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A diffusion-based HIV model with 
inflammatory cytokines and 
adaptive immune impairment 

N. H. AlShamrani * 

Department of Mathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah, Saudi 
Arabia 

HIV continues to pose a critical threat to global public health, contributing 
to a high number of deaths worldwide. The virus predominantly attacks 
CD4+T lymphocytes, which are essential for coordinating immune responses. 
A progressive decline in these cells is a hallmark of HIV pathogenesis. Recent 
research has underscored the role of inflammatory cytokines in promoting viral 
spread and exacerbating immune dysfunction. This study presents a spatially 
structured model of HIV infection incorporating the role of inflammatory 
cytokines. The model consists of six interacting components: healthy CD4+ T 
cells, HIV-infected cells, inflammatory cytokines, free viral particles, cytotoxic 
T lymphocytes (CTLs), and antibodies. It accounts for both cell-free (virus-to-
cell) and direct (cell-to-cell) modes of transmission. The model also captures the 
suppression of adaptive immune responses involving CTLs and B cells. Motivated 
by recent findings that immune and infected cells, as well as viruses, may migrate 
from high to low concentration areas, we introduce diffusion terms to represent 
spatial movement, resulting in a system of nonlinear partial differential equations. 
We first establish the model’s mathematical well-posedness by proving the 
existence and boundedness of global solutions. A basic reproduction number 
R0 is derived, serving as a threshold parameter that governs the stability of two 
equilibria: the HIV-free equilibrium (FE ) and the HIV-persistent equilibrium (PE ). 
By constructing suitable Lyapunov functions and applying LaSalle’s invariance 
principle, we demonstrate that FE  is globally asymptotically stable when R0 ≤ 
1, while PE  becomes globally stable if R0 > 1. Numerical simulations are 
performed to validate the analytical results, and a sensitivity analysis of R0 is 
carried out to evaluate the impact of critical model parameters. 
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1 Introduction 

The human immunodeficiency virus (HIV), a fast-replicating retrovirus within the 
lentivirus genus, specifically targets and disrupts the functionality of critical immune cells, 
with a strong preference for CD4+T cells. These immune cells play a vital role in regulating 
and coordinating immune defense mechanisms. Once HIV enters the body, it integrates 
its genetic material into the host genome, gradually depleting the number of CD4+T cells. 
In a healthy individual, the CD4+T cell count is typically around 1,000 cells per mm3 of 
blood. As the infection progresses, these levels decline steadily, often without immediate 
symptoms. When the count falls below 200 cells/mm3 , the individual is considered to 
have developed acquired immunodeficiency syndrome (AIDS), a condition characterized 
by increased susceptibility to opportunistic infections and certain types of cancer [1, 2]. 
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In the absence of appropriate antiretroviral therapy, the continuous 
weakening of the immune system can lead to severe complications 
and, ultimately, death. The adaptive immune response is vital 
in managing viral infections and operates primarily through two 
pathways: antibodies produced by B cells that neutralize HIV 
particles, and cytotoxic T lymphocytes (CTLs) that identify and 
destroy infected host cells. These coordinated responses work to 
inhibit viral replication and reduce the rate of disease advancement. 

Mathematical modeling serves as an essential approach for 
exploring the complex interactions between viral infections and 
the host’s immune defenses. By representing biological processes 
through mathematical equations, these models enable a deeper 
investigation into the factors that influence infection dynamics, the 
strength and limitations of immune responses, and the potential 
outcomes of various scenarios. This approach has greatly enhanced 
our comprehension of virus-immune system relationships and has 
become instrumental in guiding the design of effective treatments 
and shaping public health policies. A basic model for analyzing HIV 
dynamics was proposed by Nowak and Bangham [3], capturing the 
interactions between healthy CD4+T cells, infected cells, and free 
virus particles. Since its introduction, this foundational framework 
has been extended in various directions to incorporate the CTL 
response [4–9], the antibody-mediated immune response [10, 11], 
and more comprehensive formulations that include both CTL and 
antibody responses simultaneously [12–16]. 

Pyroptosis, unlike the controlled and non-inflammatory nature 
of apoptosis, is a pro-inflammatory programmed cell death 
mechanism closely linked to immune system activation and 
inflammatory responses. In HIV-infected individuals, Doitsh et al. 
[17] demonstrated that caspase-1, a cysteine-dependent protease, 
becomes activated and promotes the secretion of inflammatory 
mediators such as interleukin-1β (IL-1β). These cytokines sustain 
a chronic inflammatory environment that draws in uninfected 
CD4+T cells, rendering them vulnerable to death. As a result, a 
destructive feedback loop is created in which infected CD4+T cells 
undergoing pyroptosis release inflammatory factors that drive the 
death of surrounding uninfected CD4+T cells, accelerating the 
decline of immune function [17]. Studies indicate that merely about 
5% of CD4+T cell death is attributed to apoptosis triggered by 
caspase-3, whereas the majority are lost through pyroptosis, driven 
by caspase-1 activation [18]. 

Wang et al. [19] developed a mathematical model of HIV 
infection that incorporates the contribution of pyroptosis to 
CD4+T cell depletion. The model is given by a system of ordinary 
differential equations (ODEs) which describes the interaction of 
healthy CD4+T cells, productively infected cells, abortively infected 
cells, inflammatory cytokines, and free HIV particles. In this 
framework, the impact of inflammatory cytokines on the basic 
reproduction number is not considered. As a result, the model 
overlooks the potential rise in infection rates driven by cytokine-
induced recruitment of CD4+T cells to inflamed areas, which could 
lead to an underestimation of the basic reproduction number. 

Recent research has highlighted the role of cytokine-driven 
mechanisms in the accumulation of infected CD4+T cells and 
their impact on HIV dynamics [20]. Failing to account for the rise 
in viral infection caused by the higher concentration of CD4+T 
cells, which are attracted to inflamed regions by cytokines, could 

lead to an underestimation of the basic reproduction number 
[21]. Cytokine-induced viral infections can disturb the balance 
between cell renewal and viral replication, particularly through 
mechanisms such as pyroptosis [18]. The growth of the infected 
CD4+T cell population is shaped by two main pathways: (i) direct 
infection of healthy CD4+T cells through viral contact, and (ii) an 
increase in infection rates linked to the elevated presence of CD4+T 
cells in inflamed tissues, where cytokines actively recruit them (a 
process known as cytokine-enhanced viral infection). To capture 
the combined effects of these mechanisms, the following system of 
equations models the dynamics of HIV infection under cytokine 
influence [20]: ⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩ 

dN(t) 
dt = δ − ϕN N(t) − ω1N(t)B(t) − ω2N(t)S(t), 

dU(t) 
dt = ω1N(t)B(t) + ω2N(t)S(t) − (β1 + ϕU ) U(t), 

dS(t) 
dt = β2U(t) − ϕSS(t), 

dB(t) 
dt = μU(t) − ϕBB(t). 

(1) 

Here, N(t), U(t), S(t) and B(t) represent the time-dependent 
concentrations of healthy CD4+T cells, CD4+T cells infected with 
HIV, inflammatory cytokines, and free HIV virions, respectively. 
The parameter δ represents the production rate of uninfected 
CD4+T cells. The term ω1NB corresponds to the rate at which 
CD4+T cells become infected through direct interaction with the 
virus, while ω2NS captures the cytokine-induced enhancement of 
infection. Cytokine and viral particle release from infected cells are 
modeled by the terms β2U and μU, respectively. The expression 
ϕηη denotes the natural death rate of a given compartment η, 
and β1U specifically accounts for the loss of infected CD4+T cells 
through pyroptotic cell death. Various versions of this model have 
been developed to incorporate key biological aspects, including (i) 
time delays [8, 20, 22], (ii) cell-to-cell transmission [23–25], (iii) 
CTL response [26, 27], (iv) antibody response [28, 29], and (v) the 
combined effects of CTL and antibody responses [25, 30]. 

Model (Equation 1) and its aforementioned extension presume 
a homogeneous distribution of both cells and viruses, thereby 
ignoring their spatial movement and localized interactions. While 
this assumption simplifies analysis, it fails to account for the 
critical influence of spatial organization on viral behavior. In 
actual biological systems, the uneven distribution of infected and 
healthy cells, along with constraints on viral mobility, often creates 
spatial variability. This heterogeneity can significantly shape how 
infections emerge, spread, and are contained, influencing immune 
response and treatment outcomes. Phenomena such as clustering 
of infections, formation of infection hotspots, and restricted viral 
spread are examples of effects that uniform mixing models cannot 
represent. Therefore, integrating spatial dynamics into modeling 
frameworks offers a more realistic and nuanced understanding 
of viral infections and their progression. Brainard et al. [31] and 
Tattermusch and Bangham [32] highlighted that T cells are capable 
of moving along concentration gradients, typically from regions of 
higher density to lower density. More recent research has extended 
this idea, proposing that immune cells, infected cells, and viral 
particles may also undergo migration from areas of abundance to 
those with lower presence [see, for example, [33–41]]. 

Wang and Zhang [42] proposed a nonlocal partial differential 
equations (PDEs) model incorporating time delays to analyze the 
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role of pyroptosis in infection dynamics. Their framework includes 
both latent and actively infected cell populations. The infection 
process between healthy cells and the virus is modeled using 
a saturating function. Similarly, the influence of inflammatory 
cytokines on healthy CD4+T cells via pyroptosis is described by 
saturating function. In Wang et al. [43], the authors formulated a 
reaction-diffusion model that includes time-periodic parameters, 
spatial heterogeneity, and a latent infection stage to explore the 
role of pyroptosis in CD4+T cell loss during HIV infection. 
The model employs a Beddington-DeAngelis type functional 
response to characterize the formation rate of newly infected 
cells. The analysis focuses on threshold behavior governed by the 
basic reproduction number, providing insights into conditions for 
disease persistence or clearance. Wang et al. [44] introduced a 
partial differential equation model to investigate the effects of 
gasdermin D inhibition on pyroptosis in settings characterized 
by spatial and temporal heterogeneity. The framework includes 
both productively and abortively infected cell populations and 
accounts for the role of CTL response. The interaction between 
the virus and host cells is described using a general incidence 
function. Wang et al. [45] developed a periodic partial differential 
equation model to explore the dynamics of infected cell production, 
incorporating the heightened infection risk caused by cytokine-
driven T cell migration to inflamed tissues. Their model also 
included the effect of necrosulfonamide, a pharmacological agent 
that inhibits pyroptosis. Wang and Feng [21] developed a partial 
differential equation model that incorporates spatial heterogeneity 
by introducing general functional forms to represent the dynamics 
of healthy CD4+T cell regeneration, virus-cell interactions, and 
cytokine-enhanced viral infection. However, in Wang and Feng 
[21], while the spatial dynamics of inflammatory cytokines and 
the virus are included, the movement of both healthy and infected 
CD4+T cells is omitted. Additionally, the immune response is not 
taken into account. In Chen et al. [46], the authors introduced a 
reaction-diffusion framework to study HIV dynamics, employing a 
general incidence function while accounting for cytokine-mediated 
enhancement of infection, CTL response, and the influence of 
time delay. 

The models developed in Chen et al. [25] and Dahy et al. 
[30] assume that the presence of HIV and infected cells solely 
triggers CTL and antibody responses, overlooking the potential 
for immune suppression, commonly referred to as immune 
impairment. As noted in Lydyard et al. [47], HIV can weaken the 
immune system’s functionality. Several studies have incorporated 
immune impairment into viral dynamics, focusing either on 
CTL dysfunction [e.g., [48–54]] or B-cell impairment [e.g., [54– 
57]]. More recently, AlShamrani et al. [58, 59] examined HIV 
dynamics by considering the impairment of both CTL and antibody 
responses. However, these studies did not consider the role of 
inflammatory cytokines. Although Song et al. [60] introduced CTL 
impairment alongside cytokine effects, it did not account for target 
cell population dynamics or the spatial mobility of viruses, infected 
cells and immune cells. 

Accordingly, the objective of this work is to construct a 
comprehensive HIV infection model that captures several critical 
aspects of within-host viral dynamics. Specifically, the model aims 
to incorporate: 

• the modulatory effects of pro-inflammatory cytokines, which 
play a key role in immune activation and disease progression; 

• the functional impairment or exhaustion of both cytotoxic 
T lymphocyte (CTL) responses and antibody-mediated 
immunity, which are commonly observed in chronic HIV 
infection; 

• the spatial mobility of viruses, infected cells, and various 
immune cell populations, allowing for a more realistic 
representation of cellular interactions and viral dissemination; 

• and dual transmission mechanisms, encompassing both 
classical virus-to-cell infection and direct cell-to-cell viral 
spread. 

By integrating these features, the proposed model seeks to 
provide deeper insights into HIV pathogenesis and to support the 
development of more effective therapeutic strategies. 

We establish the well-posedness of the model by proving 
the existence and boundedness of global solutions, identify 
the equilibria and derive the basic reproduction number, and 
analyze the global asymptotic stability of the equilibria using 
appropriate Lyapunov functions and LaSalle’s invariance principle. 
The theoretical findings are supported by detailed numerical 
simulations, and a sensitivity analysis of the basic reproduction 
number is conducted to assess the influence of key parameters. 

2 Model construction 

We formulate a reaction-diffusion model based on partial 
differential equations to describe the variation of the concentrations 
of six compartments with respect to spatial location  and time 
t; healthy CD4+T cells N( , t), HIV-infected CD4+T cells U( , t), 
inflammatory cytokines S( , t), free HIV particles B( , t), Cytotoxic 
T Lymphocytes (CTLs) M( , t), and antibodies H( , t). ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

∂N( ,t) 
∂t = DN N( , t) + δ − ϕN N( , t) − ω1N( , t)B( , t) 

−ω2N( , t)S( , t) − ω3N( , t)U( , t), 
∂U( ,t) 

∂t = DU U( , t) + ω1N( , t)B( , t) + ω2N( , t)S( , t) 
+ω3N( , t)U( , t) − (β1 + ϕU )U( , t) − 1U( , t) 
M( , t), 

∂S( ,t) 
∂t = DS S( , t) + β2U( , t) − ϕSS( , t), 

∂B( ,t) 
∂t = DB B( , t) + μU( , t) − ϕBB( , t) − 2B( , t) 

H( , t), 
∂M( ,t) 

∂t = DM M( , t) + ξU( , t) − ϕM M( , t) − λ1U( , t) 
M( , t), 

∂H( ,t) 
∂t = DH H( , t) + ψB( , t) − ϕH H( , t) − λ2B( , t) 

H( , t), 
(2) 

where  = (1, 2, ..., ) ∈ , and t > 0. The spatial region 
 ⊂ R , is a connected, bounded domain, and has a smooth 
boundary ∂, where  is an integer such that  ≥ 1. The diffusion 
coefficient DG is positive for each G in the set {N, U, S, B, M, H}. 
The Laplace operator, represented by , is defined as ∂2 

∂2 . The  
infection rate resulting from cellular infection is ω3NU. The terms 
ξU and ψB represent the rates at which CTLs and antibodies 
proliferate, respectively, from infected cells and free HIV particles. 
The rate at which infected cells are killed by CTLs is denoted as 
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1UM, whereas free HIV particles are neutralized by antibodies at 
rate 2BH. The rates at which CTL and antibody immunities are 
impaired are labeled as λ1UM and λ2BH, respectively. The natural 
death rates associated with CTLs and antibodies are represented by 
ϕM and ϕH , respectively. As previously outlined in Section 1, all 
other parameters share an identical biological interpretation. 

In the following, the initial conditions, as well as the 
homogeneous Neumann boundary conditions adopted for system 
(Equation 2), are given as:  

N( , 0)  = I1(), U( , 0)  = I2(), S( , 0)  = I3(), 
B( , 0)  = I4(), M( , 0)  = I5(), H( , 0)  = I6(),  ∈ ̄. 

(3)  
∂N 

∂ Z = 
∂U 

∂ Z = 
∂S 

∂ Z = 
∂B 

∂ Z = 
∂M 

∂ Z = 
∂H 

∂ Z = 0, t > 0,  ∈ ∂. 

(4) 
Here, the functions Ij(), for j = 1, ..., 6, are both 

continuous and non-negative. Meanwhile, 
∂ 

∂  Z
represents the 

outward normal derivative on the boundary ∂. The boundary 
conditions (Equation 4) ensure that all populations are prohibited 
from traversing the isolated boundary ∂  [61]. 

Remark 1. The mathematical model developed in Hattaf [6] 
incorporates CTL immune responses and considers the spatial 
mobility of both immune cells and viruses. However, it omits 
several key immunological factors, such as the contribution 
of antibody-mediated immunity, the regulatory role of pro-
inflammatory cytokines, and the potential dysfunction or 
exhaustion of CTL response that may occur during chronic 
infection. Conversely, the study by Hajhouji et al. [62] focuses 
on the antibody response in the context of HIV dynamics but 
does not include CTL-mediated immunity, cytokine-driven 
inflammation, or the spatial migration of immune cells and 
viral particles. Together, these limitations highlight the need 
for more comprehensive models that integrate multiple layers 
of the immune system and spatial effects to better capture the 
complexity of HIV pathogenesis. These limitations have been 
addressed in the present model, which incorporates both CTL and 
antibody-mediated immune responses, accounts for the effects of 
pro-inflammatory cytokines, and includes the mobility of immune 
cells and viruses. By integrating these critical biological factors, our 
model offers a more comprehensive framework for analyzing HIV 
infection dynamics and immune system interactions. 

3 Characteristics of solutions 

The following result addresses the existence, uniqueness, non-
negativity, and boundedness of solutions for model (Equation 2), 
which describe the densities of healthy CD4+T cells, HIV-infected 
CD4+T cells, inflammatory cytokines, free HIV particles, CTLs, 
and antibodies. 

Lemma 1. Let the assumption DN = DU = DS = DB = 
DM = DH = ˆ D hold true. For any initial function I = 
(I1, I2, I3, I4, I5, I6)T ∈ Y+ satisfying the initial conditions 
(Equation 3), model (Equation 2) has a unique, non-negative and 
bounded solution 

 
N( , t), U( , t), S( , t), B( , t), M( , t), H( , t) 

defined on ¯  × [0, +∞). 

Proof. Let Y = BUC 
 ¯ , R6 be defined as the set of all 

functions from ¯  to R6 that are both bounded and uniformly 
continuous, with the norm φY = sup 

∈ ¯ 

|φ()|. We denote the 

positive cone Y+ = BUC 
 
̄, R6 + ⊂Y which establishes a partial 

order on Y . This characterization demonstrates that the space 
Y ,  · Y forms a Banach lattice [63, 64]. 

Concerning every initial data I = (I1, I2, I3, I4, I5, I6)T ∈ 
Y+, we define  K = (K1, K2, K3, K4, K5, K6)T : Y+ → Y as follows: ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

K1(I)() = δ − ϕN I1() − ω1I1()I4() − ω2I1()I3() 
−ω3I1()I2(), 

K2(I)() = ω1I1()I4() + ω2I1()I3() + ω3I1()I2()− 
β1 + ϕU + 1I5() I2(), 

K3(I)() = β2I2() − ϕSI3(), 
K4(I)() = μI2() − ϕBI4() − 2I4()I6(), 
K5(I)() = ξI2() − ϕMI5() − λ1I2()I5(), 
K6(I)() = ψI4() − ϕH I6() − λ2I4()I6(). 

We observe that K is locally Lipschitz on Y+, which is a fact 
straightforward to verify (see Corollary 4 in Martin and Smith 
[65]). System (Equation 2) subject to initial conditions (Equation 3) 
and boundary conditions (Equation 4) can be reformulated as the 
following abstract functional differential equation:  

dL 
dt = L +H(L), t > 0, 
L(0) = I ∈ Y+, 

where L = (N, U, S, B, M, H)T and L = 
(DN N, DU U, DS S, DB B, DM M, DH H)T . One can 
prove that 

lim 
υ→0+ 

1 

υ 
dist 

 
I(0) + υK(I), Y+ = 0, for every I ∈ Y+. 

Follows the work of Xu and Xu [63], Zhang and Xu [64], and 
Smith [66], we deduce that for any I ∈ Y+, system (Equation 2) 
subject to (Equations 3, 4) possesses a unique non-negative mild 
solution 


N( , t), U( , t), S( , t), B( , t), M( , t), H( , t) . This 

solution is defined on ¯  × [0, TM), where [0, TM) is the maximal 
time interval over which the solution remains in existence. 
Furthermore, this solution constitutes a classical solution to the 
problem at hand. 

To confirm that the solutions have a bounded nature, we 
introduce 

P ( , t) = N( , t) + U( , t) + 
β1 + ϕU 

2β2 
S( , t) 

+ 
β1 + ϕU 

4μ 
B( , t) + 

β1 + ϕU 

8ξ 
M( , t) + 

ϕB (β1 + ϕU ) 

8μψ 
H( , t). 

Based on the fact that DN = DU = DS = DB = DM = DH = 
ˆ D, using system (Equation 2) we derive 

∂P ( , t) 
∂t 

− D̂ P ( , t) = δ − ϕN N( , t) − 
β1 + ϕU 

8 
U( , t) 

− 
ϕS (β1 + ϕU ) 

2β2 
S( , t) 

− 
ϕB (β1 + ϕU ) 

8μ 
B( , t) − 

ϕM (β1 + ϕU ) 

8ξ 
M( , t) 
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− 
ϕBϕH (β1 + ϕU ) 

8μψ 
H( , t) − 1 + 

λ1 (β1 + ϕU ) 

8ξ 
U( , t)M( , t) 

− 
β1 + ϕU 

4μ 
2 + 

ϕBλ2 

2ψ 
B( , t)H( , t) 

< δ − ϕNN( , t)− 
β1 + ϕU 

8 
U( , t) − 

ϕS (β1 + ϕU ) 

2β2 
S( , t) 

− 
ϕB (β1 + ϕU ) 

8μ 
B( , t) − 

ϕM (β1 + ϕU ) 

8ξ 
M( , t) 

− 
ϕBϕH (β1 + ϕU ) 

8μψ 
H( , t) 

≤ δ −  N( , t) + U( , t) + 
β1 + ϕU 

2β2 
S( , t) + 

β1 + ϕU 

4μ 
B( , t) 

+ 
β1 + ϕU 

8ξ 
M( , t) + 

ϕB (β1 + ϕU ) 

8μψ 
H( , t) = δ − P ( , t) , 

where  = min{ϕN , β1+ϕU 
8 , ϕS, ϕB 

2 , ϕM , ϕH }. Consequently, 
P ( , t) fulfills the subsequent system ⎧⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩ 

∂P( ,t) 
∂t − D̂ P ( , t) ≤ δ − P ( , t) , 

P ( , 0) = I1() + I2() + β1+ϕU 
2β2 

I3() + β1+ϕU 
4μ I4() 

+ β1+ϕU 
8ξ I5() + ϕB(β1+ϕU ) 

8μψ I6() ≥ 0, 
∂P 

∂ Z = 0. 

Consider a solution, P(t), for the following ordinary differential 
equation: ⎧⎨ ⎩ 

dP(t) 
dt = δ −  P(t), 

P(0) = max
∈ ̄ 

P( , 0). 

This results in P(t) ≤ max 

 
δ 
 , max

∈ ̄ 
P( , 0)  . With reference 

to the comparison principle (refer to Protter and Weinberger [67]), 
we find that P( , t) ≤ P(t). From this, we derive 

P( , t) ≤ max 

 
δ 

 
, max
∈ ̄ 

P( , 0)  , 

which demonstrates that N( , t), U( , t), S( , t), B( , t), M( , t), 
and H( , t) are bounded on ̄× [0, TM). According to the standard 
theory for semi-linear parabolic systems, we infer that TM = +∞  
[68]. The solution 

 
N( , t), U( , t), S( , t), B( , t), M( , t), H( , t) 

exists and is uniquely determined and non-negative for all  ∈ , 
t > 0. 

4 Equilibria and basic reproduction 
number 

In this section, we assess the equilibria and identify the 
threshold parameter necessary to confirm their existence. The 
results are outlined in the subsequent lemma: 

Lemma 2. Considering system (Equation 2), a basic 
reproduction number 

R0 = 
δ (μϕSω1 + ϕB (β2ω2 + ϕSω3)) 

ϕN ϕSϕB (β1 + ϕU ) 
> 0 

can be identified, which fulfills the following statements: 

1. The system ensures that it consistently achieves an HIV-free 
equilibrium, labeled as FE  = (N0, 0, 0, 0, 0, 0), N0 = δ/ϕN . 

2. The system also maintains an HIV-persistent equilibrium, 
labeled as PE  = 

 ¯ N, ¯ U, ¯ S, ¯ B, ¯ M, ¯ H , in the case of R0 > 1. 

Proof. The basic reproduction number, R0, is computed 
through the next-generation matrix technique described in van 
den Driessche and Watmough [69]. To accomplish this, we can 
represent the right-hand side of system (Equation 2) as  J1 − J2 

with 

J1 = 

⎛ ⎜⎝ 

ω1NB + ω2NS + ω3NU 
0 
0 

⎞ ⎟⎠ , 

J2 = 

⎛ ⎜⎝ 

(β1 + ϕU ) U + 1UM 
−β2U + ϕSS 

−μU + ϕBB + 2BH 

⎞ ⎟⎠ . 

System (Equation 2) consistently exhibits an HIV-free 

equilibrium FE  = (N0, 0, 0, 0, 0, 0), where N0 = 
δ 

ϕN 
. 

Upon computing the Jacobian matrices, J1 and J2, at the  
equilibrium FE , we find  

J1 = 

⎛ ⎜⎝ 

ω3N0 ω2N0 ω1N0 

0 0 0 
0 0 0 

⎞ ⎟⎠ , J2 = 

⎛ ⎜⎝ 

β1 + ϕU 0 0  
−β2 ϕS 0 
−μ 0 ϕB 

⎞ ⎟⎠ . 

Note that, the next generation matrix is in the following form: 

J1J−1 
2 = 

⎛ ⎜⎝ 

N0(μϕSω1+ϕB(β2ω2+ϕSω3)) 
ϕSϕB(β1+ϕU ) 

N0ω2 
ϕS 

N0ω1 
ϕB 

0 0 0 
0 0 0 

⎞ ⎟⎠ . 

The basic reproduction number R0 is determined by the 
spectral radius of the matrix product J1J−1 

2 , expressed as: 

R0 = 
N0 (μϕSω1 + ϕB (β2ω2 + ϕSω3)) 

ϕSϕB (β1 + ϕU ) 
= R0B+R0S+R0U , (5) 

where 

R0B = 
N0μω1 

ϕB (β1 + ϕU ) 
, R0S = 

N0β2ω2 

ϕS (β1 + ϕU ) 
, R0U = 

N0ω3 

β1 + ϕU 
. 

To clarify, the contributions of viral and cellular infections are 
represented, respectively, by R0B and R0U , whereas R0S denotes 
the influence of inflammatory cytokines. 

To identify the additional equilibrium beyond FE , we assume 
(N, U, S, B, M, H) represents any equilibrium that fulfills the 
following equations: 

0 = δ − ϕN N − ω1NB − ω2NS − ω3NU, (6) 

0 = ω1NB + ω2NS + ω3NU − (β1 + ϕU ) U − 1UM, (7) 

0 = β2U − ϕSS, (8) 

0 = μU − ϕBB − 2BH, (9) 

0 = ξU − ϕMM − λ1UM, (10) 

0 = ψB − ϕH H − λ2BH. (11) 

Referring to Equations 10, 11, we derive 

M = 
ξU 

ϕM + λ1U 
, H = 

ψB 

ϕH + λ2B 
. (12) 
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Replacing the values from Equation 12 in Equation 9, we obtain 

U = 
ϕH ϕBB + (λ2ϕB + 2ψ) B2 

μ (ϕH + λ2B) 
. (13) 

By substituting the expression from Equation 13 into 
Equation 12, we yield 

M = 
ξ 

 
ϕH ϕBB + (λ2ϕB + 2ψ) B2 

ϕM μ (ϕH + λ2B) + λ1 
 
ϕH ϕBB + (λ2ϕB + 2ψ) B2 

. (14) 

Replacing the values from Equation 13 in Equation 8 gives 

S = 
β2 

 
ϕH ϕBB + (λ2ϕB + 2ψ) B2 

μϕS (ϕH + λ2B) 
. (15) 

From Equations 6, 7, we get  

δ − ϕN N = (β1 + ϕU ) U + 1UM. (16) 

Substituting from Equations 13, 14 into Equation 16, we get  

N = 1 
ϕN 

 
δ − (β1+ϕU )(ψ  2B+ϕB(ϕH +λ2B))B 

μ(ϕH +λ2B) 

+ ξ 1(ψ  2B+ϕB(ϕH +λ2B)) 2B2 

μ(ϕH +λ2B)(μϕM (ϕH +λ2B)+λ1(ψ 2B+ϕB(ϕH +λ2B))B) . (17) 

Substituting from Equations 13–15, 17 into Equation 7, we get  

B 
 
A5B5+A4B4+A3B3+A2B2+A1B+A0 

 

ϕN ϕSμ 2 
 
μϕM ϕH +(λ2μϕM +λ1ϕBϕH )B+λ1(λ2ϕB+ψ 2)B2 (ϕH +λ2B)2 

= 0, (18) 

where 

A5 = (λ1 (β1 + ϕU ) − ξ 1) (λ2ϕB + ψ 2) 
2 (λ2 (β2ϕBω2 

+ϕ S (μω1 + ϕBω3)) + ψ 2 (β2ω2 + ϕSω3)) , 

A4 = (λ2ϕB + ψ 2)(−ϕH ψ 2(ξ 1 − λ1ϕU )(3β2ϕBω2 + ϕS(μω1+ 

3ϕBω3)) 

+ μλ2 
2(ξϕN ϕSϕB 1 + ϕU ϕM (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

+ λ1(ϕN ϕU ϕSϕB 

− δ(β2ϕBω2 + ϕS(μω1 + ϕBω3)))) + λ2(μϕU ϕM ψ 2(β2ω2 

+ ϕSω3) + ξ 1(μϕN ϕSψ 2 

− 3ϕBϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3))) + λ1(μψ 2(ϕS 

(ϕN ϕU − δω3) − β2δω2) 

+ 3ϕU ϕBϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3)))) + β1(λ2μϕM 

(ψ 2(β2ω2 + ϕSω3) 

+ λ2(β2ϕBω2 + ϕS(μω1 + ϕBω3))) + λ1(ϕH ψ 2(3β2ϕBω2 

+ ϕS(μω1 + 3ϕBω3)) 

+ λ2 
2μϕN ϕSϕB + λ2(3ϕBϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

+ μϕN ϕSψ 2)))), 

A3 = −λ 3 
2μ 2 ϕM (β2δϕBω2 + δϕS(μω1 + ϕBω3) − ϕN ϕU ϕSϕB) 

+ λ2ϕH (2μϕU ϕM ψ 2(2β2ϕBω2 

+ ϕS(μω1 + 2ϕBω3)) − ξϕB 1(3ϕBϕH (β2ϕBω2 + ϕS(μω1 

+ ϕBω3)) − 4μϕN ϕSψ 2) 

+ λ1(3ϕU ϕ
2 
B ϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3)) − 2μψ 2 

(2β2δϕBω2 + δϕS(μω1 + 2ϕBω3) 

− 2ϕN ϕU ϕSϕB))) + ϕH ψ 2(μϕU ϕM ψ 2(β2ω2 + ϕSω3) 

+ ξ 1(μϕN ϕSψ 2 

− ϕBϕH (3β2ϕBω2 + ϕS(2μω1 + 3ϕBω3)))+ 

λ1(μψ 2(ϕS(ϕN ϕU − δω3) − β2δω2) 

+ ϕU ϕBϕH (3β2ϕBω2 + ϕS(2μω1 + 3ϕBω3)))) 

+ μλ22(μϕM ψ 2(ϕN ϕU ϕS − δ(β2ω2 + ϕSω3)) 

+ 3ϕBϕH (ϕU ϕM (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

+ ξϕNϕSϕB 1 + λ1(ϕNϕUϕSϕB 

− δ(β2ϕBω2 + ϕS(μω1 + ϕBω3))))) + β1(λ3 
2 μ 2 ϕN ϕSϕBϕM + 

μλ2 
2(μϕN ϕSϕM ψ 2 

+ 3ϕBϕH (ϕM (β2ϕBω2 + ϕS(μω1 + ϕBω3)) + λ1ϕN ϕSϕB)) 

+ λ2ϕH (2μϕM ψ 2(2β2ϕBω2 

+ ϕS(μω1 + 2ϕBω3)) + λ1ϕB(3ϕBϕH (β2ϕBω2 + ϕS(μω1 

+ ϕBω3)) + 4μϕN ϕSψ 2)) 

+ ψ 2ϕH (μϕM ψ 2(β2ω2 + ϕSω3) + λ1(ϕBϕH (3β2ϕBω2 

+ ϕS(2μω1 + 3ϕBω3)) + μϕN ϕSψ 2))), 

A2 = ϕH (λ2μ(2μϕM ψ 2(ϕN ϕU ϕS − δ(β2ω2 + ϕSω3)) 

+ 3ϕBϕH(ξϕNϕSϕB 1 

+ ϕU ϕM (β2ϕBω2 + ϕS(μω1 + ϕBω3)) + λ1(ϕN ϕU ϕSϕB 

− δ(β2ϕBω2 + ϕS(μω1 + ϕBω3))))) 

+ ϕH (μϕU ϕM ψ 2(2β2ϕBω2 + ϕS(μω1 + 2ϕBω3))− 

ξϕB 1(ϕBϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

− 2μϕN ϕSψ 2) + λ1(ϕU ϕ
2 
BϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

− μψ 2(2β2δϕBω2 + δϕS(μω1 + 2ϕBω3) − 2ϕN ϕU ϕSϕB))) 

+ β1(λ2μ(3ϕBϕH (ϕM (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

+ λ1ϕN ϕSϕB) + 2μϕN ϕSϕM ψ 2) 

+ ϕH (λ1ϕB(ϕBϕH (β2ϕBω2 + ϕS(μω1 + ϕBω3)) 

+ 2μϕN ϕSψ 2) 

+ μϕM ψ 2(2β2ϕBω2 + ϕS(μω1 + 2ϕBω3))) 

+ 3λ2 
2μ 2 ϕN ϕSϕBϕM ) 

− 3λ2 
2μ 2 ϕM (β2δϕBω2 + δϕS(μω1 + ϕBω3) − ϕN ϕU ϕSϕB)), 

A1 = μϕ2 
H(ξϕN ϕSϕH ϕ

2 
B 1 + μϕSϕM ϕH ϕBω1(β1 + ϕU ) 

+ μϕN ϕSϕM ψ 2(β1 + ϕU ) 

− (3λ2μϕM + λ1ϕBϕH )(β2δϕBω2 − β1ϕN ϕSϕB 

+ δϕS(μω1 + ϕBω3) − ϕN ϕU ϕSϕB) 

− β2ϕM ω2(δμψ 2 − ϕ2 
BϕH (β1 + ϕU )) − ϕSϕM ω3(δμψ 2 

− ϕ2 
BϕH (β1 + ϕU ))), 

A0 = ϕN ϕSϕBϕM μ 2 ϕ3 
H (β1 + ϕU ) (1−R0), 

where R0 is outlined in Equation 5. According to Equation 18, it  
follows that 
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1. If B = 0, then based on Equations 12–15, 17 we deduce the 
HIV-free equilibrium, FE  = (N0, 0, 0, 0, 0, 0), with N0 = δ/ϕN . 

2. If B = 0, the equation A5B5+A4B4+A3B3+A2B2+A1B+A0 = 0 
holds. In this context, we introduce a function  (B) on [0, ∞) 
as: 

 (B) = A5B5 + A4B4 + A3B3 + A2B2 + A1B + A0. 

We have  (0) = ϕN ϕSϕBϕM μ
2ϕ3 

H (β1 + ϕU ) (1 − R0) < 0 
when R0 > 1, and lim 

B→∞ 
 (B) = ∞, which indicates that  

possesses a positive real root, B̄. By substituting the expressions 
from Equations 13, 15 into Equation 6, we get  

N̄ = 
δ 

ϕN + ω1 B̄ + ω2 ̄S + ω3 Ū 
, 

where 

Ū = 
ϕH ϕB B̄ + (λ2ϕB + 2ψ) B̄2 

μ 
 
ϕH + λ2 B̄ 

, 

S̄ = 
β2 

 
ϕH ϕB B̄ + (λ2ϕB + 2ψ) B̄2 

μϕS 
 
ϕH + λ2 B̄ 

, 

M̄ = 
ξ 

 
ϕH ϕB B̄ + (λ2ϕB + 2ψ) B̄2 

ϕM μ 
 
ϕH + λ2 B̄ + λ1 

 
ϕH ϕB B̄ + (λ2ϕB + 2ψ) B̄2 

, 

H̄ = 
ψ B̄ 

ϕH + λ2 B̄ 
. 

It is evident that the existence of the HIV-persistent equilibrium, 
PE  = 

 ¯ N, ¯ U, ¯ S, ¯ B, ¯ M, ¯ H , is confirmed when R0 > 1. 

5 Global stability investigation 

This section focuses on exploring the global asymptotic stability 
of all equilibria through the technique of the Lyapunov method. 
Take the function ϒj (N, U, S, B, M, H) into consideration, and let 
ϒ̂j(t) be defined as follows: 

ϒ̂j(t) = 
 

 
ϒj( , t) d , j = 0, 1. 

Assume that j is the largest invariant subset of j, where 

j = 

 

(N, U, S, B, M, H) : 
dϒ̂j 

dt 
= 0 

 

, j = 0, 1. 

The inequality relating the arithmetic and geometric means will 
be employed in the analysis as follows: 

G1 + G2 + ... + Gn 

n 
≥ n 

 
(G1)(G2)...(Gn). (19) 

We introduce a function (υ) as follows: 

(υ) = υ − 1 − ln υ. 

According to the Numann boundary conditions (Equation 4), 
along with the Divergence Theorem, they lead to the conclusion 
that 

0 = 
 

∂  
∇G · Z d = 

 

 
div(∇G) d = 

 

 
G d , 

0 = 
 

∂  

1 

G 
∇G · Z d = 

 

 
div( 

1 

G 
∇G) d =  

 

G 

G 
− 

G 2 

G2 d , 
 
G G d = −  

 

 
G 2 d + 

 

∂  
G 

∂G 

∂ Z d , 

for G ∈ {N, U, S, B, M, H}. As a consequence, we arrive at  

 
G d = 0,  

 

G 

G 
d = 

 

 

G 2 

G2 d , 
 
G G d = −  

 

 
G 2 d . (20) 

The input notation is omitted for the 
purpose of simplicity, i.e., (N, U, S, B, M, H) = 
N( , t), U( , t), S( , t), B( , t), M( , t), H( , t) . 

Theorem 1. The HIV-free equilibrium FE  exhibits global 
asymptotic stability when R0 ≤ 1. 

Proof. Introduce a Lyapunov function ϒ0( , t) as follows: 

ϒ0( , t) = N0 
N 

N0 
+U+ 

ω2N0 

ϕS 
S+ 

ω1N0 

ϕB 
B+ 1 

2ξ 
M2+ 2ω1N0 

2ψϕB 
H2 . 

It is evident that ϒ̂0(N, U, S, B, M, H) > 0 for all positive values 
of N, U, S, B, M, H, and ϒ̂0(N0, 0, 0, 0, 0, 0)  = 0. The derivative ∂ϒ0 

∂t
is computed along the solutions of model (Equation 2) as:  

∂ϒ0 

∂t 
= 1− 

N0 

N 
(DN N + δ − ϕN N − ω1NB − ω2NS − ω3NU) 

+ DU U + ω1NB + ω2NS + ω3NU − (β1 + ϕU )U − 1UM 

+ 
ω2N0 

ϕS 
(DS S + β2U − ϕSS) + 

ω1N0 

ϕB 
(DB B + μU 

−ϕBB − 2BH) + 1M 

ξ 

(DM M + ξU − ϕM M − λ1UM) 

+ 2ω1N0H 

ψϕB 
(DH H + ψB − ϕH H − λ2BH) 

= (δ − ϕN N) 1− 
N0 

N 
+ ω3N0U − (β1 + ϕU )U 

+ 
ω2β2N0 

ϕS 
U 

+ 
ω1μN0 

ϕB 
U − 1ϕM 

ξ 
M2 − 1λ1 

ξ 
UM2 − 2ω1ϕH N0 

ψϕB 
H2 

− 2ω1λ2N0 

ψϕB 
BH2 + DN 1− 

N0 

N 
N + DU U 

+ 
ω2N0DS 

ϕS 
S 

+ 
ω1N0DB 

ϕB 
B+ 1MDM 

ξ 
M + 2ω1N0HDH 

ψϕB 
H. 

By setting N0 = δ/ϕN , we deduce that 

∂ϒ0 

∂t 
= −  

ϕN (N − N0)
2 

N 
+ (β1 + ϕU ) (R0 − 1)U− 

1 

ξ 
(ϕM + λ1U)M2 
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− 2ω1N0 

ψϕB 
(ϕH + λ2B)H2 + DN 1− 

N0 

N 
N 

+ DU U 

+ 
ω2N0DS 

ϕS 
S+ 

ω1N0DB 

ϕB 
B+ 1DM 

ξ 
M M+ 

2ω1N0DH 

ψϕB 
H H. 

As a result, we evaluate dϒ̂0 
dt as follows: 

dϒ̂0 

dt 
= −ϕN 

 

 

(N − N0)
2 

N 
d + (β1 + ϕU ) (R0 − 1)  

 
U d − 1ϕM 

ξ 

 

 
M2 d 

− 1λ1 

ξ 

 

 
UM2 d − 2ω1ϕH N0 

ψϕB 

 

 
H2 d − 2ω1λ2N0 

ψϕB 



BH2 d 

+ DN 

 

 
1− 

N0 

N 
N d + DU 

 

 
U d + 

ω2N0DS 

ϕS  

 
S d 

+ 
ω1N0DB 

ϕB 

 

 
B d + 1DM 

ξ 

 

 
M M d + 2ω1N0DH 

 

 
H H d . (21) 

Through the use of equality (Equation 20), Equation 21 takes 
the following form: 

dϒ̂0 

dt 
= −ϕN 

 



(N − N0)
2 

N 
d + (β1 + ϕU ) (R0 − 1) 

 

 
U d 

− 1ϕM 

ξ 

 

 
M2 d 

− 1λ1 

ξ 

 

 
UM2 d − 2ω1ϕH N0 

ψϕB 

 

 
H2 d − 2ω1λ2N0 

ψϕB 

 
BH2 d 

− DN N0 

 

 

N 2 

N2 d − 1DM 

ξ 

 

 
M 2 d 

− 2ω1N0DH 

ψϕB 

 

 
H 2 d . 

Therefore, dϒ̂0 
dt ≤ 0 for all N, U, M, H, B > 0 under the 

condition that R0 ≤ 1. Equality dϒ̂0 
dt = 0 is achieved in the 

case when (N, U, B, M, H) = (N0, 0, 0, 0, 0). The solutions of 
system (Equation 2) converge to 0. The elements of 0 satisfy 
(N, U, B, M, H) = (N0, 0, 0, 0, 0). At this point, ∂S

∂t = ∂Y
∂t = S = 

Y = 0. The first equation of system (Equation 2) simplifies to 

0 = 
∂N 

∂t 
= δ − ϕN N0 − ω2N0S. 

From this S = 0, leading to 0 = {FE}. By applying the 
Lyapunov-LaSalle asymptotic stability theorem [70], it is concluded 
that the equilibrium FE  is globally asymptotically stable. 

Theorem 2. The HIV-persistent equilibrium PE  achieves 
global asymptotic stability when R0 > 1. 

Proof. Define a function ϒ1( , t) as:  

ϒ1( , t) = N̄ 
N 

N̄ 
+ Ū 

U 

Ū 
+ 

ω2 N̄ 

ϕS 
S̄ 

S 

S̄ 
+ 

ω1 N̄ 

ϕB + 2 H̄ 

B̄ 
B 

B̄ 

+ 1 

2 
 
ξ − λ1 M̄ 

 
M − M̄ 2 + 2ω1 N̄ 

2 
 
ψ − λ2 H̄ 

 
ϕB + 2 H̄  

H − H̄ 2 . 

Equations 10, 11 indicate that ξ − λ1 M̄ = 
ϕM M̄ 

Ū 
> 0 and 

ψ − λ2 H̄ = 
ϕH H̄ 

B̄ 
> 0. The computation of ∂ϒ1 

∂t yields 

∂ϒ1 

∂t 
= 1− 

N̄ 

N 
(DN N + δ − ϕN N − ω1NB − ω2NS − ω3NU) 

+ 1− 
Ū 

U 
(DU U + ω1NB + ω2NS + ω3NU − (β1 + ϕU ) 

U − 1UM) 

+ 
ω2 N̄ 

ϕS 
1− 

S̄ 

S 
(DS S + β2U − ϕSS) 

+ 
ω1 N̄ 

ϕB + 2 H̄ 
1− 

B̄ 

B 
(DB B + μU − ϕBB − 2BH) 

+ 1 

ξ − λ1 M̄ 

 
M − M̄ (DM M + ξU − ϕM M − λ1UM) 

+ 2ω1 N̄  
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 
H − H̄ (DH H + ψB − ϕH H 

−λ2BH) 

= (δ − ϕN N) 1− 
N̄ 

N 
+ ω1N̄B + ω3N̄U − (β1 + ϕU )  

U − ¯ U

− 1M 
 
U − Ū − ω1 

NBŪ
U 

− ω2 
NSŪ
U 

− ω3N Ū + 
ω2β2 N̄ 

ϕS 
U 

− 
ω2β2 N̄ 

ϕS 

U ̄S
S 

+ ω2 N̄ ̄S+ 
ω1μN̄ 

ϕB + 2 H̄ 
U − 

ω1ϕB N̄ 

ϕB + 2 H̄ 

 
B− B̄ 

− 2ω1 N̄ 

ϕB + 2 H̄ 
H 

 
B− B̄ − 

ω1μN̄ 

ϕB + 2 H̄ 

B̄U 

B 

+ 1 

ξ − λ1 M̄ 

 
M − M̄ (ξU − ϕM M − λ1UM) 

+ 2ω1 N̄  
ψ − λ2 H̄


ϕB + 2 H̄

 
H − ¯ H (ψB − ϕH H − λ2BH) 

+ DN N 1− 
N̄ 

N 
+ DU 1− 

Ū 

U 
U + 

ω2N̄DS 

ϕS 

1− 
S̄ 

S 
S 

+ 
ω1N̄DB 

ϕB + 2 H̄ 
1− 

B̄ 

B 
B+ 1DM 

ξ − λ1 M̄ 

 
M − M̄ M 

+ 2ω1N̄DH  
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 
H − H̄ H. 

The equilibrium conditions associated with PE  indicate that 

δ = ϕN N̄ + ω1 N̄ ̄B + ω2 N̄ ̄S + ω3 N̄ Ū, 
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ω1 N̄ ̄B + ω2 N̄ ̄S + ω3 N̄ Ū = 
 
β1 + ϕU + 1 M̄ Ū, 

S̄ = 
β2 Ū 

ϕS 
, B̄ = 

μŪ 

ϕB + 2 H̄ 
, 

ξ Ū = ϕM M̄ + λ1 Ū M̄, ψ B̄ = ϕH H̄ + λ2 B̄ H̄. 

From this, we find 

∂ϒ1 

∂t 
= 

 
ϕN N̄ − ϕN N 1− 

N̄ 

N 
+ 

 
ω1 N̄ ̄B + ω2 N̄ ̄S

+ω3 N̄ Ū 1− 
N̄ 

N 

+ ω1 N̄B + ω3 N̄U − (β1 + ϕU ) 
 
U − Ū 

− 1M 
 
U − Ū − ω1 N̄ ̄B

NBŪ
N̄B̄U 

− ω2 N̄ ̄S
NSŪ
N̄S̄U 

− ω3 N̄ Ū
N 

N̄ 
+ 

ω2β2 N̄ 

ϕS 
U − ω2 N̄ ̄S

U ̄S
ŪS 

+ ω2 N̄ ̄S

+ 
ω1μN̄ 

ϕB + 2 H̄ 
U − 

ω1ϕB N̄ 

ϕB + 2 H̄ 

 
B− B̄ − 2ω1 N̄ 

ϕB + 2 H̄ 

H 
 
B− B̄ − ω1 N̄ ̄B

B̄U 

B Ū

+ 
1 
 
M − M̄ 

ξ − λ1 M̄ 

 
ξ U − ϕM M − λ1UM − ξ Ū + ϕM M̄ 

+λ1 Ū M̄ − λ1U M̄ + λ1U M̄ 

+ 2ω1 N̄ 
 
H − H̄  

ψ − λ2 H̄ 
 

ϕB + 2 H̄ 

 
ψB − ϕH H − λ2BH − ψ B̄ 

+ϕH H̄ + λ2 B̄ H̄ − λ2B H̄ + λ2B H̄ 

+ DN N 1− 
N̄ 

N 
+ DU 1− 

Ū 

U 
U + 

ω2N̄DS 

ϕS 

1− 
S̄ 

S 
S+ 

ω1N̄DB 

ϕB + 2 H̄ 

× 1− 
B̄ 

B 
B+ 1DM 

ξ − λ1 M̄ 

 
M − M̄ M 

+ 2ω1N̄DH  
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 
H − H̄ H. 

Simplifying, we arrive at 

∂ϒ1 

∂t 
= −  

ϕN 
 
N − N̄ 2 

N 
+ 

 
ω1 N̄ ̄B + ω2 N̄ ̄S + ω3 N̄ Ū 1− 

N̄ 

N 

+ ω1N̄B + ω3N̄U 

− (β1 + ϕU ) 
 
U − Ū − 1M 

 
U − Ū + 1M̄ 

 
U − Ū 

− 1M̄ 
 
U − Ū 

− ω1 N̄ ̄B
NBŪ
N̄B̄U 

− ω2 N̄ ̄S
NSŪ
N̄S̄U 

− ω3 N̄ Ū
N 

N̄ 
+ 

ω2β2 N̄ 

ϕS 
U 

− ω2 N̄ ̄S
U ̄S
ŪS 

+ ω2 N̄ ̄S+ 
ω1μN̄ 

ϕB + 2 H̄ 
U − 

ω1ϕB N̄ 

ϕB + 2 H̄ 

 
B− B̄ − 2ω1 N̄ 

ϕB + 2 H̄ 

H 
 
B− B̄ 

+ 2ω1 N̄ 

ϕB + 2 H̄ 
H̄ 

 
B− B̄ − 2ω1 N̄ 

ϕB + 2 H̄ 
H̄ 

 
B− B̄ − ω1 N̄ ̄B

B̄U 

B Ū

+ 1 
 
M − M̄ 

 
U − Ū − 1 (ϕM + λ1U) 

ξ − λ1 M̄ 

 
M − M̄ 2 

+ 
2ω1 N̄ 

 
H − H̄ 

ϕB + 2 H̄ 

 
B− B̄ 

− 2ω1 N̄ (ϕH + λ2B) 
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 
H − H̄ 2 + DN N 1− 

N̄ 

N 

+ DU 1− 
Ū 

U 
U + 

ω2N̄DS 

ϕS 
1− 

S̄ 

S 
S+ 

ω1N̄DB 

ϕB + 2 H̄ 

1− 
B̄ 

B 
B 

+ 1DM 

ξ − λ1 M̄ 

 
M − M̄ M + 2ω1N̄DH  

ψ − λ2 H̄ 
 

ϕB + 2 H̄  
H − H̄ H. (22) 

In this way, Equation 22 is rewritten in the form 

∂ϒ1 

∂t 
= −  

ϕN 
 
N − N̄ 2 

N 
+ 

 
ω1 N̄ ̄B + ω2 N̄ ̄S + ω3 N̄ Ū 1− 

N̄ 

N 

+ ω3N̄U − 
 
β1 + ϕU + 1M̄ 

 
U − Ū − ω1 N̄ ̄B

NBŪ
N̄B̄U 

− ω2 N̄ ̄S
NSŪ
N̄S̄U 

− ω3 N̄ Ū
N 

N̄ 
+ 

ω2β2 N̄ 

ϕS 
U − ω2 N̄ ̄S

U ̄S
ŪS 

+ ω2 N̄ ̄S+ 
ω1μN̄ 

ϕB + 2 H̄ 
U 

+ ω1 N̄ ̄B

− ω1 N̄ ̄B
B̄U 

B Ū
− 

1 (ϕM + λ1U) 
 
M − M̄ 2 

ξ − λ1 M̄ 
− 

2ω1 N̄ (ϕH + λ2B) 
 
H − H̄ 2  

ψ − λ2 H̄
 

ϕB + 2 H̄

+ DN N 1− 
N̄ 

N 
+ DU 1− 

Ū 

U 
U + 

ω2N̄DS 

ϕS 

1− 
S̄ 

S 
S 

+ 
ω1N̄DB 

ϕB + 2 H̄ 
1− 

B̄ 

B 
B+ 1DM 

ξ − λ1 M̄ 

 
M − M̄ M 

+ 2ω1N̄DH  
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 
H − H̄ H. 

Since we have 

ω1μN̄ 

ϕB + 2 H̄ 
Ū + 

ω2β2 N̄ 

ϕS 
Ū + ω3 N̄ Ū − 

 
β1 + ϕU + 1 M̄ Ū 

U 

Ū 
= 0. 

This results in the following form 

∂ϒ1 

∂t 
= −  

ϕN 
 
N − N̄ 2 

N 
+ 

 
ω1 N̄ ̄B + ω2 N̄ ̄S + ω3 N̄ Ū 2− 

N̄ 

N 

− ω1 N̄ ̄B
NBŪ
N̄B̄U 

− ω2 N̄ ̄S
NSŪ
N̄S̄U 

− ω3 N̄ Ū
N 

N̄ 
− ω2 N̄ ̄S

U ̄S
ŪS 

+ ω2 N̄ ̄S + ω1 N̄ ̄B

− ω1 N̄ ̄B
B̄U 

B Ū
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− 
1 (ϕM + λ1U) 

 
M − M̄ 2 

ξ − λ1 M̄ 
− 

2ω1 N̄ (ϕH + λ2B) 
 
H − H̄ 2  

ψ − λ2 H̄ 
 

ϕB + 2 H̄ 

+ DN N 1− 
N̄ 

N 
+ DU 1− 

Ū 

U 
U + 

ω2N̄DS 

ϕS 

1− 
S̄ 

S 
S 

+ 
ω1N̄DB 

ϕB + 2 H̄ 
1− 

B̄ 

B 
B+ 1DM 

ξ − λ1 M̄ 

 
M − M̄ M 

+ 2ω1N̄DH  
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 
H − H̄ H 

= −  

 
ϕN + ω3 Ū 

 
N − N̄ 2 

N 

+ ω1 N̄ ̄B 3− 
N̄ 

N 
− 

NBŪ
N̄B̄U 

− 
B̄U 

B Ū

+ ω2 N̄ ̄S 3− 
N̄ 

N 
− 

NSŪ
N̄S̄U 

− 
U ̄S
ŪS 

− 
1 (ϕM + λ1U) 

 
M − M̄ 2 

ξ − λ1 M̄ 

− 
2ω1 N̄ (ϕH + λ2B) 

 
H − H̄ 2  

ψ − λ2 H̄ 
 

ϕB + 2 H̄ 
+ DN N 1− 

N̄ 

N 

+ DU 1− 
Ū 

U 
U 

+ 
ω2N̄DS 

ϕS 
1− 

S̄ 

S 
S+ 

ω1N̄DB 

ϕB + 2 H̄ 
1− 

B̄ 

B 
B 

+ 1DM 

ξ − λ1 M̄ 

 
M − M̄ M + 2ω1N̄DH  

ψ − λ2 H̄ 
 

ϕB + 2 H̄  
H − H̄ H. 

Differentiating with respect to time ϒ̂1(t) and utilizing equality 
(Equation 20) gives 

dϒ̂1 

dt 
= −  

 
ϕN + ω3Ū 

 

 

 
N − N̄ 2 

N 
d + ω1 N̄ ̄B 

 
3− 

N̄ 

N 
− 

NBŪ
N̄B̄U 

− 
B̄U 

B Ū
d 

+ ω2 N̄ ̄S
 

 
3− 

N̄ 

N 
− 

NSŪ
N̄S̄U 

− 
U ̄S
ŪS 

d − 1 

ξ − λ1 M̄  

 
(ϕM + λ1U) 

 
M − M̄ 2 d 

− 2ω1 N̄  
ψ − λ2 H̄ 

 
ϕB + 2 H̄ 

 

 
(ϕH + λ2B) 

 
H − H̄ 2 d 

− DN N̄ 
 

 

N 2 

N2 d 

− DU Ū 
 

 

U 2 

U2 d − 
ω2N̄DSS̄ 

ϕS 

 

 

S 2 

S2 d 

− 
ω1N̄DBB̄ 

ϕB + 2 H̄ 

 

 

B 2 

B2 d 

− 1DM 

ξ − λ1 M̄ 

 

 
M 2 d − 2ω1N̄DH  

ψ − λ2 H̄ 
 

ϕB + 2 H̄ 

 

 
H 2 d . 

Employing the inequality between the arithmetic and geometric 
means, as presented in Equation 19, we obtain 

3 ≤ 
N̄ 

N 
+ 

NBŪ
N̄B̄U 

+ 
B̄U 

B Ū
, 3 ≤ 

N̄ 

N 
+ 

NSŪ
N̄S̄U 

+ 
U ̄S
ŪS 

. 

At this stage, we guarantee that dϒ̂1 
dt ≤ 0 for all positive values 

of N, U, S, B, M, H when R0 > 1. Meanwhile, dϒ̂1 
dt = 0 when 

(N, U, S, B, M, H) = 
 ¯ N, ¯ U, ¯ S, ¯ B, ¯ M, ¯ H . The solutions of model 

(Equation 2) approach 1 = {PE}. By applying Lyapunov-LaSalle 
asymptotic stability theorem, we conclude that PE  attains global 
asymptotic stability. 

Remark 2. Exploring memory effects within our model through 
the use of fractional differential equations (FDEs) represents 
a valuable avenue for future investigation [71, 72]. FDEs are 
particularly well-suited for capturing systems characterized by 
memory and non-local interactions–features that are highly 
relevant in both biological [73] and epidemiological contexts. 
Recent studies have demonstrated that the Lyapunov method 
is an effective analytical tool for evaluating the global stability 
of fractional-order systems [73, 74]. The Lyapunov functions 
constructed in this section lay the groundwork for future analysis 
of the stability properties in a fractional-order HIV-1 model. 

6 Numerical simulations 

This section focuses on performing numerical simulations 
to explore the theoretical findings of our study. Furthermore, a 
detailed sensitivity analysis will be conducted for each parameter. 
To solve the system of PDEs, we employed MATLAB’s built-in 
PDEPE solver, which is designed for one-dimensional parabolic 
and elliptic PDEs. The PDEPE solver utilizes a spatial discretization 
based on the Galerkin or Petrov–Galerkin method, converting the 
PDE system into a set of ODEs. These ODEs are then solved using 
the ode15s solver, a variable-order, implicit numerical integrator 
well-suited for stiff problems. This method offers a robust and 
efficient approach for numerically approximating the dynamics of 
the model over time and space. 

6.1 Stability of equilibrium points 

Here, we undertake a numerical investigation into the global 
stability of all equilibria. To achieve this, a time step size of 0.1 is 
applied for t > 0, and the domain , defined as  = [0, 2], is used 
with a step size of 0.02. Based on Theorems 1 and 2 which ensure 
the global stability of both equilibria, convergence is guaranteed 
irrespective of the initial values. Therefore, the initial conditions for 
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TABLE 1 The values of the model’s parameters. 

Parameter Description Value Source 

δ Natural production rate of 
uninfected CD4+T cells 

10 [77] 

ω1 Rate of infection of CD4+T cells 
due to direct interaction with 
free virus particles 

Varied 

ω2 Rate of cytokine-induced 
enhancement of viral infection 

Varied 

ω3 Rate of infection of CD4+T cells 
through cell-to-cell (synaptic) 
transmission 

Varied 

β1 Rate of pyroptosis-induced death 
of infected CD4+T cells 

0.1 [26] 

β2 Rate of cytokine release from 
infected CD4+T cells 

0.1 [30] 

1 Rate at which infected CD4+T 
cells are killed by CTLs 

0.001 [26] 

2 Rate at which free HIV particles 
are neutralized by antibodies 

0.1 [57] 

μ Rate of viral particle release from 
infected CD4+T cells 

3 [57] 

ξ Rate of CTL proliferation in 
response to infected CD4+T cells 

0.5 [78] 

ψ Rate of antibody proliferation in 
response to free HIV particles 

0.2 [57] 

λ1 Rate of CTL impairment due to 
interaction with infected CD4+ T 
cells 

0.001 [58] 

λ2 Rate of antibody impairment due 
to interaction with free HIV 
particles 

0.001 [58] 

ϕN Natural death rate of uninfected 
CD4+T cells 

0.01 [77] 

ϕU Natural death rate of infected 
CD4+T cells 

0.75 [26] 

ϕS Natural degradation rate of 
inflammatory cytokines 

0.1 [26] 

ϕB Natural degradation rate of free 
HIV particles 

1 [57] 

ϕM Natural death rate of cytotoxic T 
lymphocytes (CTLs) 

0.2 [78, 79] 

ϕH Natural death rate of antibodies 0.01 [57] 

DN Diffusion coefficient of 
uninfected CD4+T cells 

0.1 Assumed 

DU Diffusion coefficient of infected 
CD4+T cells 

0.1 Assumed 

DS Diffusion coefficient of 
inflammatory cytokines 

0.01 Assumed 

DB Diffusion coefficient of free HIV 
particles 

0.01 Assumed 

DM Diffusion coefficient of cytotoxic 
T lymphocytes (CTLs) 

0.2 Assumed 

DH Diffusion coefficient of 
antibodies 

0.2 Assumed 

system (Equation 2) are chosen randomly as follows: 

N( , 0)  = 500 
 
1 + 0.1 cos 2(π) 

 
, 

U( , 0)  = 3 
 
1 + 0.2 cos 2(π) 

 
, 

S( , 0)  = 3 
 
1 + 0.2 cos 2(π) 

 
, B( , 0)  = 2 

 
1 + 0.2 cos 2(π) 

 
, 

M( , 0)  = 8 
 
1 + 0.2 cos 2(π) 

 
, 

H( , 0)  = 30 
 
1 + 0.2 cos 2 (π) 

 
,  ∈ [0, 2]. (23) 

Additionally, we apply the homogeneous Neumann boundary 
conditions: 

∂N 

∂ Z = 
∂U 

∂ Z = 
∂S 

∂ Z = 
∂B 

∂ Z = 
∂M 

∂ Z = 
∂H 

∂ Z = 0, t > 0,  = 0, 2. 

(24) 
For numerical calculations, ω1, ω2, and ω3 are varied, whereas 

the other parameters are kept constant as specified in Table 1. 
Those parameters are sourced from existing literature, except for 
the diffusion coefficients, which are predetermined. 

Therefore, the following cases arise: 
Case 1. Assigning ω1 = ω2 = ω3 = 0.0001, the basic 

reproduction number R0 is calculated to be 0.59, which is less 
than unity. In accordance with Theorem 1, the equilibrium point 
FE  = (1000, 0, 0, 0, 0, 0) demonstrates global asymptotic stability, 
as depicted in Figure 1. This finding indicates the successful 
clearance of HIV infection from the human body, highlighting the 
conditions under which the virus cannot persist. 

Case 2. The values ω1 = 0.0004, ω2 = 0.0006, 
and ω3 = 0.0005 are assigned. With these parameters, 
the basic reproduction number, R0, is determined to be 2.7, 
exceeding unity. Theorem 2 confirms that the equilibrium point 
PE  = (641.9, 4.16, 4.16, 2.5, 10.2, 39.98) exhibits global asymptotic 
stability, as depicted in Figure 2. This analysis reflects the ability 
of the virus to maintain a stable presence in the human body 
under this condition and cause chronic infection, highlighting the 
persistence of HIV infection. 

6.2 Sensitivity analysis 

The main objective of this subsection is to discuss the sensitivity 
analysis of model (Equation 2). Specifically, the analysis aims to 
assess the impact of various parameters on the advancement of 
HIV infection in a host, offering insights that can be useful for 
the development of novel antiviral therapies. The sensitivity index 
will be determined by employing partial derivatives to examine 
how variables fluctuate in accordance to parameter changes. The 
following formula represents the normalized forward sensitivity 
index of R0 in relation to the parameter: 

Qτ = 
τ 

R0 
× 

∂R0 

∂τ  
. (25) 

Here, τ accounts for a specified parameter. The values of Qτ 

range from −1 to 1, with a positive Qτ indicating a positive 
correlation and a negative value reflecting a negative correlation. 
The absolute value of Qτ signifies the level of sensitivity: values 
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FIGURE 1 

Numerical simulations reveal that the solution of system (Equation 2) stabilizes at the HIV-free equilibrium FE  = (1000, 0, 0, 0, 0, 0) when R0 ≤ 1 
(Case 1). (a) Healthy CD4+T cells. (b) HIV-infected CD4+T cells. (c) Inflammatory cytokines. (d) Free HIV particles. (e) CTLs. (f) Antibodies. 
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FIGURE 2 

Numerical simulations reveal that the solution of system (Equation 2) stabilizes at the HIV-persistent equilibrium 
PE  = (641.9, 4.16, 4.16, 2.5, 10.2, 39.98) when R0 > 1 (Case  2).  (a) Healthy CD4+T cells. (b) HIV-infected CD4+T cells. (c) Inflammatory cytokines. (d) 
Free HIV particles. (e) CTLs. (f) Antibodies. 

close to zero imply a minimal effect, whereas values near one 
point to a strong impact [75]. The sensitivity indices for R0 were 
computed using Equation 25 by applying the parameter values 

provided in Table 1, including ω1 = 0.0004, ω2 = 0.0006, and 
ω3 = 0.0005. The calculated sensitivity indices, derived from 
these values, are summarized in Table 2. The sensitivity indices of 
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TABLE 2 Quantifying parameters’ influence on R0 in model (Equation 2): sensitivity index. 

Parameter τ Value of Qτ Parameter τ Value of Qτ Parameter τ Value of Qτ 

δ 1 ω3 0.217 ϕU −0.882 

ϕN −1 μ 0.522 ϕS −0.261 

ω1 0.522 β1 −0.118 ϕB −0.522 

ω2 0.261 β2 0.261 

FIGURE 3 

Assessment of parameter influence on R0 in system (Equation 2) using forward sensitivity analysis. 

R0, as demonstrated in Table 2 and Figure 3, shed light on the 
varying influences of each parameter. From these, it is apparent that 
parameters δ , ω1, ω2, ω3, μ, and β2 exhibit positive index values. 
This indicates that an increase in the values of these parameters 
is linked to a higher R0 value, leading to a greater level of HIV 
endemicity. In contrast, the parameters ϕN , β1, ϕU , ϕS, and ϕB 

show negative sensitivity indices, meaning that as their values 
rise, R0 decreases. Among all the parameters, the most influential 
are δ, ω1, and μ, while ω2, ω3, and β2 have relatively minor 
impacts. Moreover, the parameters related to CTL and antibody 
responsiveness, ξ and ψ , seem to have no impact on R0. 

7 Conclusion and discussion 

This study proposed and investigated a within-host HIV 
infection model that integrates both the influence of inflammatory 
cytokines and the weakening of adaptive immune responses 
(CTL and antibody). The framework comprises six biologically 
relevant compartments and incorporates two modes of viral 
transmission: traditional virus-to-cell spread and direct cell-to-cell 
contact. By introducing diffusion terms, the model also captures 
spatial movement of immune and infected cells, as well as free 
viral particles—a feature supported by recent biological findings. 

We conducted a thorough mathematical analysis, establishing 
the existence and boundedness of global solutions, ensuring the 
model’s well-posedness. A key threshold parameter, the basic 
reproduction number R0, was derived and found to dictate the 
system’s long-term behavior. Specifically, the model predicts global 
stability of the HIV-free equilibrium when R0 ≤ 1 and global 
stability of HIV-persistent equilibrium when R0 > 1. These 
analytical results were supported by numerical simulations that 
also revealed how variations in key parameters affect disease 
progression. Further, sensitivity analysis of R0 helped identify the 
most influential factors in viral persistence and immune control. 

An important challenge in controlling HIV infection lies in 
reducing the basic reproduction number R0 to a value less than 
or equal to one, thereby preventing sustained transmission. One 
effective strategy involves the use of antiviral therapies aimed 
at interrupting different modes of viral spread. To capture this 
therapeutically induced suppression, we introduce parameters 
0 ≤ i ≤ 1, for i = 1, 2, where 1 represents the efficacy 
of treatment in inhibiting cell-free virus transmission, and 2 

accounts for the suppression of cell-to-cell viral transfer. In 
addition to standard antiretroviral therapies, we also consider 
the role of Necrosulfonamide (NSA), a selective inhibitor of 
pyroptosis, a highly inflammatory form of programmed cell death 
that exacerbates immune depletion in HIV-positive individuals 
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[76]. The parameter 3 ∈ [0, 1] is used to denote the therapeutic 
effectiveness of NSA in curbing inflammation-driven cell death. 
Under these assumptions, the modified expression for the basic 
reproduction number becomes: 

R0 = 
δ 
 
μϕS(1 − 1)ω1 + ϕB 

 
β2(1 − 2)ω2 + ϕS(1 − 3)ω3 

ϕN ϕSϕB (β1 + ϕU ) 
. 

It is evident from this formulation that R0 is a monotonically 
decreasing function of the drug efficacy parameters 1, 2, 3. 
Hence, by appropriately increasing the effectiveness of these 
interventions, through optimal drug combinations or dosing 
strategies, it is theoretically possible to drive R0 ≤ 1, 
thereby achieving infection control or even eradication within the 
modeled population. 

Future extensions of this model could involve incorporating 
more detailed biological mechanisms, such as latent viral reservoirs, 
time delays, and stochastic variations in immune responses, as 
well as clinical interventions including antiretroviral therapy (ART) 
and anti-inflammatory treatments targeting cytokine activity. 
Formulating the model as a nonlinear control system, with 
antiviral drug efficacy treated as a control input, also presents a 
promising avenue for optimizing treatment strategies-balancing 
therapeutic effectiveness with minimized drug costs and side 
effects. Moreover, integrating fractional differential equations may 
offer a more realistic representation of immunological memory. 
The inclusion of individual-level data could further enhance model 
accuracy and support more personalized predictions of treatment 
outcomes. Clinically, a better understanding of cytokine-induced 
inflammation and the spatial distribution of immune and infected 
cells may aid in developing novel therapeutic strategies aimed 
at preserving immune function and reducing chronic immune 
activation in HIV-positive individuals. 
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