
impairment (LMCI, n = 596); early mild cognitive impairment 
(EMCI, n = 332); significant memory concern (SMC, n = 211) and 
cognitively normal (CN, n = 464). Each individual belongs in only one 
of the five groups. The individuals grouping criteria are available in the 
ADNI protocols available at: https://adni.loni.usc.edu/wp-content/
themes/freshnews-dev-v2/documents/clinical/ADNI-2_Protocol.pdf, 
page 18. The distinction between the different groups is based on 
different measures of the cognitive abilities of the individuals and 
other factors as stability of permitted medications for 4 weeks. 
We included individuals with at least two out of four longitudinal 
measurements that we considered – at baseline, 6, 12 and 24 months 
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after the baseline measurement. According to the ADNI protocol2 the 
study was conducted according to Good Clinical Practice guidelines, 
the Declaration of Helsinki, US 21CFR Part 50 – Protection of Human 
Subjects, and Part 56 – Institutional Review Boards, and pursuant to 
state and federal HIPAA regulations.

2.2 Measures

2.2.1 Outcome variable
The variable of main interest is the total MMSE score. As 

mentioned before, the MMSE test consists of 30 questions. Each 
correct answer brings one point to the final score. The MMSE score is 
the number of correct answers, and it is an integer between 0 and 30. 
Higher values of the MMSE score indicate better cognitive function. 
We consider the measurements at baseline, 6 months, 12 months and 
24 months after the baseline measurement. According to the ADNI 
protocols all individuals should be examined through this cognitive 
test at these time points. However, like almost any longitudinal study, 

2  https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/

documents/clinical/ADNI-1_Protocol.pdf

there is missing data. In our analysis we  use all available data on 
individuals with at least two observations out of the four.

Descriptive statistics of the MMSE (mean and standard 
deviation) for the five diagnosis groups over time are presented in 
Table 1. We notice some deterioration in cognitive performance for 
some groups of individuals – most notable for the AD and LMCI 
groups. For the EMCI group there is little change. The SMC and CN 
groups stay at the same levels at the four time points and are 
almost identical.

In Figure 1 we present boxplots of the MMSE observations at the 
different time points grouped according to diagnosis at baseline. At 
the bottom of each boxplot, we give the number of the observations at 
the corresponding time point. We clearly notice a worsening of the 
performance on the test over time for most people, especially in the 
AD group. The LMCI group has the same trend although not at the 
same rate as the AD group while the CN group has almost no change 
in MMSE performance over time.

2.2.2 Predictor variables
The main predictors are time (treated as continuous variable), 

diagnosis at baseline, age at baseline, gender, number of the copies of 
allele 4 of gene APOE, years of education, marital status.

Descriptive statistics of the predictor variables at baseline 
according to diagnosis group are presented in Table 2. We notice that 

TABLE 1  Mean (standard deviation) of Mini Mental State Examination for the five groups of individuals at the four time points—baseline, 6 months, 
12 months, and 24 months.

                     Diagnosis group

AD LMCI EMCI SMC CN

Baseline 23.23 (2.11) 27.18 (1.85) 28.36 (1.53) 29.05 (1.15) 29.08 (1.11)

6th month 22.17 (3.68) 26.52 (2.73) 28.04 (1.78) 28.89 (1.35) 29.00 (1.16)

12th month 20.81 (4.61) 26.43 (2.90) 28.10 (1.84) 28.86 (1.61) 28.97 (1.26)

24th month 18.64 (5.81) 25.41 (3.84) 28.03 (1.96) 28.99 (1.37) 29.04 (1.20)

FIGURE 1

Boxplots of the Mini Mental State Examination (MMSE) for the five group of individuals according to the diagnosis at baseline: AD, Alzheimer’s disease; 
LMCI, late mild cognitive impairment; EMCI, early mild cognitive impairment; SMC, significant memory concern; CN, cognitively normal at the four 
different time points – baseline, 6 months, 12 months and 2 years after the baseline measurement. At the bottom “n” is the number of observations at 
the corresponding time point.
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the mean age of the EMCI and SMC individuals is smaller than the 
mean age of the other three groups. CN subjects have one more year 
of education on average compared to the AD subjects. The biggest 
percentage of people with two copies of allele 4 of the APOE gene is 
in the AD group.

2.3 Statistical models

We modelled the MMSE score longitudinally from the data 
available at the four time points (baseline, 6 months, 1 year and 2 years 
after the baseline measurement) through main effects of all the 
predictor variables, described in the previous section, all two-way 
interactions between time, diagnosis and age at baseline and the 
three-way interaction between time, diagnosis, and age at baseline. For 
easier interpretation of the results, we centered baseline age in the 
analyses by subtracting the mean age (73 years) from the age of each 
individual. The variable APOE4 is considered with additive 
allele effect.

We fit binomial and beta-binomial generalized additive models 
for location, scale and shape (GAMLSS) models (13) to the data. 
GAMLSS extend the basic Generalized Linear Model (GLM) (14) 
in several ways. The basic GLMs describe the mean of the dependent 
variable given the predictors: ( ) ( )β−= 1E Y|X g X , where ( )E Y|X  is 
the expected value of Y conditional on the predictors X, βX  is the 
linear predictor, a linear combination of unknown parameters β and 
g is the link function. The distribution of the outcome variable Y 
belongs to the GLM if its density or probability function defines a 
distribution in the exponential family (e.g., normal, binomial, 
Poisson). Additionally to modelling the mean of the dependent 
variable in the GLM framework, GAMLSS models allow three other 
parameters of the distribution to be modelled via the explanatory 
variables – scale parameter related to the variance of the distribution 
and two shape parameters which are often related to the skewness 
and kurtosis of the distribution. GAMLSS models also allow linear 
or nonlinear parametric functions, or nonparametric smoothing 
functions of explanatory variables (13). GAMLSS models include a 

very broad class of distributions (e.g., beta-binomial) in addition to 
the ones in GLM thus allowing for more unusual data (e.g., with 
floor/ceiling effects, skewness). They also include random effects 
with parametric or non-parametric distributions thus allowing for 
great flexibility in capturing between-subject heterogeneity in 
means and/or variances and correlations among repeated 
observations on the same individual. Applications of GAMLSS 
models could be found in Muniz-Terrera et al. (14) where beta-
binomial distribution is used and in Brati (15) where lognormal 
distribution is used. More examples of applications of GAMLSS 
could be found in Von Heimburg et al. (16) and Tu et al. (17).

To model change in MMSE over time, due to the longitudinal 
character of the data, we included random effects in the models to 
account for the correlation between the observations on the same 
subject. We  considered both parametric and non-parametric 
distribution for the random effects. In the parametric case, 
we  considered random intercept binomial model with normal 
distribution of the random term. Then we considered random intercept 
model, and random intercept and slope models for binomial and beta-
binomial distribution with 1–10 mass points for the non-parametric 
random effects. We decided on the best model depending on the BIC 
values of the models. The GAMLSS models that we considered in this 
work are implemented in R in two packages: the gamlss package3 (12) 
and the gamlss.mx package.4 We  implemented R code for the 
calculation of the randomized quantile residuals (18), to explore if the 
model assumptions are satisfied.

3 Results

The results for the BIC for the different models fitted to the data 
are presented in Table 3. The models with the smallest values of BIC 

3  https://cran.r-project.org/package=gamlss

4  https://cran.r-project.org/package=gamlss.mx

TABLE 2  Descriptive statistics of the predictors within diagnosis group.

        Diagnosis group

AD LMCI EMCI SMC CN

Age at baseline 74.72 (7.84) 73.89 (7.57) 71.68 (7.29) 71.69 (6.09) 74.06 (6.09)

Years of education 15.23 (2.92) 15.91 (2.87) 16.07 (2.67) 16.73 (2.42) 16.39 (2.69)

Gender

  Female 150 (0.44) 233 (0.39) 146 (0.44) 128 (0.61) 236 (0.51)

  Male 192 (0.56) 363 (0.61) 186 (0.56) 83 (0.39) 228 (0.49)

Married

  No 55 (0.16) 129 (0.22) 68 (0.20) 58 (0.27) 142 (0.31)

  Yes 287 (0.84) 467 (0.78) 264 (0.80) 153 (0.73) 322 (0.69)

APOE4

  0 110 (0.32) 274 (0.46) 185 (0.56) 134 (0.64) 337 (0.73)

  1 161 (0.47) 244 (0.41) 121 (0.36) 73 (0.35) 114 (0.25)

  2 71 (0.21) 78 (0.13) 26 (0.08) 4 (0.02) 13 (0.03)

Mean (standard deviation) or Count (proportion) within diagnosis group of the predictor variables at baseline.
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within each model are in red. Comparing among all models, 
we observe that the best model fit is binomial random intercept and 
slope model with 6 mass points.

The following Equation 1 describes the model:

	

( ) β β β
β β β β
β β β
β β
β β
β

= + + + +
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(1)

where the index i is for the individual, the index j  is for the time 
point - baseline, 6 months, 12 months and 2 years after the baseline 
measurement and ijp  is the probability the individual i to give a correct 
answer at time point j . In the original notation, the parameter on the 
left-hand side of the above equation is denoted by µ . However, 
we denote the parameter by p to emphasize the fact that it comes from 
Bernoulli trials. In our case we consider the distribution of the MMSE 
score to be  binomial distribution with parameters Bi(30, p). The 
random effects for each individual ( )0 1,i ib b  are among the 6 possible 
mass points.

Indicator variables I(∗) for diagnosis at baseline are

	•	 CN  - cognitively normal;

	•	 EMCI - early mild cognitive impairment;
	•	 LMCI - late mild cognitive impairment;
	•	 SMC - significant memory concern;
	•	 AD - Alzheimer’s disease, reference level.

The best-fitting model estimates are shown in Table 4.
The three-way interaction between time, age at baseline and 

diagnosis is statistically significant. There are also significant two-way 
interactions between time and age, age and diagnosis, and time and 
diagnosis. Males and people with copies of allele 4 have worse cognitive 
functioning while more educated people have better cognitive functioning.

The random effects are also presented in Table 4 in a section of the 
table after the fixed effects. For the mass points from the second to the 
sixth, the coefficients presented in Table 4 are the differences between 
the respective mass point and the first mass point. The first mass point 
is directly presented in the table. The calculations of the values of the 
rest of the mass points is also explained in Muniz-Terrera et al. (14). 
These calculations are valid both for random intercept and the random 
slope, i.e., the second mass point has values (−0.379 + 0.416) = 0.037 
for the random intercept and (−0.692 + 0.279) = −0.413 for the random 
slope. The values of the rest of the mass points can be calculated similarly.

The estimated distribution of the random effects shows that the 
third, fourth and fifth random effects account for 88% of random 
effects across all subjects (34% for the third, 27% for the fourth and 
26% for the fifth). Then the second random effect accounts for almost 
8%, the sixth - for 4% and the first – for <1%.

Several figures aim to better illustrate the results. In 
particular, Figure 2 shows the predicted values of MMSE for the 
five groups of individuals at the most probable random effects 
(the third mass point), at three different ages at baseline (mean 
age of 73, 66 years and 80 years which are the mean age minus/
plus one standard deviation of the age), for females who are not 

TABLE 3  Model comparison based on the Bayesian information criterion (BIC).

Models

Response 
distribution

Model 1 Model 2 Model 3 Model 4 Model 5

Binomial Binomial Binomial Beta-Binomial Beta-Binomial

Random effects Normal 
intercept

Non-parametric 
random intercept

Non-parametric 
random intercept 

and slope

Non-parametric 
random intercept

Non-parametric 
random intercept 

and slope

Number of points*

1 28,664 28,664 28,664 26,607 26,607

2 25,447 25,447 25,270 25,253 25,110

3 25,237 25,048 24,784 25,012 24,777

4 24,983 24,933 24,642 24,926 24,651

5 24,976 24,918 24,609 24,917 24,626

6 24,922 24,904 24,597 24,908 24,605

7 24,910 24,925 24,629 24,928 24,626

8 24,890 24,937 24,630 24,939 24,639

9 24,881 24,961 24,657 24,962 24,666

10 24,876 24,970 24,679 24,976 24,681

20 24,867 NA NA NA NA

*For Model 1 we consider normal distribution of the random intercept and the number of points designates the number of the Gauss-Hermite quadrature points, while for Models from 2 to 5 
the number of points represents the number of the mass points of the non-parametric random effect(s).
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TABLE 4  Estimates, standard errors, test statistics, and p-values for the fixed and random effects in the final binomial model with six mass points for the 
random effects.

Predictor Estimate Standard error Z-test P-value

Fixed effects

Intercept −0.379 0.095 −3.98 < 0.0001

Time −0.692 0.047 −14.69 < 0.0001

Diagnosis

 � Alzheimer’s disease (Ref)

 � Control normal 2.077 0.046 45.59 < 0.0001

 � Early mild cognitive impairment 1.468 0.040 36.87 < 0.0001

 � Late mild cognitive impairment 0.956 0.028 34.02 < 0.0001

 � Subjective memory concern 1.951 0.066 29.67 < 0.0001

 � Age (centered) −0.003 0.002 −1.16 0.246

 � Years of education 0.053 0.003 19.06 < 0.0001

 � APOE (number of copies of allele 4) −0.115 0.012 −9.87 < 0.0001

Gender

 � Female (Ref)

 � Male −0.103 0.017 −6.10 < 0.0001

Married

 � No (ref)

 � Yes −0.026 0.021 −1.25 0.210

Time × Diagnosis

 � Time × Alzheimer’s Disease (Ref)

 � Time × Control Normal 0.236 0.020 11.62 < 0.0001

 � Time × Early Mild Cognitive Impairment 0.193 0.018 10.64 < 0.0001

 � Time × Late Mild Cognitive Impairment 0.094 0.013 7.24 < 0.0001

 � Time × Subjective Memory Concern 0.231 0.028 8.39 < 0.0001

 � Time × Age (centered) 0.006 0.001 5.54 < 0.0001

Age (centered) × Diagnosis

 � Age (centered) × Alzheimer’s Disease (Ref)

 � Age (centered) × Control Normal −0.022 0.007 −3.15 0.002

 � Age (centered) × Early Mild Cognitive Impairment −0.026 0.005 −4.97 < 0.0001

 � Age (centered) × Late Mild Cognitive Impairment −0.001 0.004 −2.76 0.006

 � Age (centered) × Subjective Memory Concern −0.020 0.010 −1.98 0.047

Time × Age (centered) × Diagnosis

 � Time × Age (centered) × Alzheimer’s Disease (Ref)

 � Time × Age (centered) × Control Normal −0.009 0.003 −3.01 0.003

 � Time × Age (centered) × Early Mild Cognitive Impairment −0.007 0.002 −2.79 0.005

 � Time × Age (centered) × Late Mild Cognitive Impairment −0.006 0.002 −3.50 < 0.001

 � Time × Age (centered) × Subjective Memory Concern −0.017 0.004 −3.99 < 0.0001

Random effects

 � Intercept mass point 1 −0.379 0.095 −3.98 < 0.0001

 � Intercept mass point 2 0.416 0.089 4.68 < 0.0001

 � Intercept mass point 3 0.677 0.084 8.04 < 0.0001

 � Intercept mass point 4 1.212 0.086 14.15 < 0.0001

 � Intercept mass point 5 1.528 0.087 17.52 < 0.0001

 � Intercept mass point 6 2.458 0.165 14.92 < 0.0001

 � Time mass point 1 −0.692 0.047 −14.69 < 0.0001

 � Time mass point 2 0.279 0.049 5.74 < 0.0001

 � Time mass point 3 0.436 0.047 9.25 < 0.0001

 � Time mass point 4 0.477 0.048 10.01 < 0.0001

 � Time mass point 5 0.659 0.049 13.56 < 0.0001

 � Time mass point 6 0.971 0.104 9.31 < 0.0001
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married, have no copies of allele 4 of the APOE gene and have 
16 years of education (i.e., at the mean years of education). 
We notice the different speed of decline of the diagnosis groups 
which is due to the statistically significant interaction between 
age, diagnosis group and time. People who are diagnosed with 
AD earlier in life have a much steeper decline than people who 
are diagnosed at the mean age of the sample and even at age that 
is one standard deviation above the mean age of the sample 
subjects, i.e., 73 and 80 years. Another observation is that people 
with subjective memory concern are very similar to cognitively 
normal people. We  see some difference between these two 
groups only for the oldest subgroup. We  also notice that the 
LMCI group has relatively steep negative slope. The interaction 
effect between age and time is most pronounced for the 
AD group.

We illustrate the discrete structure of the six random effects 
in Figure 3. We compare the trajectories of married EMCI and 
LMCI females with a side-by-side plot. Again, we  focus on 
73 years old females who are not married, who have no copies of 
allele 4 of the APOE gene and who have 16 years of education, 
although the predicted lines for other types of individuals at 
mean age will be parallel to the corresponding lines shown in 
Figure 3. The thickness of the lines corresponds to the estimated 
probability of the random effects (the thicker the line the more 
probable the random effect is). The trajectories are very similar 
with one exception – EMCI individuals with the third or fourth 
random effects show almost no change over time while LMCI 
individuals with the same random effects show decline over time. 
This is due to the statistically significant interaction between 
time and diagnosis.

We performed statistical tests to compare all pairs of 
diagnosis groups at three different ages (mean age and one 
standard deviation above and below the mean age). These 

comparisons were performed at baseline, at two-year follow-up, 
and for the change from baseline to two years. Because there are 
90 tests, we  performed Benjamini-Hochberg correction for 
multiple comparisons (19). The results from the statistical tests 
are presented in Figure  4. They show that the AD group is 
different from the other groups in all considered settings. No 
statistically significant differences between the cognitively 
normal and the SMC groups were found in the data.

To perform the tests described above we needed the covariance 
matrix of the estimates which was not provided by the build-in R 
function that fitted the model. For this reason, we applied a bootstrap 
method to estimate the covariance matrix. The algorithm implemented 
is the following:

	 1.	 Random draw for the random effect for each individual using 
the estimated probability distribution.

	 2.	 Binomial draw according to the fitted probability from the 
model calculated using the predictors of the observed data and 
the sampled random effect in Step (1).

	 3.	 Estimation of the model coefficients given the data generated 
for the outcome in Step (2) and the observed predictors.

	 4.	 Repetition of Step (1) to Step (3) 1,000 times.
	 5.	 Calculation of the covariance matrix of the estimated coefficients.

We used randomized quantile residuals to examine if the 
assumptions of the model are met. Figure 5 shows a Q-Q plot 
(left-hand side) and a plot of the residuals versus the fitted values 
(right-hand side). We notice that some residuals are smaller than 
expected (visible on the left-hand side of the Q-Q plot). 
We identified the individual observations they correspond to and 
noticed that these residuals are for individuals for which 
we observe unexpected steep decline in the score of MMSE that 
cannot be captured by the model.

FIGURE 2

Predicted values of Mini Mental State Examination (MMSE) for the five different diagnosis groups: AD, Alzheimer’s disease; LMCI, late mild cognitive 
impairment; EMCI, early mild cognitive impairment; SMC, significant memory concern; CN, cognitively normal at three different ages - 66, 73 and 
80 years. The ages are the mean age and the mean age plus/minus one standard deviation (the mean age at baseline is 73 years and the standard 
deviation is 7 years). The AD and CN groups are presented on the left panel, the LMCI, EMCI and SMC groups - on the right-hand side.
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4 Discussion

The aim of our work was to identify and recommend an 
appropriate longitudinal model for cognitive performance data that 
exhibit both ceiling effects and left skewness. We were motivated by 
the MMSE data of individuals with different levels of cognitive 
difficulties from the ADNI studies over a two-year period and used 
these data to demonstrate our approach. We considered the effects 
of diagnosis at baseline, age at baseline, time, all possible 
interactions of these predictors, the number of copies of allele 4 of 
gene APOE, marital status, gender, and the years of education.

From literature review we identified the GAMLSS class of models 
as the most appropriate class of models but there were several choices 
of possible distributions for the outcome from that class. Since MMSE 
data are discrete and show characteristics of ceiling effect and left 
skewness, the binomial and beta-binomial models provide suitable 
options to capture the nature of the response distribution and they 
guarantee that the fitted and predicted scores are in the range of the 
original scale. They also accommodate both ceiling effects and 
negative skewness. The beta-binomial model compared to the 
binomial model allows to accommodate bigger population variance 
which to some degree may take into account the effect of the 
correlations of the answers within one MMSE test. Both models are 
easy to fit with the R packages gamlss and gamlss.mx and provide 
interpretable results that are illustrated in this data example. 
We  believe that substantial improvement could be  made to 
applications in medical discrete data with ceiling and/or floor effect 
by using the GAMLSS class of models instead of LMM. The normal 

distribution (assumed in LMM) is likely to produce fitted values 
outside the range of the MMSE due to the ceiling effect and introduces 
a dependence between residuals and fitted values which is a violation 
of the model assumptions (14). The GAMLSS approach includes many 
distributions under its umbrella and can provide a better fit to MMSE 
type data.

Since MMSE testing in ADNI is repeated over time, with GAMLSS 
we can also capture the rate of decline in cognitive performance while 
taking into account the features of the data described in the previous 
section. Random effects are necessary to capture the correlation 
between repeated MMSE measurements on the same individual over 
time. The random effects could be parametric (usually assumed to 
be normally distributed) or non-parametric. Most often researchers 
make assumptions that the effects are parametric, however for MMSE 
data that are discrete, non-parametric framework is more appropriate. 
More detailed and technical discussion about the advantages of the 
non-parametric approach is provided in Muniz-Terrera et al. (14). In 
this application we considered both parametric and non-parametric 
random effects and the statistical criteria indicated that models with 
non-parametric effects fit better. We  note that between the two 
statistical criteria used most often to find a best-fitting model among 
candidate models (i.e., AIC and BIC) we selected the BIC because it 
emphasizes model parsimony. We  compared binomial and beta-
binomial models using BIC which on its own may not fully capture 
overdispersion, especially when random effects are present. As a 
result, we assessed the potential overdispersion in an indirect manner. 
Formal residual diagnostics or overdispersion tests could be useful 
aspects for exploration in future research.

FIGURE 3

Predicted values of Mini Mental State Examination (MMSE) for early mild cognitive impairment (EMCI) are presented on the left-hand side and late mild 
cognitive impairment (LMCI) – on right-hand side for different random effects. The thickness of the line of each random effect corresponds to the 
probability of the random effect (RE)- the thicker the line the more probable the random effect is.
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The idea of models with finite number of mass points, i.e., 
non-parametric random effects, is similar to latent class growth 
analysis (LCGA) (20). The latter is a class of models that assumes that 
individuals are grouped into latent classes with the same trajectories 
over time within class. In this respect, binomial and beta-binomial 
non-parametric random effects models are similar to latent class 
growth analysis for discrete data because the individuals who have the 
same random terms, i.e., random effects (among a finite number of 
possible options), belong to the same latent class and have the same 
pattern over time. Having a fixed number of random effects (in our 
case 6) implies that we have the same number of basic trajectories for 
the population of individuals over time. These trajectories can 
be further varied due to the values of the additional fixed covariates in 
our model. Thus, we have both flexibility and parsimony in modeling 
patterns of change over time. It is important to note that our framework 
does not estimate individual group membership. While the random 
effects distribution is modeled nonparametrically to flexibly capture 
individual variability, our approach differs from traditional latent class 
models, which assign individuals to specific latent classes.

The basic trajectories could be regarded as latent subgroups as 
encountered in latent class growth modeling. However, rather than 
modeling the effect of covariates on subgroup membership as is 
typically done in latent class models, we model the effects of covariates 
directly on the outcome. Since we have only 4 time points, we focus 
on linear trends over time although our approach could be extended 
to higher order terms (e.g., quadratic). Typically, latent glass growth 

modeling considers standard response distributions (e.g., normal, 
Poisson) whereas the GLAMSS provide more flexibility in modeling 
data with non-standard distributions. For the data set that 
we  considered the model with binomial distribution and six 
non-parametric random effects fit the data the best. Our model 
identified a significant three-way interaction between age at baseline, 
time and diagnostic group thus indicating that cognitive deterioration 
proceeds at different speeds depending on diagnosis at baseline and 
age. Especially worrisome is the steep decline in the AD group, most 
pronounced for individuals who are younger at baseline. This is 
consistent with the literature on the severity and the poor prognosis 
of early-diagnosed Alzheimer measured as rate of change in MMSE 
(21). More recent article claims that trajectory of a single outcome fails 
to capture disease progression comprehensively and there is 
substantial heterogeneity in the AD progression (22).

Possession of at least one copy of allele 4 of apolipoprotein E 
(APOE) is known to be the strongest risk factor for developing 
sporadic form of AD (23). It is known that it is associated with 
an increase in the levels of amyloid deposition and an early age 
of onset of AD (24). Emrani et al. (23) identifies AD patients 
carriers of allele 4 APOE as patients with more amnestic cognitive 
profile than the non-carriers AD patients. Gharbi-Meliani et al. 
(25) finds that individuals with 2 copies of allele 4 of APOE have 
poorer global cognitive score starting from 65 years. We found 
that individuals who are carriers of one copy of allele 4 of the 
gene APOE 4 have worse cognitive performance on the MMSE 

FIGURE 4

Comparison of all pairs of diagnosis groups at baseline, last time point and the difference of these two time points at three ages – mean age and plus/
minus one standard deviation from the mean age (66, 73, and 80 years). The five different diagnosis groups are: AD, Alzheimer’s disease; LMCI, late 
mild cognitive impairment; EMCI, early mild cognitive impairment; SMC, significant memory concern; CN, cognitively normal.
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compared to non-carriers. Also, the model assumes that the effect 
is double for carriers of two copies of this allele and this is the 
same across all diagnosis groups of individuals. Note that in this 
example we  did not consider whether there are interactions 
involving the APOE gene with other predictors in the model. 
This is because we were focused on demonstrating the process of 
identifying a well-fitting model but exploring interactions of 
other factors is certainly a possible avenue for further research.

Our emphasis was also on illustrating how the model results, 
including interactions between baseline factors and time, can be better 
interpreted via additional tests and figures. Figures of predicted 
responses over time at different levels of the model variables using 
features such as thickness of the lines illustrating the likelihood of 
observing a particular trajectory are helpful in conveying results to a 
wider audience. Using heat maps to simultaneously present the 
significance of multiple comparisons is also a handy way to present 
important points. Finally, we suggest that researchers always examine 
residual plots as they give indication whether the model fits the data 
well and for what kind of observations or outliers it may not provide 
a good fit.

MMSE is a cognitive test widely used for screening of 
AD. Still, for example there are no strict thresholds for the 
classification of cognitively normal individuals depending on the 
MMSE score. A main result of a systematic review (26) on the 
subject is about the specificity and sensitivity of two widely used 
cutoff points  - 24 and 25. For example in ADNI the normal 
subjects are those with MMSE score equal to or greater than 24. 
In Muniz-Terrera et al. (14) the cognitively normal individuals 
are in the range 25–30 whereas individuals with scores between 
24 and 10 are said to be cognitive impaired, whilst scores below 
10 are indicative for dementia. Our model allows for prediction 
of future responses and this way may be used to predict when 
individuals cross a certain threshold and are expected to move in 
another cognitive group. We want to point out that the diagnosis 
of AD is very complex and may require blood tests, MRI, CT or 
PET brain imaging. Thus, MMSE is only indicative about the 

cognitive skills of the individual. The predictions provided by our 
model in addition to other clinical data could be used to inform 
intervention strategies.

A limitation of the R function when applied to our data was that 
the function that fitted the model did not provide the covariance 
matrix of the estimates. In cases in which we need the covariance 
matrix of the estimates we  propose a bootstrap method for its 
estimation. Such cases are for example in situations in which we want 
to compare some groups of individuals and the hypothesis test 
involves more than one parameter of the model.

In our work we did our analyses on the available data without 
exploring in detail the missing data mechanism. The chi-squared 
test for comparing the proportion of dropout at the last time 
point among the five diagnosis groups was statistically significant 
(p-value < 0.0001). If anything, our results are more conservative 
because the dropout in the AD group is higher and the 
differences between the groups would be even greater. But also, 
due to the AD group’s higher dropout rate, there is a possibility 
that dropout is linked to unobserved cognitive decline. If the 
missingness is indeed associated with unmeasured deterioration, 
bias from a Missing Not at Random (MNAR) mechanism could 
arise. Given that we have random effects in the model and use 
maximum likelihood estimation, our approach produces 
unbiased and efficient estimates when the missing data 
mechanism is Missing at Random (MAR) (27). However, if the 
mechanism is MNAR then we  might expect some bias in the 
estimation, however we  cannot distinguish MAR and MNAR 
mechanisms from the observed data (28). There is vast literature 
on the different approaches to cope with missing data and under 
what assumptions the conclusions from the analysis on the 
available data are valid (28). Future direction of research is to 
apply statistical methods designed for coping with missing  
data.

The model is limited by our goal to be  able to make 
predictions about future cognitive functioning as early as 
possible and therefore use only information on the diagnosis at 

FIGURE 5

Q-Q plot of the randomized quantile residuals of the model are presented on the left-hand side. Residuals versus fitted values are presented on the 
right-hand side of the plot.
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baseline. Modelling the change of diagnosis over time and maybe 
its effect on functioning will be a different problem and may 
require a different statistical model (e.g., Markov model). 
Additionally, some individuals initially classified as having MCI 
may later revert to normal cognitive status or fail to consistently 
meet the criteria for impairment. This limitation, inherent to the 
ADNI study design, may affect how baseline group comparisons 
are interpreted. It is worth noting the potential for 
misclassification when using a single time-point MCI diagnosis. 
Diagnostics for influential observations were not performed in 
this analysis. MMSE scores are bounded and susceptible to 
ceiling and floor effects and a few extreme observations could 
significantly influence the results, hence identifying influential 
observations is an important topic for future research.

Our work was motivated by repeatedly measured cognitive 
test data. The discreteness, skewness and ceiling effect of the data 
require the use of an appropriate model. We  found that the 
GAMLSS class of models are well-suited to the data, very flexible 
and easy to fit with freely available software. To aid in 
interpretation of results we supplemented statistical testing and 
estimation with graphical illustrations. In conclusion, 
we recommend that GAMLSS models are used more widely for 
this type of data and interpreted with the aid of statistical 
estimates and visualizations. This paper is one of the few studies 
to use GAMLSS with non-parametric random effects for 
longitudinal cognitive data, demonstrating that this approach 
offers advantages compared to conventional linear mixed models.

5 Conclusion

The aim of our research was to find an appropriate longitudinal 
model for modeling cognitive function data on individuals with different 
cognitive abilities at baseline and to provide visualization methods to 
complement statistical testing and inference. In the motivating data, 
we found that AD individuals had the steepest cognitive decline among 
all groups, especially in younger individuals. Furthermore, males and 
APOE4 carriers had worse cognitive performance, while more educated 
people had better cognitive performance compared to less educated. The 
importance of this work is that with GAMLSS models we both respect 
the nature of the data (discrete left-skewed with ceiling effect) and are 
able to interpret and illustrate the findings from a sophisticated statistical 
model to practitioners in the field.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: the data used to support the findings of this study are 
available from ADNI upon application approval. Requests to access 
these datasets should be directed to ADNI. Data used in preparation 
of this article were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.ucla.edu). As such, the 
investigators within the ADNI contributed to the design and 
implementation of ADNI and/or provided data but did not participate 
in analysis or writing of this report. A complete listing of ADNI 
investigators can be  found at: https://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Ethics statement

Ethical approval was not required for the study involving humans 
in accordance with the local legislation and institutional 
requirements. Written informed consent to participate in this study 
was not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation and 
the institutional requirements.

Author contributions

DG: Conceptualization, Software, Visualization, Writing  – 
original draft, Formal analysis, Methodology, Data curation, Writing – 
review & editing. DP: Supervision, Conceptualization, Writing  – 
review & editing. RG: Writing  – review & editing, Supervision, 
Conceptualization, Methodology.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. DG was supported by the 
GATE project. The project has received funding from the European 
Union’s Horizon 2020 WIDESPREAD-2018-2020 TEAMING Phase 
2 programme (Grant agreement no. 857155). DP was supported by 
the European Union -NextGenerationEU, through the National 
Recovery and Resilience Plan of the Republic of Bulgaria, project no. 
BG-RRP-2.004-0008.

Acknowledgments

Some computations were performed on the supercomputer 
Avitohol described in Atanassov et  al. (29). The authors 
acknowledge the provided access to the infrastructure purchased 
under the National Roadmap for RI, financially coordinated 
by the MES of the Republic of Bulgaria (grant no. 
D01-325/01.12.2023). Data collection and sharing for this project 
was funded by the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) (National Institutes of Health Grant U01 AG024904) and 
DOD ADNI (Department of Defense award number W81XWH-12-
2-0012). ADNI is funded by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, and 
through generous contributions from the following: AbbVie, 
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; 
Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb 
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, 
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche 
Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE 
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy 
Research & Development, LLC.; Johnson & Johnson Pharmaceutical 
Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., 
Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack 
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; 
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and 
Transition Therapeutics. The Canadian Institutes of Health Research 
is providing funds to support ADNI clinical sites in Canada. Private 

https://doi.org/10.3389/fams.2025.1617381
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


Grigorova et al.� 10.3389/fams.2025.1617381

Frontiers in Applied Mathematics and Statistics 12 frontiersin.org

sector contributions are facilitated by the Foundation for the 
National Institutes of Health (www.fnih.org). The grantee 
organization is the Northern California Institute for Research and 
Education, and the study is coordinated by the Alzheimer’s 
Therapeutic Research Institute at the University of Southern 
California. ADNI data are disseminated by the Laboratory for 
Neuro Imaging at the University of Southern California.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
	1.	Klimova B, Valis M, Kuca K. Cognitive decline in normal aging and its prevention: 

a review on non-pharmacological lifestyle strategies. CIA. (2017) 12:903–10. doi: 
10.2147/CIA.S132963

	2.	Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res. (1975) 
12:189–98. doi: 10.1016/0022-3956(75)90026-6

	3.	Arevalo-Rodriguez I, Smailagic N, Roqué i Figuls M, Ciapponi A, Sanchez-Perez E, 
Giannakou A, et al. Mini-mental state examination (MMSE) for the detection of 
Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). 
Cochrane Datab Syst Rev. (2015) 22:CD010783. doi: 10.1002/14651858.CD010783.pub2

	4.	Philipps V, Amieva H, Andrieu S, Dufouil C, Berr C, Dartigues JF, et al. Normalized 
mini-mental state examination for assessing cognitive change in population-based brain 
aging studies. Neuroepidemiology. (2014) 43:15–25. doi: 10.1159/000365637

	5.	Andel R, Vigen C, Mack WJ, Clark LJ, Gatz M. The effect of education and 
occupational complexity on rate of cognitive decline in Alzheimer’s patients. J Int 
Neuropsychol Soc. (2006) 12:147–52. doi: 10.1017/S1355617706060206

	6.	 Jutten RJ, Sikkes SAM, Amariglio RE, Buckley RF, Properzi MJ, Marshall GA, et al. 
Identifying sensitive measures of cognitive decline at different clinical stages of Alzheimer’s 
disease. J Int Neuropsychol Soc. (2021) 27:426–38. doi: 10.1017/S1355617720000934

	7.	Jacqmin-Gadda H, Fabrigoule C, Commenges D, Dartigues JF. A 5-year 
longitudinal study of the mini-mental state examination in normal aging. Am J 
Epidemiol. (1997) 145:498–506. doi: 10.1093/oxfordjournals.aje.a009137

	8.	Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 
(1982) 38:963–74. doi: 10.2307/2529876

	9.	McCulloch CE, Searle SR. Generalized, linear, and mixed models. 1st ed. New York, 
NY: Wiley (2000).

	10.	Akaike H. A new look at the statistical model identification. IEEE Trans Autom 
Control. (1974) 19:716–23. doi: 10.1109/TAC.1974.1100705

	11.	Schwarz G. Estimating the dimension of a model. Ann Stat. (1978) 6:136. doi: 
10.1214/aos/1176344136.full

	12.	Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and 
shape. J Royal Statistical Soc C. (2005) 54:507–5410.1111/j.1467-9876.2005.00510.x

	13.	Stasinopoulos MD, Rigby RA, Heller GZ, Voudouris V, Bastiani FD. Flexible 
regression and smoothing: Using GAMLSS in R. Boca Raton, FL: Chapman and Hall/
CRC (2017).

	14.	Muniz-Terrera G, Van den Hout A, Rigby R, Stasinopoulos D. Analysing cognitive 
test data: distributions and non-parametric random effects. Stat Methods Med Res. 
(2016) 25:741–53. doi: 10.1177/0962280212465500

	15.	Brati E. Application of GLM and GAMLSS models in predictive analysis of motor 
bodily injury claims In: B Alareeni and A Hamdan, editors. Navigating the technological 
tide: The evolution and challenges of business model innovation. Cham: Springer Nature 
Switzerland (2024). 365–75.

	16.	Von Heimburg P, Baber R, Willenberg A, Wölfle P, Kratzsch J, Kiess W, et al. Effect 
of sex, pubertal stage, body mass index, oral contraceptive use, and C-reactive protein 
on vitamin D binding protein reference values. Front Endocrinol. (2025) 16:1470513. 
doi: 10.3389/fendo.2025.1470513

	17.	Tu K, Yan Z, Qian C. Understanding seasonal cycle of daily extreme temperatures 
based on generalized additive model for location, scale and shape with smoothing spline. 
Int J Climatol. (2024) 44:1883–97. doi: 10.1002/joc.8430

	18.	Dunn PK, Smyth GK. Randomized quantile residuals. J Comput Graph Stat. (1996) 
5:236–44. doi: 10.1080/10618600.1996.10474708

	19.	Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful 
approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical 
Methodology. (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

	20.	Nagin DS, Land KC. Age, criminal careers, and population heterogeneity: 
specification and estimation of a nonparametric, mixed Poisson model. Criminology. 
(1993) 31:327–62. doi: 10.1111/j.1745-9125.1993.tb01133.x

	21.	Barnes J, Bartlett JW, Wolk DA, van der Flier WM, Frost C. Disease course varies 
according to age and symptom length in Alzheimer’s disease. JAD. 64:631–42.

	22.	Melis RJF, Haaksma ML, Muniz-Terrera G. Understanding and predicting the 
longitudinal course of dementia. Curr Opin Psychiatry. (2019) 32:123–9. doi: 
10.1097/YCO.0000000000000482

	23.	Emrani S, Arain HA, DeMarshall C, Nuriel T. APOE4 is associated with cognitive 
and pathological heterogeneity in patients with Alzheimer’s disease: a systematic review. 
Alz Res Therapy. (2020) 12:141. doi: 10.1186/s13195-020-00712-4

	24.	Di Battista A, Heinsinger M, Rebeck W. Alzheimer’s disease genetic risk factor 
APOE-ε4 also affects normal brain function. CAR. (2016) 13:1200–7. doi: 
10.2174/1567205013666160401115127

	25.	Gharbi-Meliani A, Dugravot A, Sabia S, Regy M, Fayosse A, Schnitzler A, et al. The 
association of APOE ε4 with cognitive function over the adult life course and incidence 
of dementia: 20 years follow-up of the Whitehall II study. Alz Res Therapy. (2021) 13:740. 
doi: 10.1186/s13195-020-00740-0

	26.	Creavin ST, Wisniewski S, Noel-Storr AH, Trevelyan CM, Hampton T, Rayment D, et al. 
Mini-mental state examination (MMSE) for the detection of dementia in clinically 
unevaluated people aged 65 and over in community and primary care populations Cochrane 
dementia and cognitive improvement group. Chichester: John Wiley & Sons, Ltd.

	27.	Little R, Rubin D. Statistical analysis with missing data. 3rd ed. New York, NY: 
Wiley (2019).

	28.	Molenberghs G, Fitzmaurice G, Kenward MG, Tsiatis A, Verbeke G. Handbook of 
missing data methodology. Boca Raton, FL: Chapman and Hall/CRC (2014).

	29.	Atanassov E, Gurov T, Ivanovska S, Karaivanova A. Parallel Monte Carlo on 
Intel MIC architecture. Procedia Computer Science. (2017) 108:1803–10. doi: 
10.1016/j.procs.2017.05.149

https://doi.org/10.3389/fams.2025.1617381
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
http://www.fnih.org
https://doi.org/10.2147/CIA.S132963
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1002/14651858.CD010783.pub2
https://doi.org/10.1159/000365637
https://doi.org/10.1017/S1355617706060206
https://doi.org/10.1017/S1355617720000934
https://doi.org/10.1093/oxfordjournals.aje.a009137
https://doi.org/10.2307/2529876
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136.full
https://doi.org/10.1177/0962280212465500
https://doi.org/10.3389/fendo.2025.1470513
https://doi.org/10.1002/joc.8430
https://doi.org/10.1080/10618600.1996.10474708
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.1745-9125.1993.tb01133.x
https://doi.org/10.1097/YCO.0000000000000482
https://doi.org/10.1186/s13195-020-00712-4
https://doi.org/10.2174/1567205013666160401115127
https://doi.org/10.1186/s13195-020-00740-0
https://doi.org/10.1016/j.procs.2017.05.149

	Modelling longitudinal cognitive test data with ceiling effects and left skewness
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Measures
	2.2.1 Outcome variable
	2.2.2 Predictor variables
	2.3 Statistical models

	3 Results
	4 Discussion
	5 Conclusion

	References

