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Research under classical statistics often relies on precise, determinate data

to estimate population parameters. However, in certain situations, data may

be indeterminate or imprecise. Neutrosophic statistics, a generalization of

classical statistics, has been introduced to address these challenges by handling

vague, indeterminate, and uncertain information e�ectively. Several estimators,

including ratio estimators, have been proposed in neutrosophic statistics. These

ratio estimators perform well when the correlation between the auxiliary and

study variables is strong. However, in this study, regression-type estimators

were developed, demonstrating superior performance in cases where the

correlation between the study and auxiliary variables is high, weak, or moderate.

The performance of the proposed estimator was evaluated using simulated

data as well as four real-world datasets with indeterminate data, including

blood pressure, temperature, natural growth rate, and solar energy data. The

proposed neutrosophic regression estimator consistently outperformed the

existing neutrosophic ratio estimator, modified neutrosophic ratio estimators,

and the neutrosophic exponential ratio estimator, as indicated by performance

measures such asmean squared error (MSE) and percent relative e�ciency (PRE).

This paper highlights the advantages of the neutrosophic regression estimator

in improving estimation accuracy when dealing with uncertain and ambiguous

data, with any range of correlation between the study and the auxiliary variables

considered under the study.

KEYWORDS

classical statistics, neutrosophic statistics, neutrosophic estimator, bias, percent relative

e�ciency (PRE)

1 Introduction

In surveys, a representative sample is drawn from the population using an appropriate

sampling design to make inferences about population parameters. Classical statistics

typically relies on precise, determinate data to estimate these parameters. However, real-

world data often exhibit imprecision, indeterminacy, or vagueness due to various factors

such as measurement errors, incomplete information, or inherent variability. For instance,

in agriculture surveys, crop yield predictions are uncertain due to fluctuating weather

patterns and pest infestations. In demographic studies, estimating birth rates and natural

growth rates can involve uncertainty due to factors such as incomplete census data,

reporting errors, and variations in survey methodologies [1]. Classical statistical methods
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provide point estimates but often struggle to adequately address

such indeterminate data, potentially leading to biased or less robust

estimates. To overcome this limitation, the concept of neutrosophic

statistics was introduced by Prof. Dr. Florentin Smarandache

from the University of New Mexico, United States, in 1998

[2], which offers a powerful generalization of classical statistics.

Neutrosophic statistics is designed to handle data characterized

by uncertainty, indeterminacy, and ambiguity by representing

observations as intervals or sets rather than single precise values.

Unlike classical statistics, which assumes deterministic data,

neutrosophic statistics incorporates three key components: truth-

membership (representing the degree of certainty), indeterminacy-

membership (quantifying the level of uncertainty or ambiguity),

and falsity-membership (indicating the degree of contradiction).

This framework allows neutrosophic statistics to model complex,

real-world scenarios more effectively by accounting for the full

spectrum of uncertainty, including situations where data are

partially known or contradictory. For example, in health studies,

blood pressure measurements may vary within a range due to

instrument precision or patient conditions, and neutrosophic

statistics can represent these measurements as intervals, providing

a more comprehensive analysis than classical point estimates.

Compared to fuzzy statistics, which focus on ambiguity through

membership degrees between 0 and 1, neutrosophic statistics

explicitly address indeterminacy, making them particularly suitable

for scenarios where data uncertainty cannot be fully resolved by

fuzzy sets [3, 4]. This capability enhances the robustness and

flexibility of neutrosophic methods in handling imprecise data

across diverse fields such as agriculture, health, environmental

studies, and social sciences.

Neutrosophic probability distributions extend classical

distributions by incorporating imprecise parameters to handle

indeterminate data. Neutrosophic logic allows these distributions

to model uncertainty more effectively than traditional methods [5],

and further, many researchers contribute to neutrosophic statistics

using a variety of estimating techniques [6–18].

In sample surveys, in addition to data on the study variable,

information on several auxiliary variables is often available. The

use of auxiliary information for estimating parameters like the

population mean, ratio, product of two means, and coefficient

of variation is well established under the classical framework,

with key estimators including ratio, product, and regression

estimators. Numerous researchers have contributed to sample

surveys incorporating auxiliary information, employing various

transformation techniques to develop efficient ratio and regression

estimators under the classical framework. Research indicates

that when the study variable and auxiliary variable are highly

correlated, the sampling error in classical ratio estimators is

significantly reduced compared to using the study variable alone.

A modified ratio estimator considers the subsidiary information’s

coefficient of variation [19]. The use of transformed auxiliary

variables to estimate population means has also been investigated

under the classical framework [20–22]. The performance of ratio-

type estimators improved when incorporating various types of

auxiliary information under the classical framework [23]. The

classical regression estimator performs better than the classical

ratio estimator regardless of whether there is positive or negative

correlation between the study and the auxiliary variables [24].

Introduction of a new chain ratio-type estimator and regression-

type estimator to the finite population mean based on a linear

combination of two auxiliary variables [25]. Traditional ratio and

regression estimators provide precise estimates for the population

parameter within a deterministic sampling framework. However,

they may not be appropriate for a neutrosophic framework, which

includes indeterminacy or ambiguity in data.

Tahir et al. [26] pioneered the estimation of population

parameters within a neutrosophic framework using non-linear

estimators. They introduced neutrosophic ratio-type estimators

and neutrosophic exponential estimators for estimating the

population mean under simple random sampling without

replacement, particularly in cases where there is a strong

correlation between the auxiliary and study variables. Additionally,

a study on neutrosophic exponential estimators for the estimation

of population means has shown them to perform better in

cases where the correlation between these variables is weak or

moderate [27]. In addition to this, Alqudah et al. [28] proposed

a generalized neutrosophic robust ratio estimator for estimating

the finite population mean, specifically designed to handle

indeterminate, imprecise, and outlier-contaminated data. Singh

et al. [29] proposed an Almost Unbiased Estimator for estimating

the population mean to handle neutrosophic data using auxiliary

information and the ratio estimator. Yadav et al. [30] proposed

neutrosophic mean estimators using extremely indeterminate

observations in sample surveys. Despite these advancements,

existing neutrosophic estimators often rely on ratio-based

methods, which may not perform optimally across a wide range of

correlation levels, such as weak, moderate, strong, or even negative.

1.1 Novelty and contributions

This study introduces a novel neutrosophic regression

estimator designed to estimate the finite population mean in

the presence of indeterminate, imprecise, or vague data. Unlike

existing neutrosophic ratio and exponential estimators, which are

primarily effective under strong positive correlations, the proposed

estimator leverages the regression framework to perform robustly

across a wide range of correlation levels, including weak, moderate,

strong positive, and negative correlations. By extending classical

regression principles to the neutrosophic domain, the estimator

accommodates interval-based or uncertain data, providing more

reliable estimates in real-world scenarios where data precision is

compromised, such as in agricultural yield predictions or health

metrics with measurement variability. The study also introduces

the R-package “neutroSurvey” [31], which facilitates the practical

implementation of neutrosophic statistical methods, making them

accessible to researchers and practitioners. The performance of the

proposed estimator is rigorously evaluated using four real-world

datasets (blood pressure, temperature, natural growth rate, and

solar energy) and simulated data, demonstrating its superiority over

existing neutrosophic ratio and exponential estimators in terms of

mean squared error (MSE) and percent relative efficiency (PRE).
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FIGURE 1

Flow chart of neutrosophic inference.

1.2 Significance of the study

The significance of this study lies in its development of

a versatile and robust neutrosophic regression estimator that

addresses the limitations of classical and existing neutrosophic

estimators (Figure 1). By effectively handling indeterminate data

across various correlation structures, the proposed estimator

enhances estimation accuracy in fields where uncertainty

is prevalent, such as agriculture, health, and environmental

studies, and so on, by providing a framework that explicitly

accounts for truth, indeterminacy, and falsity. The estimator’s

ability to perform well across a wide range of correlation

levels—weak, moderate, or strong positive and negative

correlations—makes it a valuable tool for complex, real-world

applications where traditional methods may fail. Furthermore,

the introduction of the “neutroSurvey” R-package democratizes

access to neutrosophic statistical methods, enabling researchers

to apply these techniques in diverse domains. This study

also lays the groundwork for future research into advanced

neutrosophic estimators for complex sampling designs and

multivariate frameworks, potentially integrating robust and

machine learning-based approaches to further enhance estimation

precision in uncertain environments.

2 Methodology

2.1 Neutrosophic observation

Neutrosophic numbers can be represented in multiple ways.

However, in this study, neutrosophic interval values were defined as

ZN = ZL + ZU IN with IN ∈ [IL, IU ],ZN ∈ [a, b],

where

ZL indicates the deterministic (lower) part of the neutrosophic

number, representing a certain or known component of the data.

ZU indicates the coefficient of the indeterminate part, which

quantifies the magnitude of indeterminacy.

IN indicates an indeterminacy component, which lies within the

interval IN ∈ [IL, IU ], where IL is the lower bound, and IU is the

upper bound of the indeterminacy interval.
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The neutrosophic number is expressed as an interval ZN ∈

[a, b]

where:

a is the lower bound of the neutrosophic interval, representing

the minimum possible value.

b is the upper bound of the neutrosophic interval, representing

the maximum possible value.

The expression ZN = ZL + ZU IN with IN ∈ [0, 1] and ZN ∈

[a, b] represents a neutrosophic number as an interval [ ZN , ZL +

ZU ] = [a, b] where ZU = b − a. When ( IN = 0), this condition

refers to a specific value of the indeterminacy component. However,

since IN is an interval [IL, IU ], this can be interpreted as the

case where the indeterminacy interval collapses to a crisp value,

specifically, or the indeterminacy component is evaluated at zero.

In this situation, ZN = ZL = a, where a is the lower bound of the

neutrosophic interval. This reduction aligns neutrosophic statistics

with classical statistics, where all data are determinate [4].

Let (T= T1, T2, . . .,TN) be a population of N units a random

sample of size n, which is drawn from a finite population ofN units

by simple random sampling without replacement (SRSWOR).

Let YN (i)∈ (YL, YU) be ith unit of neutrosophic population on

variable of interest YN (study variable), and XN (i) ∈ (XL,XU)

is ith unit of neutrosophic population on auxiliary variable,

which is correlated to neutrosophic study variable YN and yN (i)

and xN (i) is ith unit of sample observation of the neutrosophic

study and auxiliary variable, respectively. Let YN∈
(

YL, YU

)

and

XN ∈
(

XL, XU

)

be the neutrosophic population mean for

study variable YN and auxiliary variable XN , respectively, and

yN∈
(

yL, yU
)

and xN ∈ (xL, xU) be the neutrosophic sample mean

for study variable YN and auxiliary variable XN , respectively. Let

CyN∈
(

CyL,CyU

)

and CxN ∈ (CxL,CxU) be neutrosophic coefficients

of variation for YN and XN , respectively. ρyxN∈
(

ρyxL, ρyxU
)

is

the neutrosophic correlation between YN and XN (neutrosophic

variables). Let S2xN∈
(

S2xL,S
2
xU

)

and S2yN∈
(

S2yL,S
2
yU

)

be the

neutrosophic population variances for XN and YN (neutrosophic

variables), respectively, SyxN ∈
(

SyxL, SyxU
)

be the neutrosophic

covariance between XN and YN (neutrosophic variables). In

addition, β2(x)N ∈
(

β2(x)L, β2(x)U

)

is the neutrosophic coefficient

of kurtosis for auxiliary variable XN . Let eyL∈
(

eyL, eyU
)

and

exN∈ (exL, exU) be the neutrosophic mean errors for YN and

XN , respectively . Let es2xN
∈

(

es2xL
, es2xU

)

and es2yN
∈

(

es2yL
, es2yU

)

be

neutrosophic error terms for variance and esyxN ∈

(

esyxL , esyxU

)

is

neutrosophic error term for covariance. These terms are defined in

Table 1.

2.2 Flow chart
The flowchart below illustrates the process for applying the

proposed methods to neutrosophic data.

2.3 Existing neutrosophic estimators

i. Tahir et al. [26] proposed the neutrosophic ratio estimator for

estimating the mean of the finite population in the presence of

an auxiliary variable denoted by yRN is (Equation 1) given

TABLE 1 Terminological framework for neutrosophic estimators.

S. no. Terminology

1. eyN =
yN− YN

YN
exN =

xN− XN

XN
, θN =

(

1
n
−

1
N

)

where θN ∈ (θL , θU )

2. es2xN
=

s2xN−S2xN
S2xN

, es2yN
=

s2yN−S2YN

S2YN
, esyxN =

syxN−SyxN
SyxN

3. E(eyN ) = 0, E(exN ) = 0,

4. E
(

e2yN

)

= θNY
2

NC
2
yN , where θN =

(

1
n
−

1
N

)

5. E
(

e2xN
)

= θNX
2
NC

2
xN where θN =

(

1
n
−

1
N

)

6. E(eyNexN ) = θNXNYNCyNCxNρyxN

7. C2
xN =

S2xN

X
2
N

, where C2
xN ∈

(

C2
xL ,C

2
xU

)

8. C2
yN =

S2yN

Y
2
N

, where C2
yN ∈

(

C2
yL ,C

2
yU

)

9. ρyxN =
SyxN

SyN SxN
, where ρyxN ∈

(

ρyxL , ρyxU

)

10. S2xN ∈
(

S2xL , S
2
xU

)

, S2yN ∈

(

S2yL , S
2
yU

)

, and SyxN ∈
(

SyxL , SyxU
)

yRN =
yN
xN

XN , (1)

where yRN ∈
(

yRNL, yRNU
)

Bias
(

yRN
)

and MSE
(

yRN
)

up to the first-order

approximation were

Bias
(

yRN
)

∼= θNYN(C
2
xN− ρyxNCyNCxN)

MSE
(

yRN
)

∼= E(yRN − YN)
2 ∼=

θN Y
2
N

(

C2
yN + C2

xN − 2ρyxNCyNCxN

)

.

ii. The neutrosophic ratio-type estimator yRN1 that considers the

coefficient of variation as an auxiliary variable proposed by

Tahir et al. [26] was as follows:

yRN1
= yN

xN + CxN

xN + CxN
, (2)

where yRN1
∈
(

yRNL1 , yRNU1

)

Bias
(

yRN1

)

and MSE
(

yRN1

)

up to first order

approximation were

yRN1
= YN

[

(

1+ eyN
)

(

XN+CxN

XN (1+exN )+CxN

)]

Bias
(

yRN1

)

∼=θNYN

[

(

XN

XN+CxN

)2
C2
xN −

XN

XN+CxN
ρyxNCyNCxN

]

MSE
(

yRN1

)

= E
(

yRN1
− YN

)2 ∼=

θN Y
2

N

[

C2
yN +

(

XN

XN+CxN

)2
C2
xN − 2

(

XN

XN+CxN

)

ρyxNCyNCxN

]

.

iii The neutrosophic ratio-type estimator yRN1 that considers

the coefficient of kurtosis as an auxiliary variable proposed by

Tahir et al. [26] is given below:

yRN2
= yN

XN + β2(x)N

xN+β2(x)N
, (3)

where yRN2
∈
(

yRNL2 , yRNU2

)
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Bias (yRN2
) and MSE (yRN2

) can be expressed as follows:

Bias(yRN2
) ∼= θNYN





(

XN

XN + β2(x)N

)2

C2
xN

−

(

XN

XN + β2(x)N

)

ρyxNCyNCxN

]

MSE(yRN2
) ∼= θNY

2
N



C2
yN +

(

XN

XN + β2(x)N

)2

C2
xN

−2

(

XN

XN + β2(x)N

)

ρyxNCyNCxN

]

.

iv. In this sequence, Tahir et al. [26] proposed a neutrosophic

ratio estimator yRN3
incorporating both the coefficient of

variation CxN and the coefficient of kurtosis β2(x)N as auxiliary

variables given as follows:

yRN3
= yN

XNβ2(x)N + CxN

xNβ2(x)N + CxN
, (4)

where yRN3
∈
(

yRNL3 , yRNU3

)

Bias
(

yRN3

)

and MSE
(

yRN3

)

up to first order approximation

were as

yRN3
= YN

(

1+ eyN
)

(

XNβ2(x)N+CxN

XN (1+exN )β2(x)N+CxN

)

Bias
(

yRN3

)

∼= YN θN

[

(

XNβ2(x)N

XNβ2(x)N+CxN

)2

C2
xN

−2
(

XNβ2(x)N

XNβ2(x)N+CxN

)

ρxyNCyNCxN

]

MSE
(

yRN3

)

= E
(

yRN3
− YN

)2

∼= θNY
2
N

(

C2
yN +

(

XNβ2(x)N

XNβ2(x)N+CxN

)2

C2
xN−

2
(

XNβ2(x)N

XNβ2(x)N+CxN

)

ρxyNCyNCxN

)

.

v. The neutrosophic exponential estimator developed by Tahir

et al. [26] is given below:

yRNE
= yN exp

(

XN − xN

XN + xN

)

, (5)

where yRNE
∈
(

yRNLE , yRNUE

)

Bias
(

yRNE

)

and MSE
(

yRNE

)

up to first order approximation

were as,

yRNE
= YN

(

1+ eyN
)

exp
(

XN−XN (1+exN )

XN+XN (1+exN )

)

Bias
(

yRNE

)

∼= θNYN

(

3C2
xN

8 −
ρxyNCyNCxN

2

)

MSE
(

yRNE

)

∼= E
(

yRNE
− YN

)2 ∼=

θN YN
2
(

C2
yN +

C2
xN
4 − ρxyNCyNCxN

)

.

Derivation of bias andMSE of all the above estimators are given

in Appendix A.

3 Proposed neutrosophic regression
estimator for the estimation of a finite
population parameter

The proposed neutrosophic regression estimator for the

estimation of a finite population parameter is given as follows:

yNReg=yN − bN
(

xN − XN

)

, (6)

where, yNReg ∈

(

yNRegL , yNRegU

)

; bN ∈ (bL, bU ) be the sample

regression coefficient, which is unknown.

To obtain bias, taking the expectation on both sides of

Equation 6, we obtain

E
(

yNReg − yN

)

= −
[

E
(

bNxN
)

− XNE
(

bN
)]

= −
[

E
(

bNxN
)

− E (xN)E
(

bN
) ]

.

Thus, Bias
(

yNReg

)

is as follows:

Bias
(

yNReg

)

= − covariance
(

bNxN
)

To obtain the MSE for the proposed neutrosophic regression

estimator
(

yReg

)

up to first order approximation, neutrosophic

errors given in Table 1 were substituted into Equation 6, and

applying Taylor series expansion, we obtain

yNReg = YN

(

1+ eyN
)

− BN

(

1+esyxN
1+e

s2xN

)

XNexN ,

where BN is a constant known as the population

regression coefficient

yNReg − YN
∼= YNeyN − BNXNexN

E
(

yNReg − YN

)

= 0

Now, MSE of the proposed estimator
(

yNReg

)

can be obtained

as follows:

MSE
(

yNReg

)

= E
(

yNReg − YN

)2

= E
(

YNeyN − BNXNexN
)2

= E
(

Y
2
Ne

2
yN + X

2
NB

2
Ne

2
xN − 2YNBNXNeyNexN

)

MSE
(

yNReg

)

= θN

(

S2yN + s2xNB
2
N − 2BNρyxNSyNSxN

)

. (7)

On differentiating Equation 7 with respect to BN and setting it

equal to zero, we obtain the following:

BN = ρyxN
SyN

SxN
. (8)

Then, on putting the value of BN from Equation 8 into

Equation 7, we obtain

MSEmin (yNReg) = θ
N
S2yN(1− ρ2

xyN). (9)

We can write the Equation 9 in terms of the coefficient of

variance as below:

MSEmin (yNReg) = θNY
2
NC

2
yN(1−ρ2

xyN). (10)
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3.1 Performance measures

The proposed neutrosophic regression estimator was compared

with existing estimators yRN , yRN1
, yRN2

, yRN3
, and yRNE

using

performance measures: mean squared error (MSE) and percent

relative efficiency (PRE).

Estimator T(say) with a percent relative efficiency value less

than or equal to 100 as compared to other estimators T1, is

considered the most efficient and is given by

PercentRelativeEfficiency [T1, T] =
MSE (T1)

MSE (T )
.

4 Results and discussion

4.1 Evaluation of proposed neutrosophic
regression estimator using real datasets

4.1.1 Description of the datasets
The proposed neutrosophic regression-type estimator is a novel

concept with limited existing literature. However, in this study, the

proposed estimator was compared with other existing neutrosophic

ratio estimators, as presented in Equations 1–5. For the empirical

evaluation, four real datasets characterized by indeterminacy were

selected. The details of each data set are provided below:

Dataset 1: Indeterminate blood pressure data from a

population of 82 individuals, comprising 41 men and 41 women,

for the years 1975 to 2015, sourced from Japan (https://ncdrisc.

org/index). This indeterminate dataset includes five neutrosophic-

type variables year-wise. However, in this study, the number of

adults with raised blood pressure, (YN) and the age-standardized

prevalence of raised blood pressure 95% uncertainty interval, (XN)

were considered as study variables and auxiliary variables, with a

population size N = 82, the same for the lower and upper bounds

under the neutrosophic framework, respectively.

Dataset 2: Data set from Seasonal and Annual Minimum-

Maximum Temperature Series (1901–2017) sourced from https://

data.gov.in/resource/seasonal-and-annual-minimum-maximum-

temperature-series-1901-2017. Temperatures from March to

May (YN) and Minimum and maximum temperatures in January

and February (XN) with a population size N =117, which is

the same for lower and upper bounds under the neutrosophic

framework, were considered as the study variable and auxiliary

variable, respectively.

Dataset 3: Natural growth rate data from SRS Bulletin 2020 (1)

for 21 Bigger States, 9 Smaller States, and 6 Union Territories with a

total population size of 36. Natural growth rate was considered as a

neutrosophic study variable (YN), and birth rate as a neutrosophic

auxiliary variable (XN) with population size N = 36, the same for

both lower and upper bounds under the neutrosophic framework.

Dataset 4: Indeterminate solar energy data from Aslam

and Algarni (2020) [18]. This dataset consists of ten

neutrosophic variables recorded over 12 months, from mid-

June 2013 to mid-June 2014. Here, next-day Global Horizontal

Irradiance (ND-GHI) was considered as a neutrosophic

study variable (YN), and temperature as the neutrosophic

auxiliary variable (XN) with a population size N = 12,

which is the same for lower and upper bound under the

neutrosophic framework.

4.1.2 Descriptive statistics of datasets
To explore the efficiency of the proposed neutrosophic

regression estimator for four real-world datasets, descriptive

statistics for each dataset were computed under neutrosophic

and classical frameworks and are presented in Table 2. The

descriptive analysis of all the mentioned data sets under a

neutrosophic framework was evaluated using our developed

R-package “neutroSurvey” given below (https://CRAN.Rproject.

org/package=neutroSurvey). In dataset:1 (Blood pressure), the

neutrosophic mean YN for study variable (YN) was found within

the interval [11913108, 16490350], while the classical mean is

11,913,108 and neutrosophic mean XN for auxiliary variable (XN)

was found within the interval [0.2121, 0.2854], with a classical value

of 0.2121. Additionally, the neutrosophic coefficients of variation

for CyN and CxN for study and auxiliary variables were found and

ranged from [0.2889, 0.4048] and [0.3386, 0.5025], respectively,

with corresponding classical values of 0.1107 and 0.2967. The

neutrosophic correlation coefficient ρxyN , between the study and

auxiliary variable was found within the interval [0.3932, 0.5503],

with a classical value of 0.5502, while the coefficient of kurtosis

for the auxiliary variable β2(x)N , was obtained within the interval

[2.115907, 2.239048], with a classical value of 2.1160.

For dataset 2, (temperature) the neutrosophic mean YN for

the study variable was estimated to lie within the interval [20.6685,

31.5176], with a classical mean value of 20.6685. The neutrosophic

mean XN for the auxiliary variable was obtained within the

interval [13.8946, 24.6295], with a classical mean value of 13.8946.

Furthermore, the neutrosophic coefficients of variation CyN for

the study variable and coefficients of variation CxN for the

auxiliary variable were determined and found in intervals [0.3447,

0.5261] and [0.4364, 0.7753], respectively, with corresponding

classical values of 0.0249 and 0.0407. The neutrosophic correlation

coefficient between the study and auxiliary variables, ρxyN , was

found in the interval [0.6126, 0.6759] with a classical value of

0.6126. Additionally, the neutrosophic coefficient of kurtosis for

the auxiliary variable, β2(x)N , was evaluated and found within

the interval [5.2403, 6.0507] with a classical value of 5.2404. For

dataset 3, (natural growth rate), the neutrosophic mean YN for

the study variable was found to lie within the interval [9.7583,

11.7667] with a classical mean value of 9.7583, and the neutrosophic

mean XN for the auxiliary variable was obtained and found

within the interval [14.7083, 17.8167] with a classical value of

14.7083. The neutrosophic coefficients of variation CyN for the

study variable and CxN for the auxiliary variable were calculated

to lie within the intervals [0.3360, 0.4886] and [0.2531, 0.3607],

respectively, with corresponding classical values of 0.3489 and

0.2222. The neutrosophic correlation coefficient between the study

and auxiliary variables, ρxyN , was estimated and found within

the interval [0.9652, 0.9585] with a classical value of 0.9652.

Additionally, the coefficient of kurtosis for the auxiliary variable,

β2(x)N , was evaluated and found to lie within the interval [2.5910,

2.2163] with a classical value of 2.5910, and for dataset 4, (solar

energy), the neutrosophic mean YN and XN for study variable
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TABLE 2 Descriptive statistics for all four neutrosophic data sets in both neutrosophic and classical frameworks.

Parameters Dataset 1 (blood pressure) Dataset 2 (temperature)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

N [82, 82] 82 [117, 117] 117

YN [11,913,108, 16,490,350] 11,913,108 [20.6685, 31.5176] 20.6685

XN [0.2121, 0.2854] 0.2121 [13.8946, 24.6295] 13.8946

CyN [0.2889, 0.4048] 0.1107 [0.3447, 0.5261] 0.0249

CxN [0.3386, 0.5025] 0.2967 [0.4364, 0.7753] 0.0407

ρxyN [0.3932, 0.5503] 0.5502 [0.6126, 0.6759] 0.6126

β2(x)N [2.1159, 2.2390] 2.1160 [5.2403, 6.0507] 5.2404

Parameter Dataset 3 (natural growth rate) Dataset 4 (solar energy)

Neutrosophic Classical
( IN = 0)

Neutrosophic Classical
( IN = 0)

N (36, 36) 36 [12, 12] 12

YN [9.7583, 11.7667] 9.7583 [5218.00, 6185.92] 5218.00

XN [14.7083, 17.8167] 14.7083 [27.20, 29.01] 27.20

CyN [0.3360, 0.4886] 0.3489 [0.2712, 0.3290] 0.2626

CxN [0.2531, 0.3607] 0.2222 [0.5108, 0.8972] 0.2995

ρxyN [0.9652, 0.9585] 0.9652 [0.8216, 0.7391] 0.8216

β2(x)N [2.5910, 2.2163] 2.5910 [1.5174, 1.7496] 1.517

as well as the auxiliary variable were evaluated to lie within

the intervals [5218.00, 6185.92] and [27.20, 29.01], respectively,

with corresponding classical mean values of 5218.00 and 27.20.

The neutrosophic coefficients of variance CyN and CxN for study

and auxiliary variables were obtained and found within the

interval [0.2712, 0.3290] and [0.5108, 0.8972], respectively, with

corresponding classical values of 0.2626 and 0.2995. Neutrosophic

correlation coefficient, ρxy, between the study and auxiliary variable

ranged from [0.8216, 0.7391] with a classical value of 0.8216, and

the coefficient of kurtosis for auxiliary variable β2(x)N was estimated

within the interval [1.5174, 1.7496] with a classical value of 1.5174.

4.1.3 Comparison of proposed estimators with
existing estimators

The performance of the proposed neutrosophic regression

estimator yNRegwas compared with existing estimators

yRN , yRN1
, yRN2

, yRN3
, yRNE

based on their MSE and PRE

under the neutrosophic and classical frameworks. The sample size

n was drawn by simple random sampling without replacement

(SRSWOR). MSE of all estimators for comparison to these datasets

is presented in Tables 3–6. The analysis was conducted using

the developed R-package “neutroSurvey” (https://CRAN.R-

project.org/package=neutroSurvey). The package was developed

for empirical analysis of the proposed neutrosophic regression

estimator against the above-mentioned existing estimators.

For dataset 1, sample sizes n of 17, 21, and 25 were selected

from the population of sizeN = 82 with SRSWOR. Samples of sizes

17, 21, and 25 correspond to approximately 20%, 25%, and 30% of

the total population size N = 82, respectively.

The perusal of Table 3 presented that the MSEs at sample size

n =17, for estimators yRN , yRN1
, yRN2

, yRN3
yRNE

, and yNReg were

evaluated and found within the intervals [5.9847, 3.2511], [3.9036,

1.7627], [4.9357, 1.8889], [3.9261, 1.9452], [3.8567, 1.8637], and

[3.8496, 1.7561], respectively, with corresponding classical MSEs

of 4.2459, 0.8258, 0.6410, 1.4820, 1.0714, and 0.5651. These results

indicate that the MSE of the proposed neutrosophic regression

estimator is found to be lower than all existing estimators in both

neutrosophic and classical approaches. It is closely followed by the

neutrosophic exponential estimator, with the existing neutrosophic

ratio-type estimators performing comparatively less efficiently. As

the sample size n increased from 17 to 25, all estimators exhibited

a notable reduction in MSEs, highlighting improved estimation

precision with larger sample sizes. In this way, with sample size n =

25, MSEs of estimators yRN , yRN1
, yRN2

, yRN3
, yRNE

, and yNReg were

determined to be in the ranges [3.5687, 1.9386], [2.3277, 1.0511],

[2.9432, 1.1264], [2.3412, 1.1599], [2.2956, 1.1113], and [2.2956,

1.0472], respectively, with corresponding classical MSEs of 2.5312,

0.4925, 0.3822, 0.8837, 0.6389, and 0.3369. This trend of declining

MSEs with increasing the sample size confirms the estimator’s

efficiency in both neutrosophic and classical approaches. The

neutrosophic framework, by accounting for indeterminacy in blood

pressure data, provides interval-based estimates, in contrast to

the precise point estimates of the classical framework for the

mean-squared errors of estimators. This highlights its ability to

effectively handle uncertainty while maintaining high accuracy,

thereby enhancing its applicability. Furthermore, the MSEs
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TABLE 3 Comparison of MSE for existing vs. proposed estimators using dataset 1.

Sample Size n Estimators

yRN yRN1
yRN2

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

17 [5.9847, 3.2511] 4.2459 [3.9036, 1.7627] 0.8258 [4.9357, 1.8889] 0.6410

21 [4.5466, 2.4698] 3.2256 [2.9656, 1.3391] 0.6274 [3.7497, 1.4351] 0.4869

25 [3.5687, 1.9386] 2.5312 [2.3277, 1.0511] 0.4925 [2.9432, 1.1264] 0.3822

Sample Size n Estimators

yRN3
yRNE

yNReg

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

17 [3.9261, 1.9452] 1.4820 [3.8567, 1.8637] 1.0714 [3.8496, 1.7561] 0.5651

21 [2.9827, 1.4778] 1.1259 [2.9299, 1.4158] 0.8140 [2.9246, 1.3341] 0.4292

25 [2.3412, 1.1599] 0.8837 [2.2956, 1.1113] 0.6389 [2.2956, 1.0472] 0.3369

TABLE 4 Comparison of MSE for existing vs. proposed estimators using dataset 2.

Sample size n Estimators

yRN yRN1
yRN2

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

15 [3.1026, 18.8513] 0.0259 [2.9583, 17.7368] 0.0258 [2.1199, 12.7902] 0.0148

20 [2.2129, 13.4454] 0.0185 [2.1099, 12.6505] 0.0184 [1.5120, 9.1224] 0.0105

25 [1.6790, 10.2019] 0.0140 [1.6009, 9.5987] 0.0139 [1.1472, 6.9218] 0.0080

Sample size n Estimators

yRN3
yRNE

yNReg

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

15 [3.0737, 18.6578] 0.0259 [1.8431, 8.7392] 0.0103 [1.8419, 8.6799] 0.0097

20 [2.1923, 13.3074] 0.0185 [1.3146, 6.2331] 0.0074 [1.3137, 6.1908] 0.0069

25 [1.6634, 10.0972] 0.0141 [0.9974, 4.7295] 0.0056 [0.9968, 4.6974] 0.0052

from the classical framework across various sample sizes fall

within the corresponding neutrosophic MSE intervals for all

estimators, indicating that the neutrosophic estimation procedure

has broader applicability.

For dataset 2, sample sizes equal to 15, 20, and 25 were selected

from a population of size N = 117 using simple random sampling

without replacement (SRSWOR), representing approximately 13%,

17% and 21% of the population size N = 117, respectively.

Upon the assessment of Table 4, it was found that MSEs for

estimators yRN , yRN1
, yRN2

, yRN3
, yRNE ,

and yNRegwith sample size

n = 15 were estimated to lie within the intervals [3.1026, 18.8513],

[2.9583, 17.7368], [2.1199, 12.7902], [3.0737, 18.6578], [1.8431,

8.7392], and [1.8419, 8.6799], respectively, with corresponding

classical MSEs of 0.0259, 0.0258, 0.0148, 0.0259, 0.0103, and

0.0097. It indicates that the proposed neutrosophic regression

estimator yNReg exhibits the lowest MSEs in both neutrosophic

and classical approaches, among all the existing estimators

yRN , yRN1
, yRN2

, yRN3
, and yRNE

proposed by Tahir et al. [26].

It is important to note that the proposed neutrosophic regression

estimator performs better than the neutrosophic exponential

estimator, followed by others. As sample size n increased from

15 to 25, a consistent decrease in MSE was observed across all

estimators in both neutrosophic and classical settings. With sample

size n = 25, MSEs for estimators yRN , yRN1
, yRN2

, yRN3
, yRNE ,

and yNReg were determined and found within the intervals

[1.6790, 10.2019], [1.6009, 9.5987], [1.1472, 6.9218], [1.6634,

10.0972], [0.9974, 4.7295], and [0.9968, 4.6974], respectively,

with corresponding classical MSEs of 0.0140, 0.0139, 0.0080,

0.0141, 0.0056, and 0.0052. This pattern of declining MSEs with

increasing sample size confirms the improved estimation efficiency

of the proposed neutrosophic regression estimator across both

neutrosophic and classical statistical frameworks. It is observed

that, in the case of real datasets, point estimates sometimes fluctuate

from neutrosophic intervals due to factors likemeasurement errors,

seasonal fluctuations, environmental variability, and so on. Hence,

the neutrosophic framework seems more relevant than classical
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TABLE 5 Comparison of MSE for existing vs. proposed estimators using dataset 3.

Sample size n Estimators

yRN yRN1
yRN2

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

6 [0.1689, 0.5957] 0.2837 [0.1772, 0.6263] 0.2938 [0.2592, 0.7915] 0.3991

9 [0.1013, 0.3574] 0.1702 [0.1063, 0.3758] 0.1763 [0.1556, 0.4749] 0.2394

12 [0.0676, 0.2383] 0.1134 [0.0709, 0.2505] 0.1175 [0.1037, 0.3166] 0.1596

Sample size n Estimators

yRN3
yRNE

yNReg

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

6 [0.1721, 0.6094] 0.2875 [0.6187, 1.9677] 0.7834 [0.1021, 0.3731] 0.1101

9 [0.1032, 0.3657] 0.1725 [0.3712, 1.1806] 0.4701 [0.0612, 0.2238] 0.0661

12 [0.0688, 0.2438] 0.1150 [0.2475, 0.7871] 0.3133 [0.0408, 0.1492] 0.0440

TABLE 6 Comparison of MSE for existing vs. proposed estimators using dataset 4.

Sample size n Estimators

yRN yRN1
yRN2

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

2 [318,844.3, 811,371.7] 333,795.2 [314,515.0, 807,758.0] 327,713.7 [299,088.7, 793,749.0] 306,574.6

3 [191,306.6, 486,823.0] 200,277.1 [188,709.0, 484,654.8] 196,628.5 [179,453.2, 476,249.4] 183,928.5

4 [127,537.7, 324,548.7] 133,518.1 [125,806.0, 323,103.2] 131,085.5 [119,635.5, 317,499.6] 122,619.0

Sample size n Estimators

yRN3
yRNE

yNReg

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classical
( IN= 0)

2 [315,957.9, 809,267.5] 329.745.4 [341,817.9, 944,036.4] 303,501.0 [271,088.9, 783,025.3] 254,138.6

3 [189,574.7, 485,560.5] 197,845.2 [205,090.7, 566,438.0] 182,100.7 [162,653.3, 469,815.2] 152,483.2

4 [126,383.2, 323,707.0] 131,898.2 [136,727.2, 377,625.3] 121,400.0 [108,435.6, 313,210.1] 101,655.0

statistics in these types of situations. Therefore, it can be concluded

that estimates under the neutrosophic framework provide a better

understanding and more effective handling of indeterminacy.

For dataset 3, sample sizes n equal to 6, 9, and 12 were selected

from a population of size N = 36, using simple random sampling

without replacement (SRSWOR). These sample sizes represent

approximately 15%, 25%, and 33% of the population size N =

36, respectively.

The findings of Table 5 revealed that the MSE of estimators

yRN , yRN1
, yRN2

, yRN3
, yRNE,

and yNReg for sample size n = 6,

were estimated to lie within the intervalss [0.1689, 0.5957], [0.1772,

0.6263], [0.2592, 0.7915], [0.1721, 0.6094], [0.6187, 1.9677] and

[0.1021, 0.3731], respectively, with corresponding classical MSEs

of 0.2837, 0.2938, 0.3991, 0.2875, 0.7834, and 0.1101. A close

examination exhibits that the MSE of the neutrosophic exponential

estimator is much larger than that of all estimators in neutrosophic

and classical approaches, indicating that the exponential estimator

is not suitable in some real-life situations, whereas the proposed

neutrosophic regression estimator yNReg outperforms in all types of

situations across the range of Pearson’s correlation, among all the

existing estimators yRN , yRN1
, yRN2

, yRN3 ,
and yRNE

proposed by

Tahir et al. [26]. Increasing the sample size from 6 to 12 exhibited

a consistently decreasing trend of MSEs in both the neutrosophic

and classical frameworks. In this way, MSEs for estimators

yRN , yRN1
, yRN2

, yRN3
, yRNE ,

and yNReg with sample size n =12,

were evaluated to lie within the intervals [0.0676, 0.2383], [0.0709,

0.2505], [0.1037, 0.3166], [0.0688, 0.2438], [0.2475, 0.7871] and

[0.0408, 0.1492], respectively, with corresponding classical MSEs of

0.1134, 0.1175, 0.1596, 0.1150, 0.3133, and 0.0440. This consistent

decrease in MSEs with increasing sample size confirms the

efficiency of these estimators in both frameworks. The neutrosophic

framework provides interval-based MSE estimates that capture

a range of uncertainties, in contrast to the point estimates of

the classical framework. In this case of a real dataset related to

demography, the classical MSE falls within the neutrosophic MSE

interval across all estimators. This suggests that the neutrosophic
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regression estimator effectively handles uncertainty with greater

precision and robustness.

For dataset 4, sample sizes n equal to 2, 3, and 4 were drawn

from a population of size N = 12, with simple random sampling

without replacement (SRSWOR) sampling. These sample sizes

represent approximately 16%, 25%, and 33% of the total population

size N = 12, respectively.

On the perusal of Table 6, with sample size n = 2, the MSEs

of existing estimators yRN , yRN1
, yRN2

, yRN3
yRNE

, and yNReg were

obtained and found within the intervals [318844.3, 811371.7],

[314515.0, 807758.0], [299088.7, 793749.0], [315957.9, 809267.5],

[341817.9, 944036.4], and [271088.9, 783025.3], respectively, with

corresponding classical MSEs of 333795.2, 327713.7, 306574.6,

329745.4, 303501.0, and 254138.6. However, MSEs of the

neutrosophic exponential ratio estimator are comparatively higher

among all existing estimators in both neutrosophic and classical

approaches, indicating that the exponential estimator is not

suitable in all real-life scenarios. This analysis suggested that

the proposed neutrosophic regression estimator performs much

better than all existing estimators in all types of situations

across the range of Pearson’s correlation. As the sample size n

increased from 2 to 4, the MSEs of all the existing estimators

consistently declined. In this sequence, MSEs with sample size

n = 4, for estimators yRN , yRN1
, yRN2

, yRN3
yRNE

, and yNReg were

determined and found to be within the ranges [127537.7, 324548.7],

[125806.0, 323103.2], [119635.5, 317499.6], [126383.2, 323707.0],

[136727.2, 377625.3, and [108435.6, 313210.1], respectively, with

corresponding classical MSEs of 133518.1, 131085.5, 122619.0,

131898.2, 121400.0, and 101655.0. These findings indicate that

decreasing MSE with increasing sample size validates the efficiency

of all the estimators. The neutrosophic framework delivers interval-

based MSE estimates that effectively account for data uncertainty

from various sources. Conversely, the classical framework provides

only point estimates, failing to address data uncertainties, making

it less suitable for the current data context. This highlights the

ability of neutrosophic estimators to manage diverse forms of

indeterminacy in real-world data. Thus, the proposed neutrosophic

estimator offers enhanced reliability and robustness for handling

indeterminate datasets.

Performance measure Percent Relative Efficiency (PRE)

was also utilized to compare the performance of the proposed

neutrosophic regression estimator with existing estimators

yRN , yRN1
, yRN2

, yRN3
, and yRNE

and presented in Table 7.

On the assessment of Table 7, in the case of dataset 1, the

PRE of the proposed neutrosophic regression estimator yNReg is

[100.00, 100.00]. By employing this, PRE for other estimators

was compared. PRE for the estimators yRN , yRN1
, yRN2

, yRN3
,

and yRNE
were measured and found to be within the intervals

[155.46, 185.13], [101.41, 100.38], [128.21, 107.56], [101.99,

110.76], and [100.18, 106.13], respectively, with corresponding

classical PREs of 751.38, 146.15, 113.43, 262.27, and 189.61. These

results demonstrated that the proposed neutrosophic regression

estimator was more efficient than all existing estimators in both

neutrosophic and classical frameworks. The estimators yRN and

yRN3
contained much higher PREs in the classical framework

than their neutrosophic counterpart. It indicates that the proposed

neutrosophic regression estimator provides more stable and

realistic results under uncertainty. Similarly, for dataset 2, PRE

for the existing estimators yRN , yRN1
, yRN2

, yRN3
, and yRNE

were

evaluated and found within the intervals [168.45, 217.18], [160.61

TABLE 7 Comparison of PRE for existing vs. proposed estimators.

Estimators PRE

Dataset 1 (blood pressure) Dataset 2 (Temperature)

Neutrosophic Classical
( IN= 0)

Neutrosophic Classica
l ( IN= 0)

yRN [155.46, 185.13] 751.38 [168.45, 217.18] 267.24

yRN1
[101.41, 100.38] 146.15 [160.61 204.36] 265.67

yRN2
[128.21, 107.56] 113.43 [115.09, 147.35] 152.82

yRN3
[101.99, 110.76] 262.27 [166.88, 214.95] 266.93

yRNE
[100.18, 106.13] 189.61 [100.12,100.68] 106.71

yNReg [100.00, 100.00] 100 [100.00, 100.00] 100

Estimators PRE

Dataset 3 (natural growth rate) Dataset 4 (solar energy)

Neutrosophic Classical ( IN= 0) Neutrosophic Classical ( IN= 0)

yRN [165.43, 159.66] 257.59 [117.62, 103.62] 131.34

yRN1
[173.56, 167.86] 266.82 [116.02,103.16] 128.95

yRN2
[253.87, 212.14] 362.46 [110.32, 148.21] 120.62

yRN3
[168.56, 163.34] 261.15 [116.55, 103.35] 129.75

yRNE
[605.97,527.39] 711.49 [126.09, 120.56] 119.42

yNReg [100.00, 100.00] 100 [100.00, 100.00] 100
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204.36], [115.09, 147.35], [166.88, 214.95] and [100.12, 100.68],

respectively, with corresponding classical PREs were 267.24,

265.67, 152.82, 266.93, and 106.71. These findings suggest that the

proposed neutrosophic regression estimator performed better than

the existing estimators in both settings. Moreover, the inflated PRE

values under the classical setup further emphasize the limitations

of classical estimators in handling data uncertainty, thereby

highlighting the broader applicability and effectiveness of the

neutrosophic approach in real-world, indeterminate scenarios. For

dataset 3, the proposed neutrosophic regression estimator yNReg
compared with the existing estimators yRN , yRN1

, yRN2
, yRN3 ,

and

yRNE
were found within the intervals [165.43, 159.66], [173.56,

167.86], [253.87, 212.14], [168.56, 163.34] and [605.97,527.39],

respectively, with corresponding classical PREs of 257.59, 266.82,

362.46, 261.15, and 711.49. It was found that the proposed

neutrosophic regression estimator outperformed all the existing

estimators in both neutrosophic and classical approaches. However,

the performance of neutrosophic exponential estimators compared

to other existing estimators yRN , yRN1
, yRN2 ,

and yRN3
was the

worst. It exhibits existing estimators yRN , yRN1
, yRN2

and yRN3

are several times more efficient than the neutrosophic exponential

estimator even for highly correlated variables in some situations

under both neutrosophic and classical frameworks. Additionally,

the inflated PRE values observed under the classical framework,

as compared to those under the neutrosophic framework, suggest

that classical estimators may overestimate efficiency in uncertain

data conditions. This further underscores the broader applicability

and robustness of the neutrosophic estimators, particularly in real-

world scenarios characterized by indeterminacy and imprecision.

Similarly for dataset 4, PRE for estimators yRN , yRN1
, yRN2

, yRN3
,

and yRNE
were obtained and found within the intervals [17.62,

103.62], [116.02,103.16], [110.32, 148.21], [116.55, 103.35], and

[126.09, 120.56], respectively with corresponding classical PREs

of 131.34, 128.95, 120.62, 129.75, and 119.42. Based on the

performance, the proposed neutrosophic regression estimator was

found to be the most efficient among all existing estimators.

However, the PRE value of the neutrosophic exponential estimator

indicates that all other estimators yRN , yRN1
, yRN2

, yRN3
performed

much better than the same in some real-world scenarios in both

neutrosophic and classical settings, so it can be said that the

neutrosophic exponential estimator fails to tackle some real-world

problems even with the highly correlated data. Along with this, the

proposed estimator has wide applicability to handle uncertainty for

imprecise and indeterminate data.

4.2 Evaluation of the proposed
neutrosophic regression estimator using
simulated data

To validate the robustness of the proposed neutrosophic

regression estimator, a simulation study was conducted by

generating a large neutrosophic population under a neutrosophic

normal distribution such that the neutrosophic study variable

YN and auxiliary variable XN follows a neutrosophic normal

distribution (NND) with YN ∼ NN
(

µyN , σ 2
yN

)

, YN ∈ (YL, YU),

TABLE 8 Descriptive statistics for simulation under neutrosophic data.

Parameters Neutrosophic
values

Neutrosophic
values

N 2,000 10,000

n 50 500

YN [75.0504, 84.0164] [75.6511, 85.0679]

XN [169.8597, 181.2128] [170.8981, 180.4626]

CyN [0.1774, 0.2471] [0.18667, 0.25904]

CxN [0.0718, 0.0777] [0.06233, 0.06744]

ρxyN [0.0381, 0.1615] [0.00721,−0.03439]

β2(x)N [2.9096, 3.7944] [2.80087, 2.65350]

µyN ∈
(

µyL,µyU

)

, σ 2
yN ∈

(

σ 2
yL :, σ

2
yU

)

, and XN ∼ NN
(

µxN , σ 2
xN

)

,

XN ∈ (XL, XU), µxN ∈ (µxL,µxU), σ 2
xN ∈

(

σ 2
xL :, σ

2
xU

)

. Let

YN ∼ NN([76.0, 84.9], [(12.9)2, (17.2)2]), where µyN ∈ (76.0,

84.9), σyN ∈(12.9, 17.2) and XN ∼ NN ([171.2, 180.4], [(5.8)2,

(6.7)2]) where µxN ∈(171.2, 180.4), σxN ∈ (5.8, 6.7). Simulations

were conducted with population sizes of 2,000 and 10,000, running

10,000 iterations to generate results using R software.

Table 8 summarizes the descriptive statistics of the simulated

neutrosophic data and is used to evaluate the performance of

the proposed neutrosophic regression-type estimator under the

simulation study. In this study, a neutrosophic normal distribution

(NND) was assumed for the study variable YN and auxiliary

variable XN , with specified levels of variability and indeterminacy.

The population size of 2,000 represented a large dataset generated

for simulation, and the sample size was considered as 50 under

SRSWOR. The neutrosophic means of the study variable and

the auxiliary variable were determined to lie within the intervals

[75.0504, 84.0164] and [169.8597, 181.2128], respectively. The

neutrosophic coefficient of variation for the study variable and

the auxiliary variable ranged from [0.1774, 0.2471] and [0.0718,

0.0777], respectively. The neutrosophic kurtosis was found to

lie between [2.9096, 3.7944], and the neutrosophic correlation

between the study variable and auxiliary variable was obtained to

lie within the range [0.0381, 0.1615]. It indicates a weak correlation

between the study variable and the auxiliary variable. Similarly, a

sample size of 500 was considered from the simulated population

of size 10,000 under SRSWOR, and the neutrosophic means of the

study variable and the auxiliary variable were determined to lie

within the intervals [75.6511, 85.0679] and [170.8981, 180.4626],

respectively. The neutrosophic coefficient of variation for the study

variable and the auxiliary variable were evaluated and ranged in

intervals [0.18667, 0.25904] and [0.06233, 0.06744], respectively.

The neutrosophic kurtosis was found to lie between [2.80087,

2.65350], and the neutrosophic correlation between the study

variable and auxiliary variable was obtained to lie within the range

[0.00721, −0.03439], where the upper bound of the neutrosophic

correlation is negative.

Table 9 summarizes the results of the simulation study. The

performance of the proposed neutrosophic regression estimator

was assessed under simulated conditions by increasing the

population size from 2000 to 10000, with corresponding sample
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TABLE 9 Comparison of MSE and PRE for existing vs. proposed estimators under simulation.

Estimators N = 2,000, n= 50 N = 10,000 n= 500

MSE PRE MSE PRE

yRN [3.9172, 8.3797] [115.02,102.41] [0.4193, 1.0016] [110.67, 108.70]

yRN1
[3.9168, 8.3794] [113.45,102.40] [0.4193, 1.0016] [110.67, 108.69]

yRN2
[3.9001, 8.3635] [112.96, 102.21] [0.4180, 0.9996] [110.32, 108.48]

yRN3
[3.9171, 8.3796] [113.46,102.40] [0.4193, 1.0016] [110.67, 108.70]

yRNE
[3.5457, 8.1831] [109.70, 100.01] [0.3885, 0.9465] [102.55, 102.71]

yNReg [3.4525, 8.1830] [100, 100] [0.3789, 0.9215] [100, 100]

sizes of 50 and 500, respectively. The findings reinforce the

robustness and consistency of the proposed estimator across

varying sample sizes and correlation levels. At a population size

of 2,000 with a sample size of 50, the Mean Squared Error (MSE)

for the proposed neutrosophic regression estimator was found to

lie within the interval [3.4525, 8.1830], representing the lowest

among all the evaluated estimators. This superior performance

was observed even under weak neutrosophic correlation scenarios,

where the correlation ranged between [0.0381, 0.1615]. With an

increase in population size to 10,000 and a corresponding sample

size of 500, a consistent decrease in MSE was observed across all

estimators, confirming the expected enhancement in estimation

accuracy with larger samples. The MSE for the proposed estimator

further declined to [0.3789, 0.9215], maintaining the lowest

range among all compared estimators. Notably, this performance

was achieved under a negative neutrosophic correlation scenario

[0.00721, −0.03439], highlighting that the proposed estimator

remains highly efficient even in weak or adverse correlation

conditions. These simulation outcomes validate the superiority

of the proposed neutrosophic regression estimator over existing

estimators. Not only does it perform well in small samples and

under weak correlation, but it also scales efficiently to large

populations and samples. The PRE values of all competing

estimators exceed 100, which typically implies lower efficiency

relative to the proposed estimator, whose PRE is standardized

to 100. Thus, these results confirm the estimator’s robustness,

general applicability, and high accuracy in scenarios characterized

by indeterminacy and imprecision.

It suggests that the proposed neutrosophic regression estimator

outperforms all existing estimators. These results align with the

study conducted on real-world datasets and further reinforce

the robustness, consistency, and superiority of the proposed

neutrosophic regression estimator in handling data that contains

either high, weak, or moderate correlation as well as negative

correlation structure.

5 Conclusion

The proposed neutrosophic regression estimator is an

extension of the classical regression estimator. The proposed

neutrosophic regression estimator assumes that the neutrosophic

study and auxiliary variables follow a linear relationship within the

interval-based framework. In this study, a neutrosophic regression

estimator was developed for estimating the finite population

mean in the presence of indeterminate, imprecise, and vague data.

Under conditions IN = 0, where indeterminacy is absent, the

proposed neutrosophic estimator reduces to the classical regression

estimator, ensuring compatibility with traditional methods. The

estimator’s bias and mean squared error (MSE) were derived

using Taylor series expansion, with the MSE minimized through

differentiation to achieve optimal performance. The performance

of the proposed estimator was evaluated using a simulated dataset

and four real-world datasets related to blood pressure, temperature,

natural growth rate, and solar energy in both the neutrosophic

and classical frameworks. Beyond the evaluated datasets, the

proposed estimator has potential applications in various domains.

In agriculture, it can improve crop yield forecasting by accounting

for uncertainties in weather and soil conditions. In public

health, it can enhance the analysis of medical measurements

in the case of cholesterol levels and heart rate variability with

inherent variability. In the subject of social sciences, employment

rate, economic growth rate, and so on. The “neutroSurvey”

R-package further enables its use in large-scale surveys, such as

national census data analysis or economic forecasting, where data

indeterminacy is common. The correlation between the study

variable and auxiliary variable was [0.0381, 0.1615] and [0.00721,

−0.03439] for population sizes of 2,000 and 10,000 with sample

sizes of 50 and 500, respectively, in the simulated data. In real

datasets, correlation varied across different scenarios: [0.3932,

0.5503], [0.6126, 0.6759], [0.9652, 0.9585], and [0.8216, 0.7391].

These values represent weak to strong correlation levels as well

as negative correlation. The proposed neutrosophic regression

estimator consistently outperforms all existing neutrosophic ratio

and neutrosophic exponential estimators across all the ranges

of correlation levels, from weak to strong positive and negative.

As this study focuses mainly on proving that our proposed

estimator based on neutrosophic data is performing better than

the existing ones, a comparison with a non-neutrosophic scenario

was not performed in this study. It was found that the proposed

neutrosophic regression estimator can enhance decision-making

in fields where data are often imprecise or incomplete, such as

agriculture, health, and environmental studies.

6 Limitations and future studies

The proposed methodology is only for uni-stage sampling

designs, whereas in real-life large-scale surveys, complex sampling

designs with complex probability structures, i.e., multistage
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sampling, PPS sampling, multiphase sampling, and so on, were

used. Furthermore, model-based and model-assisted estimation is

preferred in many survey setups for the generation of the official

statistics. The classical regression estimator is a special case of the

assisted generalized regression estimator (GREG). Hence, for future

research, there is a scope for producing neutrosophic estimators

for more advanced complex sampling designs as well as estimation

procedures. Furthermore, its extension to multivariate setups, or

integration with robust and machine learning-based methods, can

also be explored.
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