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Can associative memory be
modeled by quantum
information?

Michael Siomau*

Rabdan Academy, Abu Dhabi, United Arab Emirates

Associative memory is the ability to reveal similarities between unrelated items.

Models of associative memory typically rely on significant assumptions about

information encoding procedure, structure of underlying complex network,

computational power of nodes, and communication capacity of links. Keeping

assumptions plausible and at minimum, the search for association can be

done on a network enhanced with quantum information processing exploiting

non-locality and quantum state comparison.
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Introduction

The only definite thing we know about associative memory is that the brain does it

much better than we can simulate it [1]. Many advanced models that incorporate different

features of associative memory have been suggested to exploit classical [2] and quantum

information processing [3]. Arguably, the most successful model so far—dense associative

memory by Krotov and Hopfield [4]—powered by condensed matter physics methods

and non-linear dynamics seems structurally and computationally excessive compared to

neurons firing almost identical electrical signals, getting the job done quickly and at low

energy cost [5].

Typically, associative memory models draw on the full arsenal of physics, computer

science, and engineering to incorporate asmuch data from neuroscience as possible [see for

example [6] and references therein]. In this Brief Report, I take a different approach. Rather

than attempt to mimic actual brain functionality, I look for the minimum requirements to

establish an abstract association.

At a most philosophical level, the search for similarity implies comparing two or more

instances of information, which could be distantly located. When formulated this way,

it seems natural to engage such quantum information processing features as quantum

non-locality and direct quantum state comparison [7] to search for association. While

non-locality makes physical location of the information units irrelevant, the direct state

comparison gives a natural distance measure to conclude on similarity.

In the following, I consider a (classical) network enhanced with quantum information

processing and show that the search for association can be done making the least

assumptions about the structure of the network, the processing capabilities of the nodes,

and the communication capacity of the links.

Results

Suppose we are given a connected network comprising processing and storage units

(nodes) and communication channels (links). Information is stored on the nodes in some

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2025.1625802
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2025.1625802&domain=pdf&date_stamp=2025-09-03
mailto:msiomau@ra.ac.ae
https://doi.org/10.3389/fams.2025.1625802
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2025.1625802/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Siomau 10.3389/fams.2025.1625802

form, for example, as a bit string x = {0, 1}n of size n. Information

may be stored on a single node or, in case of limited node’s capacity,

may be distributed over a cluster of nodes. In the latter case, it is

reasonable to assume a uniform rule of how to store distributed

information so that nodes in two clusters of similar content also

carry similar pieces of information. For example, cluster A consists

of five nodes xi and i = 1...5 sharing a unit of information. Cluster

B is similar to cluster A if contains x′i so that xi is similar to x′i,

i.e., 1(xi, x
′
i) ≪ ε for all i in a cense of some distance measure 1.

The clusters may have different size and connectivity, but the five

strings i must be pairwise similar; otherwise, the problem to find

association becomes ill-defined.

The nodes can communicate information over the links they

share with their neighbors. Let me first suppose the nodes can

encode all information they possess into an electromagnetic

signal and communicate it. Then, the signals in the network

are to be all different in their amplitudes and frequencies.

Massive data exchange of all-different signals would be energy

inefficient. Interestingly, this assumption contradicts evidence

of brain operation [1]. Rather, the brain keeps data traffic

low using almost identical signals. Therefore, let me assume

the signals communicated over the links are to be (identical)

quantum photonic states accompanied with at most few bits of

classical information.

Let me also assume non-classical information processing in the

nodes. Based on the classical information encoded into bit strings

xi, the nodes can generate strings of quantum states—qubits |x〉i.
There is no physical limitation on the number of quantum copies

to generate from a piece of classical information [7]. In addition,

each node must be capable to generate entangled states of photon

to send one photon of the pair to its neighboring node through the

link, keeping the other.

The above setup is, in fact, sufficient to search for association.

Node Alice has information encoded in quantum state |ψ〉A.
Having shared an entangled pair with node Bob, Alice teleports

her state |ψ〉A to Bob’s location sending two classical bits of

information per qubit with the next entangled photon as required

by the teleportation protocol (see Methods). Roughly speaking,

instead of communicating information itself Alice creates a

quantum image of information she posses and teleports it to Bob

for comparison.

Bob can directly compare his quantum state |ψ〉B with

that received from Alice using natural distance measures of

quantum theory. There are many slightly different ways for Bob to

compare the two states he has: direct state comparison, projective

measurement or positive operator valued measure (POVM) [8].

Ultimately, Bob gets single number, which represents the degree

of similarity (distance) between |ψ〉A and |ψ〉B, i.e., fidelity F =
| 〈ψA|ψB〉|2.

If fidelity is closer to unity, |ψ〉A and |ψ〉B are similar,

meaning that Alice and Bob possess similar classical information.

Imperfections in entangled pair generation and transmission may

require repeating above procedure, which, however, does not

affect the conclusion about similarity of the quantum states and

corresponding classical information.

The search looks almost the same if Alice and Bob are

not directly connected with a link because quantum networks

permit creating non-local links with distant nodes [9, 10] by

entanglement swapping [7]. Alice shares an entangled state with

her neighbor Charlie, who is also neighbor for Bob, while Alice

and Bob are not directly connected. Charlie separately checks

similarity of his state |ψ〉C with Alice’s state |ψ〉A and Bob’s

state |ψ〉B and if no similarity found, he performs swapping on

entangled qubits received from Alice and Bob making them share

an entangled pair, which may be understood as a virtual link

[7]. Charlie tells Alice and Bob from which link he received the

entangled pairs he swapped, so both Alice and Bob know the

path they need to communicate in case their states are found to

be similar.

In fact, any two nodes in the network can compare quantum

copies having as many entanglement swapping on the way as

the distance between them. Luckily, complex highly connected

networks often exhibits small-world structure, i.e., the average

distance between two nodes growth logarithmically with the

network size [11], so it can be safely assumed in this model that the

distance between any two nodes is relatively small, making multiple

entanglement swapping practical.

Discussion

If Alice and Bob both belong to distant clusters and found

similarity between their information, they may instruct other

members of their clusters to check for similarity. Taking into

account the arsenal of quantum information processing, comparing

two clusters for similarity does not seem a problem, rather what

is the optimal way, in terms of information encoding and the

distance measure choice? Clusters of course may be of different

size, but is it better to use just average fidelity for most similar

information or have some sort of state mixing before comparing,

e.g., quantum hashing?

The model as it is presented here relies on two fundamentally

non-classical features: the possibility to compare two quantum

states without their direct communication (teleportation), and

fundamental non-locality of quantum networks that allows us

to connect two distant nodes. Due to extreme simplicity of

the suggested model, there are indeed many technical aspects

to speculate about. An interesting option is to use POVM to

establish similarity. Some sets of POVM are compatible, i.e., can

be measured together with no effect on each other, while the

others are not. This unique feature of quantum measurements

can be of great use in models for associative memory. Consider

two POVM measurements on a qubit A±(µ) = 1
2 (I ± µσx)

and B±(µ) = 1
2 (I ± µσz), where 1 − µ ∈ [0, 1] describes

noisy spin measurements along x and z directions [8]. The

measurements A±(µ) and B±(µ) are compatible, that is, jointly

measurable for µ ≤ 1√
2
, while they are not compatible,

that is, influence outcomes of each other for µ > 1√
2
.

Bob may vary the parameter µ depending on the number

of entanglement swapping that separates him from Alice. The

purpose is to target the distance to search for similarity. If,

for example, the distance is less than three, Bob keeps POVM

compatible; otherwise, he tunes µ to the regime, when POVM are

not compatible.
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Recent experimental advances in single-photon manipulations

and detection [12–17] make the proof-of-principle experiment

feasible, but understanding the collective dynamics of a

complex quantum network [18, 19] with associative memory

functionality requires the development of an accurate

theoretical model that incorporates quantum information

processing and machine learning [20, 21] with the latest

neuroscientific findings.

Interestingly, synchronization in electromagnetic spikes in

the brain [1] fits into the model because synchronization in

entangled states exchange reduces the requirement to store

entanglement before teleportation. The quantum state of a

cluster may be repeatedly modified by a single node, which

may be a reason to overwrite the classical memory [10].

Direct state comparison may be used not just for association

search but for quantum machine learning [22]. Noise could

make some paths more or less favorable for association [23].

It could even be that quantum information processing on

network [24] may actually occur in the brain [25] and, exactly

due to its spooky nature, may help demystify the origin

of consciousness.

Methods

The four maximally entangled two-qubit states form Bell basis

and are given by

|ψ±〉 =
|00〉 ± |11〉

√
2

, |φ±〉 =
|01〉 ± |10〉

√
2

.

To teleport a qubit state |κ〉, Alice shares with Bob state

|ψ±〉AB, so that each of then hold one qubit of the entangled

pair. Then, Alice measures |κ〉 and her entangled qubit in the Bell

basis and communicates result of her measurement to Bob via a

classical channel.

Entanglement swapping is performed by Charlie, who shares

entangled states both with Alice |ψ±〉AC and Bob |ψ±〉CB. Charlie
measures his qubits from the entangled pairs in the Bell basis and

communicates the result of his measurement to the other parties.

As a result, Alice and Bob share an entangled state, while Charlie is

excluded from their communication.
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