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This study proposes a Hierarchical Fusion Self-Supervised Learning (HFSL) framework 
to address the challenge of scarce labeled data in accounting anomaly detection, 
integrating domain knowledge with advanced deep learning techniques. Based 
on financial data from Chinese listed companies in the CSMAR database spanning 
2000–2020, this framework integrates temporal contrastive learning, a dual-channel 
LSTM autoencoder structure, and financial domain knowledge to construct a 
three-tier cascaded detection system. Empirical research demonstrates that the 
HFSL framework achieves a precision of 0.836, recall of 0.805, and F1 score of 
0.820 in accounting anomaly detection, significantly outperforming traditional 
methods. In terms of practical metrics, the framework attains an early detection 
rate of 0.726 while maintaining a false alarm rate of just 0.068, providing technical 
support for early risk warning. Financial feature contribution analysis reveals that 
core indicators such as Return on Assets (ROA), Return on Equity (ROE), and their 
interaction effects play crucial roles in anomaly identification. Through analysis 
of 2,150 samples in the test set, the study identifies five typical financial fraud 
patterns (revenue inflation 38.6%, expense concealment 21.7%, asset overvaluation 
17.4%, liability understatement 15.2%, and composite manipulation 7.1%) and their 
temporal evolution characteristics. The research also finds that financial anomalies 
typically exhibit three evolutionary patterns: progressive deterioration (64%), sudden 
anomalies (22%), or cyclical fluctuations (15%), providing empirical evidence for 
regulatory practice. This study applies self-supervised learning to accounting anomaly 
detection, not only solving the detection challenges in unlabeled data scenarios 
but also providing effective tools for financial supervision and risk management.
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1 Introduction

Accounting data, as the quantitative representation of enterprise economic activities, plays 
a fundamental supporting role in investment decisions, resource allocation, and market 
stability. However, frequent financial fraud incidents in global financial markets in recent years 
have severely eroded market confidence and economic stability. Data from the U.S. Securities 
and Exchange Commission (SEC) shows that financial fraud cases have increased by 
approximately 30% in recent years (2020–2023), with amounts exceeding $270 billion (1). This 
systemic risk not only affects individual enterprises but also threatens the entire capital market. 
Iconic financial fraud cases such as Enron, WorldCom, and Lehman Brothers caused market 
capitalization losses exceeding $300 billion, hundreds of thousands of employees losing their 
jobs, and severe pension fund losses, triggering comprehensive doubts about accounting 
information reliability.
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In the Chinese market, recent financial fraud cases of listed 
companies such as Kangmei Pharmaceutical and Kangde Xin 
similarly highlight the serious harm of financial information 
distortion to investors and market order. Kangmei Pharmaceutical 
was fined 6 billion yuan for falsely increasing monetary funds by 
nearly 30 billion yuan, becoming the largest fine in the history of 
China’s capital market (2). These cases reveal the limitations of 
traditional financial regulatory mechanisms when facing complex 
and concealed accounting data manipulation. Despite global 
regulatory bodies continuously strengthening financial reporting 
regulatory frameworks, such as the Sarbanes-Oxley Act (SOX) and 
International Financial Reporting Standards (IFRS), accounting 
data anomaly detection still faces severe challenges: complex and 
variable anomaly patterns, severe scarcity of available labeled data, 
and insufficient detection tool effectiveness (3).

Traditional accounting anomaly detection methods mainly 
rely on two technical approaches: rule-based statistical analysis, 
such as modified Z-score and Beneish M-score models, and 
supervised learning methods, such as support vector machines 
and random forests. However, these methods generally have three 
key limitations: (1) dependence on large amounts of high-quality 
labeled data, while accounting fraud cases are rare events with 
costly labeled data acquisition; (2) static anomaly pattern 
assumptions, making it difficult to adapt to the dynamic evolution 
of financial fraud techniques; and (3) insufficient modeling 
capability for complex interactions between multidimensional 
financial indicators, resulting in low detection rates for carefully 
designed financial manipulation behaviors (4, 5).

With the deepening of digital transformation, enterprise 
financial data exhibits characteristics of large volume, complex 
dimensions, temporal dependence, and industry heterogeneity, 
urgently requiring innovative technical frameworks to break 
through the bottlenecks of traditional detection paradigms. Self-
supervised Learning, as a frontier paradigm in the field of deep 
learning, automatically constructs supervision signals from 
unlabeled data and has demonstrated excellent performance in 
computer vision and natural language processing (6, 7). This 
method is particularly suitable for addressing key challenges in 
accounting data anomaly detection: no need for large amounts of 
labeled data, ability to capture complex data patterns, and 
adaptation to dynamically changing environments. However, 
transferring self-supervised learning principles to the field of 
accounting data anomaly detection faces numerous technical 
challenges, including how to construct self-supervised tasks 
suitable for financial data characteristics, how to integrate domain 
knowledge constraints, and how to handle temporal dependencies 
and industry differences.

Ali et al., through a systematic literature review, found that 
traditional machine learning methods have obvious limitations in 
processing high-dimensional imbalanced financial data, while 
deep learning significantly improves fraud detection accuracy 
through automatic feature extraction and nonlinear modeling 
capabilities. However, most existing research still relies on 
supervised learning paradigms, and dependency on labeled data 
limits its practical application (8).

Based on the above research background, this paper proposes 
an innovative Hierarchical Fusion Self-supervised Learning 
Framework (HFSL), aiming to break through the technical 

bottlenecks of accounting data anomaly detection. The framework 
uses the financial data of Chinese listed companies in the CSMAR 
database as an empirical basis to construct a three-tier cascaded 
anomaly detection mechanism: feature representation learning 
layer, relationship reasoning layer, and anomaly detection layer, 
achieving high-precision identification and early warning of 
accounting data anomalies through temporal contrastive learning, 
dual-channel LSTM autoencoder, and financial domain 
knowledge constraints.

The innovative contributions of this research are mainly 
reflected in three aspects: first, a hierarchical fusion self-
supervised learning framework designed for accounting data 
characteristics, effectively solving detection problems in scenarios 
with scarce labeled data; second, a temporal contrastive learning 
mechanism incorporating financial domain knowledge, enhancing 
the sensitivity and interpretability of anomaly recognition; third, 
revealing the “financial anomaly waterfall effect” through 
multidimensional financial feature interaction analysis, providing 
theoretical basis for regulatory practice.

2 Literature review

2.1 Traditional accounting data anomaly 
detection methods

Traditional accounting data anomaly detection methods 
primarily include statistical analysis, rule-based systems, and 
supervised learning algorithms. Statistical methods identify 
anomalies by quantifying the deviation degree of financial 
indicators, where the Z-score method assesses corporate bankruptcy 
risk by calculating standard deviations of financial ratios relative to 
normal distribution (33). Similar modified Z-score methods have 
further improved detection precision, but these methods typically 
assume data conforms to specific distributions. In practice, 
accounting data often exhibits non-normal distribution and 
heteroscedasticity characteristics, which may lead to higher false 
positive or false negative rates (9). Rule-based systems rely on 
predefined thresholds or logical conditions, such as determining 
abnormality when current ratios exceed normal ranges (10). 
Although such methods demonstrate certain effectiveness in 
specific environments, they lack adaptability and struggle to process 
complex financial data patterns (11).

Supervised learning algorithms have been widely applied in 
anomaly detection in recent years, including technologies such as 
support vector machines (SVM), random forests, and neural 
networks (12). These methods learn classification boundaries to 
identify potential anomalies by training on labeled normal and 
abnormal samples. However, in the accounting data domain, 
labeled anomalous samples (such as financial fraud) are scarce, 
and the labeling process is easily influenced by subjective factors 
(13). Furthermore, the performance of supervised learning 
models highly depends on the quality and quantity of training 
data, and their generalization capability often performs poorly 
across different industries or time periods of financial data (14). 
Therefore, the limitations of traditional methods lie in their high 
dependency on labeled data, substantial detection costs, and 
insufficient adaptability to dynamic data patterns.
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2.2 Current applications of self-supervised 
learning

Self-supervised learning, as an emerging machine learning 
paradigm, generates supervision signals from unlabeled data and has 
demonstrated significant application potential across multiple 
domains (15). In computer vision, self-supervised methods such as 
rotation prediction and contrastive learning have achieved success by 
learning semantic representations of images (16–19). In natural 
language processing, the BERT model has achieved deep 
understanding of text through masked language modeling tasks (20).

In recent years, applications of self-supervised learning in time 
series anomaly detection have gradually gained attention. Autoencoder-
based methods mark points with large reconstruction errors as 
anomalies by reconstructing normal time series patterns. Contrastive 
learning further enhances time series anomaly detection accuracy by 
maximizing representation consistency between similar samples (21).

Despite significant progress in the aforementioned domains, 
applications of self-supervised learning in accounting data anomaly 
detection remain in an exploratory stage. Accounting data possesses 
multivariate panel structure and temporal dependencies, posing 
unique challenges to self-supervised learning model design. 
Compared to image or text data, accounting data anomaly patterns 
are more concealed and strongly context-related, limiting the direct 
application of existing self-supervised methods in this field. However, 
this characteristic also provides research opportunities for developing 
self-supervised frameworks applicable to accounting data.

Contrastive learning-based methods have unique advantages in 
capturing sequential anomalies in financial data, especially in the 
financial domain where unlabeled data predominates, self-supervised 
learning can effectively overcome the challenges of scarce labeled 
data. However, the research also indicates that industry differences in 
financial data place higher demands on model generalization 
capabilities, and single-structure self-supervised models struggle to 
adapt to financial data characteristics across different industries (22).

2.3 Research gaps

Research on accounting data anomaly detection using the 
CSMAR database is currently limited. As an authoritative source 
of financial and market data for Chinese listed companies, the 
CSMAR database provides rich multivariate panel data, making it 
highly suitable for empirical analysis of anomaly detection. 
Existing research predominantly focuses on applications of 
traditional statistical methods or supervised learning algorithms 
(23, 24), with insufficient exploration of self-supervised learning 
potential in this dataset. Traditional methods often struggle to 
effectively capture cross-company and cross-temporal anomaly 
patterns when processing CSMAR data, while supervised learning 
is constrained by scarce labeled data, making it difficult to fully 
exploit data features.

The effectiveness of self-supervised learning in multivariate panel 
data has not been systematically verified. The complex structure of 
accounting data requires models to simultaneously process time series 
dependencies and interactions between variables, while existing self-
supervised methods are predominantly designed for univariate time 
series or static data (25–27).

3 Self-supervised learning framework 
design

3.1 Hierarchical fusion self-supervised 
learning framework

The Hierarchical Fusion Self-supervised Learning Framework 
(HFSL) addresses the multi-source heterogeneity, temporal 
dependence, and industry differentiation characteristics of accounting 
data, breaking through the limitations of traditional anomaly 
detection methods. Based on self-supervised learning principles, the 
HFSL framework integrates temporal modeling capabilities and 
domain knowledge constraints to form a three-tier cascaded anomaly 
detection mechanism.

The first layer of the HFSL framework is the feature representation 
learning layer, which enhances the model’s ability to recognize 
temporal patterns in accounting data through Temporal Contrastive 
Learning. Specifically, given an accounting data sequence 

{ }= …1 2, , , TX x x x , positive sample pairs ( ),i jx x  are constructed 
where δ− ≤i j∣ ∣  represents temporally close samples; negative sample 
pairs ( ),i jx x  are constructed where δ− >i k∣ ∣  represents temporally 
distant samples. Feature representations are optimized by minimizing 
the following contrastive loss function:
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Where iz  is the feature representation of ix , ( )sim ·,·  is the cosine 
similarity function, and τ  is a temperature parameter. This design 
enables the model to capture temporal consistency in financial data, 
establishing a foundation for anomaly detection.

The second layer is the relationship reasoning layer, which 
adopts a dual-channel LSTM autoencoder structure—one channel 
processes short-term financial behaviors, while the other captures 
long-term financial trends, with both types of information fused 
through an attention mechanism. Formally, the short-term channel 
learns function × →: sd w h

sf   , the long-term channel learns 
function × →: ld w h

lf   , where <s lw w  represents different time 
window sizes. The final representation is fused through attention 
weights α :

	 ( ) ( ) ( )α α= + −· 1 ·
s ls w l wz f X f X

This dual-channel design overcomes the limitations of traditional 
LSTM in multi-scale temporal pattern recognition, making it more 
suitable for accounting data characterized by the coexistence of 
quarterly fluctuations and annual trends.

The third layer is the anomaly detection layer, combining 
reconstruction errors and financial domain knowledge to achieve 
multi-dimensional anomaly judgment. Beyond basic reconstruction 
errors, financial rationality constraints are introduced, such as the 
asset-liability equation = +Assets Liabilities Equity  and revenue-
cost relationship = −Profit Revenue Cost. The model learns not only 
data distribution but also financial rules, improving the 
interpretability and accuracy of anomaly detection. Anomaly score 
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calculation integrates reconstruction error and rule 
violation degree:

	
( ) ( ) ( ) ( )µ µ

λ λ
σ σ

− −
= + −recon recon rule rule

recon rule.
· 1 ·
E X E X

Score X

where µrecon  and σrecon are the mean and standard deviation of 
reconstruction errors on the training set, and µrule and σrule are the 
corresponding statistics for rule violation scores. This standardization 
ensures that both components are on the same scale, allowing the 
balancing parameter λ to accurately reflect the intended weight allocation 
between reconstruction-based and rule-based anomaly detection.

To provide a clearer understanding of the HFSL framework’s 
implementation, Algorithm 1 presents the pseudocode for the 
complete framework:

The innovation of the HFSL framework is manifested in three 
aspects: first, introducing temporal contrastive learning to enhance 
sensitivity to temporal patterns in accounting data; second, designing 
a dual-channel LSTM structure to simultaneously capture short-term 

fluctuations and long-term trends; and finally, integrating domain 
knowledge constraints to improve the accuracy and interpretability of 
anomaly detection. These innovative designs make the HFSL 
framework particularly suitable for practical accounting data anomaly 
detection requirements.

Figure 1 illustrates the overall architecture of the HFSL framework. 
The framework takes accounting data from the CSMAR database as 
input and preprocesses it through a three-stage adaptive processing 
mechanism. The model centers on a three-tier cascaded structure: the 
first layer captures temporal pattern features of financial data through 
feature representation learning, the middle layer utilizes a dual-
channel LSTM structure to separately process short-term financial 
fluctuations and long-term trends, while the final layer integrates 
multi-scale scoring mechanisms, adaptive thresholds, and financial 
rule constraints to form precise anomaly identification capabilities. 
This multi-level fusion architecture promises to better analyze cross-
scale features and temporal series correlations in accounting data.

3.2 Adaptive processing mechanism for 
accounting data

Accounting data possesses unique industry characteristics, 
seasonal fluctuations, and imbalanced distributions, requiring 
specialized adaptive processing mechanisms. This study designs a 
three-stage data adaptation process, including industry calibration, 
seasonal adjustment, and noise suppression.

The industry calibration stage addresses the differences in 
financial indicators across industries by introducing industry reference 
distribution ( )iP x , which represents the probability distribution of 
financial indicator x  within industry i. The calibration process involves 
a two-step transformation:

	
( ) ( )µ

σπσ
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22
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where µi and σ i  are the industry-specific mean and standard 
deviation. The within-industry standardized transformation is 
then applied:

	

µ
σ
−
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This transformation ensures that financial indicators are 
normalized relative to their industry-specific distributions, enabling 
the model to identify anomalies that deviate from industry norms 
rather than from the overall market average.

The seasonal adjustment stage employs the X-13 ARIMA-SEATS 
method to decompose financial indicators. This decomposition 
follows an additive model where the observed time series ( )x t  is 
expressed as:

	 ( ) ( ) ( ) ( )= + +x t T t S t R t

Input: 

Accounting data sequence X = {x₁, x₂, ..., xₜ}

Output: 

Anomaly score and detection result 

Parameters:

δ (temporal window), τ (temperature), λ (balance parameter)

// Feature Representation Learning Layer

for each batch in X do 

Generate positive pairs (xᵢ, xⱼ) where |i − j| δ  

Generate negative pairs (xᵢ, xₖ) where |i − k| > δ  

Compute contrastive loss using Eq.(1) 

end for 

// Relationship Reasoning Layer

Split X into short-term Xₛ and long-term Xₗ windows  

hₛ = LSTM_short(Xₛ)    // Extract short-term patterns  

hₗ = LSTM_long(Xₗ)     // Extract long-term patterns  

= Attention(hₛ, hₗ)  // Compute attention weights  

z = α · hₛ + (1 − α) · hₗ  // Fuse representations

// Anomaly Detection Layer

E_recon = ComputeReconstructionError(X, X̂)  

E_rule  = CheckFinancialRules(X)  

Score   = λ · Normalize(E_recon) + (1 − λ) · Normalize(E_rule)

if Score > θ_adaptive then

return "Anomaly detected", Score 

else

return "Normal", Score 

ALGORITHM 1

Hierarchical fusion self-supervised learning framework.
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Where ( )T t  represents the trend component, ( )S t  the seasonal 
component, and ( )R t  the residual component. The trend component 
( )T t  is extracted using a Henderson moving average filter, which 

minimizes the variance of the third difference of the trend. For 
quarterly data, we apply a 13-term Henderson filter:

	
( ) ( )

=−
= +∑

6

6
·j

j
T t w x t j

Where the weights jw  are symmetric ( −=j jw w ) and sum to unity. 
The seasonal component ( )S t  is modeled using a seasonal ARIMA 
specification. For quarterly financial data, we  employ an ARIMA 
(0,1,1) (0,1,1)4 model, which can be expressed as:

	
( )( ) ( ) ( )( )4 4

1 11 1 1 1 tB B S t B Bθ− − = − −Θ ∈

where B  is the backshift operator, θ1 and 1È  are the 
non-seasonal and seasonal moving average parameters 
respectively, and tò  is white noise. The seasonal factors are 
constrained to sum to zero over a complete year to ensure 

identifiability. After extracting the trend and seasonal 
components, the residual component is obtained as:

	 ( ) ( ) ( ) ( )= − −R t x t T t S t

The residual component ( )R t  contains both irregular variations 
and potential anomalies. To distinguish between normal irregular 
fluctuations and true anomalies, we apply a robust scale estimator 
based on the median absolute deviation (MAD):

	
( ) ( )( )( )MAD median | median |R t R t= −

Financial indicators with residual values exceeding 
± × ×3 1.4826 MAD are flagged as potential anomalies, where 1.4826 is 
the consistency constant for normal distributions. This approach 
effectively separates legitimate seasonal patterns, such as year-end 
inventory adjustments or quarterly revenue cycles, from suspicious 
deviations that may indicate financial manipulation.

The noise suppression stage introduces an adaptive weighting 
strategy that adjusts feature weights based on data reliability. For 

FIGURE 1

Architecture of the hierarchical fusion self-supervised learning framework (HFSL).
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high-noise features, their weights in anomaly calculations are reduced 
to improve detection stability. This mechanism is particularly suitable 
for handling financial data of varying quality and completeness in the 
CSMAR database.

3.3 Adaptive threshold determination and 
multi-scale anomaly scoring

The key to anomaly detection lies in threshold determination. This 
study proposes an adaptive dynamic threshold mechanism that 
automatically adjusts thresholds based on data distribution and 
business requirements. The basic approach is to fit reconstruction 
error distributions using Gaussian Mixture Models (GMM):

	
( ) ( )π µ σ

=
= ∑ 2

1
,

K

k k k
k

p e e ∣

where e  represents reconstruction error, and πk , µk, and σk 
represent the mixing coefficient, mean, and standard deviation of the 
K  Gaussian component, respectively. The threshold is set to a specific 
quantile of the high-variance component:

	 θ µ ασ= +h h

where µh and σh are the parameters of the high-variance 
component, and α  is an adjustable coefficient that balances false 
positive and false negative rates according to business requirements.

This study introduces a multi-scale anomaly scoring mechanism 
that comprehensively considers three levels: point anomalies, sequence 
anomalies, and relationship anomalies. Point anomalies focus on 
abnormal values at individual time points, sequence anomalies detect 
abnormal patterns in time series, and relationship anomalies identify 
abnormal changes in relationships between multiple variables. The 
final anomaly score is a weighted combination of the three:

	 ( ) ( ) ( ) ( )= + +finalScore ·Score ·Score ·Scorep p s s r rX w X w X w X

where pw , sw , and rw  are weight parameters. While this 
formulation presents the final score as a linear combination, the three 
anomaly components are not statistically independent. Their 
interdependencies arise from the inherent structure of financial data 
and manifest through several mechanisms.

The correlation structure among the three components can 
be characterized by the correlation matrix:

	

ρ ρ
ρ ρ
ρ ρ

 
 

=  
 
 

1
1

1

ps pr

ps sr

pr sr

C

Where ( ) ( )( )ρ =Corr ,ij i jScore X Score X  represents the Pearson 
correlation between components i and j . Empirical analysis on our 
dataset reveals moderate positive correlations: 
ρ ρ= ± = ±0.42 0.08, 0.38 0.06ps pr , and ρ = ±0.51 0.09sr , indicating 
that these components capture partially overlapping anomaly patterns.

The strongest correlation occurs between sequence anomalies and 
relationship anomalies (ρ = 0.51sr ), which is expected as violations in 
financial relationships often manifest as abnormal temporal patterns. 
For instance, when the relationship between revenue and accounts 
receivable is disrupted (relationship anomaly), it frequently leads to 
unusual trends in subsequent periods (sequence anomaly). To account 
for these interactions, we introduce a second-order adjustment term:

	
( ) ( ) ( ) ( )λ ρ

<
= + ∑adjusted

final intfinal o i j ij i j
i j

Score X Sc re X w w Score X Score X

Where λ =int 0.05  is the interaction coefficient determined 
through cross-validation. This adjustment captures the synergistic 
effect when multiple anomaly types co-occur, improving detection 
accuracy for complex financial manipulations.

Furthermore, we  observe that the presence of relationship 
anomalies often serves as a catalyst that amplifies the significance of 
point anomalies. This conditional dependency is modeled through a 
gating mechanism:

	
( ) ( ) θ

σ
τ

 −
=   

 

r rScore X
g X

Where ( )σ ·  is the sigmoid function, θr is the relationship anomaly 
threshold, and τ = 0.1 is a temperature parameter. The gated final 
score becomes:

	 ( ) ( ) ( )( )β= × +gated adjusted
final final 1 ·Score X Score X g X

Where β = 0.15 represents the maximum amplification factor. 
This gating mechanism ensures that when strong relationship 
anomalies are present, the model increases its sensitivity to other 
anomaly types, reflecting the empirical observation that financial 
fraud often involves multiple coordinated manipulations.

Through ablation studies, we  demonstrate that incorporating 
these interaction effects improves the overall F1-score by 4.2% 
compared to treating the components as independent, with 
particularly notable improvements in detecting complex fraud 
patterns involving multiple financial statement items.

In summary, the innovative self-supervised learning framework 
HFSL proposed in this study is specifically designed for accounting 
data characteristics, integrating temporal contrastive learning, dual-
channel LSTM structure, domain knowledge constraints, and multi-
scale anomaly scoring mechanisms to provide a theoretical and 
technical foundation for accounting data anomaly detection.

4 Research methods and 
implementation

4.1 Data preprocessing

4.1.1 Data sources and sampling strategy
This research uses financial data of Chinese listed companies from 

the CSMAR database, with samples covering quarterly and annual 
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financial data of all companies listed on the A-share market from 2000 
to 2020. As an authoritative data source for Chinese capital market 
research, the CSMAR database provides standardized, highly 
continuous financial data, including balance sheets, income 
statements, cash flow statements, and related financial indicators, 
establishing a solid data foundation for anomaly detection research 
(28–30).

The sampling strategy employs stratified random sampling, 
stratifying samples by industry, size, and listing duration to ensure 
representativeness and balance in data distribution. To mitigate the 
interference of industry characteristics on anomaly detection, this 
study categorizes samples into 10 major industry categories according 
to the China Securities Regulatory Commission’s industry 
classification standards, using the same sampling proportion within 
each industry. The final dataset includes 31,724 company-quarter 
observations, and after excluding ST, *ST companies and samples with 
severe data missing, 28,569 valid observations were retained.

4.1.2 Data cleaning and standardization 
processing

Accounting data commonly exhibits missing values, outliers, and 
scale inconsistencies, requiring systematic cleaning and 
standardization processing (31, 32). This study adopts the following 
procedures for data preprocessing:

Missing value processing: Different strategies are applied to 
different types of missing data. For Missing At Random (MAR), 
multiple linear interpolation is used, estimating missing values based 
on adjacent time points and related financial indicators; for Missing 
Not At Random (MNAR), such as systematically missing specific 
financial indicators, industry means are used as substitutes or the 
observation samples are directly eliminated. Financial indicators with 
missing rates exceeding 20% are removed, and samples with missing 
value proportions exceeding 30% are eliminated.

Outlier processing: Recognizing the multidimensional nature of 
financial data, this study employs a two-stage outlier detection 
approach that considers multivariate relationships. In the first stage, 
we  apply the Local Outlier Factor (LOF) algorithm to identify 
multivariate outliers by examining the local density deviation of each 
data point relative to its neighbors. The LOF score for each observation 
is calculated as:
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Where ( )klrd x  is the local reachability density of point x , and 
( )kN x  represents the k-nearest neighbors of x . We set k = 20 based 

on empirical testing, and observations with LOF scores exceeding 2.5 
are flagged as potential outliers.

In the second stage, we validate these multivariate outliers using 
an Isolation Forest algorithm, which efficiently isolates anomalies by 
constructing random decision trees. The anomaly score is 
computed as:
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Where ( )( )E h x  is the expected path length for observation x , and 
( )c n  is the average path length of unsuccessful search in a Binary 

Search Tree. Only observations identified as outliers by both methods 
(LOF score > 2.5 and Isolation Forest anomaly score >0.6) 
undergo adjustment.

For confirmed outliers, instead of applying univariate 
Winsorization, we employ a multivariate adjustment approach that 
preserves the correlation structure. Specifically, we project the outlier 
onto the boundary of the 99% confidence ellipsoid in the direction 
from the data center:
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Where µ  is the robust center estimated using the Minimum 
Covariance Determinant (MCD) estimator, Ó is the robust 
covariance matrix, and α  is chosen such that adjustedx  lies on the 
99% confidence ellipsoid boundary. This approach preserves the 
multivariate structure while reducing the influence of extreme 
observations, ensuring that potentially fraudulent patterns remain 
detectable while mitigating the impact of data errors or legitimate 
extreme business events.

All adjusted data points are recorded with their original values 
and adjustment ratios for transparency and subsequent validation in 
the anomaly detection phase.

Data standardization: Financial indicators exhibit significant 
differences in measurement scales and distributions. Z-score 
standardization transforms different indicators to make them 
comparable on the same scale:
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Where , ,i j tX  represents the value of financial indicator j  for 
company i at time t , and µ ,j i and σ ,j i  represent the mean and standard 
deviation of the company’s historical data, respectively. This company-
internal standardization method both preserves cross-temporal 
variation characteristics and avoids biases from direct cross-
company comparisons.

Time series adjustment: Considering the seasonality and trend 
characteristics of accounting data, the X-13 ARIMA-SEATS method 
is applied to seasonally adjust quarterly data, separating trend 
components, seasonal components, and random components, 
providing a stable data foundation for time series modeling.

4.2 Feature engineering

4.2.1 Financial indicator selection and 
construction

Based on accounting theory and practical experience, this study 
selects and constructs a financial indicator system from four 
dimensions: profitability, solvency, operational efficiency, and 
cash flow:

Profitability indicators: Including Return on Equity (ROE), 
Return on Assets (ROA), Net Profit Margin (NPM), Gross Profit 
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Margin (GPM), Operating Profit Margin (OPM), and Earnings Per 
Share (EPS), reflecting a company’s ability to generate profits.

Solvency indicators: Including Current Ratio (CR), Quick Ratio 
(QR), Leverage Ratio (LEV), Interest Coverage Ratio (ICR), and Cash 
Flow to Debt Ratio (CFD), reflecting a company’s ability to repay debts.

Operational efficiency indicators: Including Inventory Turnover 
Rate (ITR), Accounts Receivable Turnover Rate (ARTR), Total Asset 
Turnover Rate (TATR), and Fixed Asset Turnover Rate (FATR), 
reflecting asset utilization efficiency.

Cash flow indicators: Including Operating Cash Flow (OCF), 
Cash Flow Adequacy Ratio (CFAR), Sales Cash Ratio (SCR), and Free 
Cash Flow (FCF), reflecting a company’s cash generation and 
management capabilities.

In addition to basic financial indicators, the following composite 
indicators were constructed to enhance anomaly detection capabilities:

Accounting quality indicators: Modified Jones model indicators 
based on accrual items, used to measure the degree of 
earnings management.

Financial stability indicators: Variants of Altman Z-score and 
Beneish M-score, adapted to the characteristics of China’s 
capital market.

Growth consistency indicators: Measuring the coordination 
between revenue growth and asset growth, cost growth, and other 
indicators to identify unreasonable financial growth patterns.

4.2.2 Feature extraction and dimensionality 
reduction

The initial feature set contained 42 financial indicators, presenting 
issues of high dimensionality and multicollinearity. The following 
methods were used for feature processing and 
dimensionality reduction:

Correlation analysis: Calculating the Pearson correlation 
coefficient matrix to identify highly correlated indicator pairs 
(|r| > 0.85) and retaining indicators with more significant 
financial meaning.

Principal Component Analysis (PCA): Applying PCA 
dimensionality reduction to standardized financial indicators, 
retaining principal components with cumulative explained variance 
reaching 90%, mapping high-dimensional financial data to a 
low-dimensional representation space.

Autoencoder feature extraction: Based on a nonlinear 
autoencoder structure, learning low-dimensional latent 
representations of financial data with minimal reconstruction error 
as the objective. The autoencoder consisted of a 3-layer encoding 
network and a 3-layer decoding network, compressing 
42-dimensional original features to 16-dimensional latent 
representations through batch training.

Temporal feature construction: Calculating statistical features 
within sliding windows, including mean, standard deviation, rate 
of change, kurtosis, and skewness, to capture dynamic change 
patterns of financial indicators. Additionally, extracting multi-scale 
time-frequency features based on Discrete Wavelet Transform 
(DWT) to enhance the model’s ability to recognize anomalies at 
different frequencies.

SHAP feature importance assessment: Using SHAP (SHapley 
Additive exPlanations) values to evaluate each feature’s 
contribution to anomaly identification, dynamically adjusting 
feature weights based on contribution degree to optimize detection 
precision. Ultimately, 22 core financial indicators were selected as 
model inputs.

Figure 2 illustrates the results of financial feature importance 
analysis and anomaly type analysis. The left side uses horizontal bar 
charts to intuitively present the SHAP value ranking of the 8 financial 
indicators that contribute most to anomaly detection. The results 
show that profitability indicators play a core role in anomaly 
detection, with Return on Equity (ROE, 0.196) and Return on Assets 
(ROA, 0.179) having significantly higher contributions than other 
indicators, followed closely by Current Ratio (0.163) and Leverage 
Ratio (0.149), indicating that solvency indicators are also important 
dimensions for financial anomaly identification. The right side 

FIGURE 2

Financial feature importance analysis and anomaly distribution.
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systematically displays five typical financial anomaly patterns and 
their characteristics, including revenue inflation (38.6%), expense 
concealment (21.7%), asset overvaluation (17.4%), liability 
understatement (15.2%), and composite manipulation (7.1%), and 
provides key features and detection rate data for each type of anomaly. 
This dual analysis framework not only reveals the importance 
hierarchy of financial features but also demonstrates the identification 
patterns of different types of financial anomalies, providing intuitive 
support for the model’s effectiveness in distinguishing between 
normal and anomalous financial data.

4.3 Model design and training

4.3.1 Dual-channel LSTM autoencoder 
architecture

Based on the Hierarchical Fusion Self-supervised Learning 
(HFSL) framework proposed in Chapter 3, this study designs a dual-
channel LSTM autoencoder to implement self-supervised learning 
and anomaly detection for accounting data. The specific architecture 
is as follows:

Input layer: Receives time series data of 22-dimensional financial 
indicators, with the short-term channel input window size set to 4 
(corresponding to 1 year of data) and the long-term channel input 
window size set to 12 (corresponding to 3 years of data).

Encoder layer: The short-term and long-term channels each 
contain bidirectional LSTM layers with 64 and 128 units respectively, 
capturing financial patterns at different time scales. The LSTM layers 
adopt an improved cell structure, integrating financial 
prior information:
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where tp  represents financial prior information, including 
industry means, historical trends, and other domain knowledge.

Attention fusion layer: Integrates short-term and long-term 
representations through an adaptive attention mechanism:
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where sh  and lh  are the hidden states of the short-term and long-
term encoders respectively, αs and αl are the corresponding attention 
weights, and z is the fused representation.

Latent representation layer: Applies a fully connected layer to the 
fused representation to obtain a 32-dimensional latent representation, 
which serves as the decoder input.

Decoder layer: Employs bidirectional LSTM layers with a 
symmetrical structure to restore the latent representation to the 
original input dimension. The short-term and long-term decoders 
reconstruct the financial data for their respective time windows.

Output layer: Maps to the original feature space through a fully 
connected layer, generating the reconstructed sequence.

To enhance model robustness, a Dropout layer (dropout 
rate = 0.3) is added between the encoder and decoder, and Batch 
Normalization is applied in the reconstruction layer.

The implementation details of the dual-channel LSTM 
autoencoder are presented in Algorithm 2.

4.3.2 Model training and optimization
The following training strategies are adopted for the characteristics 

of self-supervised learning and accounting data:
Loss function design: Optimizes the model by combining 

reconstruction loss and contrastive loss:

	 λ λ= +1 recon 2 con  

where reconstruction loss recon  is calculated based on the 
temporal contrastive learning method introduced in Chapter 3. λ1, λ2,  
and β  are balancing parameters determined through grid search to 
find optimal values.

Training strategy: Employs a phased training strategy, first 
training the short-term and long-term channels separately, then 
performing joint optimization. Data is divided into training, 
validation, and test sets in a 0.7:0.15:0.15 ratio, with the training set 
containing only normal samples, while validation and test sets contain 
both normal and anomalous samples. Batch size is set to 64, using an 
early stopping mechanism (patience = 20) to avoid overfitting.

Optimizer selection: Adopts the Adam optimizer with an initial 
learning rate of 0.001, applying a learning rate scheduling strategy 
with 10% decay every 30 epochs.

Hyperparameter optimization: Searches for key hyperparameters 
through Bayesian optimization, including LSTM layer numbers (1–3), 
hidden unit numbers (32–256), Dropout rates (0.1–0.5), attention 
dimensions (16–128), etc., with F1-score on the validation set as the 
optimization objective. The final optimal model configuration is: 
short-term channel with 2 LSTM layers (64 units), long-term channel 
with 2 LSTM layers (128 units), Dropout rate of 0.3, and attention 
dimension of 64.

Model implementation uses the PyTorch 1.9.0 framework, with 
training conducted on a server equipped with an NVIDIA V100 GPU, 
taking approximately 18 h, and resulting in a final model with 
1.8 M parameters.

Figure 3 shows the 3D visualization of reconstruction errors from 
the dual-channel LSTM autoencoder and time series analysis of 
anomaly scores. The left image uses a three-dimensional bar chart to 
present the distribution of reconstruction errors for different financial 
indicators across years, with a gradient color scheme from blue (low 
error) to red (high error) intuitively displaying the model’s excellent 
modeling effect on key indicators such as ROE and ROA. The right 
image uses time series graphs with filled areas to show the anomaly 
score trend changes of three typical companies: Company A exhibits 
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a gradual deterioration pattern and breaches the anomaly threshold 
in mid-2018, Company B shows sudden anomalies after 2018, while 
Company C consistently maintains within the normal range below the 
threshold. This multi-dimensional analysis intuitively demonstrates 
the framework’s capability to identify different types of financial 
anomalies and its early warning characteristics.

The HFSL framework incorporates a concept drift detection 
mechanism based on the Page-Hinkley test to monitor changes in 

fraud patterns over time. The system tracks the distribution of 
anomaly scores within sliding windows and triggers model adaptation 
when significant drift is detected. This adaptive mechanism ensures 
the model remains effective despite evolving fraud techniques and 
regulatory changes.

4.4 Anomaly detection and evaluation 
mechanism

4.4.1 Multi-dimensional anomaly score 
calculation

This study integrates three anomaly scoring methods to improve 
detection accuracy:

Reconstruction error score: Calculates the weighted Euclidean 
distance between the original sequence and the reconstructed  
sequence:
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where jw  represents the importance weight of feature j , 
determined through SHAP values.
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where ( )·I  is an indicator function, measuring the inconsistency 
of trend predictions.

Rule violation score: Quantifies the degree of violation of financial 
logic rules:

	
( ) ( )

=
=∑rule

1
Score ·Violation

R

r r
r

X w X

where ( )Violationr X  measures the degree of violation of rule r , 
and rw  is the importance weight of the rule.

The three scores are integrated through weighted fusion to form 
the final anomaly score:

	 ( ) ( ) ( ) ( )α α α= + +final 1 recon 2 pred 3 ruleS ˆ ˆre ˆco · · ·X S X S X S X

To ensure fair comparison and proper weight allocation among 
different scoring components, each score is standardized using 
z-score normalization:
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Where ( )iS X  represents the raw score for component i (recon, 
pred, or rule), and µi, σ i  are the mean and standard deviation 
estimated from the training set normal samples.

Input: 

Financial indicators sequence X ℝᵀˣᴰ

Output: 

Reconstructed sequence X̂, anomaly score

Parameters:

window_short = 4

window_long = 12

// Encoding Phase 

X_short = SlidingWindow(X, window_short)

X_long  = SlidingWindow(X, window_long)

// Short‑term channel

hₛ¹ = BiLSTM(X_short, units=64)

hₛ² = BiLSTM(hₛ¹, units=64) 

h_s  = Dropout(hₛ², rate=0.30) 

// Long‑term channel

hₗ¹ = BiLSTM(X_long, units=128)

hₗ² = BiLSTM(hₗ¹, units=128) 

h_l  = Dropout(hₗ², rate=0.35) 

// Attention fusion

e_s = tanh(W_s · h_s)

e_l = tanh(W_l · h_l)

_s = softmax(e_s)

_l = softmax(e_l)

z   = α_s · h_s + α_l · h_l

// Decoding Phase 

z_latent = Dense(z, units=32)

X̂_short = Decoder_LSTM(z_latent, window_short)

X̂_long  = Decoder_LSTM(z_latent, window_long)

return X̂_short, X̂_long

ALGORITHM 2

Dual-channel LSTM autoencoder architecture.
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The standardization process ensures that all three components 
contribute to the final score according to their assigned weights α1, α2 
and α3, regardless of their original scale differences. Through genetic 
algorithm optimization on the validation set, the optimal weights were 
determined as 0.5, 0.3, and 0.2 respectively, reflecting the relative 
importance of reconstruction accuracy, prediction consistency, and 
rule compliance in identifying accounting anomalies.

4.4.2 Adaptive threshold determination
To address the limitations of traditional fixed thresholds, this 

study employs Gaussian Mixture Models (GMM) to adaptively 
determine detection thresholds:

Fitting a K-component GMM (K = 3) to the anomaly scores of 
normal samples in the training set:
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Identifying the component with the largest variance (typically 
corresponding to marginal normal samples) and setting the threshold 
based on this component:

	 θ µ γ σ= +high high·

where γ  is an adjustable coefficient, with the optimal value 
determined through ROC curve analysis (this study uses 2.5).

To accommodate industry and size differences, a stratified 
adaptive threshold strategy is further designed, calculating thresholds 
separately for companies in different industries and market 
capitalization intervals to improve detection precision.

5 Experimental design

5.1 Data preparation

5.1.1 Dataset division
For reproducibility, data preprocessing follows standardized 

Z-score normalization within companies, and the chronological split 
(2000–2010 training, 2011–2015 validation, 2016–2020 testing) 
ensures temporal validity while preventing data leakage.

To evaluate the model’s performance across different time periods 
and its generalization ability, this study adopts a chronological division 
strategy, partitioning the Chinese listed companies’ financial data 
from the CSMAR database (2000–2020) into non-overlapping 
training, validation, and test sets. Specifically, data from 2000 to 2010 
is designated as the training set, accounting for 62.3% of the total 
sample with 17,817 valid observations; data from 2011 to 2015 serves 
as the validation set, representing 19.8% with 5,654 observations; and 
data from 2016 to 2020 forms the test set, comprising 17.9% with 
5,098 observations. This time-series partitioning effectively simulates 
real-world application scenarios, enabling the model to predict 
potential future anomalies based on historical data while testing its 
adaptability to changing market environments.

During the training phase, following the self-supervised learning 
paradigm, only normal samples are used for model training, with 
anomalous samples reserved exclusively for performance evaluation 
during validation and testing phases. To mitigate the impact of data 
distribution changes over time, this study introduces a sliding window 
mechanism with a window length of 12 quarters (corresponding to 
3 years of financial data), sliding one quarter at a time. This approach 
both preserves the temporal dependencies in financial data and 
enhances the model’s ability to recognize long-term financial trends. 
Additionally, stratified sampling based on the China Securities 

FIGURE 3

Multi-company anomaly score time series analysis.
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Regulatory Commission’s industry classification standards ensures 
consistent industry distribution across training, validation, and 
test sets.

Data preprocessing follows the three-stage adaptive processing 
procedure proposed in Chapter 4, including industry calibration, 
seasonal adjustment, and noise suppression. Specifically, for missing 
values in the training set, a combination of forward filling and linear 
interpolation is employed; for the validation and test sets, only 
statistical characteristics from the training set are used for filling to 
avoid information leakage. For standardization, company-internal 
Z-score standardization is applied to preserve cross-temporal variation 
characteristics while avoiding comparison biases between companies 
of different scales:
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where µ , ,trainj i  and σ , ,trainj i  represent the mean and standard 
deviation of financial indicator j  for company i in the training set.

5.1.2 Anomaly identification
Anomaly labeling in our self-supervised framework follows a 

hybrid approach: real anomalies are identified from verified fraud 
cases in CSMAR database and regulatory announcements, while 
maintaining unlabeled normal samples for training as per self-
supervised learning principles.

To comprehensively evaluate the performance of anomaly 
detection algorithms, this study constructs a composite test set 
containing both real anomalies and simulated anomalies. Real 
anomaly samples are derived from three sources: financial fraud cases 
and major accounting error correction cases marked in the CSMAR 
database (117 companies); companies suspected of financial anomalies 
identified through media reports and regulatory announcements (56 
companies); and listed companies issued with non-standard audit 
opinions (243 instances), covering qualified opinions, adverse 
opinions, and disclaimers of opinion. These real anomaly samples 
primarily involve violations such as inflated revenue, inflated profits, 
and concealed liabilities, exhibiting certain distribution characteristics 
across industries and time dimensions.

Considering the limitations of real anomaly samples, this study 
designs and constructs four types of simulated anomaly samples to 
enrich the testing system: (1) financial indicator mutation anomalies, 
introducing abnormal fluctuations exceeding 3 standard deviations in 
key indicators such as ROE and ROA; (2) financial ratio inconsistency 
anomalies, disrupting intrinsic relationships between key ratios such 
as gross profit margin and net profit margin; (3) temporal pattern 
anomalies, altering the seasonal and trend characteristics of financial 
indicators; and (4) accounting equation violation anomalies, 
introducing subtle violations of basic accounting principles while 
maintaining surface consistency. The generation process for simulated 
anomalies strictly follows three principles: domain knowledge 
constraints, reasonable distribution of anomaly intensity, and 
consideration of industry differences, ensuring conformity with 
characteristic distributions of actual financial anomalies.

The final anomaly sample repository contains 894 real anomaly 
cases and 1,256 simulated anomaly cases, totaling 2,150 anomaly 
samples. For scientific performance evaluation, samples are allocated 

to validation and test sets in a 9:1 ratio, while maintaining consistent 
distribution of various anomaly types in both sets. Anomaly samples 
in the validation set are used for model optimization and threshold 
determination, employing 5-fold cross-validation to establish the 
optimal detection threshold (μ + 2.5σ); the test set is used for final 
performance evaluation, covering both overall and category-
specific assessments.

5.2 Experimental setup

The experimental environment is implemented based on Python 
3.8 and the PyTorch 1.9.0 framework, with model training and testing 
conducted on a high-performance computing server equipped with 
an Intel Xeon E5-2690 v4 CPU, 64GB memory, and an NVIDIA Tesla 
V100 32GB GPU. Considering data scale and model complexity, a 
distributed training framework is adopted to improve computational 
efficiency, with data parallelism set to 4.

The core of the self-supervised learning framework—the dual-
channel LSTM autoencoder—is configured as follows: the short-term 
channel input window size is set to 4 quarters (1 year), with 2 LSTM 
layers, 64 hidden units, and a dropout rate of 0.3; the long-term 
channel input window size is set to 12 quarters (3 years), with 2 LSTM 
layers, 128 hidden units, and a dropout rate of 0.35. The attention 
fusion layer dimension is set to 64, and the latent representation layer 
dimension is 32. The model contains approximately 1.83  M 
parameters, with the short-term channel accounting for 27.3%, the 
long-term channel for 45.8%, and the attention fusion and latent 
representation layers for 26.9%.

The training process adopts the following strategy: first 
conducting staged optimization, pre-training the short-term and 
long-term channels separately for 15 epochs, followed by joint 
optimization training for 40 epochs. The batch size is set to 64, with 
an initial learning rate of 0.001, using an Adam optimizer with 0.9 
momentum, and learning rate decay to 0.8 times its original value 
every 10 epochs. To prevent overfitting, L2 regularization (weight 
decay coefficient of 1e-5) and an early stopping mechanism 
(patience = 12) are applied. The loss function adopts a weighted 
combination of reconstruction loss and contrastive loss as defined 
in Chapter 3, with weight coefficients λ1 and λ2 determined through 
grid search as 0.7 and 0.3.

To address varying time series length issues, forward filling is 
employed for sequences shorter than the specified window length, 
while sliding window sampling is used for excessively long sequences. 
Data batch construction adopts a temporally proximate sampling 
strategy, ensuring temporal coherence within each batch to enhance 
the model’s ability to learn temporal patterns. For each financial data 
sample, random masking (masking rate 10%) is applied as a data 
augmentation technique to improve model robustness.

To comprehensively evaluate the effectiveness of the proposed 
method, four comparison benchmark experiment groups are 
established: (1) traditional statistical methods group, including 
Z-score-based anomaly detection and improved Benford analysis; (2) 
machine learning baseline group, including One-Class SVM and 
Isolation Forest; (3) deep learning baseline group, including standard 
LSTM autoencoder and Variational Autoencoder (VAE); and (4) self-
supervised variant group, exploring the impact of different self-
supervised strategies on anomaly detection performance, including 
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reconstruction tasks, prediction tasks, and contrastive learning tasks. 
All baseline methods are trained and evaluated on identical datasets 
to ensure fair comparison.

The evaluation process follows iterative optimization principles, 
optimizing model hyperparameters on the validation set through 
5-fold cross-validation. Anomaly threshold determination employs a 
GMM-based adaptive method, calculating optimal thresholds 
separately for each industry. Final performance evaluation is 
conducted on the independent test set, introducing evaluation metrics 
specific to financial anomaly detection in addition to conventional 
precision, recall, F1-score, and AUC-ROC: early detection rate (EDR, 
the proportion detected within the first two quarters after anomaly 
occurrence) and false alarm rate (FAR, the proportion of normal 
samples incorrectly classified as anomalous).

Experimental results are validated for statistical significance using 
the Wilcoxon signed-rank test (p < 0.05), with sensitivity analysis 
assessing the impact of key parameter changes on model performance 
to ensure robustness and generalizability of conclusions.

To assess the model’s robustness to evolving fraud patterns, 
we conducted concept drift experiments by dividing the test period 
into quarterly segments and introducing synthetic pattern changes at 
specific time points corresponding to major regulatory events. Model 
adaptation capability was evaluated through performance stability 
metrics and recovery time after drift detection.

5.3 Evaluation metrics

To comprehensively evaluate the performance of the Hierarchical 
Fusion Self-supervised Learning Framework (HFSL), this study 
constructs a multi-dimensional evaluation metric system covering two 
dimensions: anomaly detection performance evaluation and model 
fitting capability evaluation.

5.3.1 Anomaly detection metrics
Evaluation of the anomaly detection task combines confusion 

matrix-derived metrics and ranking quality metrics. First, based on 
the confusion matrix of prediction results versus true labels, the 
following metrics are calculated:

Precision: The proportion of correctly detected anomalous 
samples among all samples detected as anomalous, reflecting the 
reliability of the model’s detection results.

	
=

+
Precision TP

TP FP

Recall: The proportion of correctly detected anomalous samples 
among all true anomalous samples, reflecting the model’s capability to 
detect anomalies.

	
=

+
Recall TP

TP FN

F1-score: The harmonic mean of precision and recall, balancing 
consideration of detection accuracy and completeness.

	

× ×
=

+
2 Precision Recall

1
Precision Recall

F

Additionally, considering the special requirements of financial 
anomaly detection, the following professional metrics 
are introduced:

False Alarm Rate (FAR): The proportion of normal samples 
incorrectly classified as anomalous, particularly important for 
financial regulation.

	
=

+
FPFAR

FP TN

Miss Rate (MR): The proportion of anomalous samples that fail to 
be detected, reflecting the risk of anomalies evading detection.

	
=

+
FNMR

TP FN

Early Detection Rate (EDR): The proportion that can be detected 
in the early stages of anomaly occurrence (within the first two 
quarters), evaluating the model’s early warning capability.

	
=

+
early

early early

TP
EDR

TP FN

Industry-Specific Detection Rate (ISDR): Detection accuracy in 
specific industries, evaluating the model’s adaptability across 
different industries.

	
=

+
i

i
i i

TPISDR
TP FN

where i represents a specific industry.
Beyond confusion matrix-derived metrics, ranking quality 

evaluation metrics are adopted to assess the model’s ability to rank 
anomalous samples higher:

Area Under the Receiver Operating Characteristic Curve (AUC-
ROC): Evaluating the trade-off relationship between true positive rate 
and false positive rate at different thresholds.

Area Under the Precision-Recall Curve (AUC-PR): More 
reflective of model performance than the ROC curve in imbalanced 
scenarios with a low proportion of anomalous samples.

Mean Average Precision (MAP): Calculating the average precision 
at different recall levels, evaluating overall ranking quality.

Figure  4 illustrates the comparison between the HFSL 
framework and five baseline methods across six key performance 
metrics. The left chart shows each model’s performance on three 
fundamental metrics—precision, recall, and F1-score—with the 
HFSL framework outperforming all baseline methods, achieving 
an F1-score of 0.845, approximately 9.5% higher than the closest 
LSTM-AE. The right chart reflects comparisons on professional 
metrics, including AUC-ROC, early detection rate, and false alarm 
rate. The HFSL framework not only possesses the highest 
AUC-ROC value (0.894) and early detection rate (0.726), but its 
false alarm rate (0.068) is also significantly lower than other 
methods, which is of great significance for financial risk control. 
This figure intuitively demonstrates the significant contribution 
of hierarchical fusion design to enhancing anomaly 
detection performance.

https://doi.org/10.3389/fams.2025.1628652
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Zhang and Duan� 10.3389/fams.2025.1628652

Frontiers in Applied Mathematics and Statistics 14 frontiersin.org

For evaluating detection performance across different anomaly 
types, this study generated radar charts of various models’ 
performance on four types of simulated anomalies and real anomalies, 
with detailed F1-score data provided in Table 1.

Figure  5 intuitively displays each model’s F1-score performance 
across five types of anomalies through radar charts. Table 1 further 
provides precise performance data for all six models across various 
anomaly types.

From the table, it can be observed that the HFSL framework 
achieves optimal results across all anomaly types, particularly 
excelling in financial indicator mutation anomalies (0.892) and 
financial ratio inconsistency anomalies (0.863), outperforming the 
second-best LSTM-AE model by 0.058 and 0.077 percentage points, 
respectively. LSTM-AE performs relatively close to HFSL in 
accounting equation violation anomalies (0.802 vs. 0.841), while VAE 
also achieves a high F1-score of 0.792 for this anomaly type. Notably, 
all models generally perform relatively weakly in detecting temporal 
pattern anomalies, with HFSL, LSTM-AE, and VAE achieving 
F1-scores of 0.791, 0.713, and 0.685, respectively, reflecting the 
difficulty in identifying temporal pattern anomalies.

For real anomaly samples, all models show relatively lower 
performance, with HFSL achieving an F1-score of 0.798, 
approximately 6% lower than its average performance on 
simulated anomalies, reflecting the complexity and concealment 
of actual financial fraud. Traditional statistical methods such as 
Z-Score significantly underperform machine learning and deep 
learning methods across all anomaly types, particularly achieving 
only a 0.492 F1-score for temporal pattern anomalies. The overall 
distribution of model performance exhibits a consistent gradient, 
verifying the generalization capability of the hierarchical fusion 
self-supervised learning framework across different anomaly types.

5.3.2 Model fitting metrics
The performance of a self-supervised learning framework 

largely depends on its ability to fit normal data patterns. Therefore, 
this study employs the following metrics to evaluate model 
fitting quality:

Mean Squared Error (MSE): Measures the average of the squared 
deviations between the reconstructed sequence and the 
original sequence.

	
( )

= = =
= −

× × ∑∑∑
2

, , , ,
1 1 1

1 ˆ
N T D

i t j i t j
i t j

MSE x x
N T D

Mean Absolute Error (MAE): Measures the average of absolute 
reconstruction errors, insensitive to outliers.

	 = = =
= −
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Weighted Mean Squared Error (WMSE): MSE with different 
weights assigned according to financial indicator importance.
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where jw  represents the importance weight of indicator j .
Mean Absolute Percentage Error (MAPE): The average of 

relative errors.
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Trend Consistency (TC): Measures the consistency degree of 
trend changes between reconstructed and original sequences.
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FIGURE 4

Anomaly detection performance comparison.
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TABLE 1  F1-score performance comparison of different models across anomaly.

Model Financial 
indicator 
mutation

Financial ratio 
inconsistency

Temporal 
pattern

Accounting 
equation violation

Real anomalies

HFSL 0.892 0.863 0.791 0.841 0.798

LSTM-AE 0.834 0.786 0.713 0.802 0.726

VAE 0.805 0.763 0.685 0.792 0.683

One-Class SVM 0.782 0.705 0.612 0.625 0.623

Isolation forest 0.723 0.658 0.572 0.603 0.582

Z-score 0.684 0.623 0.492 0.562 0.536

FIGURE 5

Anomaly type performance radar chart.

https://doi.org/10.3389/fams.2025.1628652
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Zhang and Duan� 10.3389/fams.2025.1628652

Frontiers in Applied Mathematics and Statistics 16 frontiersin.org

where ( )·I  is an indicator function, ( )sgn x∆  represents the sign 
of the direction of change, and , , , 1, , ,i t j i t j i t jx x x+∆ = − .

Volatility Preservation Rate (VPR): Evaluates the model’s ability 
to preserve the volatility characteristics of the original data.

	

( )
( )

,

, ,1 1

ˆ1 N D i j

i i ji j

x
VPR

N D x

σ

σ= =
=

× ∑∑

where ( )σ ·  represents standard deviation.
Additionally, the following specific evaluation metric is introduced 

for time series models:
Short-term Prediction Accuracy (SPA): Evaluates the accuracy of 

the model’s prediction for the next time point.
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where +, 1,i T jx  represents the true value and +, 1,ˆi T jx  represents the 
model’s predicted value.

Based on this evaluation metric system, this study conducted a 
comprehensive assessment of the HFSL framework, testing not only 
its accuracy and timeliness in anomaly detection but also its 
performance in data fitting. Experimental results show that the fitting 
errors of the HFSL framework on metrics such as MSE and MAPE are 
significantly lower than baseline methods, especially in terms of Trend 
Consistency (TC), reaching a high level of 0.826, demonstrating that 
the model can effectively capture the temporal change characteristics 
of financial data.

6 Results analysis

6.1 Performance comparison

6.1.1 Quantitative analysis
This study conducted a comprehensive evaluation of the HFSL 

framework on the test set constructed from the CSMAR database, 
with test results showing excellent performance in accounting data 
anomaly detection tasks. Table 2 summarizes the detailed performance 
of the HFSL framework on various key indicators.

As shown in Table  2, the HFSL framework demonstrates 
balanced performance on basic indicators, with precision and 
recall reaching 0.836 and 0.805 respectively, and a combined 
F1-score of 0.820, indicating the model achieves a good balance 
between detection accuracy and completeness. In terms of 
advanced indicators, the AUC-ROC reaches 0.883, reflecting the 
model’s strong classification ability across different threshold 
settings; the AUC-PR is 0.772, particularly significant considering 
the scarcity of anomalous samples (approximately 9.6% of the test 
set). Among professional indicators, the early detection rate (EDR) 
is approximately 0.73, indicating the model can identify over 70% 
of anomalous cases in the early stages (first two quarters), 
providing ample warning time for risk prevention and control; 
meanwhile, the false alarm rate is only 0.068, significantly reducing 
the regulatory costs associated with false positives.

Comparing detection performance across different anomaly 
types, variations in HFSL framework performance are observed 
(Figure 6), with best performance on financial indicator mutation 
anomalies (F1 = 0.892), followed by financial ratio inconsistency 
anomalies (F1 = 0.863), accounting equation violation anomalies 
(F1 = 0.841), temporal pattern anomalies (F1 = 0.791), and real 
anomaly samples (F1 = 0.798). These results indicate that the 
model has higher sensitivity to sudden anomalies and static 
relationship violation anomalies, with relatively lower sensitivity 
to temporal pattern anomalies and complex real anomalies, 
though overall performance remains at a high level.

Further analysis of the model’s performance across different 
industries reveals industry-specific performance differences (Table 3). 
In financial industry samples, the HFSL framework achieves the 
highest F1-score (0.872), possibly due to the strictly regulated 
environment and standardized financial reporting formats in the 
financial industry. Performance is relatively lower in the construction 
and real estate industry (F1 = 0.776), consistent with the industry-
specific complexity of asset valuation and diversity in revenue 
recognition. In manufacturing and information technology industries, 
model performance is at moderate levels (F1 scores of 0.817 and 0.831 
respectively), reflecting the typical anomaly pattern structures of 
financial data in these industries.

Analysis of the temporal stability of the model’s detection 
performance reveals, as shown in Figure 7, that the HFSL framework 
exhibits significant temporal robustness during the 2016–2020 testing 
period, with F1 value variations across different quarters controlled 
within a narrow range of ±5%. This finding indicates that the model 
possesses strong temporal generalization characteristics, capable of 
adapting to financial data feature changes across different periods. 
Notably, a slight performance improvement is observed from the third 
quarter of 2018 to the second quarter of 2019, corresponding to the 
period when regulatory agencies strengthened financial supervision, 
leading to more pronounced anomaly patterns. In contrast, in early 
2020, influenced by the COVID-19 pandemic, the model’s 
performance experienced a temporary decline, possibly due to 

TABLE 2  HFSL framework performance metrics summary.

Indicator 
category

Indicator 
name

Performance 
value

95% 
confidence 

interval

Basic indicators

Precision 0.836 [0.821, 0.851]

Recall 0.805 [0.789, 0.821]

F1-score 0.820 [0.806, 0.834]

Advanced 

indicators

AUC-ROC 0.883 [0.871, 0.895]

AUC-PR 0.772 [0.756, 0.788]

Mean average 

precision 

(MAP)

0.794 [0.781, 0.807]

Professional 

indicators

Early detection 

rate (EDR)
0.726 [0.707, 0.745]

False alarm rate 

(FAR)
0.068 [0.062, 0.074]

Miss rate (MR) 0.195 [0.179, 0.211]
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differences between pandemic-induced abnormal financial patterns 
and historical patterns.

6.1.2 Comparison with traditional methods
To assess the advantages of the HFSL framework relative to 

existing methods, this study established four comparison experiment 
groups, representing different types of anomaly detection methods. 
Table 4 and Figure 8 present detailed comparison results of various 
methods on key performance metrics.

The experimental results demonstrate a clear performance 
gradient among different types of anomaly detection methods. The 
HFSL framework further enhances performance on this foundation, 
with an F1-score approximately 7% higher than the best deep learning 
method (LSTM-AE), about 15% higher than machine learning 
methods (Isolation Forest), and even more significantly improved 
compared to traditional statistical methods (Z-score), verifying the 
substantial advantages of the proposed method (Table 5).

Traditional statistical methods such as Z-score and improved 
Benford analysis, while simple to implement, perform significantly 
worse than other methods, with F1-scores of only about 0.6, mainly 
due to their inability to effectively capture the temporal dependencies 
and multivariate interaction patterns of financial data. Particularly in 
terms of early detection rate, traditional methods achieve only about 
0.43, lacking sensitivity to early anomaly signals, severely limiting 
their application value in practical supervision. Traditional machine 
learning methods such as One-Class SVM and Isolation Forest, by 
learning data distribution characteristics, show marked improvements 
in precision and false alarm rates compared to statistical methods, but 
still have significant deficiencies in recall, indicating limitations in 
processing high-dimensional, temporal financial data.

Deep learning methods such as LSTM-AE and VAE, through 
complex neural network structures, can better capture nonlinear 
features and temporal patterns of financial data, achieving F1-scores 
of about 0.75, approximately 6% higher than machine learning 

FIGURE 6

Detection performance across different anomaly types.

TABLE 3  HFSL framework detection performance across industries.

Industry Sample Size Precision Recall F1-score AUC-ROC

Finance 673 0.889 0.856 0.872 0.914

Information technology 927 0.842 0.821 0.831 0.879

Manufacturing 1,583 0.824 0.810 0.817 0.868

Energy & utilities 493 0.851 0.792 0.820 0.885

Consumer goods 716 0.835 0.807 0.821 0.876

Healthcare 312 0.862 0.813 0.837 0.891

Construction & real estate 394 0.798 0.756 0.776 0.833

All industries average 5,098 0.936 0.805 0.820 0.883
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methods. Particularly in early detection rate, the improvement exceeds 
20%, demonstrating the advantages of deep learning in early warning 
capability. This performance enhancement mainly stems from deep 
learning models’ ability to automatically learn hierarchical feature 
representations from financial data without requiring manually 
designed complex feature engineering. However, traditional deep 
learning methods still rely on large amounts of labeled data, which 
presents a significant challenge in the field of financial 
anomaly detection.

Introducing self-supervised learning strategies on the foundation 
of deep learning significantly enhances model performance. Even 
using reconstruction, prediction, or contrastive learning tasks 
individually yields performance gains. Among the three self-
supervised strategies, contrastive learning tasks perform best 

(F1 = 0.789), indicating that learning relationships between samples 
is crucial for anomaly detection in accounting data. This may 
be because financial anomalies often manifest as degrees of deviation 
from normal samples, and contrastive learning precisely captures 
these relationship differences. By integrating the three self-supervised 
learning tasks, the HFSL framework further improves performance 
(F1 = 0.820), validating the effectiveness of multi-task fusion. This 
performance enhancement stems from different self-supervised tasks’ 
ability to capture complementary data features, forming more 
comprehensive data representations.

In terms of the critical early detection rate, the HFSL framework 
(approximately 0.73) outperforms the closest baseline method 
LSTM-AE (approximately 0.63) by about 15%, providing regulatory 
agencies with a valuable early warning time window and significantly 

FIGURE 7

Time series performance analysis (2016–2020).

TABLE 4  Performance comparison of different anomaly detection methods.

Method 
Category

Method Name Precision Recall F1-score AUC-ROC Early 
Detection 

Rate

False 
Alarm 
Rate

Traditional statistical 

methods

Z-score 0.629 0.581 0.604 0.672 0.435 0.146

Improved Benford 

Analysis
0.643 0.563 0.600 0.684 0.422 0.132

Machine learning 

methods

One-Class SVM 0.722 0.663 0.691 0.724 0.504 0.107

Isolation Forest 0.736 0.682 0.708 0.753 0.522 0.103

Deep learning 

methods

LSTM-AE 0.795 0.734 0.763 0.832 0.631 0.080

VAE 0.772 0.727 0.749 0.821 0.617 0.089

Self-supervised 

variants

HFSL (Reconstruction 

Only)
0.801 0.759 0.779 0.848 0.673 0.079

HFSL (Prediction 

Only)
0.788 0.774 0.781 0.853 0.691 0.085

Complete method HFSL 0.836 0.805 0.820 0.883 0.726 0.068

Bold values indicate the best performance for each metric.
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enhancing early intervention capabilities for financial risks. 
Simultaneously, HFSL’s false alarm rate (0.068) is significantly lower 
than other methods, reducing unnecessary investigation costs. This 
dual improvement gives HFSL higher practical value in real-world 
applications, providing effective early warnings at the onset of 
anomalies while keeping false alarms within an acceptable range. 
Analysis of performance differences between methods through the 
Wilcoxon signed-rank test shows that the performance differences 

between the HFSL framework and all baseline methods are statistically 
significant (p < 0.01), confirming that the effectiveness of the proposed 
method is not due to random factors.

Comprehensive analysis indicates that the HFSL framework, by 
integrating temporal contrastive learning, dual-channel LSTM 
structure, and domain knowledge constraints, significantly enhances 
the comprehensive performance of accounting data anomaly 
detection, achieving combined advantages particularly in detection 

FIGURE 8

F1-score and AUC-ROC comparison of different methods.

TABLE 5  Financial statement fraud pattern classification and characteristics.

Fraud pattern Key financial 
indicator anomaly 

features

Proportion (%) Detection rate (%) Representative anomaly 
example

Revenue inflation

ROE↑, ROA↑, Accounts 

Receivable Turnover↓, OCF/

Sales Ratio↓

38.6 87.3
Company A: Fictitious customer 

orders

Expense concealment

Gross Profit Margin↑, Net 

Profit Margin↑, Period 

Expense Ratio↓, Abnormal 

compared to industry peers

21.7 84.5
Company B: Capitalized R&D 

expenditures

Asset overvaluation

Asset Impairment↓, Fixed 

Asset Turnover↓, Inventory 

Turnover↓

17.4 79.8 Company C: Inventory overvaluation

Liability understatement

Leverage Ratio↓, Current 

Ratio↑, Accounts Payable 

Turnover↑

15.2 82.1
Company D: Contingent liabilities 

not accrued

Composite manipulation

Multiple indicators 

anomalous simultaneously, 

Inconsistent internal 

relationships between 

financial ratios

7.1 68.2
Company E: Simultaneous revenue 

inflation and liability concealment
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accuracy (F1-score), early warning capability (EDR), and false alarm 
control (FAR). Performance improvements stem both from self-
supervised learning paradigm’s effective utilization of unlabeled data 
and from the multi-level fusion architecture’s targeted modeling of 
multi-scale characteristics in accounting data. These results suggest 
that the proposed hierarchical fusion self-supervised learning 
framework demonstrates promising application potential in the tested 
accounting data anomaly detection tasks.

6.2 Financial feature contribution analysis

This section delves into the contribution degrees and interaction 
effects of various financial features in the HFSL framework’s anomaly 
detection results, using SHAP (SHapley Additive exPlanations) value 
analysis and feature interaction effect quantification methods to reveal 
the internal logic of the model’s decision mechanism, providing 
interpretability support for financial anomaly detection. Through 
systematic analysis of financial feature importance rankings and their 
interaction patterns, not only can the model’s effectiveness 
be validated, but theoretical foundations can also be provided for 
identifying accounting data anomaly patterns.

6.2.1 Importance ranking of key financial 
indicators

To quantitatively assess the impact of various financial indicators 
on anomaly detection results, this study calculated SHAP values for 
22 core financial indicators based on the test set. SHAP values, 
through the concept of Shapley values in game theory, measure each 
feature’s marginal contribution to the model’s predicted anomaly 

probability, with the calculation process considering contribution 
variations of features under different combinations, thereby providing 
relatively objective feature importance evaluations.

Figure  9 displays the SHAP value ranking of the 10 financial 
indicators with the highest contributions to anomaly detection. The 
analysis reveals that profitability indicators play a critical role in the 
anomaly detection process. Particularly noteworthy is that the average 
|SHAP| values of two core indicators—Return on Equity (ROE) and 
Return on Assets (ROA)—reach as high as 0.196 and 0.179 
respectively, significantly exceeding the contribution levels of other 
financial indicators. This result aligns with financial theory, as 
profitability indicators are often the primary targets of financial fraud, 
with companies typically manipulating revenue and profit to embellish 
financial statements. ROE, as a core indicator for investors evaluating 
enterprise value, often signals early financial problems when 
exhibiting abnormal fluctuations.

Current Ratio and Leverage Ratio, two indicators reflecting 
solvency capability, rank third and fourth, with |SHAP| values of 0.163 
and 0.149, respectively. This indicates that abnormalities in a 
company’s short-term and long-term debt repayment capabilities are 
also important indicators of financial anomalies. Notably, the 
Operating Cash Flow Ratio (OCF Ratio) ranks fifth (|SHAP| value of 
0.139), verifying that inconsistencies between cash flow indicators and 
accrual profit indicators provide an effective approach for identifying 
potential financial anomalies.

Efficiency indicators such as Accounts Receivable Turnover Rate 
and Total Asset Turnover Rate also enter the top ten, with |SHAP| 
values of 0.119 and 0.109 respectively, indicating that operational 
efficiency indicators hold significant value in capturing abnormal 
financial behaviors. From an industry perspective, the importance of 

FIGURE 9

SHAP value analysis of financial indicators.
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the Leverage Ratio in the financial industry is significantly higher than 
in other industries (|SHAP| value increased by approximately 28%), 
while the Inventory Turnover Rate ranks relatively high in importance 
in manufacturing (entering the top  8), reflecting the influence of 
industry characteristics on the importance of anomaly features.

6.2.2 Multi-dimensional feature interaction effect 
analysis

Complex interdependencies exist between financial indicators, 
where anomalies in a single indicator may be masked by normal 
values in other related indicators. Therefore, analyzing interaction 
effects between features is crucial for enhancing anomaly 
detection accuracy. This study employs a method based on SHAP 
interaction values to quantitatively evaluate the interaction 
intensity between feature pairs and their impact on anomaly 
detection results.

Figure  10 displays a heat map of interaction effect intensities 
between core financial indicators, with darker areas indicating 
stronger interaction effects and lighter areas indicating weaker 
interaction effects. Through quantitative analysis of interaction 
patterns, this study identifies three typical financial indicator 
interaction modes: enhancing interactions, neutralizing interactions, 
and nonlinear interactions.

Enhancing interactions manifest when the contribution of two 
indicators acting jointly to anomaly detection is significantly higher 
than the sum of their independent actions. The interaction intensity 

between ROE and ROA reaches 0.087, ranking first among all 
indicator pairs, indicating that these two profitability indicators 
provide strong financial fraud signals when simultaneously 
anomalous. Similarly, the interaction intensity between Current Ratio 
and Leverage Ratio is 0.082, reflecting the synergistic effect of short-
term and long-term solvency indicators. Such enhancing interactions 
primarily occur between indicators with similar functions but 
different calculation bases, and when enterprises exhibit simultaneous 
anomalies across multiple related indicators, it typically implies higher 
financial risk.

Neutralizing interactions manifest when anomalies in one 
indicator are masked by changes in another indicator, reducing the 
sensitivity of anomaly detection. For example, the interaction effect 
between Leverage Ratio and Total Asset Turnover Rate is relatively 
weak (0.017), possibly because increases in Leverage Ratio due to 
increased debt may be accompanied by corresponding decreases in 
Total Asset Turnover Rate, thus reducing the model’s sensitivity to 
changes in single indicators. Such interactions suggest that when 
designing anomaly detection models, overreliance on changes in 
single-dimension indicators should be avoided.

Nonlinear interactions manifest as complex conditional 
dependency relationships between indicators. The interaction 
intensity between Accounts Receivable Turnover Rate and Total Asset 
Turnover Rate reaches as high as 0.084, a strong interaction 
relationship that is not intuitive, as while they both belong to efficiency 
indicators, they measure different business links. In-depth analysis 

FIGURE 10

Heat map of financial indicator interaction effects.
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reveals that this strong interactivity stems from their conditional 
dependency relationship in anomaly detection: when Accounts 
Receivable Turnover Rate abnormally decreases while Total Asset 
Turnover Rate abnormally increases, it often suggests that the 
enterprise may be  engaging in financial fraud behaviors such as 
fictitious sales or premature revenue recognition.

By constructing an interaction network graph to analyze the 
overall interaction structure, it is found that the financial indicator 
interaction network exhibits a “core-periphery” structure, where 
ROE, ROA, Current Ratio, and Leverage Ratio form a highly 
interconnected core cluster, while other indicators display 
relatively dispersed connection patterns. This network structure 
suggests that anomaly detection should focus on collaborative 
changes within the core indicator cluster while also considering 
abnormal connection patterns between peripheral indicators and 
core indicators.

Based on interaction effect analysis, this study proposes an 
adaptive threshold adjustment mechanism based on feature 
interaction intensity:

	

( ) ( ) ( )( )adj base , base1 | |i i i j j j j
j i
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where ( )θadj iX  is the adjusted threshold for feature iX , 
( )θbase iX  is the base threshold, ω ,i j  is the interaction weight 

between feature values i and j , and ( )·I  is an indicator function 
taking the value 1 when feature j  exceeds its base threshold and 0 
otherwise. This mechanism enables the model to dynamically 
adjust detection thresholds according to the degree of collaborative 
anomalies across multiple indicators, increasing F1-score by 3.5% 
and reducing false alarm rate by 12.7% in experimental validation, 
verifying the important value of feature interaction analysis in 
enhancing anomaly detection performance.

Feature interaction effect analysis not only enhances model 
interpretability but also provides theoretical foundations for 
constructing more precise financial anomaly detection systems. 
The research finds that anomaly detection models considering 
feature interaction effects outperform models focusing solely on 
single features when capturing complex financial anomaly 
patterns, especially in identifying carefully designed financial 
fraud cases. This finding provides insights for refining accounting 
data anomaly detection theory, indicating that future research 
should place greater emphasis on collaborative analysis of 
multidimensional financial indicators rather than simple single-
indicator threshold monitoring.

From the perspective of industry differences, the interaction 
intensity between ROE and ROA in the financial industry (0.096) 
is significantly higher than in manufacturing (0.081), while the 
interaction intensity between Inventory Turnover Rate and Gross 
Profit Margin in manufacturing (0.074) is higher than in other 
industries. These industry characteristic differences further 
support this study’s approach of constructing industry-specific 
anomaly detection models, adopting differentiated feature 
interaction patterns for anomaly identification tailored to different 
industry characteristics.

6.3 Identification and analysis of typical 
anomaly cases

6.3.1 Financial statement fraud pattern 
classification

Based on the detection results of the HFSL framework, combined 
with anomaly cases confirmed by manual audits, this study constructs 
a systematic classification system for financial statement fraud 
patterns, covering five typical anomaly modes: revenue inflation, 
expense concealment, asset overvaluation, liability understatement, 
and composite manipulation. Table 2 shows the key characteristics of 
each fraud pattern and their distribution in the detected samples.

Revenue inflation is the most common financial fraud pattern, 
accounting for 38.6%, with typical characteristics including 
abnormally increased Return on Equity (ROE) and Return on Assets 
(ROA), simultaneously decreased Accounts Receivable Turnover Rate, 
and imbalanced Operating Cash Flow to Sales Revenue ratio. The 
HFSL framework achieves a detection rate of 87.3% for this type of 
anomaly, outperforming traditional methods by approximately 23 
percentage points. Taking Company A as an example, its ROE growth 
rate exceeded the industry average by twofold for three consecutive 
quarters, while its Accounts Receivable Turnover Rate continued to 
decline, and its Operating Cash Flow to Net Profit ratio fell to 0.32 
(industry average: 0.78). The HFSL framework successfully detected 
this anomaly and raised the anomaly score to 0.87 (threshold: 0.65). 
Subsequent audits confirmed that the company inflated revenue by 
approximately 270 million yuan through fictitious overseas 
customer orders.

Expense concealment anomalies account for 21.7%, primarily 
manifesting as abnormally increased gross profit margin and net profit 
margin, with period expense ratio significantly below industry average 
levels. This type of anomaly is typically achieved through improper 
expense capitalization, delayed cost recognition, and other means. In 
Company B’s case, the model captured its R&D expense capitalization 
rate surging to 83% (compared to a five-year average of 36%), while 
its period expense ratio was 12 percentage points below industry 
peers, despite revenue growth rates similar to industry averages. This 
uncoordinated financial performance triggered the model’s multi-
dimensional anomaly scoring mechanism, successfully identifying 
potential financial manipulation behavior.

Asset overvaluation and liability understatement anomalies 
account for 17.4 and 15.2%, respectively. Both types relate to improper 
valuation of balance sheet items but exhibit significant differences in 
financial indicator performance. Asset overvaluation primarily affects 
asset turnover indicators, as in Company C’s case, where inventory 
turnover rate remained in the bottom 10% of the industry for six 
consecutive quarters, while sales revenue growth was at mid-to-upper 
industry levels. This mismatch was successfully identified by the 
model as potential inventory value overestimation. Liability 
understatement primarily manifests as abnormally increased current 
ratio and abnormally decreased leverage ratio, as in Company D’s case, 
where contingent liabilities were not accrued according to regulations, 
causing its solvency indicators to significantly outperform industry 
average levels.

The most complex composite manipulation anomalies, though 
accounting for only 7.1%, present the greatest detection difficulty, with 
an average detection rate of merely 68.2%. This type of anomaly 
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simultaneously involves manipulation of multiple financial statement 
items, as in Company E’s case, where revenue inflation and liability 
understatement coexisted. Although the anomaly degree of individual 
indicators was relatively small, the relationships between multiple 
indicators violated financial logical consistency. The HFSL framework 
achieved effective identification of such complex anomalies through 
feature interaction mechanisms and financial domain knowledge 
constraints, which traditional single-indicator monitoring methods 
struggle to accomplish.

The research also found that different industries exhibit 
preferences for different fraud patterns. Manufacturing shows a higher 
proportion of asset overvaluation anomalies (26.3%), primarily 
concentrated in inventory and fixed asset valuation areas; the 
information technology industry predominantly features revenue 
inflation (52.1%), reflecting the complexity of revenue recognition in 
this industry; while the financial industry shows more prominent 
liability understatement (25.7%), involving risk provision accrual and 
financial asset valuation issues. This industry differentiation further 
confirms the necessity of the industry calibration mechanism in the 
HFSL framework, which enables more accurate identification of 
industry-specific anomaly patterns by considering 
industry characteristics.

6.3.2 Temporal evolution characteristics of 
anomaly detection

Financial anomalies typically exhibit progressive characteristics 
rather than sudden events. Through temporal analysis, this study 
identifies three typical evolution patterns. Progressive deterioration is 
the most common pattern, accounting for approximately 64%, 
characterized by gradually increasing anomaly severity over time, 
typically beginning with small-scale financial manipulation that 
subsequently accumulates and expands. A typical case is Company F, 
whose anomaly score gradually rose from 0.42 to 0.97 over 8 quarters 
before its financial problems became public, with the HFSL framework 
successfully providing warnings an average of 4 quarters before the 
anomaly became public. Sudden anomalies account for approximately 
22%, characterized by rapidly escalating anomaly scores over a short 
period, typically related to major accounting errors, as in Company 
G’s case, where the anomaly score surged from 0.38 to 0.83 within one 
quarter. Although such anomalies are difficult to predict in advance, 
the HFSL framework controlled identification delay to an average of 
1.2 quarters, significantly outperforming traditional methods. Cyclical 
fluctuations account for approximately 15%, characterized by anomaly 
scores fluctuating around threshold edges, common in enterprises 
with seasonal businesses, with the HFSL framework effectively 
controlling the false alarm rate for such anomalies to 8.7% through its 
seasonal adjustment mechanism.

Based on anomaly temporal characteristics and intensity, this 
study constructs a risk grading model, categorizing anomaly cases into 
high-risk, medium-risk, and observation classes. High-risk cases 
exhibit anomaly scores consistently exceeding thresholds with upward 
trends, or sudden anomaly intensity exceeding thresholds by over 
30%, with approximately 83% experiencing major negative events 
within the subsequent 3 quarters. Medium-risk cases have anomaly 
scores slightly exceeding thresholds or fluctuating around threshold 
edges, with approximately 48% experiencing negative events within 
the subsequent 6 quarters. Observation-class cases have anomaly 
scores below thresholds but continuously rising, or exhibiting isolated 

anomalies, with approximately 27% experiencing negative events 
within the subsequent 8 quarters. The HFSL framework improves 
high-risk case identification accuracy by 18.6% compared to 
traditional methods, with early identification of medium-risk cases 
advancing by an average of 1.7 quarters, significantly enhancing 
warning value.

The HFSL framework demonstrates differentiated detection 
timeliness for different types of anomalies, detecting revenue 
inflation anomalies an average of 3.2 quarters in advance, expense 
concealment 2.8 quarters in advance, asset overvaluation and 
liability understatement 2.4 and 2.6 quarters respectively, while 
composite manipulation only 1.8 quarters, reflecting the 
complexity and concealment of the latter. Temporal analysis 
reveals a potential “financial anomaly waterfall effect,” with 
approximately 83% of major financial anomaly cases in the 
research sample beginning with minor anomalies in single 
indicators, subsequently spreading to related indicators, and 
ultimately forming systemic risks. This finding may provide 
inspiration for improving regulatory practices: early identification 
and intervention in initial anomaly signals may interrupt the 
chain reaction of financial anomalies, preventing the formation of 
difficult-to-reverse systemic problems. By capturing early 
characteristics of anomaly diffusion patterns, the HFSL framework 
provides longer response windows and more reliable decision-
making bases for financial risk warnings.

6.4 Model robustness and generalization 
capability assessment

6.4.1 Cross-industry adaptability validation
The HFSL framework demonstrates differentiated but overall 

stable performance across different industries. Detection performance 
is best in the financial industry (F1 = 0.872), good in manufacturing 
and information technology industries (F1 scores of 0.817 and 0.831 
respectively), while relatively lower in the construction and real estate 
industry (F1 = 0.776). These differences primarily stem from industry-
specific financial characteristics and anomaly patterns. For example, 
the strictly regulated environment and standardized financial 
reporting formats in the financial industry facilitate anomaly pattern 
identification, while the complexity of asset valuation and diversity in 
revenue recognition in the construction and real estate industry 
increase detection difficulty.

Model generalization capability is evaluated using leave-one-
industry-out cross-validation, training with data from 9 industries and 
testing on the remaining industry. Results show that performance 
decline after industry calibration is controlled within 7.5%, 
significantly outperforming baseline methods’ 12.3%. Particularly in 
cross-industry early detection rate, the industry calibration 
mechanism improves performance by 14.6%, confirming the 
effectiveness of the hierarchical feature fusion design in capturing 
anomaly characteristics across different industries.

6.4.2 Noise sensitivity and threshold dynamic 
adjustment effects

To test model stability in noisy environments, this study designs 
three-level noise interference experiments, introducing 5, 10, and 15% 
random noise into the original data. Experimental results show that 
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the HFSL framework’s performance decreases by only 1.2% at the 5% 
noise level and by 9.7% in the 15% high-noise environment, 
significantly outperforming the best baseline method’s 18.3%, 
indicating that the hierarchical fusion structure possesses strong 
resistance to data noise.

Regarding threshold adjustment, this study compares the effects 
of fixed thresholds versus adaptive dynamic thresholds. The dynamic 
threshold mechanism demonstrates superiority across different 
industries and periods, improving F1-score by an average of 3.5%, and 
particularly reducing false alarm rates by 12.7% on test sets with 
imbalanced anomaly proportions. This result validates the 
effectiveness of the adaptive threshold method based on Gaussian 
mixture models in processing financial data anomaly detection, 
providing reliable guidance for threshold selection in 
practical applications.

6.4.3 Temporal stability and concept drift analysis
Financial fraud patterns evolve continuously in response to 

regulatory changes and technological advancements. Our temporal 
stability analysis reveals that the HFSL framework maintains robust 
performance despite these evolving patterns. When tested on quarterly 
segments spanning 2016–2020, the framework demonstrated 
remarkable stability with F1-score variations contained within ±5% 
across different periods.

The framework’s resilience to concept drift was evaluated through 
three scenarios. In sudden drift scenarios simulating major regulatory 
changes, the HFSL framework detected 89% of pattern shifts within 
two quarters and recovered to baseline performance levels with 
minimal degradation (F1-score maintained above 0.78 during 
transitions). For gradual drift representing natural evolution of fraud 
techniques, performance degradation was limited to 6.2% over eight-
quarter periods. The dual-channel architecture proved particularly 
effective, with the long-term channel capturing evolving trends while 
the short-term channel maintained sensitivity to immediate anomalies.

Analysis of real-world pattern evolution revealed significant changes 
following the 2018 regulatory enhancements in China. The model 
successfully adapted to a 15% shift in the relative importance of cash flow 
versus accrual-based indicators in fraud detection. This adaptation was 
achieved through the framework’s dynamic feature weighting mechanism, 
which automatically adjusted based on recent detection patterns.

Compared to static models, the HFSL framework with drift 
adaptation showed an 11.3% improvement in average performance 
over the five-year test period. The incremental learning strategy 
effectively balanced stability with adaptability, preventing catastrophic 
forgetting while incorporating emerging fraud patterns. These results 
demonstrate that the framework’s adaptive capabilities make it 
particularly suitable for deployment in dynamic regulatory 
environments where fraud patterns continuously evolve.

Future research directions include: (1) extending the framework 
to other sectors beyond Chinese listed companies, (2) developing 
semi-supervised variants that can incorporate limited labeled data, 
and (3) exploring real-time anomaly detection capabilities for 
continuous monitoring systems.
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