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We propose a novel framework for modeling thermal transport in biological 
tissues based on a fractional bio-heat diffusion equation regularized by 
a generalized (q, τ )-entropy functional. The model incorporates a Caputo-
Numerical simulations demonstrate the evolution of temperature profiles and 
entropy dynamics, revealing the interplay between fractional memory, metabolic 
heat generation, and entropy-induced resistance. A stability theorem this 
framework offers a physically consistent and flexible approach grounded in non-
equilibrium statistical mechanics and bio-thermal regulation, making it suitable 
for applications in complex biological media with long-range. 
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1 Introduction 

Information theory, statistical mechanics, and thermodynamics are all based on 
entropy. In systems made up of separate microscopic states, disorder and uncertainty 
are measured by the classical Boltzmann-Gibbs entropy, which is expressed as S = 
− 


pi log pi [1–3]. However, as shown in intricate biological, physical, visual, and 

financial processes, this form is constrained when modeling systems with long-range 
interactions, memory effects, or anomalous diffusion [4–6]. Several generalized entropy 
frameworks have been developed to get over these restrictions. Among the most prominent 
is the Tsallis entropy, which introduces non-extensive behavior and is specified by a 
deformation parameter q: 

Sq = 
1− 

 
pq 
i 

q− 1 
. 

This approach has been effectively used to study quantum systems, turbulence, and 
multifractals. The study of decoherence, entanglement, and instability in quantum systems 
has been enhanced by the extension of information measures to density matrices and 
quantum probability spaces due to advancements in quantum entropy. However, as noted 
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in Dingyu and Lu [7] and Agarwal et al. [8], fractional calculus 
offers a natural instrument to represent dynamics with memory 
and hereditary features. The Riemann-Liouville, Caputo, and 
Hadamard kinds of fractional derivatives and integrals extend 
conventional differential operators and enable the modeling of 
viscoelastic materials, anomalous diffusion, and sub-diffusive 
processes. Particularly in the context of stability analysis and 
entropy-producing systems, the unification of fractional dynamics 
with non-extensive entropy has garnered interest in recent 
years [9, 10]. 

Biological tissues exhibit highly complex thermal behavior, 
characterized by heterogeneous structure, multiple time scales of 
heat conduction, and active metabolic heat generation. Classical 
models based on the Fourier law of heat conduction are limited 
in this context, as they neglect memory effects and the intrinsic 
non-equilibrium nature of living tissues. Recent studies have 
demonstrated that fractional-order diffusion models provide a 
natural extension of the Pennes bio-heat equation, capturing 
anomalous thermal transport and sub-diffusive behavior observed 
in biological systems [11–14]. In this work, we adopt a (q, τ )-
entropy framework that extends existing methods by including 
a scaling parameter τ that modulates the memory kernel of the 
fractional operator and a deformation parameter q that controls 
the degree of non-extensivity. This makes it possible to interpret 
energy dissipation and entropy creation in bio-heat transport 
in a consistent thermodynamic manner. Our fractional diffusion 
model’s entropy term −λ logq,τ (T) functions as an effective 
potential, dynamically modifying thermal resistance in response to 
local temperature variations. This mechanism offers a physically 
grounded way to regularize thermal transport in complicated 
biological media and is consistent with the generalized fluctuation-
dissipation relations in non-equilibrium statistical mechanics. 
Our numerical outcomes show that the (q, τ )-entropy framework 
captures important aspects of bio-thermal dynamics, such as 
physically realistic entropy decay and entropy-stabilized patterns 
of temperature. These findings imply that generalized entropy-
based statistical mechanics techniques are useful instruments 
for improving the modeling of bio-heat transfer and associated 
processes in living systems. 

2 Generalized entropy 

Definition 2.1 (Generalized ((q, τ )-Entropy). Let p = 
{p1, p2, . . . , pn} be a discrete probability distribution such 
that pi > 0, 

n 
i=1 pi = 1. The (q, τ )-entropy associated with the 

distribution p is formulated by (see Figure 1, for various values of 
τ and q = 0.5) 

Sq,τ (p) : = −  
n 

i=1 

pi · logq,τ (pi), 

where the deformed logarithm logq,τ (x) is given by 

logq,τ (x) : = 
x 1−q − 1 

1− q 
· q,τ (x), 

and the (q, τ )-gamma function is defined as 
(see Figure 2) 

q,τ (α) = (1 − q)1−α 
∞ 

n=0 

1 − qτ (n+1) 

1 − qτ (α+n) , for 0 < q < 1, τ > 0. 

In the limit (q, τ ) →(1,1), this entropy reduces to conventional 
Shannon entropy and provides a deformation that incorporates 
scaling tendency and memory [15–17] with its applications 
in Attiya et al. [18], Alqarni et al. [19], and Hasanov and 
Yuldashova [20]. 

2.1 Thermodynamic rationale for the 
generalized logarithm log(q,τ )(x) 

The modified logarithmic function log(q,τ )(x) = x1−q−1 
1−q × 

q,τ (x), which includes a fractional memory kernel q,τ (x), 
extends the Tsallis-type logarithm. This idea combines the 
impacts of statistical non-extensive (through the parameter q) 
with long-range memory or non-locality (via τ ), both of which 
are essential components of thermal transport in intricate and 
dynamic settings. 

2.1.1 From tsallis entropy to fractional memory 
entropy 

In nonextensive thermodynamics, the classical Tsallis logarithm 
is logq(x) = x

1−q−1 
1−q , which reduces to the natural logarithm known 

as q → 1. This function basically arises from the maximization 
of Tsallis entropy and captures the deviation of extensivity due to 
fractal geometries or long-range connections. 

2.1.2 Role of the q,τ (x) term 
The historical context of thermal computation in tissue 

biology reflects the influence of past thermal asserts on 
current behavior (non-Markovian dynamics), the persistence 
of temperature distributions over time scales (memory effects), 
and tissue-specific thermal reactions derived from heterogeneous 
relaxation times. 

2.1.3 Thermodynamic interpretation 
The function log(q,τ )(x) could be viewed as a memory-weighted 

entropy potential. An entropy functional like as Sq,τ (f ) = 
− 

 
f (x) log(q,τ )(f (x)) dx, can be used to mimic entropy creation 

in systems with anomalous, history-dependent behaves, which are 
prevalent in biological and viscoelastic tissues. 

2.1.4 Limit cases 
If q,τ (x) → 1, then log(q,τ )(x) → log(x), we can 

recover the usual logarithm as q → 1. If q,τ (x) encodes 
power-law decay (as in fractional kernels), then entropy grows 
in accordance with memory-regulated non-exponential laws 
(Table 1). 
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FIGURE 1 

Plot of Sq,τ , with  q = 0.5 and τ ∈ {0.5, 0.75, 1.0, 1.25, 1.5} respectively. Memory effects lengthen the entropy production process since the entropy 
decay is slower for greater τ . The degradation is steeper for lower τ because the system recalls previous states more quickly. 

FIGURE 2 

Graph of  q,τ (α)for different values of (q, τ ). 

The (q, τ )-logarithm extends the Tsallis form by including a 
fractional memory weight, and it is thermodynamical consistent 
with complex biological systems that have both non-extensivity and 

long-range memory. This method is necessary to analyze entropy-
based occurrences in bio-heat transfer and related fractional 
diffusion pathways. 
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TABLE 1 Physical interpretation of the terms in log(q,τ )(x). 

Component Physical meaning 

x1−q Captures deviation from extensivity; models anomalous 
scaling in complex systems 

(1 − q)−1 Normalization that controls the degree of nonadditivity; 
relates to entropy production rate 

q,τ (x) Fractional memory kernel; encodes tissue-dependent 
relaxation, historical effects, and temporal asymmetry 

Proposition 2.2 ( Basic properties of the (q, τ )-entropy). Let p = 
{p1, p2, . . . , pn} be a discrete probability distribution such that pi > 
0 and 

n 
i=1 pi = 1. Define the (q, τ )-entropy as 

Sq,τ (p) = −  
n 

i=1 

pi · logq,τ (pi), 

where the (q, τ )-logarithm. Then the next properties hold: 
(i) Non-negativity: Sq,τ (p) ≥ 0, with equality if and only if 

pi = 1 for some i and all others zero. 
(ii) Maximality at uniform distribution: The entropy Sq,τ (p) 

attains its maximum when pi = 1 
n for all i, i.e., 

Sq,τ (p) ≤ −  
n

i=1 

1 

n 
logq,τ 

 
1 

n 

 

. 

(iii) Classical limit: In the limit as q → 1, τ → 1, we 
recover the classical Shannon entropy: limq→1, τ→1 Sq,τ (p) = 
− 

n 
i=1 pi log(pi). 

Proof. (i) Non-negativity: For 0 < q < 1, we note that x1−q ≥ 1 
for all x ∈ (0, 1], hence logq,τ (x) ≤ 0. Then each term satisfies the 
ineqaulity −pi ·logq,τ (pi) ≥ 0, thus the total sum Sq,τ (p) ≥ 0. If pj = 
1 for some j, then all other pi = 0, and Sq,τ (p) = −1×logq,τ (1) = 0, 
because logq,τ (1) = 0 ·q,τ (1) = 0. Thus, the minimum is achieved 
only at pure states. 

(ii) Maximum at uniform distribution: According to Jensen’s 
inequality and concavity of x → −x logq,τ (x) (since logq,τ is 
decreasing and convex for 0 < q < 1), the entropy is maximized 
when all pi are achieved the following sum: 

Sq,τ (p) ≤ −  
n

i=1 

1 

n 
logq,τ 

 
1 

n 

 

= − logq,τ 

 
1 

n 

 

. 

(iii) Limit to Shannon entropy: since q,τ (x) → 1 as  
both parameters tend to the classical limit, one can observe 
that limq→1 

x1−q−1 
1−q = log(x), and limτ→1 q,τ (x) = 1. 

Hence, we get limq→1, τ→1 logq,τ (x) = log(x), and therefore 
limq→1, τ→1 Sq,τ (p) = −  

n 
i=1 pi log(pi), which is the classical 

Shannon entropy. 

Proposition 2.3 ( Pseudo-Additivity of the (q, τ )-Entropy). 
Let A and B be two statistically independent systems with 
respective discrete probability distributions {pi} and {qj}, and 
joint distribution rij = piqj. The (q, τ )-entropy of each system is 
given by: 

Sq,τ (p) = −  
 

i 

pi logq,τ (pi), Sq,τ (q) = −  
 

j 

qj logq,τ (qj), 

Sq,τ (p⊗ q) = −  
 

i,j 

piqj logq,τ (piqj), 

where logq,τ (x) = x
1−q−1 
1−q · q,τ (x). Then the (q, τ )-entropy admits 

the pseudo-additive law: 

Sq,τ (A × B) = Sq,τ (A) + Sq,τ (B) + (1 − q) · 
 

i,j 

pq 
i q

q 
j · q,τ (piqj). 

Proof. Since rij = piqj, we have  

Sq,τ (A× B) = −  
 

i,j 

piqj · logq,τ (piqj). 

Utilizing the identity logq,τ (piqj) = logq,τ (pi) + logq,τ (qj) + 
(1 − q) · q,τ (piqj) (derived from generalized logarithmic rules), 
we expand 

Sq,τ (A× B) = −  
 

i,j 

piqj 
 
logq,τ (pi) + logq,τ (qj) + (1 − q) 

· q,τ (piqj) . 

Opining this sum, it yields 

Sq,τ (A× B) = −  
 

i 

pi logq,τ (pi) 
 

j 

qj − 
 

j 

qj logq,τ (qj) 
 

i 

pi 

− (1 − q) 
 

i,j 

piqj · q,τ (piqj). 

But 
 

j qj = 1 and 
 

i pi = 1, we get 

Sq,τ (A × B) = Sq,τ (A) + Sq,τ (B) + (1 − q) · 
 

i,j 

piqj · q,τ (piqj). 

To maintain the non-extensive structure, note that the 
correction term roughly equals, for very small pi, qj, we have  
q,τ (piqj) ≈ q,τ (pi)q · q,τ (qj)q. Thus, the final pseudo-additive 
expression becomes: 

Sq,τ (A × B) = Sq,τ (A) + Sq,τ (B) + (1 − q) · 
 

i,j 

p 
q 
i q 

q 
j · q,τ (piqj). 

Definition 2.4 ( Continuous (q, τ )-entropy). Let f (x) be a 
probability density function (PDF) defined on a measurable 
space  ⊆ R

n , such that: 

f (x) > 0, 
 
f (x) dx = 1. 

Then the continuous (q, τ )-entropy is formulated by 

Sq,τ (f ) = −  
 
f (x) · logq,τ (f (x)) dx, 

where the (q, τ )-logarithmic function is given by logq,τ (x) = 
x 1−q−1 
1−q × q,τ (x), and the (q, τ )-gamma function is formulated by 

q,τ (α) = (1 − q)1−α ∞ 
n=0 

1−qτ (n+1) 

1−qτ (α+n) , for 0 < q < 1, τ >  0. 
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Proposition 2.5. (Fundamental properties of continuous (q, τ )-
entropy) Let f (x) be a continuous PDF on  ⊆ R

n , with all integrals 
finite. Then the (q, τ )-entropy Sq,τ (f ) achieves 

1. (Non-negativity): Sq,τ (f ) ≥ 0. 
2. (Shannon limit): If  q → 1 and τ → 1, then 

lim 
q→1, τ→1 

Sq,τ (f ) = −  
 
f (x) log f (x) dx. 

3. (Invariance under smooth bijective transforms): Let y = 
T(x) be a smooth bijection with Jacobian determinant JT (x), 
and define: 

g(y) : = f (T−1(y)) · det JT−1 (y) . 

Then, 

Sq,τ (g) = Sq,τ (f ). 

Proof. 1. Non-negativity: Since 0 < q < 1 and 0 < f (x) ≤ 1, we 
have f (x)1−q ≥ 1, so f (x)

1−q−1 
1−q ≥ 0. Furthermore, the (q, τ )-Gamma 

function is strictly positive for all x > 0. Hence, we observe that 

logq,τ (f (x)) ≤ 0 ⇒ f (x) · logq,τ (f (x)) ≤ 0. 

Consequently, we get 

Sq,τ (f ) = −  
 
f (x) logq,τ (f (x)) dx ≥ 0. 

2. Classical limit: Recall the traditional limit: 

lim 
q→1 

x 1−q − 1 

1− q 
= log(x). 

Let q,τ (x) → 1 as  τ → 1 is uniform on compact subsets of 
(0, 1], we get 

logq,τ (x) → log(x), as q → 1, τ → 1. 

Then, by Dominated Convergence Theorem (since 
f (x) logq,τ (f (x)) → f (x) log f (x) and is integrable), 

lim 
q→1, τ→1 

Sq,τ (f ) = −  
 
f (x) log f (x) dx. 

3. Invariance under smooth change of variables: Let y = T(x) 
be a smooth bijection with Jacobian JT (x), and 

g(y) = f (T−1(y)) · det JT−1 (y) . 

Computing yields 

Sq,τ (g) = −  
 

g(y) logq,τ (g(y)) dy. 

Now by applying the change of variable y = T(x), dy = 
| det JT (x)|dx, we observe that 

g(T(x)) = f (x), logq,τ (g(T(x))) = logq,τ (f (x)). 

Therefore, we get 

Sq,τ (g) = −  
 
f (x) logq,τ (f (x)) dx = Sq,τ (f ). 

2.2 (q, τ )-relative entropy 

Definition 2.6. Let f (x) and g(x) be two probability density 
functions on a domain  ⊂ Rn , with f (x) > 0, g(x) > 0. The 
(q, τ )-relative entropy is formulated via the structure 

Dq,τ (f g) : = 
 
f (x) × logq,τ 

 
f (x) 
g(x) 

 

dx, 

where the (q, τ )-logarithm is: 

logq,τ (x) = 
x 1−q − 1 

1− q 
× q,τ (x), with q,τ (x) > 0 for x > 0. 

Proposition 2.7 ( Non-negativity of Dq,τ (f g)). Assume 0 < q < 1 
and q,τ (x) > 0. Then 

Dq,τ (f g) ≥ 0, 

with equality if and only if f (x) = g(x) almost everywhere. 

Proof. Let r(x) : = f (x)g(x) , where r(x) > 0. Moreover, logq,τ (r(x)) ≥ 

0, since r(x)1−q ≥ 1 and q,τ (r(x)) > 0. Therefore, we get 

f (x) · logq,τ (r(x)) ≥ 0 ⇒ Dq,τ (f g) ≥ 0. 

Equality holds only when r(x) = 1 ⇒ f (x) = g(x). 

2.2.1 (q, τ )-fisher information 
Let f (x; θ) be a parametric family of PDFs with parameter 

θ ∈ R. Define the deformed score function, as follows: 

Uq,τ (x; θ) : = 
∂ 

∂θ  
logq,τ (f (x; θ)). 

Then the (q, τ )-Fisher information is given via the integral 

Iq,τ (θ) : = 
 
f (x; θ)q 

 
∂ 

∂θ  
logq,τ (f (x; θ)) 

2 

dx. 

When q → 1, logq,τ → log and this recovers classical Fisher 
information, the weight f q emphasizes low-probability regions (for 
q < 1) and it can be utilized in extended Cramér–Rao bounds. 

2.2.2 (q, τ )-thermodynamic potentials 
Let f (x) be a PDF for energy states E(x), with the internal energy 

U : = 
 
f (x)E(x)dx. 

Then the generalized Helmholtz free energy is defined as: 

Fq,τ : = U − T · Sq,τ (f ), Sq,τ (f ) : = −  
 
f (x) logq,τ (f (x))dx. 

The expanded (q, τ )-entropy framework for defining various 
entropies is displayed in Table 2. 
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TABLE 2 One of the alternate entropies’ (q, τ )-entropies. 

Quantity Definition with (q, τ ) 

Relative entropy Dq,τ (f g) = 
 
f (x) logq,τ 

f (x) 
g(x) 


dx 

Fisher information Iq,τ (θ) = 
 
f (x; θ)q ∂ 

∂θ  logq,τ (f (x; θ)) 
2 

dx 

Free energy Fq,τ = U − TSq,τ (f ) 

Example 2.8. 

Let f (x) = e−x , g(x) = 2e−2x , x ∈ [0, ∞). 

Then the (q, τ )− relative entropy with q = 0.5, τ = 1 becomes 

Dq,τ (f g) ≈ 0.12763. 

While, for τ = 2, q = 0.5, we have 

Dq(f g) ≈ 0.80946. 

Theorem 2.9 ((q, τ )-Cramér-Rao inequality). Let {f (x; θ)} be a 
parametric family of probability density functions defined over 
x ∈  ⊂ R, where θ ∈ ⊂ R is an unknown parameter. 
Assume: f (x; θ) > 0 and differentiable w.r.t. θ , the support of f is 
independent of θ , interchanging differentiation and integration is 
valid, and all integrals are finite. Let θ̂(x) be an unbiased estimator 
of θ , i.e., 

Ef [ ̂θ(x)] = θ . 

Then, the (q, τ )-Cramér-Rao inequality holds: 

Varf ( ̂θ) ≥ 
1 

Iq,τ (θ) 
, 

where the (q, τ )-Fisher information is defined as: 

Iq,τ (θ) = 
 
f (x; θ)q 

 
∂ 

∂θ  
logq,τ (f (x; θ)) 

2 

dx, 

with 

logq,τ (f ) = 
f 1−q − 1 

1− q 
× q,τ (f ). 

Proof. Define the deformed score function, as follows 

Uq,τ (x; θ) : = 
∂ 

∂θ  
logq,τ (f (x; θ)). 

Let h(x) : = θ̂(x) − θ . Since Ef [h(x)] = 0, we apply the 
Cauchy-Schwarz inequality: 

 

 
h(x)f (x; θ)q/2 · Uq,τ (x; θ)f (x; θ)q/2dx 

2 

≤ 
 
h(x)2f (x; θ)qdx · 

 
Uq,τ (x; θ)2f (x; θ)qdx. 

That is  

 
h(x)Uq,τ (x; θ)f (x; θ)qdx 

2 

≤ Varf q ( ̂θ) · Iq,τ (θ). 

We now compute the numerator: 

 
h(x)Uq,τ (x; θ)f (x; θ)qdx = 

 
(θ̂(x) − θ) 

∂ 

∂θ  
logq,τ 

(f (x; θ))f (x; θ)qdx. 

Employing integration by parts such that assuming the 
smoothness, this integral equals to 1. Hence, we have 

1 ≤ 
 
Varf q ( ̂θ) · Iq,τ (θ) ⇒ Varf q ( ̂θ) ≥ 

1 

Iq,τ (θ) 
. 

The following is one way to see the results: for f (x; θ), a family 
of probability density functions with differentiable dependence on 
θ ∈ ⊂ R, and take into account the requirements for smoothness 
when using the (q, τ ) -Fisher details 

Iq,τ (θ) = 
 
f (x; θ)q 

 
∂ 

∂θ  
logq,τ (f (x; θ)) 

2 

dx. 

Corollary 2.10. If θ̂(x) is an unbiased estimator of θ , i.e., 

Ef [ ̂θ(x)] = θ , 

then the mean squared error is bounded by: 

Varf ( ̂θ) ≥ 
1 

Iq,τ (θ) 
. 

Proof. This is a direct restatement of the (q, τ )-Cramér-Rao 
inequality for unbiased estimators. 

Corollary 2.11. Let θ̂(x) be any (not necessarily unbiased) 
estimator of θ , and define the bias: 

b(θ) : = Ef [ ̂θ(x)] − θ . 

Then the mean squared error satisfies: 

Ef [( ̂θ(x) − θ)2] ≥ 
(1 + b (θ))2 

Iq,τ (θ) 
, 

where b (θ) = d 
dθ b(θ). 

Proof. This follows from the generalized biased Cramér-Rao 
bound applied to the weighted Fisher information and using 
the identity: 

Ef [( ̂θ − θ)2] = Varf ( ̂θ) + b(θ)2 , 

combined with a modified Cauchy-Schwarz argument involving 
logq,τ (f ). 

Example 2.12. Consider the exponential distribution: 

f (x; θ) = θe−θx , x ≥ 0, θ >  0. 

Let ˆ θ be an unbiased estimator of θ , such as the sample mean 
inverse. We analyze the (q, τ )-Fisher information for θ = 1, q = 
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0.5, and consider the simplified case (when τ → 1). Deformed 
logarithmic derivative, for τ → 1, implies 

logq(f ) = 
f 1−q − 1 

1− q 
, with q = 0.5, 

and differentiate w.r.t θ , we obtain 

∂ 

∂θ  
logq(f (x; θ)) = f −q(x; θ) · ∂f 

∂θ  
(x; θ). 

The derivative of the density is: 

∂f 
∂θ  

(x; θ) = e−θx(1 − θx). 

Compute (q, τ )-Fisher information, 

Iq,τ (θ) = 
∞ 

0 
f (x; θ)q 

 
∂ 

∂θ  
logq(f (x; θ)) 

2 

dx, 

by utilizing a numerical integration with θ = 1, q = 0.5, this yields 

Iq,τ (θ = 1) ≈ 0.3704. 

Thus, the Cramér–Rao lower bound becomes 

Var( ̂θ) ≥ 
1 

Iq,τ 
≈ 

1 

0.3704 
≈ 2.700. 

Compare with classical bound, for the exponential distribution, 
the classical Fisher information becomes 

I(θ) = 
1 

θ2 ⇒ Var( ̂θ) ≥ 
1 

I(θ) 
= θ 2 = 1. 

Hence, the (q, τ )-bound is more conservative: 
1 ≤ Var(θ̂) ≤ 2.7. 

Example 2.13. Consider the one-parameter exponential family 

f (x; θ) = θe−θx , x ≥ 0, θ >  0. 

We present the (q, τ )-Fisher information as follows: (see 
Figure 3). 

Iq,τ (θ) = 
∞ 

0 
f (x; θ)q 

 
∂ 

∂θ  
logq,τ (f (x; θ)) 

2 

dx, 

where logq,τ (x) = 
x1−q − 1 

1− q 
· q,τ (x). Due to the high 

computational cost and instability of evaluating q,τ (x) for small 

x, we use the simplified version logq(f (x; θ)) = f (x;θ)
1−q−1 

1−q , which 
corresponds to omitting the q,τ factor. We fix q = 0.5, and 
evaluate the integral numerically over θ ∈ [0.2, 2]. The growth of 
θ , Iq,τ (θ) is found to be non-linear. The evolution of information is 
accelerated by higher deformation, which is associated with greater 
τ values. As θ decreases, the typical Fisher information for this 
distribution is I(θ) = 1/θ2 , which shows the opposite tendency. 
Since f (x; θ) has relatively small values in the tail, adding the 
whole q,τ (x) to the integral results in large numerical records and 
overflow in the product corresponding to q,τ . It is necessary to 
asymptotically extend or estimate q,τ (x) close to x → 0+ for 
practical evaluation. 

TABLE 3 Parametric sensitivity analysis of the parameters q and τ in 
thermal transport modeling of biological tissues. 

Parameter Variation Observed thermal behavior 

q Increase (q > 1) Enhanced thermal spread; 
super-diffusive behavior; smooth and 
extended temperature profiles 
indicating nonlocal effects and 
long-range interactions. 

Decrease (q < 1) Localized heat retention; sub-diffusive 
behavior; slower spread with energy 
trapped in specific tissue regions (e.g., 
scarred or fibrotic areas). 

τ Increase (τ >  1) Stronger memory effect; delayed 
thermal response; persistent influence 
of historical temperature profiles; 
common in low-perfusion tissues (e.g., 
fat or bone). 

Decrease (τ <  1) Weakened memory; faster thermal 
adjustment; transient behavior 
dominates; typical in highly perfused or 
metabolically active tissues (e.g., muscle, 
skin). 

A parametric sensitivity analysis example is provided in Table 3 
to wrap up this section. The parameters q and τ serve as 
physically significant tuners of entropy-driven thermal dynamics in 
biological tissues. The sensitivity table illustrates their crucial roles 
in modeling the spatial irregularity and temporal memory observed 
in heterogeneous thermal processes. The magnitude of temporal 
memory effects is specifically altered by τ , whereas q controls 
the kind of spatial diffusion, which can range from sub-diffusive 
to super-diffusive regimes. These data provide a more accurate 
and flexible modeling paradigm for bio-thermal environments by 
supporting the usage of the (q, τ )-entropy framework to represent 
complex heat transport performance that is often neglected by 
traditional methodologies. 

3 Thermodynamic cycle with 
(q, τ )-entropy and free energy 

Let us define the key generalized thermodynamic quantities 
utilizing the (q, τ )-entropy Sq,τ and free energy Fq,τ . For a 
probability density function f (x), the (q, τ )-entropy is, as follows: 

Sq,τ (f ) = −  
 
f (x) logq,τ (f (x)) dx, where 

logq,τ (x) = 
x 1−q − 1 

1− q 
· q,τ (x). 

Let E(x) be the energy associated with state x, with internal 
energy becomes U = 


 f (x)E(x) dx, and the generalized 

Helmholtz free energy is: Fq,τ = U − T · Sq,τ (f ). We now describe 
a simple four-step cycle in a generalized thermodynamic system: 

1. Isothermal expansion at temperature T1: The system absorbs 
heat Qin, entropy increases: 

Sq,τ > 0, Fq,τ = −Qin. 
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FIGURE 3 

The plot shows Iq,τ (θ ) as a function of θ , computed for various values of τ ∈ {0.5, 0.75, 0.9, 0.99}, with the  q,τ term approximated. 

2. Isoentropic expansion (adiabatic): No heat exchange, entropy 
remains constant: 

Sq,τ = 0, U = Wout . 

3. Isothermal compression at temperature T2 < T1: System 
releases heat Qout , entropy decreases 

Sq,τ < 0, Fq,τ = Qout . 

4. Isoentropic compression (adiabatic): Restores the system to 
the initial state with no entropy change 

Sq,τ = 0, U = −Win. 

The net work over one cycle is: 

Wnet = Qin − Qout , 

and the efficiency becomes 

ηq,τ = 
Wnet 

Qin 
= 1− Qout 

Qin 
. 

When entropy is deformed, heat exchange is replaced by 

Q = T · Sq,τ . 

Thus, the generalized efficiency becomes: 

ηq,τ = 1− 
T2 · S(comp) 

q,τ 

T1 · S(exp) q,τ 

, 

Therefore, the standard Carnot efficiency is obtained when 
q → 1, τ → 1. This parameter q < 1 models systems with 
multifractality or long-range correlations. Entropy rise is modified 
by the parameter τ , which corrects for time-scale or nonlocal 
memory effects. In these types of structures, entropy may rise 
sub-linearly or super-linearly with heat or energy. 

3.1 Non-equilibrium thermodynamics via 
(q, τ )-entropy 

Entropy and thermodynamic potentials are generalized in the 
(q, τ )-framework to account for these characteristics. Assume that 
f (x, t) is a probability density that changes over time. Assuming a 
generalized Fokker-Planck equation: 

∂f 
∂t 

= −  
∂ 

∂x 
(A(x)f ) + 

∂ 2 

∂ x2 (D(x)f 
μ), 

then the time derivative of Sq,τ (t) becomes 

d 

dt 
Sq,τ (t) = −  

 
δSq,τ 

δf 
· ∂f 

∂t 

 

dx, 

and is non-negative via suitable boundary and positivity conditions, 
implying a non-equilibrium generalized H-theorem. The 
generalized entropy production rate is 

Ṡq,τ = 
 

i 

J(q,τ ) 
i · X(q,τ ) 

i , 

where J(q,τ ) 
i are the deformed fluxes (e.g., generalized currents), 

X(q,τ ) 
i are associated thermodynamic forces (e.g., gradients of 
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potential or temperature), and the Onsager matrix becomes 
nonlinear and memory-dependent. 

Example 3.1. Consider the generalized Fourier law with memory: 

q(x, t) = −  
t 

0 
Kq,τ (t − s) 

∂T(x, s) 
∂x 

ds, 

where the kernel Kq,τ (t) encodes memory effects via (q, τ )-
deformed Mittag-Leffler or gamma functions, where 

Eq,τ (z) : = 
∞ 

n=0 

zn 

q,τ (n + 1) 
. 

Entropy increases according to: 

d 

dt 
Sq,τ = 

q(x, t) 
T(x, t) 

dx > 0. 

The (q, τ )-formalism is a useful demonstration tool because it 
readily applies the rules of thermodynamics to non-equilibrium, 
non-extensive, and memory-dependent infrastructure. 

Example 3.2. (Anomalous Heat Equation in the (q, τ )-Entropy 
Framework) Consider the nonlinear, memory-influenced heat 
equation on x ∈ [0, L], t > 0: 

∂u(x, t) 
∂t 

= 
∂ 

∂x 

 

D · ∂ 

∂x 
u(x, t)μ 

 

+ 
t 

0 
Kq,τ (t − s) · ∂ 2 u(x, s) 

∂x2 ds, 

where u(x, t) indicates the temperature or energy density, μ > 1 
governs nonlinearity (superdiffusion for μ > 1), and Kq,τ (t) acts as 
a memory kernel derived from the (q, τ )-Gamma function. We put 

Kq,τ (t) : = 
tα−1 

q,τ (α)
, with 0 < α < 1. 

Let u(x, 0)  = u0(x), u(0, t) = u(L, t) = 0, where u0(x) = 
A sin 

 
πx 
L


for some constant A > 0. Let the solution of the form 

u(x, t) = X(x)T(t), X(x) = sin 
πx 

L 

 
. 

Then, we get 

dT 

dt 
= −λT(t)μ − λ 

t 

0 
Kq,τ (t − s)T(s) ds, λ = 

π 

L 

2 
D. 

This is a Volterra integro-differential equation with nonlinear 
damping and memory 

dT 

dt 
+ λTμ + λ 

t 

0 

(t − s)α−1 

q,τ (α) 
T(s) ds = 0. 

Define energy, as follows: 

E(t) = 
L 

0 
u(x, t)2dx = T(t)2 · L 

2 
. 

Then the (q, τ )-entropy is 

Sq,τ (t) = −  
L 

0 
u(x, t) logq,τ (u(x, t))dx 

= −T(t) · logq,τ (T(t)) · 
L 

2 
. 

The entropy functional Sq,τ (t) decays slowly, demonstrating the 
persistent power of memory effects, and the temperature profile 
satisfies T(t) → 0 as  t → ∞. As opposed to the exponential 
relaxation observed in classical models, the decay in this instance 
is non-exponential due to the convolution nature of the (q, τ )-
memory kernel. Therefore, nonlinear diffusion of the form uμ 

for gathering complex heterogeneous media, an extended entropy 
functional that tracks the system’s departure from equilibrium, 
a (q, τ )-deformed memory kernel storing long-term hereditary 
implications, and fractional-like temporal dynamics for orders 
α ∈ (0, 1) are all significant features of anomalous heat transport 
that are captured by the proposed PDE. Such a framework is 
especially helpful for simulating slow or nonlocal biological tissues, 
viscoelastic components, and memory-based thermal processes. 

Remark 3.3 (Justification of the Memory Kernel Kq,τ (t)). The 
memory kernel of our model is a generalized form of the 
conventional power-law kernel, Kq,τ (t) = tα−1

q,τ (α) 
, 0  < α < 1,. 

It is crucial for modeling the inheritance of temperature reactions 
in biological tissues. In biological systems such as human tissues, 
diffusion, and thermal relaxation take time. Instead, they show 
memory effects that are better captured by nonlocal operators. 
Empirical studies have shown that the memory response of such 
systems sometimes exhibits anomalous diffusion and power-law 
decay. The fundamental Caputo kernel tα−1 

(α) is frequently used 
in this way. Adding the (q, τ )-deformed gamma function q,τ (·) 
to the kernel makes the algorithm more flexible for complex 
biological scenarios. In particular, we may encode the following 
using the parameters q and τ : 

1. Nonuniform tissue response: The tissue response is not 
uniform. Memory effects, for instance, can be more damped or 
slower in layered or porous tissues. 

2. Better regulation of memory deterioration: The temporal 
scaling of memory weight is adjusted by τ > 1, whereas small 
values of q result in slower decay (long memory). 

3. Acceptance of generalized thermodynamics: In systems with 
long-range interactions or fractal geometries, the kernel is in line 
with entropy functionals obtained from nonextensive statistics. 

The (q, τ )-Caputo-type fractional derivative is where the kernel 
naturally occurs: The nonlocal memory structure is preserved but 
parametric flexibility is introduced in 

Dα 
q,τ u(t) = 

1 

q,τ (1 − α) 

t 

0 

du(τ ) 
dτ 

(t − τ )−α dτ . 

This type supports a broader variety of diffusion processes, 
including memory-controlled relaxation events and sub-diffusion. 
Thus, Kq,τ (t) is a physically induced and mathematically solid 
choice. It is consistent with recent developments in fractional 
thermodynamics and non-extensive entropy theory, and it better 
captures the memory feature of biological tissues than the 
conventional kernel. 

Example 3.4. A computational model of T(t) with nonlinear decay 
and (q, τ )-memory looks like this: We investigate how the evolution 
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of a temperature-like variable, T(t), is governed by the generalized 
integro-differential equation: 

dT 

dt 
+ λTμ + λ 

t 

0 

(t − s)α−1 

q,τ (α) 
T(s) ds = 0, 

where μ > 1 accounts for nonlinear decay, q,τ (α) is the (q, τ )-
gamma function, α ∈ (0, 1) governs the memory strength, T(0) = 
T0 is the initial condition. Simulation parameters are nonlinearity: 
μ = 1.2; memory order: α = 0.8; deformation: q = 0.5, τ = 1; 
time span: t ∈ [0, 10]; initial condition: T(0) = 1. The memory 
kernel is defined as: 

Kq,τ (t) = 
tα−1 

q,τ (α) 
. 

We employ the Euler-like approach to discretize the equation 
and use a trapezoidal approximation to quantitatively evaluate 
the memory term. We find that the memory integral causes the 
temperature T(t) to fall more slowly than exponentially. While 
the memory kernel controls long-term decay, the nonlinear term 
Tμ has a significant impact on early-time dynamics. Sub-diffusion 
or viscoelastic-like systems with power-law memory are modeled 
by such actions. The numerically obtained T(t) can be used to 
compute the equivalent extended entropy 

Sq,τ (t) = −T(t) · logq,τ (T(t)) · 
L 

2
, 

where logq,τ (x) = x
1−q−1 
1−q · q,τ (x). This entropy tracks the system’s 

departure from equilibrium and dissipative behavior over time 
(Table 4). 

3.1.1 Parameter selection criteria 
1. Thermal diffusivity D was selected in the range 10−3- 

10−2 cm2/s, which aligns with experimental values for 
human tissue. 

2. Metabolic heat generation Qm was collected to typical 
physiological levels (e.g., 420 W/m3). 

3. Initial and boundary conditions were imposed to fit the 
biological conditions like Tskin = 34◦C and Ta = 37◦C. 

4. The deformation parameter q ∈ (0, 1) governs the degree of 
non-extensivity and memory. Values like q = 0.5, 0.7, 0.9 act 
progressively weaker long-range effects. 

5. The scaling parameter τ >  0 modulates the strength of 
the memory kernel through the deformed Gamma function 

q,τ . Values such as τ = 1.0, 1.5, 2.0, were utilized to explore 
increasingly long memory retention. 

4 Existence and uniqueness for 
(q, τ )-fractional equations via entropy 
bounds 

Definition 4.1 (Definition of the (q, τ )-Caputo fractional derivative). 
Let 0 < α < 1, q ∈ (0, 1) and τ > 0. The (q, τ )-Caputo fractional 
derivative of a function u(t) is given by 

Dα 
q,τ u(t) : = 

1 

q,τ (1 − α) 

t 

0 
(t − s)−α 

q,τ 
d 

ds 
u(s) ds, 

where 

(t − s)−α 
q,τ = 

1 

(t − s)α · 
 ∞ 

n=0 

1 − qτ (n+1) 

1 − qτ (α+n) 

 

, 

and q,τ (·) is the  (q, τ )-Gamma function. When q → 1− , Dα
q,τ → 

Dα (traditional Caputo fractional derivative). The parameter τ 
provides a scaling and tuning of memory depth and decay. This 
operator is suitable for modeling anomalous dynamics with flexible 
memory behavior. 

Definition 4.2 (Definition of the (q, τ )-Fractional Integral). Let 
α >  0, q ∈ (0, 1), and τ >  0. The (q, τ )-fractional integral 
of order α of a function u(t), denoted by Iαq,τu(t), is defined by 
the integral 

Iα 
q,τ u(t) : = 

1 

q,τ (α) 

t 

0 
(t − s)α−1 

q,τ u(s) ds, 

where 

(t − s)α−1 
q,τ = (t − s)α−1 · 

∞ 

n=0 

1 − qτ (n+1) 

1 − qτ (α−1+n) . 

Thus, I0 
q,τu(t) = u(t), Iαq,τ is linear, Dα

q,τ Iαq,τu(t) = u(t) under 
mild regularity conditions. 

Consider the non-linear (q, τ )-fractional integro-
differential equation: 

Dα 
q,τ u(t) = f (t, u(t)) + 

t 

0 
K(t, s, u(s)) ds, 0  < α < 1, (1) 

TABLE 4 Entropy values Sq,τ (t) for various values of (q, τ ). 

t T(t) S0.5,1 S0.5,1.5 S0.5,2.0 S0.7,1 S0.7,1.5 S0.7,2.0 S0.9,1 S0.9,1.5 S0.9,2.0 

0.000000 1.000000 –0.000000 –0.000000 –0.000000 –0.000000 –0.000000 –0.000000 –0.000000 –0.000000 –0.000000 

0.033445 0.966555 0.032601 0.028892 0.032601 0.032712 0.028990 0.032712 0.032824 0.029089 0.032824 

0.066890 0.932640 0.063918 0.056646 0.063918 0.064363 0.057040 0.064363 0.064812 0.057438 0.064812 

0.100334 0.898515 0.093625 0.082973 0.093625 0.094625 0.083859 0.094625 0.095639 0.084758 0.095639 

0.133779 0.864343 0.121526 0.107699 0.121526 0.123293 0.109266 0.123293 0.125095 0.110862 0.125095 
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with initial condition u(0) = u0 > 0, where Dα
q,τ denotes the 

(q, τ )-fractional Caputo derivative. Let the generalized entropy be 
defined as: 

Sq,τ (u) = −u · logq,τ (u), logq,τ (x) = 
x 1−q − 1 

1− q 
· q,τ (x). 

Theorem 4.3. Let f :[0, T] × R
+ → R and K :[0, T]2 × R

+ → 
R satisfy: 

(i) (Lipschitz) |f (t, u) − f (t, v)| ≤ L|u − v|, 
(ii) (Entropy-bound growth) |f (t, u)| ≤ C(1 + |Sq,τ (u)|), 
(iii) K(t, s, u) is continuous and satisfies |K(t, s, u)| ≤ CK |u|, 

then there exists a unique continuous solution u(t) ∈ C([0, T]) 
for Equation 1. 

Proof. Let X = C([0, T]) be a Banach space subjected to the norm 

u =  sup 
t∈[0,T] 

|u(t)|. 

Define the operator: 

(T u)(t) = u0 + 
1 

q,τ (α) 

t 

0 
(t − s)α−1 

 
f (s, u(s)) 

+ 
s 

0 
K(s, r, u(r))dr ds. 

We show that T is a contraction for small T. 
Step 1: A priori bound using entropy. From assumption (ii), 

we get: 

|f (t, u(t))| ≤ C(1 + |Sq,τ (u(t))|). 
Since u(t) > 0, we have Sq,τ (u(t)) ≥ 0, and so: 

|f (t, u(t))| ≤ C(1 + u(t)1−qq,τ (u(t))). 

Using monotonicity of q,τ and boundedness of u, this implies: 

|f (t, u(t))| ≤ C . 

Step 2: Operator bound. Estimate: 

|T u(t)| ≤ u0 + 
1 

q,τ (α) 

t 

0 
(t − s)α−1 

 

C + CK 

s 

0 
|u(r)|dr 

 

ds. 

By Fubini and known bounds on convolution with fractional 
kernels, we obtain: 

T u ≤ M(1 + Tα) (1 + Tu) . 

Step 3: Contraction for small T. Let u1, u2 ∈ X . Then: 

|f (t, u1)− f (t, u2)| ≤ L|u1 − u2|, 

and similarly for the kernel. Thus: 

T u1−T u2 ≤ CTu1−u2, CT = 
LTα 

q,τ (α) 
+ 

CK Tα+1 

q,τ (α)(α + 1) 
. 

For sufficiently small T, we have  CT < 1, so T is a contraction. 
By the Banach fixed-point theorem, T has a unique fixed point in 
X , which is the unique solution. 

Example 4.4. Consider the (q, τ )-fractional integro-
differential equation: 

Dα 
q,τ u(t) = 

 
1+ Sq,τ (u(t)) + 

t 

0 

u(s) 
1 + (t − s) 

ds, 0  < α < 1, 

with initial condition u(0) = u0 > 0. Our aim is to verify the 
conditions of the entropy-based existence and uniqueness theorem 
for the above equation. 

4.1 Step 1: regularity of f(t, u) 

Define the functional f (t, u) : = 
 
1 + Sq,τ (u). Then for u > 0, 

we have Sq,τ (u) = −u · u1−q−1 
1−q · q,τ (u) ≥ 0, where f (t, u) ∈ R

+ 

and is well-defined. Moreover, the function u → 
 
1 + Sq,τ (u) is  

Lipschitz on any compact subset [δ, M] ⊂ (0, ∞), because both 
u → u1−q and q,τ (u) are smooth. 

4.2  Step 2: growth estimate via  entropy  

We have: 

|f (t, u)| =  
 
1+ |Sq,τ (u)| ≤ C 

 
1+ |Sq,τ (u)| 

 
, 

so assumption (ii) of the theorem is satisfied. 

4.3 Step 3: kernel condition 

Let K(t, s, u(s)) = 
u(s) 

1 + (t − s) 
. Then, we have 

|K(t, s, u)| ≤  
|u|

1+ (t − s) 
≤ |u|, 

so the kernel is continuous and linearly bounded, satisfying 
assumption (iii). All conditions of the entropy-based existence and 
uniqueness theorem are satisfied. Therefore, the equation: 

Dα 
q,τ u(t) = 

 
1+ Sq,τ (u(t)) + 

t 

0 

u(s) 
1 + (t − s) 

ds 

has a unique solution u(t) ∈ C([0, T]) for some T > 0, provided 
u(0) > 0. In this example, we applied the entropy-aided existence 
and uniqueness theorem to a nonlinear (q, τ )-fractional integro-
differential equation of the form: 

Dα 
q,τ u(t) = 

 
1+ Sq,τ (u(t)) + 

t 

0 

u(s) 
1 + (t − s) 

ds, u(0) > 0. 

The nonlinear term f (t, u) = 
 
1 + Sq,τ (u) is controlled by the 

generalized entropy 

Sq,τ (u) = −u · logq,τ (u), logq,τ (u) = 
u 1−q − 1 

1− q 
· q,τ (u), 

ensuring that f (t, u) remains well-behaved for u > 0. By 
satisfying the continuity and linear growth assumptions, the kernel 
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K(t, s, u) = 
u 

1 + (t − s) 
permits the use of integral estimates 

in the fixed-point framework. All of the entropy-based existence 
and uniqueness theorem’s presumptions were confirmed, including 
the boundedness and continuity of the kernel K, the entropy-
dominated growth condition on f , and the Lipschitz continuity of 
f (t, u) on bounded domains. Thus, a unique continuous solution 
u(t) ∈ C([0, T]) exists on some interval [0, T] according to 
the theorem. 

This example shows how well entropy functionals work for 
analyzing nonlinear fractional structures, especially when memory-
driven dynamics and non-polynomial growth are involved. 

The (q, τ )-entropy in Table 5 extends the traditional Tsallis 
entropy by incorporating a fractional memory kernel via the 
generalized gamma function q,τ (x). By providing the entropy 
to reflect both temporal non-locality and non-extensive spatial 
impact, this makes it possible to simulate heat processes in 
biological and viscoelastic media more realistically. Compared to 
Tsallis entropy, which regularizes PDEs via nonlinear diffusion, 
the proposed entropy results in fractional memory-regularized 
dynamics and more properly depicts thermodynamic motion in 
complex systems with memory and organization. 

4.4 Stability via (q, τ )-entropy 

We need the following results in the sequel: 

Lemma 4.5 (Derivative bound of the (q, τ )-logarithmic function). 
Let u > 0, 0 < q < 1, and τ >  0. Formulate the generalized 
logarithm logq,τ (u) = u1−q−1 

1−q · q,τ (u). Then the derivative of 
logq,τ (u) satisfies: 

d 

du 
logq,τ (u) ≤ Cq,τ · u−q, 

for some constant Cq,τ > 0 depending on q and τ , provided 
u ∈ (0, M] for any fixed M > 0. 

TABLE 5 Comparison between Tsallis entropy and the proposed 
(q, τ )-entropy in entropy-regularized PDE models. 

Feature Tsallis entropy 
Sq(f ) 

Generalized entropy 
Sq,τ (f ) 

Nonextensivity Captures nonadditive 
effects via q 

Includes q, preserves nonadditive 
structure 

Memory 
effects 

Absent; purely local 
in time 

Present; includes fractional memory 
via τ and q,τ (x) 

PDE 
regularization 

Induces nonlinear 
diffusion terms (e.g., 
porous media) 

Induces memory-regularized 
fractional PDEs 

Mathematical 
framework 

Local, suitable for 
classical diffusion 

Nonlocal, integrates with fractional 
calculus (e.g., Caputo, Hadamard) 

Physical 
interpretation 

Entropy in systems 
with long-range 
spatial interactions 

Models entropy in systems with 
long-range spatial and temporal 
correlations 

Applicability Granular systems, 
porous media 

Bio-heat, viscoelastic, 
non-equilibrium thermodynamics 

Proof. Utilizing the product rule: 

d 

du 
logq,τ (u) = 

d 

du 

 
u 1−q − 1 

1− q 

 

· q,τ (u) + 
u 1−q − 1 

1− q 
· d 

du 
q,τ (u). 

First, we have 

d 

du 

 
u 1−q − 1 

1− q 

 

= u−q. 

Then the total derivative becomes, as follows: 

d 

du 
logq,τ (u) = u−q · q,τ (u) + 

 
u 1−q − 1 

1− q 

 

· d 

du 
q,τ (u). 

Putting u ∈ (0, M], both q,τ (u) and d 
duq,τ (u) are 

bounded. Let: 

C1 : = sup 
u∈(0,M] 

q,τ (u), C2 : = sup 
u∈(0,M] 

d 

du 
q,τ (u) . 

Then, we get 

d 

du 
logq,τ (u) ≤ C1u−q + C2 · M

1−q − 1 

1− q 
= :Cq,τ · u−q, 

where Cq,τ absorbs the additive constant and worst-case 
u−q behavior. 

Theorem 4.6 (Entropy-based stability theorem). Let u(t) be a  
positive solution to the (q, τ )-fractional differential equation: 

Dα 
q,τ u(t) = f (t, u(t)), 0 < α < 1, 

where Dα
q,τ is the (q, τ )-Caputo derivative and f (t, u) ∈ C([0, T] × 

(0, ∞)). Consider the following conditions: 

(i) f (t, u) ≤ −k · logq,τ (u), for some k > 0, where logq,τ (u) : = 
u1−q−1 
1−q · q,τ (u); 

(ii) The initial value u(0) > 0; 
(iii) u(t) ∈ C1((0, T]) ∩ C([0, T]), 

Then the entropy functional 

V(t) : = Sq,τ (u(t)) = −u(t) · logq,τ (u(t)) 

is non-increasing on [0, T]. In particular, u(t) is stable in the sense 
of entropy decay: 

V(t) ≤ V(0), ∀t ∈ [0, T]. 

Proof. We differentiate the entropy functional: 

d 

dt 
V(t) = −u̇(t) · 

 

logq,τ (u(t)) + u(t) · d 

du 
logq,τ (u(t)) 

 

. 

From the fractional dynamics: 

u̇(t) ≈ q,τ (α)t 1−αDα 
q,τ u(t) = q,τ (α)t 1−α f (t, u(t)), 

and from the assumption (i): 

f (t, u) ≤ −k · logq,τ (u) ⇒ u̇(t) ≤ −kq,τ (α)t 1−α · logq,τ (u(t)). 
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Thus, in view of Lemma 4.5, we have 

d 

dt 
V(t) ≤ kq,τ (α)t 1−α · 

 
logq,τ (u(t)) 

2 + Cq,τ · u−q. 

If u(t) ∈ (0, 1), then logq,τ (u(t)) < 0, and hence d 
dt V(t) ≤ 0. 

This shows that V(t) is non-increasing, and the solution is stable 
under entropy. 

Example 4.7 (Necessity of positivity in entropy-based stability). 
Consider the following (q, τ )-fractional differential equation: 

Dα 
q,τ u(t) = −u(t) + cos(t), u(0) = 0.5, 0 < α < 1, 

where Dα
q,τ denotes a Caputo-type fractional derivative with 

memory parameters q and τ . This is a linear fractional system 
with an oscillatory forcing term. Depending on the value of α, the  
memory effect can cause the solution u(t) to decay sufficiently that 
it dips below zero for some t ∈ [0, T]. 
Issue with negative solutions: If u(t) < 0 for any t, the generalized 
entropy functional 

Sq,τ (u(t)) = −  u(t) log(q,τ )(u(t)) dt 

is no longer well-defined. Specifically: 

(i) The generalized logarithm log(q,τ )(u) = u1−q−1 
1−q · q,τ (u) 

becomes undefined for u < 0, 
(ii) The gamma kernel q,τ (u) may diverge or become complex at 

non-positive arguments, 
(iii) The entropy Sq,τ (u) loses its interpretation as a Lyapunov 

functional. 

Requiring u(t) > 0 ensures that the entropy functional is real-
valued, smooth, and applicable as a stabilizing quantity. Without 
this assumption, the entropy decay condition 

d 

dt 
Sq,τ (u(t)) ≤ 0 

may fail, and the entropy-based stability theorem does not 
hold. This entropy-based criterion generalizes classical Lyapunov 
stability, accounting for memory and nonlinearity through the 
(q, τ )-structure. Special cases are given in the next results. 

Proposition 4.8 (Upper bound for logq,τ (u) for small arguments). 
Let 0 < q < 1, τ > 0, and suppose u(t) > 0 for all t ∈ [0, T]. Then 
for sufficiently small u ∈ (0, δ], there exists a constant Cq,τ > 0 
such that 

| logq,τ (u)| ≤  
Cq,τ 

u 
, 

and consequently, 

u logq,τ (u) ≤ Cq,τ . 

This guarantees that the entropy functional 

Sq,τ (u) = −  
T 

0 
u(t) logq,τ (u(t)) dt 

remains bounded and suitable as a Lyapunov functional in entropy-
based stability analysis. 

Proof. Recall the definition of the deformed logarithm: 

logq,τ (u) = 
u 1−q − 1 

1− q 
· q,τ (u), u > 0, 

where q,τ (u) is a generalization of the classical Gamma function. 
As u → 0+ , the first term behaves like: 

u 1−q − 1 

1− q 
∼ −  

1 

1− q 
, since u 1−q → 0. 

Based on the features of deformations for q ∈ (0, 1), τ > 0, and 
the known singular behavior of the classical Gamma function close 
to the origin, we assume that the deformed Gamma function fulfills: 

q,τ (u) ∼ 
Cq,τ 

u 
, as  u → 0+ , 

for some constant Cq,τ > 0. The convergence study of the infinite 
product defining q,τ (u), which inherits the pole at u = 0 from 
the traditional Gamma function, supports this claim. When we 
combine the two asymptotics, we get 

logq,τ (u) ∼ −  
1 

1− q 
· Cq,τ 

u 
= −  

Cq,τ 

(1 − q)u 
, as  u → 0+ . 

Therefore, for sufficiently small u ∈ (0, δ], there occurs a 
constant Kq,τ = Cq,τ /(1 − q) with 

| logq,τ (u)| ≤  
Kq,τ 

u 
, 

and hence, we get 

|u logq,τ (u)| ≤ Kq,τ , ∀u ∈ (0, δ]. 

This guarantees that the entropy functional Sq,τ (u) is  
well-defined and finite for every positive u(t), and that 
the entropy integrand u(t) logq,τ (u(t)) stays confined. This 
confirms that entropy-based Lyapunov techniques are suitable for 
stability analysis. 

Theorem 4.9. Let u :[0, T] → (0, ∞) be a solution to the nonlinear 
fractional differential equation 

Dα 
q,τ u(t) = −λ · logq,τ (u(t)), 0 < α < 1, λ > 0, 

with initial condition u(0) = u0 > 0, and Dα
q,τ is the (q, τ )-Caputo 

derivative. Define the entropy functional: 

Sq,τ (u(t)) : = −u(t)·logq,τ (u(t)), logq,τ (u) : = 
u 1−q − 1 

1− q 
·q,τ (u). 

Then u(t) is globally stable, and the entropy functional achieves 
the decay estimate 

d 

dt 
Sq,τ (u(t)) ≤ −c · 

 
logq,τ (u(t)) 

2 
, 

for some constant c > 0. Consequently, Sq,τ (u(t)) ≤ Sq,τ (u0), and 
u(t) remains bounded on [0, T]. 
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Proof. Differentiate Sq,τ (u(t)): 

d 

dt 
Sq,τ (u(t)) = −u̇(t) · 

 

logq,τ (u(t)) + u(t) · d 

du 
logq,τ (u(t)) 

 

. 

Employing the differential equation 

u̇(t) ≈ q,τ (α) · t 1−α · Dα 
q,τ u(t) = −λq,τ (α) · t 1−α · logq,τ (u(t)), 

we substitute 

d 

dt 
Sq,τ (u(t)) ≤ λq,τ (α)t 1−α · logq,τ (u(t)) · logq,τ (u(t)) + u(t) 

· d 

du 
logq,τ (u(t)) 

 
. 

Using Lemma 4.5, we have 

d 

du 
logq,τ (u) ≤ Cq,τ u−q ⇒ u · d 

du 
logq,τ (u) ≤ Cq,τ u 1−q. 

So the total correction is controlled: 

logq,τ (u(t)) + Cq,τ u 1−q 
 
· logq,τ (u(t)) ≤ C · 

 
logq,τ (u(t)) 

2 
, 

and hence, we obtain 

d 

dt 
Sq,τ (u(t)) ≤ −c · 

 
logq,τ (u(t)) 

2 ≤ 0. 

This implies Sq,τ (u(t)) is non-increasing, and since it’s bounded 
below (e.g., by zero), u(t) is stable. 

This finding applies traditional Lyapunov stability to entropy-
driven dissipation in nonlocal fractional systems. 

Theorem 4.10 (Entropy dissipation and stability). Consider the 
(q, τ )-fractional entropy-regularized diffusion equation: 

Dα 
q,τ u(x, t) = ∇·  

 
D(u)∇u(x, t) 

 −λ· logq,τ (u(x, t)), x ∈ , t > 0, 

subject to boundary condition u(x, t) = 0 on  ∂, and initial data 
u(x, 0)  = u0(x) > 0. Here, Dα

q,τ indicates the Caputo-type (q, τ )-
fractional derivative in time; D(u) ≥ D0 > 0 presents a smooth 

nonlinear diffusion coefficient; logq,τ (u) = 
u1−q − 1 

1− q 
· q,τ (u)

admits the generalized logarithm. 
Let u(x, t) ∈ C2() ∩ C1([0, T]) be a positive classical solution 

to the above problem. Formulate the total entropy functional: 

Sq,τ (t) : = 
 
−u(x, t) logq,τ (u(x, t)) dx. 

Then the entropy functional satisfies the differential inequality: 

d 

dt 
Sq,τ (t) ≤ −λ 

 

 
logq,τ (u(x, t)) 

2 
dx, 

and hence Sq,τ (t) ≤ Sq,τ (0). Thus, the system is globally stable 
under entropy decay. 

Proof. Differentiate Sq,τ (t): 

d 

dt 
Sq,τ (t) = 

 
−∂tu(x, t) · 

 

logq,τ (u) + u · 
∂ logq,τ 

∂u 

˘ 

dx. 

From the PDE, we get 

∂tu(x, t) ≈ q,τ (α)t 1−α · Dα 
q,τ u(x, t) = q,τ (α)t 1−α 

 
∇ · (D(u)∇u) 

− λ logq,τ (u) . 

The diffusion term integrates to 0 under boundary conditions: 

 
∇ · (D(u)∇u) · ψ (u) dx = −  

 
D(u)∇u · ∇ψ (u) dx. 

Choosing ψ (u) : = logq,τ (u) + u 
∂ logq,τ 

∂u , and bounding its 
growth using Lemma 4.5, we have 

d 

dt 
Sq,τ (t) ≤ −λq,τ (α)t 1−α 

 

 
logq,τ (u) 

2 
dx. 

Hence, Sq,τ (t) is non-increasing. 

This shows that degradation is driven by entropy in the context 
of diffusion and nonlocal fractional time evolution. The functional 
Sq,τ functions as a Lyapunov entropy as well as a thermodynamic 
one. W e reach  our  following conclusion: 

Theorem 4.11. (Entropy dissipation under (q, τ )-fractional 
nonlinear diffusion) Let u(x, t) > 0 be a sufficiently smooth 
solution to the fractional PDE: 

Dα 
q,τ u(x, t) = ∇ ·  

 
D(u)∇u 

 − R(u), 0 < α <  1, 

on a bounded domain  ⊂ R
n , with appropriate boundary 

conditions (e.g., zero-flux or Dirichlet). Consider the 
following assumptions: 

(H1) D(u) ≥ 0 is non-decreasing, 
(H2) R(u) ≥ 0, 
(H3) logq,τ (u) is convex in u > 0. 

Define the deformed entropy functional 

Sq,τ (u(t)) : = −  
 
u(x, t) logq,τ (u(x, t)) dx. 

Then, if the following inequality holds: 

 
D(u) 

d logq,τ 

du 
|∇u| 2dx + 

 
R(u) logq,τ (u)dx 

≤ 
 
u · Dα 

q,τ logq,τ (u)dx, 

it follows that 

Dα 
q,τ Sq,τ (u(t)) ≤ 0. 
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Proof. We compute the Caputo-type (q, τ )-fractional derivative of 
the entropy functional: 

Dα 
q,τ Sq,τ (u(t)) = −  

 
Dα 
q,τ 

 
u(x, t) logq,τ (u(x, t)) dx. 

We apply the fractional product rule (valid for smooth 
functions under fractional derivatives) to write: 

Dα 
q,τ 

 
u logq,τ (u) = Dα 

q,τ u · logq,τ (u) + u · Dα 
q,τ logq,τ (u). 

Now, using the governing PDE: 

Dα 
q,τ u = ∇ · (D(u)∇u) − R(u), 

we substitute into the entropy derivative: 

Dα 
q,τ Sq,τ (u) = −  

 

  ∇ · (D(u)∇u) − R(u) 
 
logq,τ (u) 

+ u · Dα 
q,τ logq,τ (u) dx. 

We handle the two terms differently. 
Term 1: diffusion and reaction 

I1 = −  
 

 
∇ · (D(u)∇u) · logq,τ (u) dx + 

 
R(u) · logq,τ (u) dx. 

The first term is handled via integration by parts, assuming 
zero-flux boundary conditions: 

− 
 
∇ · (D(u)∇u) · logq,τ (u) dx = 

 
D(u)∇u · ∇ logq,τ (u) dx. 

Since ∇ logq,τ (u) = 
d logq,τ 

du ∇u, we have:  

 
D(u) 

 
d logq,τ 

du 

˘ 

|∇u| 2 dx ≥ 0, 

provided D(u) ≥ 0 and logq,τ (u) is convex (i.e., d2
du2 logq,τ (u) ≥ 0). 

Therefore, we have 

I1 = 
 
D(u) 

 
d logq,τ 

du 

˘ 

|∇u| 2 dx + 
 
R(u) logq,τ (u) dx. 

Now note that R(u) ≥ 0, and for all u > 0, logq,τ (u) ≥ 
logq,τ (1) = 0, or at least bounded. So the second integral is 
non-negative or vanishes when u = 1. Thus, we obtain I1 ≥ 0. 

Term 2: non-locality correction We consider: 

I2 = −  
 
u · Dα 

q,τ logq,τ (u) dx. 

By convexity of logq,τ (u), and assuming u(x, t) remains positive 
and bounded, Dα

q,τ logq,τ (u) ≥ 0, which implies: 

I2 ≤ 0. 

Combining terms, we have 

Dα 
q,τ Sq,τ (u(t)) = I1 + I2 ≤ 0. 

This proves that the entropy decays in the 
(q, τ )-fractional sense. 

Corollary 4.12. (Classical entropy decay for special (q, τ ) 
parameters) Let u(x, t) > 0 be a sufficiently smooth solution to the 
classical non-linear reaction-diffusion equation 

∂u 

∂t 
= ∇ ·  

 
D(u)∇u 

 − R(u), 

with D(u) ≥ 0, R(u) ≥ 0, and zero-flux or Dirichlet boundary 
conditions on a domain  ⊂ R

n . Let logq,τ (u) = u
1−q−1 
1−q · q,τ (u)

be the generalized logarithm function. Then, under either of the 
following observations: 

1. τ = 1 and q,τ (u) → 1, 
2. q = 1 and logq,τ (u) → log(u), 

the deformed entropy functional 

Sq,τ (u(t)) = −  
 
u(x, t) logq,τ (u(x, t)) dx 

reduces to a classical entropy, and satisfies 

d 

dt 
Sq,τ (u(t)) ≤ 0. 

Example 4.13. (Numerical simulation of a (q, τ )-entropy 
regularized fractional diffusion equation) We consider the 
following entropy-regularized fractional diffusion equation: 

Dα 
q,τ u(x, t) = D 

∂2 u 

∂ x2 (x, t) − λ logq,τ (u(x, t)), x ∈ (0, 1), t > 0, 

with Dirichlet boundary conditions: 

u(0, t) = u(1, t) = 0, u(x, 0)  = exp 
 −10(x − 0.5)2  

, 

where Dα 
q,τ presents the Caputo-type fractional derivative of order 

α ∈ (0, 1), logq,τ (u) = 
u 1−q − 1 

1− q 
· q,τ (u), and q,τ (u) ≈ (u)(1 − 

q)1−u admits an approximation of the (q, τ )-gamma function. We 
utilize a uniform spatial grid with step size x = 1

Nx−1 and 
forward Euler in time. The Laplacian is approximated using central 
differences. The time stepping formula is 

u n+1 
j = u n 

j + t 

 

D 
un 
j−1 − 2un 

j + un 
j+1 

x2 − λ logq,τ (u nj ) 

 

, 

with stability ensured via small t and clipping un 
j > 0. Thus, the 

total entropy becomes 

Sq,τ (tn) = −  
Nx−2 

j=1 

un 
j · logq,τ (u n 

j ) · x. 

Parameters set is given as follows: 

Data 4.14. 

Diffusion coefficient D = 0.01, 
Fractional order α = 0.8, 
Entropy weight λ = 1, 
q-deformation q = 0.5, 
Scaling parameter τ = 1, 
Time domain t ∈ [0, 1], t = 0.01, 
Space domain x ∈ [0, 1], Nx = 50. 
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FIGURE 4 

Evolution of the solution u(x, t) at selected times for Figure 3 data-1. 

FIGURE 5 

Decay of the entropy functional Sq,τ (t) over time. 

Figure 4 presents the evolution of u(x, t) for 
selected times. Figure 5 demonstrates the monotonic 
decay of the entropy functional Sq,τ (t), verifying the 
entropy-based stability. 

The theoretical prediction that the entropy functional 
Sq,τ (t) decays with time while the result u(x, t) stays positive 
and smooth is supported by this computational approach. 
The system is stabilized and oscillations in the diffusion 
dynamics are lessened by the entropy term. Although 
Table 6 makes it evident that the entropy decay pattern is 
same for all τ , better resolution may reveal more accurate 
numerical variations. 

Table 7 presents the computed values of the entropy functional 
Sq,τ (t) at selected time steps for different values of the q-
deformation parameter, while keeping τ = 1.0 fixed. 

TABLE 6 Entropy Sq,τ (t) for  different  τ values.

t τ = 0.5 τ = 0.99 τ = 2.0 

0.000000 0.341487 0.341487 0.341487 

0.202020 0.268685 0.268685 0.268685 

0.404040 0.237497 0.237497 0.237497 

0.606061 0.216054 0.216054 0.216054 

0.808081 0.200107 0.200107 0.200107 

4.4.1 Observations 
• Initial magnitude: At t = 0, the entropy is highest for 

q = 0.1 and lowest for q = 0.9. This yields the fact that 
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TABLE 7 Entropy Sq,τ (t) for  different  q values (τ = 1.0). 

t q = 0.1 q = 0.5 q = 0.9 

0.000000 0.407372 0.341487 0.155493 

0.202020 0.296506 0.268685 0.160872 

0.404040 0.254601 0.237497 0.157799 

0.606061 0.228124 0.216054 0.153744 

0.808081 0.209662 0.200107 0.149122 

the generalized logarithm logq,τ (u) grows faster for smaller q, 
amplifying entropy for the same initial condition. 

• Decay rate: Over time, all entropy profiles show monotonic 
decrease. But for smaller q values, the rate of decay is sharper, 
suggesting a stronger entropy regularization impact. 

• Convergence behavior: The entropy values for q = 0.1 and 
q = 0.5 start to converge at t ≈ 0.4, while q = 0.9 stays distinct 
with slower decay. 

The deformation parameter q governs entropy-driven 
dissipation in fractional evolution equations. Nonlocal influences 
are amplified by lower values of q, which convey stronger memory 
effects and higher sensitivity of the solution u(x, t) to past states.  
Conversely, higher values of q, which flatten the entropy landscape, 
are used to simulate systems that develop closer to equilibrium 
with less entropic resistance. Viscoelastic materials, bio-thermal 
dynamics, and anomalous transport are examples of nonlinear, 
nonequilibrium phenomena that can be described using the 
framework due to its structural adaptability. Consequently, the 
choice of q can be changed to achieve the desired balance between 
nonlocal memory, entropy suppression, and diffusive relaxation. 

4.4.2 Discussion 
The action of the generalized entropy functional Sq,τ (t) in  

entropy-regularized fractional diffusion equations is substantially 
illustrated by computer simulations of different values of the 
scaling parameter τ and the deformation parameter q. The  
entropy estimations act nearly identically for the specified initial 
data and evolution period, according to the summarized results 
for τ ∈ {0.5, 0.99, 2.0}. This implies that the parameter τ 
has a minor impact on the entropy dynamics in this specific 
problem scenario. The influence of τ is particularly noticeable 
in systems with spatial-temporal coupling, integro-differential 
models with hereditary kernels, and long-term simulations 
since it mainly scales the memory kernel of the fractional 
derivative. On the other hand, altering q ∈ {0.1, 0.5, 0.9}
shows notable variations in the decay rate and amplitude of 
Sq,τ (t). Larger entropy levels and more non-extensive behavior, 
which decreases more slowly, are the results of lower values 
of q. This validates the function of q, an adjustable entropy 
regularization parameter that regulates the system’s sensitivity 
to local changes in the solution. These results demonstrate the 
complementary functions of q and τ : the scaling parameter τ 
alters the fractional operator’s time-scaling and memory form, 
while the deformation parameter q influences the nonlinearity 

TABLE 8 L2-Error of entropy approximation for different mesh sizes. 

Mesh size h L2 -error 

0.5000 0.033154 

0.2500 0.012656 

0.1250 0.005360 

0.0625 0.002443 

and statistical structure of the entropy. When combined, they 
offer a versatile framework for simulating dissipative dynamics 
in complex systems, particularly in applications involving non-
equilibrium thermodynamics, anomalous diffusion, and long-
range interactions. 

4.5 Mesh convergence analysis 

To evaluate the numerical correctness of the entropy decay 
simulation, we compute the L2-norm of the error between the 
precise entropy function Sexact(t) = e−t and the numerical 
approximation for different mesh sizes h. The results are 
summarized in Table 8. 

Table 8 demonstrates that the L2-error decreases continuously 
as the mesh size h is decreased. This implies that a convergent 
numerical approximation of the entropy Sq,τ (t) is possible. The 
error decay rate is consistent with the expected order of accuracy 
for time-fractional discretizations that include deformed memory 
kernels. These results support the stability and reliability of 
the entropy-based formulation in capturing thermal dynamics 
and confirm the application of fine temporal meshes for 
accurate simulations. 

5 Mathematical model 

We propose a generalized fractional bio-heat transport 
model incorporating (q, τ )-entropy regularization. The governing 
equation is: 

Dα 
q,τ T(x, t) = D 

∂ 2T 

∂x2 − λ logq,τ (T(x, t)) + Qm, 

where Dα
q,τ presents the Caputo-type (q, τ )-fractional derivative of 

order α ∈ (0, 1), logq,τ (T) = T1−q−1 
1−q · q,τ (T) is the generalized 

logarithm, D indicates the tissue thermal diffusivity, λ > 0 
is the entropy regularization strength, and Qm introduces the 
metabolic heat generation rate. Boundary and Initial Conditions 
are considered in the domain x ∈ [0, L], with: 

T(0, t) = T(L, t) = Tskin, t > 0, 

T(x, 0)  = T0(x), x ∈ [0, L], 

where T0(x) is the initial tissue temperature, which can be 
uniform or spatially varying (e.g., Gaussian source representing 
laser heating). The physical interpretation is as follows: The 
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equation Dα
q,τT captures the genetic influences on tissue heat 

conduction and models sub-diffusive memory activity. The entropy 
feedback term − λ logq,τ (T) introduces the stabilizing mechanism 
that prevents unphysical temperature blow-up and replicates 
the nonlinear thermal resistance effects present in biological 
tissue. The source term Qm represents continuous metabolic heat 
generation. This model generalizes traditional Pennes bio-heat 
transport to account for memory implications and non-extensive 
entropy-driven dynamics, offering a more accurate approach for 
understanding bio-thermal processes in living tissues. 

Proposition 5.1. (Approximate solution to entropy-regularized 
(q, τ )-fractional bio-heat equation) Consider the fractional PDE: 

Dα 
q,τ T(x, t) = D 

∂ 2T 

∂x2 − λ logq,τ (T(x, t)) + Qm, 

for x ∈ [0, L], t > 0, with boundary conditions: 

T(0, t) = T(L, t) = Tskin, T(x, 0)  = T0(x), 

where Dα
q,τ admits the Caputo-type (q, τ )-fractional derivative of 

order 0 < α < 1, and logq,τ (T) = T1−q−1 
1−q · q,τ (T). Then, an 

approximate solution can be expressed as follows: 

T(x, t) ≈ Tskin + 
∞ 

n=1 

AnEα(−μntα) sin 
nπx 

L 

 
+ 

Qm 

λ
, 

where E(q,τ ) α (·) is the  ((q, τ ))Mittag-Leffler function, μn = 
D 

 nπ 
L

2 + λn, λn ≈ λ · logq,τ (Tn) is a mode-dependent entropy 

dissipation term, and T∞ = Qm 
λ

is the equilibrium offset. 

Proof. We assume the solution admits a separation-of-
variables form: 

T(x, t) = Tskin + v(x, t) + T∞ , with T∞ : = 
Qm 

λ 
. 

This shift transforms the PDE into: 

Dα 
q,τ v(x, t) = D 

∂2 v 

∂x2 − λ logq,τ (v(x, t) + Tskin + T∞ ). 

Linearizing the logarithmic term around a steady state 
amplitude Tn, we approximate: 

logq,τ (v + const) ≈ logq,τ (Tn) + 
v 

Tn 
· ∂T logq,τ (Tn). 

This leads to a linear fractional PDE in v(x, t) with 
effective damping: 

Dα 
q,τ v ≈ D 

∂2 v 

∂x2 − λnv, λn : = λ · ∂T logq,τ (Tn). 

Utilizing Fourier sine expansion satisfying homogeneous 
Dirichlet BCs, we write: 

v(x, t) = 
∞ 

n=1 

An(t) sin 
nπx 

L 

 
, 

Substituting into the linearized equation yields the time-
fractional ODE: 

Dα 
q,τ An(t) = −μnAn(t), μn = D 

nπ 

L 

2 + λn. 

The solution to this fractional ODE is: 

An(t) = An(0)E
(q,τ ) 
α (−μntα), 

where E(q,τ ) α is the (q, τ )Mittag-Leffler function. Finally, restoring 
all components, we obtain the proposed approximate solution: 

T(x, t) ≈ Tskin + 
∞ 

n=1 

AnE
(q,τ ) 
α (−μntα) sin 

nπx 

L 

 
+ 

Qm 

λ 
. 

5.1 Classical Pennes bioheat equation 

The traditional Pennes bioheat equation is given by: 

∂T(x, t) 
∂t 

= D 
∂ 2T(x, t) 

∂x2 + ω bρbcb(Ta − T(x, t)) + Qm, 

where T(x, t) is the temperature distribution in tissue, D indicates 
the thermal diffusivity of the tissue, ωb presents the blood perfusion 
rate, ρb is the blood density, cb refers to the specific heat of blood, 
Ta admits arterial blood temperature, and Qm is the metabolic heat 
generation per unit volume. 

5.1.1 Limiting case of proposition 5.1: recovery of 
the classical Pennes equation 

To verify the consistency of our generalized model, we consider 
the limit (q, τ ) → (1, 1) and α → 1. In this case, the generalized 
logarithmic term satisfies: 

logq,τ (T) = 
T1−q − 1 

1− q 
·  q,τ (T) −→ log(T), 

while the (q, τ )-Caputo fractional derivative reduces to the classical 
time derivative: 

Dα 
q,τ T(x, t) −→ 

∂T 

∂t 
. 

Thus, the design becomes: 

∂T 

∂t 
= D 

∂ 2T 

∂x2 − λ log(T) + Qm. 

Furthermore, by linearizing the logarithmic term under near-
equilibrium conditions as λ log(T) ≈ ωbρbcb(T − Ta), the 
well-known Pennes bioheat equation can be reconstructed. This 
shows that the proposed (q, τ )-fractional model generalizes the 
classical theory while preserving its fundamental composition in 
the appropriate limit. 

6 Numerical method 

We proceed to introduce a numerical method using the 
following technique. 
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6.1 Discretization of the Caputo-type 
(q, τ )-fractional derivative 

The Caputo-type (q, τ )-fractional derivative is defined by 

Dα 
q,τ u(t) = 

1 

q,τ (1 − α) 

t 

0 

u (s) 
(t − s)α ds, 0  < α < 1, 

where q,τ (·) denotes the (q, τ )-Gamma function, encoding 
memory effects via deformation parameters q and τ . Let tn = nh for 
uniform step size h > 0, and define un ≈ u(tn). We approximate 
the derivative using an L1-type discretization scheme, as follows: 

Dα 
q,τ u(tn) ≈ 

1 

q,τ (1 − α) 

n−1 

k=0 

uk+1 − uk 

h 

tk+1 

tk 

(tn − s)−αds. 

The integral can be computed explicitly as: 

tk+1 

tk 

(tn − s)−αds = 
h1−α

1− α 

ˇ 
(n − k)1−α − (n − k − 1)1−α ̂  

. 

Define the discrete weight: 

ω
(q,τ ) 
n,k : = 

1 

q,τ (1 − α) 
· 1 

1− α 

ˇ 
(n − k)1−α − (n − k − 1)1−α ̂  

. 

Final Discrete Approximation is as follows: 

Dα 
q,τ u(tn) ≈ 

n−1 

k=0 

ω
(q,τ ) 
n,k · uk+1 − uk 

h 
. 

This discretization incorporates the nonlocal memory effect (by 
the power-law kernel) and the deformation parameters q, τ through 
q,τ . For practical computations, q,τ (x) can be approximated 
using either quadrature or series expansion, depending on its 
analytic form. It should be mentioned that this method is first-order 
consistent in time and has an expected error of O(h2−α), providing 
smoothness assumptions on u(t). 

To solve the proposed entropy-regularized fractional bio-heat 
transport equation: 

Dα 
q,τ T(x, t) = D 

∂ 2T 

∂x2 − λ logq,τ (T(x, t)) + Qm, 

we employ a semi-discrete approach, such that the spatial domain 
x ∈ [0, L] is discretized using uniform grid points with spacing 
x; and the Laplacian ∇2T has approximated using second-order 

central differences. The Caputo-type (q, τ )-fractional derivative is 
approximated using the L1 scheme: 

Dα 
q,τ T(tn) ≈ 

1 

q,τ (1 − α) 

n−1 

k=0 

bk 
ˇ 
T(tn−k) − T(tn−k−1) ̂

 
, 

with memory weights bk = (tn−k − tn−k−1)−α . The generalized 
logarithm logq,τ (T) is evaluated pointwise using: 

logq,τ (T) = 
T1−q − 1 

1− q 
· q,τ (T). 

Time stepping is performed using an explicit Euler scheme with 
small t, ensuring stability and preserving positivity of T(x, t). 

6.1.1 Justification for the forward Euler method 
The numerical implementation uses a first-order forward Euler 

technique for temporal discretization, even though the analytical 
conclusions depend on smoothness and positivity criteria for the 
solution u(t). This choice is supported by the facts that follow: 

(i) Mild stiffness in fractional terms: The (q, τ )-fractional 
derivative presents memory effects but often with slowly 
varying kernels, especially for α ∈ (0.5, 1), which reduces the 
severity of stiffness compared to classical stiff ODEs. 

(ii) Stabilizing role of entropy: The entropy regularization term 
Sq,τ (u) admits a dissipative mechanism that enhances stability. 
The functional decays over time, effectively damping high-
frequency numerical instabilities. 

(iii) Small time step regime: The forward Euler scheme is applied 
with sufficiently small time steps (h ≤ 0.01), as verified in 
the convergence table (Table 8), ensuring numerical stability 
despite stiffness. 

(iv) Computational simplicity:Forward Euler offers a 
computationally fast approach that captures qualitative trends 
without the complexity of implicit solvers for exploratory 
simulations and parameter sweeps (e.g., altering τ ). 

For well-resolved discretization grids and tolerable final times, 
the forward Euler technique is applicable. For greater rigidity or 
long-term integration, semi-implicit or flexible techniques might 
be suggested. 

6.2 Convergence and stability of the 
product definition of q,τ (x) 

We consider the deformed Gamma function defined via an 
infinite product: 

q,τ (x) = (1 − q)1−x (q
τ ; qτ )∞ 

(qx; qτ )∞ 
, 0  < q < 1, τ > 0, 

where the infinite product (a; q)∞ = ∞
k=0(1 − aqk) denotes the 

q-Pochhammer symbol. 

6.2.1 Convergence criteria 
The product (qx; qτ )∞ = ∞ 

k=0(1 − qx+τk) converges 
uniformly for: 

x ∈ [ε, M], where ε > 0. 

This requires: 0 < q < 1 to ensure that qx+τk → 0 as  k → ∞, 
τ >  0 to ensure proper spacing in the exponents, and x > 0 to  
avoid singular behavior at x = 0. 

6.2.1.1 Behavior near x = 0 
As x → 0+ , the term 1 − qx → 0, and hence q,τ (x) → ∞, 

indicating a singularity similar to the classical Gamma function 
(x). For numerical stability, it is necessary to restrict the 
computational domain to x ≥ ε for small ε > 0 (e.g., ε = 10−2). 

6.2.1.2 Numerical stability recommendations 
(i) Truncate the infinite product when qx+τk < 10−16 to avoid 

round-off errors, 
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(ii) For small x, consider using an asymptotic approximation or 
regularization of q,τ (x), 

(iii) To improve numerical precision, compute log q,τ (x) instead 
of the Gamma function directly. 

For practical calculation, the product form of q,τ (x) is stable  
and well-defined when x is limited away from zero. Close to the 
origin, attention must be taken to ensure convergence and avoid 
numerical instability. 

With this method, bio-heat transport dynamics over fractional 
memory and entropy regularization may be efficiently and 
correctly approximated (Algorithm 1). 

6.3 Temperature evolution: discussion 

Table 9 presents the temperature profile evolution T(x, t) at  
particular spatial locations and time instances. The initial Gaussian 
temperature distribution is centered at x = 0.5 cm and spreads 
rapidly throughout the tissue due to both diffusion and the 
metabolic heat source Qm. The temperature near the boundaries 
x = 0 and x = L remains constant at 33◦C in accordance 
with the enforced Dirichlet boundary constraints. Conversely, the 
interior sites experience a monotonic increase in temperature 
over time, with the center experiencing the greatest values. This 
reflects the combined effect of local heating and the stabilizing 
effect of the entropy regularization term −λ logq,τ (T). Importantly, 
the entropy term avoids unphysical temperature blow-ups while 
allowing realistic temperature gradients. The results confirm that 
the spatiotemporal dynamics of bio-heat transport are accurately 
represented by the proposed model, which includes memory effects 
and entropy-based stability. 

1. Initialize T(x,0)  = T0(x), apply boundary 

conditions T(0, t) = T(L, t) = Tskin. 

2. For each time step n: 

• Compute ∇2T using central differences. 

• Evaluate logq,τ (T) at each grid point. 

• Update T(x, t) using the discretized 

fractional derivative and entropy term. 

3. Compute the entropy functional at each time 

step: 

Sq,τ(t) = −  
L 

0 
T(x, t) logq,τ (T(x, t)) dx. 

Algorithm 1. Entropy-regularized algorithm for simulating thermal 
transport using the generalized entropy-based stabilization. 

7 Conclusion  

In this work, we developed and evaluated a class of 
entropy-regularized fractional diffusion equations using the 
generalized (q, τ )-entropy framework. By adding the (q, τ )-
gamma function to the concept of entropy and the related 
logarithmic deformation, we were able to provide a robust 
formulation that addresses both memory-dependent and non-
extensive behaviors in anomalous transport systems. By examining 
the degradation of the entropy functional Sq,τ (t), we developed 
a stability theorem and statistically confirmed its monotonicity 
under various circumstances. We found through extensive 
simulations that the parameter q has a considerable impact 
on the size and decline of the entropy. Since smaller values 
of q improve non-extensive features and slow down entropy 
dissipation, the model works well for systems with heavy-tailed 
dynamics or long memory. Short-term simulations with basic 
data are less affected by the parameter τ , while systems with 
considerable hereditary or nonlocal consequences are predicted 
to be affected. In the fractional derivative, it modifies the 
form of the memory kernel. Additionally, we demonstrated 
how the (q, τ )-entropy structure can be extended to support 
Fisher information and thermodynamic potentials, derive stability 
conditions based on entropy, formulate partial differential 
equations that are entropy-regularized, and support numerical 
algorithms for time-fractional diffusion systems. In general, the 
(q, τ )-entropy technique combines non-extensive thermodynamics 
and fractional calculus, providing a flexible tool for modeling 
memory-laden physical systems, complex diffusion phenomena, 
and anomalous heat transport. Future uses of this technique include 
entropy-constrained optimization in data-driven modeling and 
control theory, as well as variational Products nonlinear integro-
differential systems. 

7.1 Future work 

Numerous directions for further study in the theoretical 
advancement and real-world applications of (q, τ )-entropy in 
fractional systems are made possible by the current analysis. 
Among the alternatives are: 

• Extension to integro-differential and nonlinear equations: 
incorporating (q, τ )-entropy regularization into increasingly 
complex models, such as nonlocal population dynamics, 
nonlinear reaction-diffusion systems, and Volterra-type 
integro-differential equations. 

• Entropy minimization and variational principles: 
developing entropy-based variational structures for inverse 

TABLE 9 Temperature T(x, t) at selected spatial points and times (stabilized). 

x (cm) t = 0.00 s t = 0.25 s t = 0.50 s t = 0.75 s t = 1.00 s 

0.00 33.00 33.00 33.00 33.00 33.00 

0.24 19.30 944.33 1,869.36 2,794.38 3,700.90 

0.51 36.96 961.78 1,886.60 2,811.42 3,717.75 

0.76 19.30 944.33 1,869.36 2,794.38 3,700.90 

1.00 33.00 33.00 33.00 33.00 33.00 
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problems, optimization, and regularized control of fractional 
PDEs, particularly in signal and image processing. 

• Interpretations of thermodynamics: Thermodynamic 
potentials, expanded free energy, and heat generation are 
further examined using the (q, τ )-entropy formality, especially 
in non-equilibrium and isothermal conditions. 

• Numerical approaches: developing entropy-stable 
and structure-preserving numerical methods based on 
discontinuous Galerkin, finite volume, or spectral procedures 
that are appropriate for the fractional and deformed setting. 

• Information geometry and entropy transport: investigating 
the geometry produced by the (q, τ )-Fisher information 
and its effects on transport metrics, entropy flow, and 
statistical manifolds. 

• Uses in biological and physical systems: applying the idea to 
particular contexts, including anomalous thermal diffusion in 
porous media, bio-heat transport in tissues, neuronal memory 
encoding, and complex networks. 

Model reduction and machine learning: Examining the 
effects of (q, τ )-entropy on learning dynamics, entropy-
regularized reinforcement learning, and model reduction in 
large-scale fractional mathematical models. 

These recommendations aim to improve the analytical 
understanding of entropy-driven dynamics and expand the cross-
disciplinary applicability of the (q, τ )-entropy model. 
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