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Epidemic dynamics in the
spatio-temporal predator-prey
model

Hyangim Ji, Maria Vasilyeva, Nana Adjoah Mbroh* and

Alexey Sadovski

Department of Mathematics and Statistics, Texas A&M University- Corpus Christi, Corpus Christi, TX,

United States

In this work, we develop a novel mathematical model to simulate the

spatio-temporal dynamics of epidemics in a predator–prey system. The

model integrates the classical Lotka–Volterra predator–prey framework with

a Susceptible–Infected–Susceptible disease model and explicitly incorporates

di�usion terms to capture spatial movement. This unified approach allows us to

simultaneously analyze susceptible and infected prey and predator populations,

and account for both ecological and spatial interactions. An extension beyond

traditional models that often treat these processes separately. The model

consists of four partial di�erential equations and includes key ecological

factors such as growth and mortality rates, predation, reproduction, and

carrying capacity. Through extensive numerical simulations across a wide range

of ecological and epidemiological parameters, we systematically investigate

how disease transmission and spatial di�usion shape population dynamics.

The results reveal that spatial movement plays a critical role in determining

species distribution and infection persistence, highlighting the complex interplay

between disease spread and ecosystem stability.

KEYWORDS

eco-epidemiology, predator-prey interactions, reaction-di�usion equations, spatio-
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1 Introduction

In mathematical biology, understanding interactions among species and the

transmission of infectious diseases is essential to predict outbreaks, formulate effective

control strategies, and support ecosystemmanagement initiatives as discussed byMontevil

[1]. Two foundational models in this field are the Lotka–Volterra (LV) predator-prey

model studied by Swailem and Täuber [2], and the Susceptible–Infected–Susceptible

(SIS) epidemiological model, described by Kuhl [3]. The Lotka–Volterra model describes

predator–prey dynamics through a system of nonlinear differential equations and has

been widely employed to capture the cyclical dynamics of such relationships, where the

population sizes of both species oscillate over time. In contrast, the SIS model partitions

a host population into susceptible and infective compartments and describes the rates at

which individuals transition between these states. This model is particularly useful for

describing diseases with temporary immunity and informs the development of effective

control strategies.

The classical LV framework has been extended to include additional ecological

complexities, such as inter-species competition, mutualism, and environmental

stochasticity. For example, recent studies by Shaikhet and Korobeinikov [4] have
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investigated the asymptotic behavior of LVmodels under stochastic

disturbances to demonstrate the influence of random fluctuations

on population stability and persistence. In addition, Davis et al.

[5] adapted the model to quantify interactions within microbial

communities to show its versatility in the analysis of a wide

range of biological systems. Similarly, the SIS model has evolved

significantly to incorporate spatial heterogeneity, behavioral

responses, and stochastic effects to reflect realistic epidemiological

dynamics. For stochastic SIS models, Lahrouz et al. [6] and Gray

et al. [7] have explored the influence of random perturbations on

extinction or persistence of the disease to reveal critical thresholds

for long-term endemicity. Similarly, Pastor-Satorras et al. [8]

applied network-based SIS frameworks to study the transmission

of disease in complex social and contact networks to inform the

design of targeted interventions and control strategies.

To better understand the interactions between ecological

dynamics and disease transmission, many studies have integrated

classical LV dynamics with SIS-type infection models. These hybrid

frameworks reveal how disease can influence species interactions,

population stability, and long-term infection persistence in

ecological systems [9]. An early influential contribution by

Hadeler and Freedman [10] introduced a predator–prey model

and incorporated SI-type infection into the prey population.

The study demonstrated how the dynamics of the disease could

fundamentally affect the survival of predator and alter the

overall stability of the ecosystem. Since then, this modeling

approach has been extended in various ecological contexts to

examine how the dynamics of a disease shapes the coexistence

and long-term behavior of a system (see, e.g., [9, 11–13]).

Complementing these advances, Gómez-Hernández et al. [14]

provided a comprehensive review of ODE-based eco-epidemic

predator–prey models. Their work systematically classified recent

model structures and identified key gaps, particularly the limited

incorporation of infection dynamics, spatial heterogeneity, and

delay effects. This gap is beginning to narrow; for instance, Majee

et al. [15] recently introduced a spatiotemporal eco-epidemicmodel

which incorporates both incubation and gestation delays.

Eco-epidemiological models play a crucial role in

understanding temporal dynamics. However, many classical

models assume spatial homogeneity and therefore overlook

localized interactions among individuals or species. Motivated

by this limitation, researchers such as Davydovych et al. [16]

and Naz and Torrisi [17] have incorporated diffusion terms into

ecological and epidemiological models to capture the spatial spread

of populations and diseases. These spatially explicit models have

revealed important spatiotemporal phenomena. For example,

Hu et al. [18] demonstrated the emergence of spatial pattern

formation in predator–prey systems, while Zhao and Ruan [19]

identified traveling wavefronts as key mechanisms for disease

propagation. Further, Chen and Wu [20] highlighted the role of

spatial thresholds in determining the persistence or extinction of

a disease. The study of reaction–diffusion eco-epidemiological

systems continues to advance through a combination of analytical

and numerical approaches. Contributions by Hu et al. [18], Qiao

et al. [21], Ling et al. [22], Sun et al. [23], and Upadhyay and Roy

[24] have contributed to the expanding literature showing how

traveling waves, pattern formation, bifurcation structures, and

instabilities can emerge and govern the behavior of the system.

Recent work has extended classical reaction-diffusion

frameworks to investigate the influence of prey-taxis on solution

behavior in eco-epidemiological models. In particular, Upadhyay

et al. [25] employed the p-Laplacian to model slow dispersal and

incorporated increased mortality among infected prey. The authors

proved the global existence of classical solutions under standard

mortality and random movement and established weak solutions

under conditions of slow dispersal and elevated mortality.

Assuming linear diffusion and predator taxis toward infected

prey, they analyzed the stability of the positive equilibrium and

demonstrated the emergence of steady-state bifurcations. These

complex dynamics were further illustrated through numerical

simulations, underscoring important implications for biological

invasions and pest control in disease-affected populations. In

a related work, Peng et al. [26] studied a reaction-diffusion

SIS epidemic model that featured a non-linear incidence term

of the form SqIp (0 < p ≤ 1, q > 0) and a constant total

population. They analyzed the spatial profiles of endemic equilibria

under conditions of limited movement for both susceptible and

infected individuals and revealed how non-linear transmission

mechanisms and reduced mobility jointly shape the spread

of disease. Their theoretical results, supported by numerical

simulations, highlighted the role of spatial heterogeneity and

complex transmission on epidemic dynamics.

Previous studies and reviews have emphasized the importance

of spatial thresholds and wave phenomena in shaping the dynamics

of outbreak, particularly in eco-epidemiological systems (e.g., [16,

17]). From a computational perspective, Biswas and Bairagi [27]

demonstrated that nonstandard finite difference methods preserve

critical biological properties more effectively than traditional Euler

schemes, while Liu and Yang [28] used implicit–explicit methods

to improve the computational efficiency and stability in reaction-

diffusion SIS models. Furthermore, Sorokin and Vyazmin [29]

emphasized the importance of tailored numerical schemes in

delayed systems, especially to capture time-lagged spatial effects

and heterogeneity.

Although many eco-epidemiological models have been

proposed, most assume only one infected species or neglect the

role of spatial structure, which is essential in shaping ecosystem

behavior [15]. Comprehensive frameworks that simultaneously

capture infection in both predator and prey populations, while

incorporating spatial dynamics, remain relatively scarce. To

address this gap, we develop a spatially explicit model that captures

the joint dynamics of disease and predator–prey interactions.

Our framework includes susceptible and infected compartments

for both predators and prey, and incorporates diffusion to

model local movement. The resulting system of four coupled

partial differential equations accounts for predation, recovery,

transmission, and logistic growth. Using numerical simulations,

we analyze how spatial and ecological parameters influence

long-term outcomes, revealing conditions for disease persistence,

species coexistence, and ecosystem stability. These results provide

realistic insights relevant to conservation planning and infectious

disease management.

The remainder of the paper is organized as follows. In

Section 2, we introduce the mathematical model that includes four

compartments: susceptible and infected individuals in predator and

prey populations. Section 3 presents the spatial extension of the
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model by incorporating diffusion terms, along with its numerical

approximation using the explicit Euler method in time and a

cell-centered finite-difference scheme in space. Section 4 provides

numerical results for three cases: (1) the impact of varying predator-

prey parameters, (2) effects of varying epidemic parameters, and (3)

effect of varying diffusion. The paper concludes with a summary of

key findings and suggestions for future research directions.

2 Mathematical model

We propose a combined model that integrates the dynamics

of disease into the predator-prey framework by incorporating both

susceptible and infected classes for predator and prey populations.

Details about predator-prey model and disease spread can be

found in the Appendix A. The model is designed to investigate

how infection alters interspecies interactions and influences the

stability and long-term behavior of population sizes. By capturing

these dynamics, the approach allows for a detailed examination of

population trends and facilitates the assessment of disease impact

and other ecological factors on the overall ecosystem. Based on the

established ecological and epidemiological modeling frameworks

by Krebs [30], Murray [31], Rojas and Mena-Lorca [32], Gog and

Swinton [33], Santos and Morais [34], Bjørnstad and Grenfell [35],

and He and Li [36], the following assumptions are used to develop

the model.

1. The prey population finds abundant food all the time.

2. The prey population is self-limiting and exhibits logistic growth

in the absence of predator. The size of the prey population

influences the growth of the predator population, while natural

mortality is incorporated for both species.

3. The disease is transmitted between predator and

prey populations.

4. Infected individuals recover and subsequently re-enter the

susceptible class.

5. Infected prey reproduce only susceptible offspring.

6. The food supply of the predator population depends on the

prey population.

Based on the stated assumptions, the epidemic dynamics within

the predator-prey system are modeled by integrating the SIS

framework, as defined in Equation 21, with the classical Lotka-

Volterra predator-prey equations presented in Equation 23.

Let us be a susceptible prey population, ui be an infected prey

population, vs be a susceptible predator population and vi be an

infected predator population. The evolution of these populations is

described by the following system of differential equations

∂us

∂t
= αsus + αiui − βs

susvs − βs
i usvi − γ u

s u
2
s − σ s

i usui

− σ s
viusvi + ωiui,

∂ui

∂t
= −β i

suivs − β i
iuivi − γ u

i u
2
i + σ s

i usui + σ s
viusvi − ωiui,

∂vs

∂t
= −γ v

s vs + δssvsus + δsi vsui − σ vs
i vsui − σ vs

vi vsvi + ωvivi,

∂vi

∂t
= −γ v

i vi + δisvius + δiiviui + σ vs
i vsui + σ vs

vi vsvi − ωvivi,

(1)

where αs is the intrinsic growth rate of susceptible prey, αi is

the intrinsic growth rate of infected prey, βs
s is the predation rate

of susceptible predators on susceptible prey, βs
i is the predation

rate of infected predators on susceptible prey, β i
s is the predation

rate of susceptible predators on infected prey, β i
i is the predation

rate of infected predators on infected prey, γ u
s is the density-

dependent mortality rate of susceptible prey, γ u
i is the density-

dependent mortality rate of infected prey, γ v
s is the intrinsic

mortality rate of susceptible predators, γ v
i is the intrinsic mortality

rate of infected predators, δss is the reproduction rate of susceptible

predators from consuming susceptible prey, δsi is the reproduction

rate of susceptible predators from consuming infected prey, δis
is the reproduction rate of infected predators from consuming

susceptible prey, δii is the reproduction rate of infected predators

from consuming infected prey, σ s
i is the rate of disease transmission

from infected prey to susceptible prey, σ s
vi is the rate of disease

transmission from infected predators to susceptible prey, σ vs
i is

the rate of disease transmission from infected prey to susceptible

predators, σ vs
vi is the rate of disease transmission from infected

predators to susceptible predators, ωi is the rate at which infected

prey recover and become susceptible, ωvi is the rate at which

infected predators recover and return to the susceptible state.

The system (Equation 1) is supplemented with the following

initial conditions:

us(0) = u0s , ui(0) = u0i , vs(0) = v0s , vi(0) = v0i , t = 0.

To better understand a complex interaction presented in

Equation 1, we consider two special cases of the model: one

without predator-prey interaction, and another that neglects

epidemic transmission.

2.1 Susceptible-infected-susceptible
model for two species without species
interaction

In this special case of the general model (Equation 1), we focus

solely on the processes of infection transmission and recovery.

Susceptible prey become infected by contact infected prey or

infected predators. After a certain period, the infected prey can

recover and return to the susceptible class. Consequently, the

equations for the susceptible prey population (us(t)) and the

infected prey population (ui(t)) are given as follows

∂us

∂t
= −σ s

i usui − σ s
viusvi + ωiui,

∂ui

∂t
= σ s

i usui + σ s
viusvi − ωiui,

(2)

where σ s
i is the transmission rate of infection from infected prey

to susceptible prey, σ s
vi is the transmission rate of infection from

infected predators to susceptible prey, and ωi is the recovery rate of

infected prey to susceptible prey.
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The susceptible predator population (vs(t)) and the infected

predator population (vi(t)) are given as follows

∂vs

∂t
= −σ vs

i vsui − σ vs
vi vsvi + ωvivi,

∂vi

∂t
= σ vs

i vsui + σ vs
vi vsvi − ωvivi,

(3)

where σ vs
i is the transmission rate of infection from infected prey to

susceptible predator, σ vs
vi is the transmission rate of infection from

infected predators to susceptible predator, and ωvi is the recovery

rate of infected predator to susceptible predator.

2.2 Lotka-Volterra model with susceptible
and infected categories without disease
transmission

Next, we consider the Lotka-Volterra model (Equation 23) for

a predator-prey system and extend it by classifying both predator

and prey populations into susceptible and infected categories. Each

population interacts not only within its own species, but also

with other species and across infection statuses. We assume that

infected prey can only give birth to susceptible offspring. Therefore,

the total contribution to the susceptible prey class comes from

both susceptible and infected prey. Meanwhile, the population

of susceptible prey decreases due to predation, which we divide

into two parts: predation by susceptible predators and infected

predators. In addition, we account for the death term. Putting these

components together, the susceptible prey population is as follows

∂us

∂t
= αsus + αiui − βs

susvs − βs
i usvi − γ u

s u
2
s , (4)

where αs is the intrinsic growth rate of the susceptible prey

population, αi is the intrinsic growth rate of the infected prey

population, βs
s is the rate at which susceptible prey are consumed

by susceptible predators, βs
i is the rate at which susceptible prey are

consumed by infected predators, β i
s is the rate at which infected

prey are consumed by susceptible predators, β i
i is the rate at

which infected prey are consumed by infected predators, γ u
s is the

density-dependent mortality rate of susceptible prey.

The equation for infected prey (ui) is given as follows

∂ui

∂t
= −β i

suivs − β i
iuivi − γ u

i u
2
i , (5)

where αs is the intrinsic growth rate of the susceptible prey

population, β i
s is the rate at which infected prey are consumed

by susceptible predators, β i
i is the rate at which infected prey

are consumed by infected predators, γ u
i is the density-dependent

mortality rate of infected prey.

The equation for susceptible predator (vs) is given by

∂vs

∂t
= δssusvs + δsiuivs − γ v

s vs, (6)

where δss is e the reproduction rate resulting from susceptible

predators consuming susceptible prey, δsi is the reproduction rate

resulting from the susceptible predator consuming the infected

prey, γ v
s is the natural mortality rate of susceptible predators.

The equation for infected predator (vi) is given by

∂vi

∂t
= δisusvi + δiiuivi − γ v

i vi, (7)

where δis is the reproduction rate from infected predator

consumption of susceptible prey, δii is the reproduction rate from

infected predator consumption of infected prey, γ v
i is the natural

mortality rate of infected predators.

3 Spatio-temporal model and discrete
system

To capture the movement and changes in habitat of both

predators and prey, we incorporate a diffusion-based spatial

interaction mechanism; see, for example, Vasilyeva et al. [37, 38],

and Wang et al. [39]. Diffusion models the random movement of

individuals in space. In ecological terms, it represents how species

move in and out in search of food or how prey attempt to avoid

predators. Moreover, spatial interaction can influence movement

patterns differently for infected individuals, potentially altering

their dispersal behavior compared to healthy ones.

Let � ⊂ Rd be a computational domain (d = 1, 2, 3). We

consider the following system of partial differential equations for

the functions us(x, t), vs(x, t), ui(x, t) and vi(x, t), defined in the

computational domain �× [0,T], where x ∈ � denotes the spatial

variable and t ∈ [0,T] denotes time. These functions represent the

dynamic evolution of susceptible and infected populations within

the domain, possibly under interaction or transport effects. The

governing equations are given by

∂us

∂t
+ Dusus = αsus + αiui − βs

susvs − βs
i usvi − γ u

s u
2
s − σ s

i usui

− σ s
viusvi + ωiui,

∂ui

∂t
+ Duiui = −β i

suivs − β i
iuivi − γ u

i u
2
i + σ s

i usui + σ s
viusvi

− ωiui,

∂vs

∂t
+ Dvsvs = −γ v

s vs + δssvsus + δsi vsui − σ vs
i vsui − σ vs

vi vsvi

+ ωvivi,

∂vi

∂t
+ Dvivi = −γ v

i vi + δisvius + δiiviui + σ vs
i vsui + σ vs

vi vsvi

− ωvivi,

(8)

where Dfg is the diffusion operator

Dfg = −∇ · dfg∇fg , f = u, v, g = s, i.

Here ∇· is the divergence operator, dus is the diffusion

coefficient of the susceptible prey, dui is the diffusion coefficient of

the infected prey, dvs is the diffusion coefficient of the susceptible

predator, dvs is the diffusion coefficient of the infected predator,

∇us is the spatial gradient of the susceptible prey, ∇ui is the

spatial gradient of the infected prey, ∇vs is the spatial gradient

of the susceptible predator, ∇vi is the spatial gradient of the

infected predator.
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For a one dimensional case, where � = [0, L] is some given

intervals, we have

Dfg = −
∂

∂x

(

dfg
∂fg

∂x

)

and for two-dimensional case with � = [0, L]2 we obtain

Dfg = −
∂

∂x1

(

dfg
∂fg

∂x1

)

−
∂

∂x2

(

dfg
∂fg

∂x2

)

, x = (x1, x2).

Next, we let U(x, t) = (us(x, t), ui(x, t), vs(x, t), vi(x, t)) be a

vector variable, then we can write a system (Equation 8) as follows

∂U

∂t
+ DU = R(U), (9)

where D is the block-diagonal matrix and R(U) is the nonlinear

reaction term

D =











Dus 0 0 0

0 Dui 0 0

0 0 Dvs 0

0 0 0 Dvi











, R(U) =











Rus
Rui
Rvs
Rvi











,

with

Rus(U) = αsus + αiui − βs
susvs − βs

i usvi − γ u
s u

2
s − σ s

i usui

− σ s
viusvi + ωiui,

Rui(U) = −β i
suivs − β i

iuivi − γ u
i u

2
i + σ s

i usui + σ s
viusvi − ωiui,

Rvs(U) = −γ v
s vs + δssvsus + δsi vsui − σ vs

i vsui − σ vs
vi vsvi + ωvivi,

Rvi(U) = −γ v
i vi + δisvius + δiiviui + σ vs

i vsui + σ vs
vi vsvi − ωvivi.

We proceed to derive a discrete system by applying

discretization techniques to both the temporal and spatial domains.

3.1 Approximation by time

To numerically solve a time-dependent partial differential

Equation 8 for 0 ≤ t ≤ T, we discretize the time interval t ∈ [0,T]

into a finite number of steps. Let T > 0 be the final time, then

we divide the interval [0,T] into N uniform subintervals of length

1t = T
N . The time mesh points on the grid are given by tn = n1t

for n = 0, 1, 2, . . . ,N.

We let uns , u
n
i , v

n
s , and vni denote numerical approximations of

us(x, t), ui(x, t), vs(x, t), and vi(x, t) at time tn, respectively, where

uns (x) = us(x, t
n), uni (x) = ui(x, t

n), vns (x) = vs(x, t
n),

vni (x) = vi(x, t
n).

The time derivative is approximated using a first-order finite

difference scheme:

∂fg

∂t
(x, tn) ≈

f n+1
g (x)− f ng (x)

1t
, f = u, v, g = s, i,

where 1t = tn+1 − tn.

Moreover, each term on the left side is evaluated explicitly at the

current time tn [40–42]. Applying time approximation to system

(Equation 8), we obtain the explicit scheme

un+1
s − uns

1t
+ Dusu

n
s = αsu

n
s + αiu

n
i − βs

su
n
s v

n
s − βs

i u
n
s v

n
i

− γ u
s (u

n
s )

2 − σ s
i u

n
s u

n
i − σ s

viu
n
s v

n
i + ωiu

n
i ,

un+1
i − uni

1t
+ Duiu

n
i = −β i

su
n
i v

n
s − β i

iu
n
i v

n
i

− γ u
i (u

n
i )

2 + σ s
i u

n
s u

n
i + σ s

viu
n
s v

n
i − ωiu

n
i ,

vn+1
s − vns

1t
+ Dvsv

n
s = −γ v

s v
n
s + δssv

n
s u

n
s + δsi v

n
s u

n
i

− σ vs
i vns u

n
i − σ vs

vi v
n
s v

n
i + ωviv

n
i ,

vn+1
i − vni

1t
+ Dviv

n
i = −γ v

i v
n
i + δisv

n
i u

n
s + δiiv

n
i u

n
i

+ σ vs
i vns u

n
i + σ vs

vi v
n
s v

n
i − ωviv

n
i .

(10)

Then for the general form Equation 9, we have

Un+1 − Un

1t
+ DUn = R(Un), n = 0, 1, 2, ...,N, (11)

for Un = (uns , u
n
i , v

n
s , v

n
i ) with

U0 = (u0s , u
0
i , v

0
s , v

0
i ) at n = 0.

We note that the explicit numerical scheme employed in

this study is first-order accurate in time, meaning that a smaller

time step size 1t yields a more accurate approximation of the

solution. However, reducing 1t increases the computational cost,

as it requires a greater number of time steps N to simulate

the same time interval. Due to the nature of explicit methods,

numerical stability must be carefully addressed, particularly in

systems involving diffusion, where the time step must satisfy

specific stability constraints. In the context of simulating the

coupled SIS epidemic and the LV, predator-prey models, the choice

of 1t is critical to ensure both accuracy and stability. In this work,

we focus on scenarios with small diffusion and accordingly adopt

a small time step to maintain numerical stability. Furthermore, we

observe that the growth, mortality, and interaction rates inherent

to the Lotka-Volterra dynamics can induce rapid changes in

population behavior, necessitating a finer temporal resolution to

accurately capture these dynamics.

3.2 Approximation by space

For space approximation, we use a cell-centered finite-

difference scheme [43, 44]. LetKl be themesh cell and Th = ∪
Nh

l=1
Kl,

where Nh is the number of cells

such that Nh = N1 × N2 and xi,j is the center of a cell Kl = Ki,j

xi,j = ((i− 0.5) · h, (j− 0.5) · h), i = 1, ..,N1, j = 1, ..,N2,

where h is the distance between the grid nodes (grid size) and

l = l(i, j) is the global cell index, for example, l(i, j) = i · N2 + j.
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Here N1 and N2 is the number of cells in x1 and x2 directions. We

introduce a grid T ′
h
with nodes

x′i−0.5,j = ((i− 0.5) · h, j · h) and x′i,j−0.5 = (i · h, (j− 0.5) · h).

Let (qwl)i−0.5,j, (qwl)i+0.5,j, (qwl)i,j−0.5 and (qwl)i,j+0.5 be a fluxes

on the cell interfaces, where n is the outward normal to boundaries

of the cell, Ŵi−0.5,j, Ŵi+0.5,j, Ŵi,j−0.5 and Ŵi,j+0.5 are the left, right,

lower and upper bounds of the cell Kij = [(i − 1) · h, i · h] × [(j −

1) · h, j · h] with the center at the point xi,j. Then, we approximate

the diffusion operator as follows

Dh,wlw
n+1
l

(xij) = (qwl)i+0.5,j − (qwl)i−0.5,j + (qwl)i,j+0.5 − (qwl)i,j−0.5,

w = u, v, l = s, i,= 0,

with

(qwl)i−0.5,j =

∫

Ŵi−0.5,j

(qwl) · n ds, (qwl)i,j−0.5 =

∫

Ŵi,j−0.5

(qwl) · n ds.

Here, to approximate fluxes, we use a two-point approximation

of the derivative

1

|Ŵi−0.5,j|

∫

Ŵi−0.5,j

∇(wl) · n ds ≈
(wl)i,j − (wl)i−1,j

h
,

1

|Ŵi,j−0.5|

∫

Ŵi,j−0.5

∇(wl) · n ds ≈
(wl)i,j − (wl)i,j−1

h
,

where |Ŵi−0.5,j| = |Ŵi,j−0.5| = h.

Then, we have

∫

Ŵi−0.5,j

d−1
wl

qwl · n ds = −

∫

Ŵi−0.5,j

∇(wl) · n ds,

∫

Ŵi,j−0.5

d−1
wl

(qwl) · n ds = −

∫

Ŵi,j−0.5

∇(wl) · n ds.

Assuming qwl · n = const on the faces Ŵi−0.5,j and Ŵi,j−0.5, we

obtain the following approximation

(qwl)i−0.5,j = (dwl)i−0.5,j((wl)i,j − (wl)i−1,j),

(qwl)i,j−0.5 = (dwl)i,j−0.5((wl)i,j − (wl)i,j−1),

where coefficients are approximated using harmonic average

(dwl)i−0.5,j =
2

1/(dwl)i,j + 1/(dwl)i−1,j
,

(dwl)i,j−0.5 =
2

1/(dwl)i,j + 1/(dwl)i,j−1
.

We obtain

Dh,wl(wl)ij =− (dwl)i+0.5,j((wl)i+1,j − (wl)i,j)+ (dwl)i−0.5,j((wl)i,j

− (wl)i−1,j)− (dwl)i,j+0.5((wl)i,j+1 − (wl)i,j)

+ (dwl)i,j−0.5((wl)i,j − (wl)i,j−1),

for i = 1, ..,N1, j = 1, ..,N2.

Finally for Un+1
i,j = (un+1

s (xij), u
n+1
i (xij), v

n+1
s (xij), v

n+1
i (xij)) on

each cell Kij, we have

Un+1
ij − Un

ij

1t
|Kij| +DhU

n
ij = Rh(U

n
ij )|Kij|, n = 0, 1, 2, ...,N, (12)

where |Kij| is the volume of cell Kij = h2 and

Dh =











Dh,us 0 0 0

0 Dh,ui 0 0

0 0 Dh,vs 0

0 0 0 Dh,vi











, Rh(U
n
ij ) =











Rn
h,us

Rn
h,ui

Rn
h,vs

Rn
h,vi











.

We note that the explicit scheme requires a small time step to

maintain numerical stability. The condition typically depends on

the diffusion coefficients and grid spacing 1t ≤ 1
4 · h2

maxw,l(dwl)
.

Moreover, we may have additional restrictions based on the

reaction term R(U) [38, 40, 45].

3.3 Stability and convergence

Throughout this section we use the following notation:

• Un ∈ R
4N is the discrete solution vector introduced in

Sections 3.1, 3.2;

• Dh ∈ R
4N×4N is the block–diagonal diffusion matrix and

Rh :R
4N→R

4N the assembled reaction vector;

• M = h2I4N denotes the diagonal mass matrix on the uniform

mesh of width h;

• ‖ · ‖ stands for the Euclidean (ℓ2) norm, whereas ‖ · ‖2M : =

〈M(·), (·)〉 is the mass–weighted norm.

The explicit Euler update reads

M
(

Un+1 − Un
)

1t
+ DhU

n = MRh(U
n), n = 0, . . . ,N − 1.

(13)

Assumption 3.1 (Reaction regularity). There exists a constant γ >

0, independent of h, such that

‖Rh(U)− Rh(V)‖ ≤ γ ‖U − V‖, ∀U,V ∈ R
4N .

For the SIS–Lotka–Volterra source terms used in this study

each component of Rh is a polynomial of total degree≤ 2; hence

Assumption 3.1 is satisfied (see [46, Thm. 3.1] and [47, §4.3]).

Theorem 3.1 (Conditional stability of explicit Euler). Let

Assumption 3.1 hold and set η : = λmax(Dh) + γ . If the

time step satisfies the CFL condition

1t ≤
h2

2η
, (14)

then, with

a =
η 1t

h2
∈ [0, 12 ],

the explicit Euler iterates satisfy

‖Un‖2M ≤

(

1+a
1−2a

) n
‖U0‖2M , n = 0, 1, . . . ,N, T = N1t.
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Proof. Taking theM-inner product of Equation 13 withUn+1 gives

〈

M Un+1−Un

1t ,Un+1
〉

+ 〈DhU
n,Un+1〉 = 〈MRh(U

n),Un+1〉. (15)

Using

〈M(Un+1−Un),Un+1〉 = 1
2

(

‖Un+1‖2M−‖Un‖2M+‖Un+1−Un‖2M
)

,

dropping the non-negative third term in Equation 15, we obtain

‖Un+1‖2M − ‖Un‖2M

21t
≤ 〈DhU

n,Un+1〉 + 〈MRh(U
n),Un+1〉.

(16)

Let η > 0 be a parameter to be chosen later. Since ‖V‖ ≤

h−1‖V‖M , applying Cauchy and Young’s inequalities give

〈DhU
n,Un+1〉 ≤

η

2
h−2‖Un+1‖2M +

1

2η
‖DhU

n‖2,

〈MRh(U
n),Un+1〉 ≤

η

2
h−2‖Un+1‖2M +

h4

2η
‖Rh(U

n)‖2. (17)

Substituting the estimate Equation 17 into Equation 16 gives

‖Un+1‖2M − ‖Un‖2M

21t
≤

η

h2
‖Un+1‖2M +

1

2η

(

‖DhU
n‖2

+ h4‖Rh(U
n)‖2

)

. (18)

By Assumption 3.1, we obtain

‖Rh(U
n)‖ ≤ γ ‖Un‖ ≤ γ h−1‖Un‖M ,

while

‖DhU
n‖ ≤ λmax‖U

n‖,

by the symmetry of Dh.

Thus we have

‖DhU
n‖ ≤ λmax ‖U

n‖ ≤ λmaxh
−1‖Un‖M ,

‖Rh(U
n)‖ ≤ γ ‖Un‖ ≤ γ h−1‖Un‖M ,

so that the last term in the right of Equation 18 simplifies to

1

2η

(

‖DhU
n‖2 + h4‖Rh(U

n)‖2
)

≤
λ2max + γ 2

2ηh2
‖Un‖2M .

With η = λmax + γ and λ2max + γ 2 ≤ η2 we obtain

‖Un+1‖2M − ‖Un‖2M

21t
≤

η

h2
‖Un+1‖2M +

η

2h2
‖Un‖2M . (19)

Multiplying Equation 19 by 21t and introducing the

dimension-less parameter

a : =
η 1t

h2
, 0 ≤ a ≤

1

2

[so that the CFL condition (Equation 14) reads a ≤ 1
2 ] gives

(1− 2a) ‖Un+1‖2M ≤ (1+ a) ‖Un‖2M .

Since 1− 2a > 0, division yields the single-step estimate

‖Un+1‖2M ≤
1+ a

1− 2a
‖Un‖2M . (20)

Iterating Equation 20 for n = 0, . . . ,N − 1 proves

‖Un‖2M ≤

(

1+a
1−2a

)n
‖U0‖2M , n = 0, 1, . . . ,N,

which establishes Theorem 3.1.

Remark 3.1 (Local truncation error). Let the exact solution U(x, t)

of Equation 8 be four-times continuously differentiable in space

and twice in time on � × [0,T]. We substitute U(xij, t
n) into the

fully discrete scheme (Equation 13) and denote the residual by

τnij . Then

max
i,j

|τnij | = O
(

1t + h2
)

for n = 0, 1, . . . ,N − 1.

Proof. Write Un
ij : = U(xij, t

n). A Taylor expansion in time at

(xij, t
n) gives

Un+1
ij − Un

ij

1t
= Ut(xij, t

n) + 1
21t Utt(xij, t

n) + O(1t2).

For the diffusion term, the cell-centered five-point Laplacian

satisfies (cf. [48, Eq. (2.10)])

1

|Kij|
DhU(xij, t

n) = DU(xij, t
n) + O(h2).

Thus the reaction term is evaluated exactly at time tn, no

spatial or temporal error is introduced there. Substituting these

expressions into the definition τnij : =
(

M/1t
)

(Un+1
ij − Un

ij ) +

DhU
n
ij − MRh(U

n
ij ) and using Ut = DhU + R(U), the O(1t) and

O(h2) remainders remain, establishing the claim.

Corollary 3.1 (Error bound). If the exact solution U(x, t) of

Equation 8 is sufficiently smooth, then under the CFL condition

(Equation 14)

max
0≤n≤N

max
i,j

∣

∣Un
ij − U(xij, t

n)
∣

∣ = O
(

1t + h2
)

,

i.e. the method is first-order in time and second-order in space.

Combining this with the stability estimate from Theorem 3.1 and

a discrete Grönwall inequality (see [49]) yields the stated global

error bound.

4 Numerical results

We conducted a series of numerical simulations to investigate

how different initial conditions and parameter values influence

the dynamics of the system. The results highlight the effects of

key ecological and epidemiological parameters, such as birth and

death rates, predation and reproduction rates, and transmission

and recovery rates, and also demonstrate how infection can shape

predator–prey interactions.

We begin by varying the initial state of the susceptible and

infected prey and predator populations. In the simulation, we use
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the parameters presented in Table 1 and begin with the case without

diffusion dfg = 0 for f = u, v and g = s, i.

To examine the effect of the initial state of the predator and prey

populations on the predator-prey system, we consider two cases:

• Case 1. We fix the susceptible prey initial population at 0.7

and the infected prey initial population at 0.3 while gradually

decreasing the ratio of the susceptible predator population

from 1 to 0 and increasing the ratio of the infected predator

population from 0 to 1

u0s = 0.7, u0i = 1− u0s , v0s ∈ [0, 1], v0i = 1− v0s .

• Case 2. We set the initial populations of susceptible and

infected predators at 0.8 and 0.2, respectively. We gradually

decrease the proportion of the susceptible prey population

from 1 to 0 and increase the ratio of the infected prey

population from 0 to 1.

u0s ∈ [0, 1], u0i = 1− u0s , v0s = 0.8, v0i = 1− v0s .

Here u0s and u0i are the initial population of susceptible and

infected prey (u0s+u0i = 1 is the total ratio of prey), v0s and v
0
i are the

initial population of susceptible and infected predators (v0s +v0i = 1

is the total ratio of prey).

Figures 1, 2 present the simulation results for the two cases.

In Case 1 (Figure 1), the initial prey population is fixed at

(u0s , u
0
i ) = (0.7, 0.3), while the ratio of susceptible to infected

predators (v0s , v
0
i ) is varied. In Case 2 (Figure 2), the predator initial

condition is fixed at (v0s , v
0
i ) = (0.8, 0.2), and the initial prey

composition is varied. Each subplot in both figures illustrates the

time evolution of the system over a 250-month period. Across

all simulations, the system exhibits transient oscillatory behavior

followed by convergence to a steady state, regardless of the initial

infection levels. In Figure 1, increasing the proportion of initially

infected predators intensifies early fluctuations but does not affect

the long-term equilibrium. The predator population stabilizes

with approximately 75% susceptible individuals, while the prey

population stabilizes at about 50% susceptible. This indicates that

the initial infection burden among predators influences only short-

term dynamics, with no lasting impact on the final population

distributions. Similarly, Figure 2 shows that variations in the initial

ratio of susceptible to infected prey primarily affect the speed of

disease spread and the amplitude of early oscillations. As the initial

infection level in prey increases, infected individuals dominate

more quickly; however, the system still converges to a stable

coexistence of susceptible and infected individuals in both prey

and predator populations. Notably, infected prey persist in all

cases, and this suggest that disease becomes endemic in the prey

population. These results suggest that the system is resilient to

initial infection levels, with disease persisting endemically in both

prey and predator populations. The initial distribution of infection

affects only short-term dynamics, while long-term outcomes are

determined by the intrinsic parameters of the model.

TABLE 1 Summary of model parameters.

Parameter Description Value

αs Intrinsic growth rate of susceptible prey 0.02

αi Intrinsic growth rate of infected prey 0.01

βs
s Predation rate of susceptible predators on

susceptible prey

0.02

βs
i Predation rate of infected predators on

susceptible prey

0.02

β i
s Predation rate of susceptible predators on

infected prey

0.02

β i
i Predation rate of infected predators on infected

prey

0.02

γ u
s Density-dependent mortality rate of susceptible

prey

0.02

γ u
i Density-dependent mortality rate of infected prey 0.02

γ v
s Intrinsic mortality rate of susceptible predators 0.01

γ v
i Intrinsic mortality rate of infected predators 0.01

δss Reproduction rate of susceptible predators from

consuming susceptible prey

0.04

δsi Reproduction rate of susceptible predators from

consuming infected prey

0.04

δis Reproduction rate of infected predators from

consuming susceptible prey

0.04

δii Reproduction rate of infected predators from

consuming infected prey

0.04

σ s
i Rate of disease transmission from infected prey

to susceptible prey

0.01

σ s
vi Rate of disease transmission from infected

predators to susceptible prey

0.01

σ vs
i Rate of disease transmission from infected prey

to susceptible predators

0.01

σ vs
vi Rate of disease transmission from infected

predators to susceptible predators

0.01

ωui Rate at which infected prey recover and become

susceptible

0.01

ωvi Rate at which infected predators recover and

return to the susceptible state

0.01

All symbols, baseline values, and biological meanings for parameters used in the eco-

epidemiological predator–prey model. These values are applied in the simulations unless

otherwise indicated.

4.1 Test 1. E�ects of varying predator-prey
parameters on the model

To investigate the impact of key parameters on the dynamics

of the epidemic in a predator-prey system, we vary the growth,

mortality, predation, and reproduction rates under a fixed initial

condition for each population. The initial population composition

is fixed as follows:

(u0s , u
0
i ) = (0.7, 0.3), (v0s , v

0
i ) = (0.8, 0.2).

Here we have 70 % susceptible prey, 30% infected prey, 80%

susceptible predators, and 20% infected predators.
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FIGURE 1

Case 1 with (u0
s ,u

0
i ) = (0.7, 0.3) and varying initial ratios of susceptible to infected predators (v0s , v

0
i ). (a) (v

0
s , v

0
i ) = (1, 0). (b) (v0s , v

0
i ) = (0.9, 1). (c)

(v0s , v
0
i ) = (0.8, 0.2). (d) (v0s , v

0
i ) = (0.5, 0.5). (e) (v0s , v

0
i ) = (0.3, 0.7). (f) (v0s , v

0
i ) = (0.1, 0.9).

FIGURE 2

Case 2 with (v0s , v
0
i ) = (0.8, 0.2) and varying initial ratios of susceptible to infected prey (u0

s ,u
0
i ). (a) (u

0
s ,u

0
i ) = (1, 0). (b) (u0

s ,u
0
i ) = (0.8, 0.2). (c)

(u0
s ,u

0
i ) = (0.7, 0.3). (d) (u0

s ,u
0
i ) = (0.4, 0.6). (e) (u0

s ,u
0
i ) = (0.2, 0.8). (f) (u0

s ,u
0
i ) = (0, 1).
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We consider three test cases related to the variations of

predation and reproduction rates:

• Test 1a. We keep the predation and reproduction rates

β̃
f
g = β

f
g , δ̃

f
g = δ

f
g , f = u, v g = s, i,

while varying birth and death rates.

• Test 1b. We keep the predation and reproduction rates

β̃
f
g = 0.8 β

f
g , δ̃

f
g = 0.8 δ

f
g , f = u, v g = s, i,

while varying birth and death rates.

• Test 1c. We keep the predation and reproduction rates

β̃
f
g = 1.2 β

f
g , δ̃

f
g = 1.2 δ

f
g , f = u, v g = s, i,

while varying birth and death rates.

To vary birth and death rates, we multiply given values by P

and Q

α̃
f
g = Pα

f
g , γ̃

f
g = Qγ

f
g , f = u, v g = s, i,

with P = 0.8, 1, 1.2 and Q = 0.8, 1, 1.2. Here α
f
g and

γ
f
g are the growth and mortality rates of prey (f = u)

and predator (f = v), where g = s, i corresponds to the

FIGURE 3

Test 1a: E�ects of scaling growth and mortality rates. We use (β̃ f
g, δ̃

f
g) = (β f

g, δ
f
g) for predation and reproduction, and α̃f

g = Pαf
g and γ̃ f

g = Qγ f
g for growth

and mortality. (a) (P,Q) = (0.8, 0.8). (b) (P,Q) = (0.8, 1.0). (c) (P,Q) = (0.8, 1.2). (d) (P,Q) = (1.0, 0.8). (e) (P,Q) = (1.0, 1.0). (f) (P,Q) = (1.0, 1.2). (g)

(P,Q) = (1.2, 0.8). (h) (P,Q) = (1.2, 1.0). (i) (P,Q) = (1.2, 1.2).
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susceptible and infected population. The values for α
f
g , β

f
g , γ

f
g

and δ
f
g , as well as transmission and recovery rates, are given

in Table 1.

Figures 3–5 depicts the simulation results under varying growth

(P) and mortality (Q) rates, as well as different scaling of predation

and reproduction rates. The center plot of Figure 3 shows the

baseline case where the proportion of susceptible prey begins

at 70% and stabilizes around 50%, while the population of

susceptible predators starts at 80% and settles at approximately

75%. When the mortality rate increases for all species, only

the susceptible prey population increases while the number of

susceptible predators decreases, indicating a distinct behavioral

shift within the ecosystem. Conversely, decreasing the mortality

rate leads to a slight increase in the susceptible predator ratio, but

both prey ratios fall below their initial values, and the system takes

longer to reach equilibrium.

Comparing the different scaling cases in Figures 4, 5, it

is evident that a change in predation and reproduction rates

further influences these dynamics. When these rates are reduced

(Figure 4), the system exhibits more stability, with rapidly damping

oscillations and faster equilibrium by the populations. In contrast,

increasing predation and reproduction rates (Figure 5) result

in larger, more persistent oscillations and delayed stabilization,

emphasizing the destabilizing effects of increased biological

activity. Notably, in all cases, the magnitude of population change

is influenced by the difference between the growth and mortality

FIGURE 4

Test 1b with (β̃ f
g, δ̃

f
g) = 0.8× (β f

g, δ
f
g) for predation and reproduction rates. The results are shown for varying values of P and Q: α̃f

g = Pαf
g and γ̃ f

g = Qγ f
g

for growth and mortality rates. (a) (P,Q) = (0.8, 0.8). (b) (P,Q) = (0.8, 1.0). (c) (P,Q) = (0.8, 1.2). (d) (P,Q) = (1.0, 0.8). (e) (P,Q) = (1.0, 1.0). (f)

(P,Q) = (1.0, 1.2). (g) (P,Q) = (1.2, 0.8). (h) (P,Q) = (1.2, 1.0). (i) (P,Q) = (1.2, 1.2).
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FIGURE 5

Test 1c with (β̃ f
g, δ̃

f
g) = 1.2× (β f

g, δ
f
g) for predation and reproduction rates. The results are shown for varying values of P and Q: α̃f

g = Pαf
g and γ̃ f

g = Qγ f
g

for growth and mortality rates. (a) (P,Q) = (0.8, 0.8). (b) (P,Q) = (0.8, 1.0). (c) (P,Q) = (0.8, 1.2). (d) (P,Q) = (1.0, 0.8). (e) (P,Q) = (1.0, 1.0). (f)

(P,Q) = (1.0, 1.2). (g) (P,Q) = (1.2, 0.8). (h) (P,Q) = (1.2, 1.0). (i) (P,Q) = (1.2, 1.2).

scaling factors (P and Q); larger discrepancies (P > Q) lead to

more pronounced changes. The proportion of infected predators

rises substantially with increasing birth rates, especially when the

birth rate coefficient exceeds the death rate coefficient, while the

infected prey population typically declines toward zero. These

results indicate that higher predation and reproduction rates

destabilize populations, increasing the risk of fluctuations and

collapse. In contrast, reducing these rates or adjusting growth and

mortality can enhance stability and resilience. Thus, interventions

targeting these parameters, such as predator management or

habitat modification, can play a critical role in maintaining

ecosystem health.

4.2 Test 2. E�ects of varying epidemic
parameters on the model

Next, we modify the coefficients of the transmission and

recovery rate to investigate their influence on the dynamics of the

predator-prey system (Figure 6). As before, the values for σ̃
f
g = Pσ

f
g

and ω̃
f
g = Qω

f
g are set to 1, 0.8, and 1.2, respectively, with all other

parameters given in Table 1.

The results reveal that when P > Q, indicating that growth rates

exceed mortality rates, infected populations–particularly infected

predators–experience substantial growth due to increased exposure

to infected prey. This dynamic highlights the role of ecological
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FIGURE 6

Test 2. The results are represented for varying values of T and R, σ̃ f
g = Tσ f

g and ω̃f
g = Rωf

g for the transmission and recovery rates. (a)
(T,R) = (0.8, 0.8). (b) (T,R) = (0.8, 1.0). (c) (T,R) = (0.8, 1.2). (d) (T,R) = (1.0, 0.8). (e) (T,R) = (1.0, 1.0). (f) (T,R) = (1.0, 1.2). (g)
(T,R) = (1.2, 0.8). (h) (T,R) = (1.2, 1.0). (i) (T,R) = (1.2, 1.2).

scaling in amplifying infection intensity. Interestingly, variations

in transmission and recovery rates do not significantly affect the

time required for the system to reach equilibrium. While higher

transmission relative to recovery increases infection prevalence,

especially among predators, the overall time to stabilization

remains largely unchanged. These findings suggest that although

infection intensity is sensitive to epidemiological parameters, the

system exhibits a form of ecological resilience: long-term stability

is preserved despite fluctuations in disease burden. This robustness

implies that managing ecological parameters such as growth and

predation may be more effective for influencing system stability

than targeting transmission or recovery alone.

4.3 Test 3. E�ect of varying di�usion

We solve a system of four coupled reaction-diffusion equations

and conduct numerical simulations under three diffusion cases:

Base, Low, and Lower. In each case, we assign unique diffusion

coefficients to the four population classes: susceptible prey (dus ),

infected prey (dui ), susceptible predators (dvs ), and infected

predators (dvi ). All other model parameters and initial conditions

remain fixed throughout the simulations. The diffusion cases

are defined such that each successive case reduces the diffusion

coefficients by a factor of 10 compared to the previous one.

Specifically, we consider the following:
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• Base: dus = 10−3, dui = 10−4, dvs = 10−4, dvi = 10−5

• Low diffusion: dus = 10−4, dui = 10−5, dvs = 10−5,

dvi = 10−6

• Lower diffusion: dus = 10−5, dui = 10−6, dvs = 10−6,

dvi = 10−7

Results are presented for the averages over the domain and

numerical solution profiles at different time steps, illustrating

the influence of diffusion on the spatio-temporal dynamics of

predator–prey–infection interactions. The results demonstrate

how variations in diffusion rates shape spatial distribution,

affect population dynamics, and influence the alignment between

predator and prey populations in different diffusion cases.

Figure 7 displays the average population dynamics in the

spatio-temporal model under varying diffusion values and spatial

resolutions. The six subplots are arranged in two rows to illustrate

how varying spatial resolution (Nx = Ny) and diffusion rates

impact the average population. The upper row represents the

impact of spatial resolution on the average population, while the

lower row shows the effect of diffusion. More specifically, each

subplot tracks the temporal behavior of the four populations:

susceptible prey (dotted red), infected prey (solid blue), susceptible

predators (dashed orange), and infected predators (dashed green).

Figures 7a–c present results for increasing spatial resolutions Nx =

Ny = 10, 20, and 40, respectively, while each plot includes the

three diffusion cases. Each plot in the top row explicitly compares

these diffusion variations, displaying how different diffusion rates

(represented by solid lines for higher, dashed lines for lower,

and dotted lines for the lowest diffusion) affect population and

stabilization times. Lower diffusion rates consistently result in

longer-lasting and larger oscillations before stabilization compared

to higher diffusion rates. Furthermore, this effect is increasingly

evident as spatial resolution increases from 10 to 40, with clearer

and more extended transient dynamics becoming apparent at finer

resolutions. Across these plots, the overall oscillatory patterns

remain relatively consistent, with similar amplitudes and periods

of oscillation. Although increasing spatial resolution introduces

subtle refinements in the shape and timing of the oscillations, the

broad qualitative dynamics, such as the frequency and magnitude

of population cycles, remain largely unchanged. Thus, under

moderate diffusion, spatial resolution has a limited impact on

the global average dynamics, primarily influencing fine-scale

details rather than the overall system behavior. The plots in the

Figures 7d–f highlight the effects of decreasing diffusion across the

same spatial resolutions. As diffusion decreases from Figures 7d–f,

the system exhibits fewer oscillations in the susceptible prey and

predator populations. In the lower case (Figure 7f), the dynamics

are relatively smooth and converge quickly to equilibrium.

However, in the low diffusion case (Figure 7e), oscillations become

more sustained, with slow convergence, and in the base diffusion

case (Figure 7d), these effects are amplified. This progression

demonstrates a lower diffusion reduces the rate of spatial mixing.

In summary, diffusion strength plays a central role in shaping the

ecological stability and convergence of the predator–prey–infection

system. Lower diffusion leads to limited spatial mixing, resulting in

faster stabilization and reduced oscillatory behavior. This reflects

biological situations where species exhibit lowmobility or restricted

dispersal, thereby reducing contact between prey and predators.

In contrast, higher diffusion increases movement and spatial

encounters, sustaining predator-prey interactions and infection

spread, and prolonging the transient dynamics of the system.

While spatial resolution has a lesser effect on global averages,

it refines the accuracy of these dynamics, particularly under

low diffusion.

FIGURE 7

Test 3. E�ects of spatial resolution and di�usion on the dynamics of the species in the model. Average population dynamics under three di�usion

cases (base, low and lower) on the spatial grids Nx = Ny = 10, 20, 40 in the first row. Each plot shows the temporal evolution of susceptible and

infected prey and predator populations. (a) Nx = Ny = 10. (b) Nx = Ny = 20. (c) Nx = Ny = 40. (d) Base. (e) Low. (f) Lower.
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FIGURE 8

Test 3. Solution profiles of the spatio-temporal eco-epidemiological model at di�erent time steps with the base di�usion coe�cients. (a) Susceptible

prey population (us); (b) infected prey population (ui); (c) susceptible predator population (vs); (d) infected predator population (vi). Profiles are shown

across a 2D domain over five selected time points: t = 0, t = 10, t = 20, t = 50, and t = 120 months.

Figure 8 presents the solution profile of the spatio-temporal

model with the base diffusion case to capture the spatial evolution

of the four population categories: susceptible prey (us), infected

prey (ui), susceptible predators (vs) and infected predators (vi)

at selected time steps: 0, 10, 20, 50, and 120 months. Each row

corresponds to one population type: (a) susceptible prey, (b)

infected prey, (c) susceptible predator, and (d) infected predator,

while each column shows the spatial distribution at a given time.

At t = 0, all populations are initially localized within a central

square region, reflecting a spatially confined initial condition. As

time progresses, the diffusion process drives the outward spread

of each population. By t = 10 and t = 20 months, the

distributions begin to exhibit smooth concentric patterns. Over

longer time scales (50–120 months), the system approaches spatial

equilibrium, with susceptible populations (us) and (vs) becoming

nearly uniform throughout the domain. Infected populations (ui)

and (vi) exhibit a more transient behavior. Infected prey densities

increase initially but begin to decrease significantly by t = 50,

while infected predators are nearly extinguished by t = 120.

These trends are consistent with the dynamics of a disease in

which the infection is temporary and eventually fades as the

system stabilizes. In particular, the susceptible predator population

tends to concentrate in regions with higher prey density, and this

reflects spatial predator-prey coupling. Thus, the base diffusion
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FIGURE 9

Test 3. Solution profiles of the spatio-temporal eco-epidemiological model at di�erent time steps with the low di�usion coe�cients. (a) Susceptible

prey population (us); (b) Infected prey population (ui); (c) Susceptible predator population (vs); (d) Infected predator population (vi). Profiles are

shown across a 2D domain over five selected time points: t = 0, t = 10, t = 20, t = 50, and t = 120 months.

case enables moderate spatial mixing, leading to the formation

of structured yet stable spatial patterns that reflect the interplay

between infection dynamics and ecological interactions.

Similarly, in Figure 9, we present the spatial evolution of each

population group under the low diffusion scenario in the spatio-

temporal model at selected time points: 0, 10, 20, 50, and 120

months. The rows correspond to (a) susceptible prey (us), (b)

infected prey (ui), (c) susceptible predator (vs), and (d) infected

predator (vi). At the initial time (t = 0), all populations are

confined to a central region, reflecting a localized initial condition.

Due to the reduced diffusion rates, the species spread more slowly

compared to the base scenario. This is evident in the snapshots

at t = 10 and t = 20 months, where population densities

remain sharply localized with steep spatial gradients, and ring-like

diffusion patterns emerge slower. As time progresses, the system

moves toward homogenization, but the transition is significantly

slower than in the base case. By t = 50 and t = 120

months, infected prey and predator populations still exhibit a

recognized spatial structure, and this indicates a longer persistence

infection and a less uniform spread. Susceptible populations also

display more pronounced patchiness and high-density regions

remain spatially confined rather than diffusing evenly across the

domain. These effects are particularly noticeable in the infected

compartments, where the clusters remain sharper and more
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FIGURE 10

Test 3. Solution profiles of the spatio-temporal eco-epidemiological model at di�erent time steps with the lower di�usion coe�cients. (a)

Susceptible prey population (us); (b) Infected prey population (ui); (c) Susceptible predator population (vs); (d) Infected predator population (vi).

Profiles are shown across a 2D domain over five selected time points: t = 0, t = 10, t = 20, t = 50, and t = 120 months.

localized than in the base diffusion case. This slower spatial

mixing under low diffusion supports the earlier observation that

reduced diffusion prolongs transient dynamics, delays convergence

to equilibrium, and allows local population heterogeneity to persist.

The spatial dynamics remain uneven throughout the simulation

period, highlighting the role of diffusion as a key mechanism for

smoothing gradients and accelerating ecological stabilization.

Furthermore, the results for the lower diffusion case are

shown in Figure 10 and follow the same presentation style as

the base and low diffusion cases. At t = 0, all populations are

initially confined to a central region, reflecting a localized starting

condition. Due to the significantly reduced diffusion rate, spatial

spread is highly restricted throughout the simulation. Unlike in the

base or low diffusion cases, the populations remain tightly clustered

for extended periods. Snapshots at t = 10 and t = 20 months

reveal sharply localized density peaks and steep spatial gradients,

particularly in the infected populations. Even at t = 50 and t = 120

months, only limited outward diffusion has occurred, and strong

spatial heterogeneity persists in all populations.

Figure 11 displays the one-dimensional cross-sectional density

profiles of the four species populations with diffusion model,

susceptible prey (us), infected prey (ui), susceptible predator (vs),
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FIGURE 11

Horizontal cross-sectional density profiles along the x-axis for all species with the base di�usion coe�cients. (a) Mesh resolution Nx = Ny = 10; (b)

mesh resolution Nx = Ny = 20; (c) mesh resolution Nx = Ny = 40. The profiles are shown over five selected time points: t = 0, t = 10, t = 20, t = 50,

and t = 120 months.

and infected predator (vi) along the horizontal axis x ∈ [0, 1], taken

at five time points: 0, 10, 20, 50, and 120 months. Each subplot

compares the density curves of the four populations, with solid blue

for us, dashed red for ui, dash-dotted green for vs, and dotted orange

for (vi). The rows (a), (b), and (c) correspond to mesh sizes 10, 20

and 40 respectively. Susceptible prey and predator populations

show a broad spread and sustained concentrations at intermediate

times (e.g., 20–50months). In contrast, infected populations show a

pattern of increase and decrease, they grow initially, peak, and then

decline. By t = 120 months, both the infected prey and predator

densities have a long-term decline in the disease.

4.3.1 Biological interpretation summary
Our numerical results reveal that while initial infection

conditions influence early dynamics, they do not alter long-

term ecological outcomes. Regardless of the initial proportion of

infected prey and predators, the system consistently converges to

a stable coexistence equilibrium. This suggests that the predator–

prey–infection system exhibits ecological resilience to the severity

of initial outbreaks. In contrast, variations in ecological and

epidemiological parameters, such as growth, mortality, predation,

reproduction, transmission, and recovery rates have a substantial

impact on both transient and long-term dynamics. For example,

when birth rates exceed mortality rates (P > Q), infected

predator populations increase due to greater exposure, while

infected prey decline. Elevated predation and reproduction rates

destabilize the system, leading to amplified oscillations and delayed

stabilization, while lower values promote faster convergence and

ecological stability. Similarly, increasing transmission relative

to recovery intensifies infection prevalence, particularly among

predators, although the time to equilibrium remains largely

unaffected. These findings highlight that while infection intensity

is sensitive to parameter shifts, the underlying predator–prey

dynamics exhibits robust long-term stability. Spatial processes

further shape ecological outcomes. Moderate diffusion facilitates

spatial mixing, supporting predator–prey coexistence and eventual

infection fadeout. In contrast, limited diffusion restricts movement,

prolongs transients, and leads to persistent infection pockets and

uneven species distributions. Cross-sectional profiles reinforce

these patterns, showing that susceptible populations spread

more uniformly, while infected populations form sharp transient

peaks. These results underscore the ecological importance of

species mobility in regulating contact rates, infection persistence,

and the emergence of spatially structured equilibrial. Together,

these insights suggest that managing ecological parameters and
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promoting appropriate levels of species mobility could be key

strategies for controlling disease spread andmaintaining ecosystem

stability in spatially structured environments.

5 Conclusion

The epidemic dynamics in the spatio-temporal predator-prey

model are derived by combining two models: the SIS epidemic

model and the Lotka-Volterra (LV) predator-prey model. We

simulated a system of four ordinary differential equations and

obtained numerical results using the Euler method.

First, we examined how the initial conditions of each

population class affect the system. Our main finding is that

the initial ratios of susceptible to infected prey and predators

influence the time required to reach a steady state. Although the

system consistently converges to the same equilibrium, the time to

stabilization depends on the initial deviation from that equilibrium.

Although these differences are subtle, the pattern is clear: the

greater the deviation, the longer the system takes to stabilize.

Second, we explored the impact of key parameters on system

stability. The results show that a higher mortality rate accelerates

convergence to the steady state. An increased growth rate primarily

contributes to the growth of the infected predator population

more than the susceptible predators, while the prey population

may decline due to intensified predation pressure. In addition,

when the death rate surpasses the birth rate, the ratio of

susceptible prey exceeds that of susceptible predators. These

findings underscore the sensitivity of population dynamics to

ecological and epidemiological parameters.

Finally, we investigated the effect of diffusion by varying the

diffusion coefficients while keeping all other parameters fixed.

Diffusion plays a key role in shaping the dynamics of the spatio-

temporal model. Higher diffusion leads to faster spatial mixing

and faster stabilization, whereas lower diffusion slows population

spread, prolongs infection persistence, and maintains spatial

heterogeneity. These results highlight the importance of diffusion

in determining how quickly and uniformly the system approaches

equilibrium. As a natural extension of this work, the model could

be enhanced by incorporating additional ecological complexities,

such as seasonal variations, heterogeneous landscapes, or predator-

prey preference dynamics. Investigating stochastic versions of the

model may also offer valuable insights into the role of randomness

in disease persistence and extinction. Furthermore, the use of

more advanced numerical methods or adaptive mesh refinement

techniques could improve accuracy in low-diffusion regimes and

help mitigate the numerical stiffness observed in the simulations.
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Appendix

We introduce the SIS epidemic model, followed by a discussion

of the classical LV model. The SIS model describes the spread

of infectious diseases within a population where individuals

can move between susceptible and infected states, do not

develop immunity, and become susceptible again. This model

can be used for diseases that do not have long-term immunity,

chronic or recurrent infections, or short-lived immunity. The

foundation for mathematical epidemiology was presented by

describing how infectious diseases spread in a population using

differential equations.

The SIS model consists of two nonlinear differential equations

that represent the rate of change in the population of susceptible

S(t) and infected populations I(t)

∂S

∂t
= −σSI + ωI,

∂I

∂t
= σSI − ωI,

(21)

where S is the susceptible population, I is the infected population,

σ is the infection rate of the susceptible, ω is the recovery rate at

which the infected return to the susceptible.

The Lotka-Volterra model is a mathematical framework

that describes the dynamics of predator-prey interactions in an

ecological system. It consists of a system of coupled differential

equations that represent the populations of predators and prey

over time. A modified version of the model, based on logistic prey

population growth, consists of two nonlinear differential equations

that represent the rate of change in the populations of prey u(t) and

predator v(t)

∂u

∂t
= αu

(

1−
u

k

)

− βuv,

∂v

∂t
= δvu− γ vv,

(22)

where u is the prey population, v is the predator population, α is

the natural birth rate of the prey, k is carrying capacity, β is the

predation rate (the rate at which predators consume prey), δ is

the predator reproduction rate (conversion of consumed prey into

predator offspring) and γ is the natural death rate of predators. In

this formulation, the first term in the prey equation represents the

logistic growth.When resources are abundant, its population grows

rapidly but slowly as it approaches carrying capacity, while the

second term captures the predation effect. To simplify the model

and explicitly represent the natural mortality of the prey, we replace

the logistic term with a simpler quadratic death term γ u u2, where

γ accounts for all causes of death that become more significant as

the population grows; such as competition for limited resources.

This leads to the following system

∂u

∂t
= αu− βuv− γ uu2,

∂v

∂t
= δvu− γ vv.

(23)

The modified formulation removes explicit carrying capacity

k and instead assumes that prey mortality increases quadratically

with population size. This approach maintains the self-limiting

nature of prey growth while allowing a more flexible representation

of mortality, which may arise from competition, resource

limitation, or other density-dependent factors [31, 50].
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