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This study introduces a more flexible approach by employing the fixed e�ects
negative binomial model to address challenges associated with outliers and
dispersion. Unlike previous studies that focused on the robust estimation of the
Poisson model with fixed e�ects, which assumes equidispersion and cannot
handle dispersion in count panel data, we develop novel estimators specifically
designed for the fixed e�ects negative binomial panel regression model in the
presence of outliers, under-dispersion, and over-dispersion. The methodology
is assessed through comprehensive simulation experiments across di�erent
scenarios. A comprehensive empirical analysis is conducted using updated and
extended panel datasets on COVID-19 and patent applications in Europe. The
results of both Monte Carlo simulation and the empirical studies indicate that
the robust estimators: the robust fixed negative binomial Huber, fixed negative
binomial Hampel, and fixed negative binomial Tukey estimators, outperform the
classical non-robust fixed negative binomial estimator.
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1 Introduction

The negative binomial (NB) regression model has become a widely utilized tool in
panel data analysis across various fields, including economics, healthcare, demography,
and environmental sciences (see Ahmed et al. [1], Abonazel et al. [2], and Youssef et al. [3]).
Panel data analysis has emerged as a prominent area of research in econometrics literature
as it involves studying data along both the temporal and sectoral dimensions to derive
the maximum benefit from the available data. Panel datasets combine cross-sectional and
time-series observations, enabling a more in-depth analysis of the data over time [4, 5].
By including individual-specific fixed effects, panel data can account for these differences
and provide more accurate estimates of the effects of the variables of interest. Within
this framework, count panel data models are particularly relevant when the dependent
variable represents non-negative integer values generated from counting the occurrence
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of a particular event, for example, the number of accidents on roads,
patents granted to countries and companies, and the number of
deaths due to a specific disease (see Winkelmann [6]).

One of the key challenges in analyzing count panel data is the
issue of over-dispersion; this problem appears when the variance
of the dependent variable is greater than the mean. Therefore, the
NB panel model has a dispersion parameter φi; this parameter
allows var(yit) > E(yit). This violates the core assumption of the
classical Poisson model and often leads to inefficient or biased
estimates. To address this limitation, the NB model is a powerful
statistical model that is commonly used in analyzing count data.
Unlike the Poisson model, the NB model is capable of handling
over-dispersion in count panel data; this characteristic makes it
an important model in various fields, such as economics, finance,
public health, criminology, environmental health, transportation,
finance, and law, where it provides a more flexible and accurate
approach for analyzing count data. Therefore, several studies have
focused on the use of the NB model. For example, Cameron and
Trivedi [7], Yaacob et al. [8], Hana [9], Al-Taweel and Algamal [10],
Alobaidi et al. [11], Rashad et al. [12], Niang et al. [13], Liu et al.
[14], and Suryadi et al. [15].

Therefore, the FENB model is great importance in statistical
analysis due to its ability to address over-dispersion in count panel
data and control unobserved heterogeneity among individuals
or entities in panel data. The model captures individual-specific
or entity-specific characteristics that are constant over time. The
FENBmodel finds applications in various fields such as economics,
public health, criminology, and social sciences. Youssef et al. [16]
conducted a study on estimating the number of patents in some
high-income countries using the NB model and Poisson model
based on the panel data models. The research aimed to develop
accurate models for predicting patents. The results indicate that
the FENB model is more suitable and performs better in analyzing
the data. This research offers valuable contributions to the field of
patent analysis by providing reliable models for estimating patents,
enhancing our understanding of the factors that influence global
patent trends, and providing useful insights for researchers and
policymakers in the field of estimating patents. Kumara and Chin
[17] conducted a study analyzing accident data for 41 countries
over 15 years. They used the FENB model to examine the effect of
socioeconomic and infrastructure factors on fatal road accidents in
the Asia-Pacific region. The study also employed the AIC statistic
to assess the suitability of the model. Guimaraes [18] used the
FENBmodel under a specific set of assumptions. The study showed
that this model effectively addresses over-dispersion. This research
emphasizes the significance of the FENB model for accurately
analyzing count panel data, particularly in the presence of over-
dispersion. In the FENB model, Hausman et al. [19] added the
individual fixed effects αi and the NB dispersion parameter (φi) into
the model. Then, the FENB model given is

f (yit|θi) =
Ŵ(λit + yit)

Ŵ(λit)Ŵ(yit + 1)

(

1

1+ θi

)λit
(

θi

1+ θi

)yit

,

i = 1, 2, . . . ,N; t = 1, 2, . . . ,T, (1)

where yit is the dependent variable and takes values of non-negative
integers, i.e., yit ≥ 0. The mean and the variance of the NB model

with fixed effects are not equal. Ŵ(·) is the gamma function, and
θi = αi

φi
is the parameter of the individual effects and dispersion,

which is assumed to be constant over time for each cross section,
while λit depends on covariates by the function ln(λit) = X′

k,itβ .
We can use the conditional maximum likelihood (CML)

estimation method to estimate the parameters of the FENB model
[19]. The NB model with fixed effects assumes that for a given
cross section (i), the dependent variable (yit) is independent over
time and

∑T
t=1 yit has a NB distribution with parameters θi and

∑T
t=1 λit , where

T
∑

t=1

yit ∼ NB

[

θi

T
∑

t=1

λit ,

(

θi

T
∑

t=1

λit

)

(1+ θi)

]

.

For an individual (i), the dependent variable yit is independent
over time as follows:

f
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T
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)

=




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∑T
t=1 λit +
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Ŵ
(
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)

Ŵ
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)


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[

(

1
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)

∑T
t=1 λit

][

(

θi

1+ θi

)

∑T
t=1 yit

]

.

The joint probability function for the ith observation for
Equation 1 is

f (yi1, . . . , yiT) =
T
∏

t=1

{[

Ŵ(λit + yit)

Ŵ(λit)Ŵ(yit + 1)

]

[

(

1

1+ θi

)λit
]

[(

θi

1+ θi

)yit]

Then, the conditional joint probability function for the ith

observation is

f (yi1, . . . , yiT |
T
∑

t=1

yit) =





Ŵ
(

∑T
t=1 λit

)

Ŵ
(

∑T
t=1 yit + 1

)

Ŵ
(
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)



 .

×
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T
∏

t=1

Ŵ(λit + yit)

Ŵ(λit)Ŵ(yit + 1)

)

The CML estimation of the NB model with fixed effects can be
obtained by maximizing the following log CML function:

L(yi1, . . . , yiT |

T
∑

t=1

yit) =
N
∑

i=1

{

lnŴ

(

T
∑

t=1

λit

)

+ lnŴ

(

T
∑

t=1

yit + 1

)

− lnŴ

(

T
∑

t=1

λit +

T
∑

t=1

yit

)

+

T
∑

t=1

[

lnŴ(λit + yit)− lnŴ(λit)

− lnŴ(yit + 1)
]}

.

For a more comprehensive understanding of CML estimation
and its applications see Yousse et al. [16, 20]. In the context, the
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FENB model is particularly useful because it not only accounts for
over-dispersion but also controls for unobserved, time-invariant
heterogeneity among individuals. This makes the FENB model
a powerful tool for analyzing panel count data with complex
structures. However, one major issue that has been neglected in the
literature is the effect of outliers on parameters estimation in the
FENB model. Outliers can occur due to rare events or abnormal
changes in specific units over time. Classical estimation techniques,
such as the CML, are known to be highly sensitive to such outliers.
This highlights the need for robust estimation methods that can
produce accurate and stable results even in the presence of outliers.
Despite the progress made in developing robust estimators for the
fixed effects Poisson model by Ahmed et al. [1], Abonazel et al. [2],
and Youssef et al. [3], there has been little interest in extending these
robust methods to the NB model. This gap in literature provides a
key motivation for the present study.

2 Robust FENB model estimates

According to the work of Youssef et al. [3], who introduced
robust estimation methods for the Poisson fixed effects panel
model, this study extends the robustness framework to the NB
case to accommodate both under-dispersion and over-dispersion in
count panel data. Accordingly, this section aims to develop robust
estimators for the FENB model in the presence of dispersion and
outliers, based on the Huber, Hampel, and Tukey weight functions.
The performance of these estimators is evaluated through Monte
Carlo simulations under varying levels of outliers, dispersion
levels, cross-sectional sizes, and time dimensions. Furthermore,
the proposed methods are applied to real-world datasets in
two empirical applications involving selected European countries,
providing strong evidence of their practical effectiveness.

The NB model addresses over-dispersion that may exist in
the data, where the model provides more accurate and reliable
estimates; this makes it suitable for a wide range of applications in
various fields. The count panel data can contain outliers, and these
outliers can have a significant impact on the estimated parameters,
where some studies focus on addressing outliers in some models
using different estimationmethods (see for example Huber [21, 22],
Rousseeuw and Leroy [23], Garay et al. [24], Toka and Cetin [25],
Susanti et al. [26], Maronna et al. [27], Tüzun et al. [28], Youssef
et al. [3, 29], and Ke et al. [30]). On the other hand, panel data
regressionmodelsmay suffer from outliers that can negatively affect
classical estimation methods, where there are limited studies on
robust estimation methods for fixed effects panel data regression
model (see Beyaztas and Bandyopadhyay [31], Amelia et al. [32],
Víšek [33], and Bramati and Croux [34]).

In this context, there is not a specific robust method
available for estimating parameters in the FENB regression model.
Therefore, we propose a robust estimation method for NB
regression to deal with count panel data when these data contain
outliers. The method utilizes robust estimation techniques that are
less sensitive to the influence of outliers, providing more accurate
and robust parameter estimates. These methods are based on
weight functions that include Huber, Hampel, and Tukey bisquare
and minimize the residuals, aiming to improve the robustness and
reliability of parameter estimation in the presence of outliers, see

for example Hampel et al. [35] and Venables and Ripley [36].
The residuals of the ith observation for the FENB model can be
expressed as

Rit = yit −

(

αi

φi

T
∑

t=1

exp(X′
k,itβ)

)

.

The robust estimator for the FENB model can be obtained by
minimizing the objective function (ρ) concerning all β , which can
be expressed as follows:

β̂R = min
N
∑

i=1

T
∑

t=1

ρ

(

ξit

σ̂MAD

)

, (2)

where ξit = Rit
(

θ̂i
∑T

t=1 λit

)1/2 , λit = exp(X′
k,itβ), and σ̂MAD is the

estimated standard deviation, where calculated using the median
absolute deviation, which is defined as follows:

σ̂MAD = 1.4826×Med
(

|ξit −Med(ξit)|
)

,

where Med is the median. Based on the function ρ(ξit), we
can obtain the robust estimator of β by differentiating the
objective function (ρ) concerning the parameters β , and equate the
partial derivatives to zero in Equation 2, this yields the following
expression:

min
β

N
∑

i=1

T
∑

t=1

ψ

(

ξit

σ̂MAD

)

∂

∂β
ξit = 0, (3)

where ψ(uit) is called the influence function and equal ρ′(uit).
We can rewrite the Equation 3 by using the weight function

ξ (uit), which equals ψ(uit)uit
, and then, we can obtain the first-order

condition for robust estimators as follows:

N
∑

i=1

T
∑

t=1

ξ ′itWξ (ξit)ξit = 0, (4)

where ξ ′it = ∂
∂β
ξit and Wξ (ξit) is matrix (NT × NT). Three

robust estimates for β in the FENB model can be obtained by
solving Equation 4 using the weight functions of Huber (WHR(ξit)),
Hampel (WHM(ξit)), and Tukey bisquare (WTK(ξit)), as introduced
by Baltagi [37] and Youssef et al. [3] in the context of panel data.

We will present an algorithm for handling outliers in the NB
panel data model with fixed effects to obtain stable and robust
estimates as follows:

1. Estimate the CML estimator (β̂NOFNB) using the algorithm
presented by Hausman et al. [19] as an initial estimation.

2. Calculate residuals value ξit = Rit
(

θ̂i
∑T

t=1 λit

)1/2 based on the

previous estimation.
3. Calculate median absolute deviation σ̂MAD.
4. Calculate standardized residuals uit =

ξit
σ̂MAD

.
5. Calculate the values of the weight functionWξ (ξit). We can use

one of the three functions:WHR(ξit),WHM(ξit), andWTK(ξit).
6. Estimate one of the three estimators (β̂FNBHR, β̂FNBHM, or
β̂FNBTK) based on the weight function Wξ (ξit) used in the
previous step.
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7. Repeat steps 2–6 to obtain the convergent estimates of
β̂FNBHR, β̂FNBHM, or β̂FNBTK estimators.

8. Examine the significance of the explanatory variables on the
response variable and compare the performance of these
estimators using some criteria; for example, the Akaike
information criterion (AIC) and Bayesian information criterion
(BIC). The AIC and BIC are calculated as follows:

AIC = 2k− 2 log(likhod); BIC = k log(n)− 2 log(likhod),

where k is the number of coefficients, and likhod denotes
maximum likelihood values.

3 Simulation design and evaluation of
estimators

In this section, we will present an algorithm to evaluate the
impact of outliers on the estimates of the FENB model using a
Monte Carlo simulation procedure to conduct a comprehensive
analysis to understand the flexibility of the NB model with fixed
effects in the presence of outliers. The simulation was conducted
using R software. This algorithm was designed specifically for
the Monte Carlo simulation study of the FENB model, where
it aims to assess the model’s sensitivity and accuracy in various
conditions. The results from this simulation are expected to
contribute significantly to the existing literature, offering an
accurate perspective on the applicability and reliability of the FENB
model in empirical research, especially in fields where extreme
values are not merely outliers but pivotal points of interest. The
algorithm utilized for conducting the Monte Carlo simulation
study of the FENB model is as follows:

1. We can construct the panel dataset to calculate the total samples
size (n) as follows:

(a) Set the dimensions for the cross-sectional size at N =

50, 100, 200, and 400 to indicate small, moderate, and large
units, respectively.

(b) Set the dimensions for time-series size at T = 5, 10, and 20
to indicate various sizes for the time periods.

2. We generate the count panel dataset by following these steps:

(a) The values of true parameters for β1,β2, and β3 were selected
to be 1.

(b) The dispersion parameter (φ) was set at 1/2 and 2 to denote
under-dispersion and over-dispersion, respectively.

(c) The explanatory variables (Xk
it) were generated from a

uniform distribution on the interval (−1, 1).
(d) Generate the response variable (yit) from the NB distribution

with an average θi
∑T

t=1 λit .
(e) Set the outliers (τ%) to be 0%, 5%, 10%, 15%, and 20% of

the total observations for the response variable. When the
proportion of outliers is zero (τ = 0%), it indicates that the
count panel dataset does not contain any outliers.

(f) Generate the outliers from NB distribution with an average
4 IQR[θi

∑T
t=1 λit], where IQR is the interquartile range.

3. Estimate the non-robust estimator (β̂NOFNB) of the generated
FENB model.

4. Estimate the proposed robust estimators (β̂FNBHR, β̂FNBHM, or
β̂FNBTK) of the generated FENB model with the following
steps:

(a) Calculate residuals value ξit = Rit
(

θ̂i
∑T

t=1 λit

)1/2 based on the

previous estimation.
(b) Calculate median absolute deviation σ̂MAD.
(c) Calculate standardized residuals uit =

ξit
σ̂MAD

.
(d) Calculate the values of the three functions: WHR(ξit),

WHM(ξit), andWTK(ξit).
(e) Estimate the three robust estimators (β̂FNBHR, β̂FNBHM,

and β̂FNBTK) based on the three weight functions
(WHR(ξit),WHM(ξit), and WTK(ξit)) calculated in the
previous step.

(f) Repeat steps (a)–(e) to obtain the convergent estimates of
β̂FNBHR, β̂FNBHM, and β̂FNBTK estimators.

5. For all simulation experiments, we conducted 500 replications.
6. We evaluate the performance of these estimators through the

following steps:

(a) The mean squared error (MSE) and mean absolute error
(MAE) are calculated for N,T,φ, and τ different for each
parameter separately as follows:

MSE =
1

L

L
∑

l=1

(β̂l − β)
2; MAE =

1

L

L
∑

l=1

|β̂l − β|,

where β̂l represents the estimated coefficient vector in the lth

experiment of L replicated simulations, and β denotes the
true coefficient vector.

(b) The mean relative efficiency (MRE) is calculated for all T
and τ for each N and φ separately to evaluate the efficiency
of estimators (FNBHR, FNBHM, and FNBTK). The MRE is
calculated using the following formula:

MRE(β̂R) =
MSE(β̂NOFNB)

MSE(β̂R)
,

where β̂R is β̂FNBHR, β̂FNBHM , and β̂FNBTK estimators. The
best efficient estimator is the one with the highest MRE.

The simulation results are presented in Tables 1–4 for small,
moderate, and large sample sizes. These tables report the total
MSE and total MAE values for four estimators: the classical
(non-robust) estimator NOFNB and three robust estimators
(FNBHM, FNBHR, and FNBTK). The simulation is conducted
under various scenarios defined by cross-sectional sizes (N =

50, 100, 200, and 400), time periods (T = 5, 10, and 20), outlier
proportions (τ = 0%, 5%, 10%, 15%, and 20%), and two dispersion
levels representing under-dispersion (φ = 0.5) and over-dispersion
(φ = 2).

In the context of clean data free from outliers (τ = 0%), the
NOFNB estimator consistently performs better than the proposed
estimators (FNBHM, FNBHR, and FNBTK) across all cases ofN, T,
and φ. This suggests that under ideal data conditions, the classical
CML method offers higher efficiency. For example, at N = 50,
φ = 0.5, T = 5, and τ = 0%, the MSE of the NOFNB estimator is
0.1614, whereas the values for FNBHM, FNBHR, and FNBTK are
0.2331, 0.2758, and 0.3345, respectively.
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TABLE 1 MSE and MAE values of non-robust and robust estimates when N = 50.

Estimators φ = 0.5 φ = 2

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

τ = 0%

NOFNB 0.1614 0.5515 0.0664 0.3523 0.0314 0.2446 0.0762 0.3793 0.0315 0.2464 0.0142 0.1656

FNBHM 0.2331 0.6614 0.0955 0.4261 0.0436 0.2872 0.0976 0.4322 0.0396 0.2733 0.0188 0.1900

FNBHR 0.2758 0.7072 0.1348 0.5081 0.0816 0.4048 0.1241 0.4884 0.0585 0.3347 0.0344 0.2629

FNBTK 0.3345 0.7700 0.1685 0.5677 0.0995 0.4456 0.1335 0.5048 0.0618 0.3433 0.0355 0.2656

τ = 5%

NOFNB 0.3727 0.8426 0.2971 0.7767 0.2073 0.6861 0.2564 0.7132 0.1871 0.6603 0.1566 0.6306

FNBHM 0.2588 0.7021 0.1371 0.5184 0.0915 0.4344 0.0975 0.4323 0.0508 0.3135 0.0292 0.2441

FNBHR 0.2640 0.7070 0.1127 0.4606 0.0528 0.3150 0.1050 0.4433 0.0477 0.3015 0.0241 0.2181

FNBTK 0.3132 0.7710 0.1415 0.5179 0.0685 0.3594 0.1090 0.4509 0.0507 0.3107 0.0264 0.2282

τ = 10%

NOFNB 0.6129 1.1273 0.5432 1.1247 0.4771 1.1143 0.5437 1.1225 0.5100 1.1533 0.4186 1.0810

FNBHM 0.3129 0.7806 0.2118 0.6632 0.1543 0.5980 0.1465 0.5298 0.0896 0.4330 0.0713 0.4049

FNBHR 0.3004 0.7551 0.1821 0.5954 0.1112 0.4769 0.1651 0.5624 0.1039 0.4664 0.0749 0.4118

FNBTK 0.3479 0.8151 0.2061 0.6397 0.1310 0.5193 0.1476 0.5292 0.0883 0.4242 0.0656 0.3800

τ = 15%

NOFNB 0.9355 1.4571 0.7184 1.3505 0.7201 1.4062 0.7857 1.4148 0.7836 1.4760 0.6814 1.4033

FNBHM 0.4147 0.9153 0.2729 0.7778 0.2356 0.7659 0.2388 0.7199 0.1847 0.6628 0.1581 0.6456

FNBHR 0.4321 0.9243 0.2583 0.7342 0.2169 0.7118 0.2645 0.7587 0.2209 0.7292 0.1762 0.6820

FNBTK 0.4489 0.9383 0.2624 0.7399 0.2203 0.7162 0.2048 0.6546 0.1626 0.6126 0.1331 0.5837

τ = 20%

NOFNB 1.1380 1.6473 1.0699 1.6821 0.9799 1.6663 1.0817 1.7015 1.0457 1.7270 0.9210 1.6420

FNBHM 0.5310 1.0483 0.3832 0.9432 0.3456 0.9515 0.3886 0.9513 0.3305 0.9201 0.2940 0.9068

FNBHR 0.5651 1.0733 0.4355 0.9947 0.3714 0.9754 0.4283 1.0034 0.3747 0.9865 0.3163 0.9405

FNBTK 0.5502 1.0441 0.3924 0.9313 0.3372 0.9221 0.3157 0.8375 0.2599 0.8015 0.2294 0.7927

In contrast, when the data contain outliers (τ > 0%),
the FNBHM, FNBHR, and FNBTK estimators outperform the
classical NOFNB estimator. The presence of outliers negatively
affects the performance of NOFNB, leading to inflated error
values, while the robust methods maintain greater stability and
accuracy. For instance, at N = 200, φ = 2, T = 20, and
τ = 10%, the MSE values of FNBHM, FNBHR, and FNBTK
are 0.0597, 0.0663, and 0.0566, respectively, compared to 0.4512
for NOFNB.

Moreover, as the proportion of outliers increases, bothMSE and
MAE tend to rise; however, the rate of increase is slower for the
proposed estimators than for the NOFNB. For example, when τ
increases from 10 to 15% at N = 100, φ = 2, and T = 10, the MAE
values of FNBHM, FNBHR, and FNBTK increase from 0.4100,
0.4087, and 0.3826 to 0.6216, 0.6759, and 0.5661, respectively, while
the MAE of NOFNB jumps from 1.0490 to 1.4436. These results
highlight the greater robustness of the proposed estimators in the
presence of outliers.

As the number of cross-sectional units increases from N = 50
to N = 400, the values of MSE and MAE generally decrease
for all estimators, indicating enhanced estimation accuracy due
to the larger unit’s size and increased information. For example,
when T = 10, τ = 5%, and φ = 2, the MSE of the classical
estimator NOFNB decreases from 0.1871 at N = 50 to 0.1565 at
N = 400. Similarly, for the proposed robust estimator FNBTK, the
MSE drops from 0.0507 to 0.0123 over the same increase inN. This
decreasing trend is consistently observed for both robust and non-
robust estimators. However, robust estimators continue to offer
more reliable estimates in the presence of outliers, regardless of the
value of N. Although the classical estimator benefits significantly
from increased sample size under clean data conditions, it becomes
less reliable when the data contain outliers.

Increasing the time dimension (T) also enhances the
performance of all estimators by providing more repeated
observations over time. When holding N = 200, φ = 2, and
τ = 10% fixed, increasing T from 5 to 20 leads to a noticeable
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TABLE 2 MSE and MAE values of non-robust and robust estimates when N = 100.

Estimators φ = 0.5 φ = 2

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

τ = 0%

NOFNB 0.0808 0.3914 0.0338 0.2530 0.0155 0.1744 0.0381 0.2681 0.0160 0.1737 0.0072 0.1188

FNBHM 0.1134 0.4665 0.0517 0.3143 0.0227 0.2104 0.0472 0.2962 0.0205 0.1953 0.0095 0.1350

FNBHR 0.1537 0.5367 0.0850 0.4041 0.0504 0.3211 0.0707 0.3632 0.0385 0.2779 0.0254 0.2324

FNBTK 0.1839 0.5862 0.1062 0.4493 0.0611 0.3511 0.0746 0.3728 0.0396 0.2794 0.0255 0.2300

τ = 5%

NOFNB 0.2543 0.6974 0.2110 0.6858 0.2270 0.7621 0.1669 0.6019 0.1725 0.6630 0.1742 0.6959

FNBHM 0.1495 0.5302 0.0925 0.4382 0.0813 0.4337 0.0523 0.3155 0.0332 0.2585 0.0213 0.2131

FNBHR 0.1238 0.4808 0.0566 0.3309 0.0349 0.2600 0.0512 0.3113 0.0281 0.2339 0.0161 0.1798

FNBTK 0.1543 0.5354 0.0741 0.3787 0.0504 0.3158 0.0548 0.3228 0.0308 0.2460 0.0177 0.1889

τ = 10%

NOFNB 0.4991 1.0587 0.4620 1.0908 0.5239 1.2111 0.4134 1.0316 0.3967 1.0490 0.4816 1.1829

FNBHM 0.2150 0.6592 0.1562 0.5931 0.1454 0.6099 0.0970 0.4495 0.0728 0.4100 0.0691 0.4251

FNBHR 0.1820 0.5919 0.1128 0.4787 0.1004 0.4766 0.0998 0.4531 0.0743 0.4087 0.0789 0.4532

FNBTK 0.2144 0.6462 0.1344 0.5269 0.1211 0.5309 0.0905 0.4273 0.0668 0.3826 0.0670 0.4134

τ = 15%

NOFNB 0.7167 1.3225 0.6996 1.3789 0.7808 1.4996 0.6425 1.3253 0.7232 1.4436 0.7494 1.4863

FNBHM 0.2774 0.7681 0.2397 0.7607 0.2238 0.7781 0.1745 0.6311 0.1494 0.6216 0.1490 0.6477

FNBHR 0.2675 0.7356 0.2143 0.6926 0.2082 0.7359 0.1842 0.6477 0.1755 0.6759 0.1789 0.7116

FNBTK 0.2773 0.7508 0.2239 0.7087 0.2080 0.7334 0.1451 0.5626 0.1275 0.5661 0.1299 0.6013

τ = 20%

NOFNB 0.9523 1.5727 0.9892 1.6714 1.0328 1.7364 0.8998 1.5924 0.9594 1.6736 0.9959 1.7184

FNBHM 0.3823 0.9277 0.3201 0.9086 0.3176 0.9421 0.3110 0.8856 0.2948 0.9039 0.2863 0.9089

FNBHR 0.3993 0.9329 0.3571 0.9526 0.3594 0.9971 0.3239 0.9037 0.3243 0.9491 0.3269 0.9729

FNBTK 0.3820 0.9031 0.3142 0.8834 0.3098 0.9199 0.2430 0.7652 0.2294 0.7884 0.2238 0.7999

reduction in both MSE and MAE values. For instance, the MSE
of the proposed estimator FNBHM decreases from ∼0.0765 at
T = 5 to 0.0597 at T = 20, reflecting a substantial improvement
in estimation precision. This trend highlights the importance of
longer time-series dimensions in reducing estimation error, even
in the presence of moderate levels of outliers. We also find that,
when comparing the performance across both under-dispersion
(φ = 0.5) and over-dispersion (φ = 2) scenarios, the robust
estimators generally maintain their superiority in the presence of
outliers.

The MRE for robust estimators (FNBHR, FNBHM, and
FNBTK) is illustrated in Figures 1, 2 clustered by percentages of
outliers (from 5 to 20%) and time-series (from 5 to 20) for all
units separately. The evaluation was performed separately for two
cases; the first case expresses under-dispersion (φ = 0.5), while the
second case expresses over-dispersion (φ = 2).

The results presented in Figures 1, 2 highlight the differences
in estimators performance under varying dispersion levels. The

efficiency of these estimators increases when increasing the size of
the cross section (N), the time series (T), the percentage of the
outliers (τ ), and the dispersion parameter (φ), but the FNBTK
estimator remains more efficient. Overall, the findings indicate that
the MRE values of the FNBTK estimator are consistently higher
than those of the FNBHR and FNBHM estimators. This suggests
that the FNBTK estimator is more efficient than the other two
robust estimators across all scenarios of N, T, τ , and φ.

4 Real-life panel data applications

The practical relevance of the proposed estimation methods is
evaluated through real-life panel data applications from selected
European countries, representing different types of count panel
data frequently encountered in public health and economic
contexts. To demonstrate the flexibility and robustness of these
estimators under real-world conditions, two empirical case studies
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TABLE 3 MSE and MAE values of non-robust and robust estimates when N = 200.

Estimators φ = 0.5 φ = 2

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

τ = 0%

NOFNB 0.0373 0.2672 0.0171 0.1817 0.0077 0.1210 0.0174 0.1799 0.0076 0.1213 0.0035 0.0824

FNBHM 0.0532 0.3196 0.0252 0.2217 0.0127 0.1565 0.0221 0.2005 0.0100 0.1390 0.0049 0.0964

FNBHR 0.0897 0.4190 0.0567 0.3429 0.0406 0.3025 0.0393 0.2739 0.0245 0.2266 0.0201 0.2188

FNBTK 0.1057 0.4512 0.0676 0.3717 0.0498 0.3336 0.0406 0.2773 0.0247 0.2256 0.0196 0.2129

τ = 5%

NOFNB 0.1948 0.6545 0.1931 0.6942 0.2021 0.7444 0.1411 0.5880 0.1731 0.6880 0.1697 0.6983

FNBHM 0.0951 0.4437 0.0720 0.3992 0.0659 0.4071 0.0309 0.2454 0.0235 0.2203 0.0181 0.2062

FNBHR 0.0598 0.3394 0.0312 0.2423 0.0196 0.1951 0.0257 0.2218 0.0181 0.1878 0.0120 0.1591

FNBTK 0.0771 0.3880 0.0428 0.2842 0.0309 0.2505 0.0277 0.2303 0.0200 0.1981 0.0135 0.1702

τ = 10%

NOFNB 0.4379 1.0524 0.4828 1.1581 0.4923 1.1928 0.3734 1.0152 0.4618 1.1578 0.4512 1.1541

FNBHM 0.1576 0.5919 0.1435 0.6026 0.1323 0.6033 0.0765 0.4204 0.0677 0.4189 0.0597 0.4066

FNBHR 0.1104 0.4711 0.0916 0.4523 0.0827 0.4541 0.0736 0.4059 0.0742 0.4372 0.0663 0.4278

FNBTK 0.1342 0.5241 0.1156 0.5136 0.1018 0.5098 0.0652 0.3792 0.0632 0.3983 0.0566 0.3926

τ = 15%

NOFNB 0.6628 1.3423 0.7112 1.4265 0.7645 1.4985 0.6101 1.3201 0.6849 1.4196 0.7287 1.4716

FNBHM 0.2354 0.7507 0.2119 0.7518 0.2129 0.7778 0.1607 0.6441 0.1507 0.6500 0.1371 0.6291

FNBHR 0.2037 0.6731 0.1892 0.6928 0.1966 0.7389 0.1642 0.6480 0.1673 0.6847 0.1671 0.6959

FNBTK 0.2182 0.6976 0.1891 0.6906 0.1945 0.7343 0.1262 0.5590 0.1241 0.5846 0.1220 0.5914

τ = 20%

NOFNB 0.8821 1.5684 0.9585 1.6683 1.0116 1.0116 0.8371 1.5583 0.9383 1.6663 0.9736 1.7035

FNBHM 0.3141 0.8914 0.3119 0.9275 0.3040 0.3040 0.2854 0.8861 0.2833 0.9020 0.2711 0.8928

FNBHR 0.3209 0.8846 0.3360 0.9546 0.3481 0.3481 0.2915 0.8941 0.3105 0.9451 0.3118 0.9581

FNBTK 0.3030 0.8544 0.2977 0.8935 0.2948 0.2948 0.2155 0.7591 0.2209 0.7915 0.2143 0.7921

are presented. The first application utilizes COVID-19 data, while
the second focuses on patent data, providing insights into the
dynamics of innovation and economic development over time.
Both datasets exhibit the panel structure necessary to evaluate
the performance of classical and robust estimators under varying
degrees of heterogeneity, over-dispersion, and the presence of
outliers. Through these applications, the practical value and
adaptability of the proposed methods are highlighted across real-
world scenarios.

4.1 COVID-19 application

In recent years, the global emergence of COVID-19 has led to
profound disturbances in healthcare systems, economic structures,
and social dynamics worldwide. The availability of COVID-19-
related data has played a pivotal role in facilitating research focused

on understanding the virus’s spread and evaluating the effectiveness
of public health actions. Such data have proven essential for
researchers, policymakers, and healthcare institutions striving
to mitigate the pandemic’s impact and address its multifaceted
challenges.

Comprehensive and reliable COVID-19 datasets have provided
a solid foundation for conducting empirical research. These
datasets have not only enhanced our understanding of pandemic
dynamics but have also spurred advancements in statistical
modeling, particularly in the fields of count panel data analysis,
panel data techniques, and robust estimation approaches. As a
result, COVID-19 data have become instrumental in applying
and validating modern statistical methods, promoting innovation
in methodology, encouraging interdisciplinary collaboration, and
contributing to the design of evidence-based policies. In this
context, the use of such data highlights the practical relevance
and empirical strength of the proposed estimation techniques,
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TABLE 4 MSE and MAE values of non-robust and robust estimates when N = 400.

Estimators φ = 0.5 φ = 2

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

τ = 0%

NOFNB 0.0182 0.1869 0.0081 0.1239 0.0038 0.0850 0.0084 0.1269 0.0038 0.0850 0.0017 0.0584

FNBHM 0.0263 0.2269 0.0127 0.1536 0.0065 0.1125 0.0108 0.1425 0.0052 0.0996 0.0029 0.0739

FNBHR 0.0620 0.3589 0.0415 0.3090 0.0373 0.3091 0.0267 0.2362 0.0205 0.2195 0.0187 0.2209

FNBTK 0.0725 0.3849 0.0513 0.3422 0.0441 0.3343 0.0265 0.2323 0.0203 0.2165 0.0178 0.2127

τ = 5%

NOFNB 0.1857 0.6746 0.1878 0.7162 0.1942 0.7458 0.1458 0.6292 0.1565 0.6693 0.1622 0.6900

FNBHM 0.0732 0.3965 0.0621 0.3943 0.0599 0.4021 0.0216 0.2108 0.0173 0.2008 0.0152 0.1984

FNBHR 0.0328 0.2486 0.0176 0.1861 0.0128 0.1609 0.0154 0.1724 0.0110 0.1516 0.0088 0.1412

FNBTK 0.0452 0.2918 0.0272 0.2342 0.0228 0.2215 0.0169 0.1804 0.0123 0.1614 0.0102 0.1537

τ = 10%

NOFNB 0.4411 1.1003 0.4481 1.1373 0.4740 1.1819 0.3929 1.0641 0.4348 1.1310 0.4414 1.1461

FNBHM 0.1361 0.5794 0.1294 0.5951 0.1272 0.6054 0.0633 0.4007 0.0606 0.4083 0.0577 0.4074

FNBHR 0.0844 0.4254 0.0744 0.4268 0.0727 0.4459 0.0633 0.3960 0.0646 0.4198 0.0630 0.4252

FNBTK 0.1057 0.4817 0.0942 0.4863 0.0926 0.5066 0.0545 0.3627 0.0543 0.3820 0.0535 0.3904

τ = 15%

NOFNB 0.6922 1.4044 0.7440 1.4777 0.7476 1.4897 0.6447 1.3744 0.6519 1.3908 0.7135 1.4595

FNBHM 0.2111 0.7447 0.2110 0.7728 0.2007 0.7657 0.1462 0.6374 0.1390 0.6333 0.1362 0.6334

FNBHR 0.1853 0.6771 0.1877 0.7190 0.1816 0.7231 0.1576 0.6607 0.1529 0.6642 0.1616 0.6902

FNBTK 0.1905 0.6860 0.1924 0.7274 0.1801 0.7200 0.1189 0.5673 0.1144 0.5717 0.1175 0.5872

τ = 20%

NOFNB 0.9293 1.6415 0.9404 1.6666 0.9907 1.7178 0.8854 1.6168 0.9786 1.7077 0.9630 1.6969

FNBHM 0.3021 0.9098 0.2872 0.9089 0.2938 0.9297 0.2797 0.8961 0.2810 0.9086 0.2732 0.9007

FNBHR 0.3228 0.9329 0.3102 0.9408 0.3332 0.9888 0.2929 0.9165 0.3134 0.9601 0.3072 0.9553

FNBTK 0.2907 0.8799 0.2744 0.8819 0.2836 0.9107 0.2124 0.7751 0.2158 0.7941 0.2117 0.7918

FIGURE 1

MRE of the robust estimates when φ = 0.5.
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FIGURE 2

MRE of the robust estimates when φ = 2.

FIGURE 3

Box plots of COVID-19 variables containing outliers.

especially in addressing real-world problems associated with public
health crises.

This application employs a daily panel dataset on COVID-19,
covering ten European countries during the period from June 23,
2021, to January 21, 2022. The data were obtained from the World
Health Organization website. The analysis includes five variables,
with the response variable being the number of new COVID-19-
related deaths (yit). The explanatory variables are the number of
confirmed cases per 1,000 individuals (X1), the number of patients
in intensive care units per 100 individuals (X2), the logarithm of
new COVID-19 tests (X3), and the logarithm of the number of
individuals who received COVID-19 vaccinations (X4).

Figure 3 presents boxplots of the study variables that exhibit
outliers across the selected countries. A visual examination of
the boxplots reveals the presence of outliers in the yit as well
as in the explanatory variables: X1, X2, and X3. Furthermore, an
over-dispersion test was conducted, and the results indicated a

statistically significant presence of over-dispersion in the data, with
a p-value< 0.001.

The algorithm described in Section 2 is applied to obtain
the estimators’ results, aiming to derive more accurate estimates
and enhance the robustness and reliability of the analysis. Table 5
presents the coefficient estimates from the NB panel model using
both non-robust and robust methods. The results in Table 5
summarize the estimated coefficients for the NB panel model
applied to the COVID-19 dataset. The NOFNB estimator, which
does not account for outliers, produces significantly different
coefficient values compared to the robust estimators.

To evaluate the performance of these estimators, we refer to
the goodness-of-fit measures reported in Table 6. These measures
clearly show that the robust estimators yield lower values for AIC
and BIC, demonstrating their superior performance. Among them,
the FNBTK estimator achieves the lowest values across all criteria,
confirming its effectiveness in handling outliers in count panel data.
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TABLE 5 Coe�cient estimates for various estimators using the COVID-19 dataset.

Variables NOFNB FNBHM FNBHR FNBTK

Estimate SE Estimate SE Estimate SE Estimate SE

Intercept 2.611∗ 0.043 1.011∗ 0.043 1.276∗ 0.049 0.759∗ 0.045

X1 0.012∗ 0.001 0.225∗ 0.011 0.106∗ 0.009 0.249∗ 0.013

X2 0.172∗ 0.014 -0.497∗ 0.046 0.001 0.041 –0.597∗ 0.047

X3 –0.860∗ 0.075 -0.486∗ 0.066 -0.591∗ 0.077 –0.538∗ 0.067

X4 –0.329∗ 0.040 -0.259∗ 0.033 –0.289∗ 0.038 –0.250∗ 0.033

The symbols (∗) indicate that the significance level at< 1%.

TABLE 6 Goodness-of-fit measures for the estimators in COVID-19

dataset.

Estimators Log-likelihood AIC BIC

NOFNB –6,794 13,599 13,633

FNBHM –2,882 5,777 5,811

FNBHR –2,960 5,933 5,967

FNBTK –2,346 4,703 4,737

4.2 Patents application

Another empirical application is conducted to evaluate the
performance of the proposed estimators using patents data. In
the global economy, patents stand as cornerstones of innovation,
economic growth, and competitive advantage, particularly in high-
income European countries. These countries have long recognized
the real value of intellectual property rights in creating an
environment that supports and promotes research, development,
and marketing the new ideas. Patents, by providing exclusive rights
to inventors for a defined period, encourage the development
and dissemination of innovative technologies, thus propelling
advancements in various sectors including healthcare, information
technology, and green energy. Moreover, in the context of the
European single market, patents play a pivotal role in harmonizing
standards, facilitating cross-border trade, and enhancing the
region’s attractiveness to investors and entrepreneurs from around
the globe. Consequently, understanding the importance of patent
protection in these countries is a crucial element in comprehending
their economic resilience and their ability to find pioneering
solutions to global challenges. In this context, we will employ the
patents dataset to evaluate various estimators.

In our application, we are interested in estimating patent
applications. As defined by the World Intellectual Property
Organization, a patent application is associated with either a
new method of operation or a novel technical problem solution.
We based our sample selection on the patent data for high-
income European countries available on the World Bank website.
This sample includes 17 countries classified as high-income,
covering the years from 2005 until 2020. In this analysis, we
focus on the patents (PATEN) as the dependent variable. The
independent variables are the number of researchers in research
and development (NUMRD) per 1000 people, the logarithm of the

FIGURE 4

Box plots of patent variables containing outliers.

research and development expenditures (RDEXD), the logarithm
of the GDP per capita (GDPPC), the logarithm of the exports
of technological goods (ICTEXP), and the rate of unemployment
(UNEMP).

Figure 4 displays box plots for the variables that exhibit outliers
across the countries under study. Specifically, the box plots indicate
that the response variable and UNEMP contain outlier values,
while the remaining variables do not show apparent outliers. Also,
we conducted an over-dispersion test and the results indicated
a significant presence of over-dispersion in the data < 0.001
significance level. Table 7 shows the findings of the NB panel model
of non-robust and robust estimates.

After assessing the AIC and BIC criteria, as illustrated in
Table 8, to a conclusion that robust estimates for the NB panel
model outperformed non-robust estimates in terms of effectiveness,
which indicates that the robust estimators FNBHM, FNBHR, and
FNBTK outperform when compared to the NOFNB non-robust
estimator. The criterion for determining the best estimator relies on
selecting the one with the lowest value for either AIC or BIC. This
finding emphasizes the importance of selecting robust estimators
for enhanced accuracy and reliability in evaluating the results. In
addition, the FNBTK estimator demonstrates better performance
compared to the other estimators. The findings clearly demonstrate
that robust estimators outperform classical estimator when outliers
are present.
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TABLE 7 Coe�cient estimates for various estimators using the patent dataset.

Variables NOFNB FNBHM FNBHR FNBTK

Estimate SE Estimate SE Estimate SE Estimate SE

Intercept –12.589∗ 1.730 –12.089∗ 1.824 –11.875∗ 1.859 –11.650∗ 1.930

NUMRD –1.108∗ 0.170 –1.155∗ 0.194 –1.207∗ 0.207 –1.236∗ 0.228

RDEXD 0.908∗ 0.064 0.901∗ 0.068 0.904∗ 0.069 0.901∗ 0.072

GDPPC –0.381∗ 0.093 –0.382∗ 0.094 –0.382∗ 0.095 –0.384∗ 0.097

ICTEXP 0.011 0.055 –0.002 0.058 –0.013 0.059 –0.019 0.060

UNEMP 4.058 3.737 4.236 3.735 4.083 3.729 4.475 3.799

The symbols (∗) indicate that the significance level at< 1%.

TABLE 8 Goodness-of-fit measures for the estimators in patent dataset.

Estimators Log-likelihood AIC BIC

NOFNB –415 843 857

FNBHM –380 774 788

FNBHR –358 729 743

FNBTK –333 680 694

5 Conclusion

In this research study, we have presented proposed robust
estimators for the FENB panel model. To evaluate the performance
of these estimators, we conducted the simulation study and applied
them to real panel datasets. By combining Monte Carlo simulation
and the applications of real data, we can conduct a comprehensive
evaluation of the proposed estimators, ensuring their effectiveness
and reliability. This dual approach allows us to assess the estimators’
performance across different situations, providing a comprehensive
understanding of their robustness and practical utility under
diverse conditions.

The simulation results indicate that in the absence of
outliers, the NOFNB estimator outperforms the robust
estimators, but, when outliers are present, the proposed
robust estimators (FNBHM, FNBHR, and FNBTK) exhibit
higher effectiveness compared to the non-robust estimator.
Furthermore, the results of the empirical studies in European
countries indicate that the proposed robust estimators are
more efficient than other estimators when outliers are present
in the datasets. In addition, the FNBTK robust estimator
demonstrates greater efficiency compared to FNBHM and FNBHR
robust estimators.

The results of this study are expected to have practical
implications for researchers and policymakers in the field of
scientific research and development. In addition, it contributes to
the advancement of statistical methodology for analyzing count
panel data in the presence of outliers and provides a better
understanding of the factors influencing count panel data in
different fields by emphasizing the importance of the NB panel
model. In future work, we plan to propose new robust estimators
for the FENB model or for one of the other count panel data
models.
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28. Tüzen F, ErbaŞ, OlmuŞ H. A simulation study for count data models
under varying degrees of outliers and zeros. Commun Stat-Simul Comput. (2020)
49:1078–1088. doi: 10.1080/03610918.2018.1498886

29. Youssef AH, Abonazel MR, Kamel AR. Efficiency comparisons of robust and
non-robust estimators for seemingly unrelated regressions model.WSEAS Trans Math.
(2022) 21:218–44. doi: 10.37394/23206.2022.21.28

30. Ke S, Phillips PC, Su L. Robust inference of panel data models with interactive
fixed effects under long memory: a frequency domain approach. J Econom. (2024)
241:105761. doi: 10.1016/j.jeconom.2024.105761

31. Beyaztas BH, Bandyopadhyay S. Data driven robust estimation methods
for fixed effects panel data models. J Stat Comput Simul. (2022) 92:1401–25.
doi: 10.1080/00949655.2021.1996576

32. Amelia M, Sadik K, Sartono B. The study of robust estimators on panel data
regression model for data contaminated with outliers. In: Proceedings of the 1st
International Conference on Statistics and Analytics, Bogor, Indonesia, 2-3 August 2019.
Bogor (2020). doi: 10.4108/eai.2-8-2019.2290517

33. Víšek JÁ. Estimating the model with fixed and random effects by
a robust method. Methodol Comput Appl Probab. (2015) 17:999–1014.
doi: 10.1007/s11009-014-9432-5

34. Bramati MC, Croux C. Robust estimators for the fixed effects panel data model.
Econometr J. (2007) 10:521–40. doi: 10.1111/j.1368-423X.2007.00220.x

35. Hampel F, Ronchetti E, Rousseeuw P, Stahel W. Robust Statistics: The Approach
Based on Influence Functions. Hoboken, NJ: John Wiley & Sons (1986).

36. Venables WN, Ripley BD. Modern Applied Statistics with S, 4th Edn. Cham:
Springer (2002). doi: 10.1007/978-0-387-21706-2

37. Baltagi BH. The Oxford Handbook of Panel Data. Oxford Handbooks.
Oxford: Oxford University Press (2015). doi: 10.1093/oxfordhb/9780199940042.
001.0001

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2025.1638596
https://www.frontiersin.org/articles/10.3389/fams.2025.1638596/full#supplementary-material
https://doi.org/10.28919/cmbn/8795
https://doi.org/10.1080/00949655.2024.2449102
https://doi.org/10.19139/soic-2310-5070-1996
https://doi.org/10.32479/ijeep.17853
https://doi.org/10.1017/CBO9781139013567
https://doi.org/10.5539/mas.v12n4p38
https://doi.org/10.21533/pen.v8i1.1107
https://doi.org/10.1088/1742-6596/1897/1/012019
https://doi.org/10.22271/maths.2022.v7.i3a.817
https://doi.org/10.1177/01466216221124604
https://doi.org/10.1016/j.procs.2022.12.164
https://doi.org/10.9734/ajpas/2020/v6i430167
https://doi.org/10.3141/1897-06
https://doi.org/10.1016/j.econlet.2007.05.030
https://doi.org/10.2307/1911191
https://doi.org/10.28919/jmcs/5852
https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1002/0471725250
https://doi.org/10.1002/0471725382
https://doi.org/10.1016/j.csda.2010.09.019
https://doi.org/10.12732/ijpam.v91i3.7
https://doi.org/10.1002/9781119214656
https://doi.org/10.1080/03610918.2018.1498886
https://doi.org/10.37394/23206.2022.21.28
https://doi.org/10.1016/j.jeconom.2024.105761
https://doi.org/10.1080/00949655.2021.1996576
https://doi.org/10.4108/eai.2-8-2019.2290517
https://doi.org/10.1007/s11009-014-9432-5
https://doi.org/10.1111/j.1368-423X.2007.00220.x
https://doi.org/10.1007/978-0-387-21706-2
https://doi.org/10.1093/oxfordhb/9780199940042.001.0001
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	New robust estimators for the fixed effects negative binomial model: a simulation and real-world applications to European panel data
	1 Introduction
	2 Robust FENB model estimates
	3 Simulation design and evaluation of estimators
	4 Real-life panel data applications
	4.1 COVID-19 application
	4.2 Patents application

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


	Figure1: 
	Figure2: 
	Figure3: 
	Figure4: 


