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Introduction: Traditional time-series models such as the ARIMA and the
Generalized Autoregressive Conditional Heteroscedasticity depend nonlinear
dynamics and stationarity, limiting their ability to model nonlinear relationships
and sudden regime changes.
Methods: This research introduces a combined forecasting model that uses the
clear structure of an Exponential Smoothing Recurrent Neural Network and the
creative features of a Variational Autoencoder to predict the risk of falling stock
prices for Sasol Limited from 2010 to 2025. The model seeks to find long-term
trends and short-term changes in the value of stocks linked to commodities,
which can face big losses due to political events, changes in oil prices, and shifts
in climate policies.
Results: A weighted combination of the deterministic ESRNN, which gets 60%
of the weight, and the stochastic VAE, which gets 40%, shows strong accuracy
in predicting stock prices over short, medium, and long periods. Shapley value
analysis identifies 24-day lags, investor sentiment, oil prices, the 2015/2016
Shanghai Stock Exchange crash, the Russia-Ukraine war, and South African
monetary policy news as the primary predictors of downside risk. The model
effectively quantifies essential tail risk metrics, such as Maximum Drawdown,
Sortino Ratio, and Marginal Expected Shortfall. A 99% prediction interval width
(PIW) of 3.4398 indicates the model’s reliability in capturing extreme events and
uncertainty during turbulent periods.
Discussion: The results indicate the model’s robustness and practical utility
as a decision-support tool for risk-aware forecasting in resource-dependent
financial markets.
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1 Introduction

Commodity markets are experiencing unprecedented volatility driven by a triad of
exogenous shocks: geopolitical fragmentation, supply chain disruptions, and climate-
induced instabilities [1–3]. These factors highlight the critical need for improved methods
to quantify downside risk, particularly for commodity-linked equities that are structurally
exposed to such external pressures. Firms with integrated commodity exposure face
asymmetric risks, where adverse developments can rapidly erode shareholder value.
A pertinent case is Sasol Limited (JSE: SOL), a South African energy and chemical
conglomerate, which has suffered 17 notable declines—each exceeding 10%—between 2010
and 2025, often triggered by falling oil prices or abrupt shifts in climate regulation [4, 5].
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These episodes illustrate the sector’s heightened vulnerability to
tail-risk events and the inherent difficulty in forecasting their
occurrence and magnitude.

Classical time-series models, such as ARIMA (herein
referenced Autoregressive Integrated Moving Average) proposed
by Box and Jenkins [6] and the Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) proposed by Bollerslev
[7], offer essential resources for modeling volatility. Nevertheless,
their dependence on linear dynamics and stationary assumptions
limits their ability to capture nonlinear relationships and sudden
regime changes typical in commodity-linked equities [8]; hence,
novel hybrid models, such as Transformer-Convolutional Neural
Networks (Transformer-CNNs) proposed by Li et al. [9] and long
short term memory-GARCH (LSTM-GARCH) by Xiong et al.
[10], have improved forecasting accuracy, particularly for volatility
estimation. These techniques, however, are typically designed for
smooth volatility patterns and frequently maintain parametric
assumptions, which limit their capacity for capturing fat-tailed,
asymmetric risks that predominate during periods of systemic
stress [11], while Sasol’s 54% drop in March 2020 during the
COVID-19 pandemic highlighted this limitation.

A distinct gap remains in the financial time series literature
despite the growing interest in deep learning. Sezer et al. [12]
found that only 12% of deep learning applications explicitly target
downside risk, with most focusing narrowly on return or volatility
forecasting. To our knowledge, no prior work combines the
structural interpretability of exponential smoothing with a deep
generative model to jointly capture trend, seasonality, and tail-
dependent volatility. This limitation is particularly problematic
for commodity-linked equities such as Sasol, which experience
extended earnings cycles (e.g., 5-year commodity super-cycles) that
interact nonlinearly with short-term volatility clustering—evident
in a correlation of ρ = 0.82∗∗∗ with Brent crude oil and are further
disrupted by regime-shifting events like South Africa’s electricity
crises and carbon tax implementation [13, 14]. The research by Li
and Law [15] highlights the lack of attention devoted to downside
risk in deep learning applications, supporting the argument made
by Sezer et al. [12]. The objectives of Li and Law [15] were
to introduce and review methodologies for modeling time series
data, outline the commonly used time series forecasting datasets
and different evaluation metrics. These authors delved into the
essential architectures for trending an input dataset and offered a
comprehensive assessment of the recently developed deep learning
prediction models. While Novyko et al. [16], on the other hand,
provides a systematic literature review of deep learning applications
for portfolio management, Huang et al. [17] presented a novel
approach to portfolio optimisation that addresses tail risks. The
approach begins with the prediction of Conditional Value-at-Risk
(CVaR) using a deep neural network. The predicted CVaR was then
incorporated into a tail risk-adjusted utility function to calculate
the portfolio weights. Specifically, their paper predicts CVaR using
a Long Short-Term Memory neural network, but in this study, we
use maximum drawdown, Sortino, and marginal expected shortfall.

Forecasting financial series presents challenges, including
structural seasonality, nonlinear volatility regimes, and exogenous
shocks. Econometric models possess inherent limitations.
Autoregressive Integrated Moving Average models are predicated
on linearity and difference-stationarity, rendering them inadequate
for regime-switching behaviors. In contrast, GARCH models,

while adept at managing conditional volatility, do not effectively
account for leverage effects, display residual kurtosis, and operate
under the assumption of fixed distributions [8]. During the
2020 pandemic, ARIMA’s forecasting error rose by 28%, while
GARCH underestimated tail risk by more than 35% amid oil price
shocks [13]. Recent hybrid deep learning architectures enhance
the management of these nonlinearities. The LSTM-GARCH
models integrate memory and conditional variance; however,
they frequently neglect seasonality, leading to an underestimation
of volatility [18]. Transformer-CNN architectures, on the other
hand, effectively detect cross-asset spillovers; however, they
exhibit limitations in interpretability. Dynamically weighted
ensembles decrease root mean square error (RMSE) [19], yet their
application to modeling volatility clustering in resource-driven
equities remains limited. The ESRNN, however, effectively captures
structural components such as trend and seasonality, yet it does
not account for latent volatility clustering. In contrast, VAEs
generatively model hidden volatility regimes but lack structural
interpretability [20].

We propose the ESRNN-VAE hybrid to address these
trade-offs, integrating ESRNN’s decomposition with the VAE’s
latent regime learning. This approach provides (i) enhanced
economic interpretability via decomposable components, (ii) the
capacity to identify unobservable volatility regimes influenced
by exogenous factors, and (iii) adaptability to regime shifts,
thereby achieving a robust bias–variance trade-off as indicated
by Zhang and Lin [19]. The model, applied to Sasol’s 15-year
dataset (2010–2025), effectively captures long-term cycles and
short-term volatility within a cohesive and adaptable charter.
The non-parametric, data-driven methodology effectively models
heavy-tailed, asymmetric returns, therefore, enhancing the
accuracy of Sortino Ratio and Marginal Expected Shortfall
estimates in the context of volatile geopolitical, supply chain, and
market disruptions. In contrast to Chen [21] and Yin and Barucca
[22], which employ Generative Adversarial Networks (GANs) or
VAEs and RNNs independently without a unified approach to
modeling trend, seasonality, and tail risk in commodities, our
combined architecture cohesively integrates these elements.
While this study does not include direct benchmarking
against LSTM-GARCH or Transformer-based models, these
alternatives often face challenges such as restrictive assumptions,
interpretability issues, or computational complexity. The ESRNN-
VAE offers a flexible and interpretable solution that effectively
addresses complex financial dynamics without rigid distributional
constraints. Future research could extend this work by including
comparative analyses.

1.1 Contribution and research highlights

The main contribution of this study is building a combined
ESRNN-VAE model for forecasting Sasol’s stock prices and
estimating downside risk. By combining long-range trend
extracting (ESRNN) and short-range volatility modeling (VAE)
features, the model performs better in different horizons, identifies
primary risk drivers (oil prices, geopolitics, etc.), and foresees
downside measures (drawdown, Sortino ratio, tail risk) correctly.
The research highlights are summarized as follows:
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• Individual models are surpassed by hybrid ESRNN-VAE stock
price prediction in multi-horizon.

• Sasol stock prices have left-skewed, non-normal distributions
with persistent tail risks.

• Long-term ESRNN forecasts reduce MSE by 96% from
horizons of 5 days to 60 days.

• VAE outperforms short-term, achieving 92.73% forecast
efficiency on predictions of 5-days.

• SHAP analysis finds oil prices, geopolitical incidents, and
investor sentiment driving the model.

• Downside risk metrics (drawdown, Sortino ratio, and tail loss)
are accurately predicted.

2 Theoretical and empirical literature
review

Financial time series forecasting has moved from ARIMA
and GARCH to machine learning models that can capture
nonlinear trends, regime transitions, and severe occurrences. Even
though these econometrics models provide theoretical foundations,
they struggle to forecast downside risk, especially in volatile,
commodity-linked markets. Recurrent Neural Networks, Long
Short-Term Memory models, and Variational Autoencoders are
now popular deep learning techniques for recognizing complicated
patterns and hidden fluctuations in data. However, few studies
directly address tail-risk indicators like Maximum Drawdown,
Sortino Ratio, and Marginal Expected Shortfall. This study
examines volatility and risk forecasting theory and practice,
focusing on downside risk modeling in resource-sensitive financial
markets. In this section, we present mathematical representations,
theoretical structures, and empirical evidence from recent studies
with regard to market risk and volatility.

2.1 Mathematical representation

Let yt denote the observed time series. The ESRNN decomposes
this series into a level component lt , trend level bt and seasonality
st , with an additive residual term εt given in Equation 1 as

yt = lt + bt + st + εt . (1)

The residual εt in Equation 1 is passed to the VAE, which
approximates the posterior distribution of latent variables z given
by Equation 2 as

q(z|εt) = ℵ(z;μεt , σ
2
εt ). (2)

From here, the decoder reconstructs volatility-adjusted
residuals as given by

ε̂t = fθ (z). (3)

The VAE’s optimisation is guided by the maximization of the
Evidence Lower Bound (ELBO), which balances two components:
the reconstruction loss, encouraging fidelity in the generation of ε̂t
and the Kullback-Leibler (KL) divergence, regularizing the learned

latent distribution to remain close to a prior, typically standard
normal given by

L(θ , �; εt) = Eq�(z|εt [(log pθ |z)] − DKL[q�(z|εt) ‖ p(z)]. (4)

This dual objective ensures the model captures the volatility
patterns embedded in residuals and maintains a smooth and
structured latent representation, enhancing generalizability, and
robustness in downstream forecasting.

2.1.1 Implication for downside risk modeling
The assimilation of the VAE into the ESRNN architecture

significantly enhances downside risk modeling for volatile stocks
like Sasol Ltd. By encoding the residual volatility into a latent
Gaussian space; the model captures hidden, nonlinear, and
regime-switching dynamics often associated with sharp equity
drawdowns—such as those triggered by oil price shocks or
macroeconomic instability. This probabilistic latent representation
allows for estimating tail-risk measures like Conditional Value-
at-Risk (CVaR), offering superior sensitivity to asymmetries in
Sasol’s return distribution. The hybrid approach balances the
interpretability of time series decomposition with the adaptability
of deep generative models, delivering a robust, explainable, and
forward-looking tool for financial risk forecasting in complex
market environments.

2.2 Theoretical frameworks in time series
risk forecasting

Time series models such as ARIMA effectively capture linear
dependencies but are inadequate for nonlinear patterns and
volatility clustering. The GARCH-type models [7], including
Exponential-GARCH and GJR-GARCH, incorporate time-
varying variance but rely on restrictive assumptions that
break down during regime shifts and market discontinuities.
Moreover, they cannot model heavy tails, volatility persistence, and
asymmetries [8].

Hybrid methods offer a robust alternative. The Exponentially
Smoothed Recurrent Neural Network integrates exponential
smoothing with recurrent neural networks, consistent with
adaptive learning theory. Variational AutoEncoders, rooted
in Bayesian inference, can extract latent volatility regimes
and model their stochastic behavior. The ESRNN-VAE
hybrid is underpinned by bias-variance decomposition
theory [23], enabling it to balance interpretability with the
flexibility needed for modeling extreme market dynamics. This
approach bridges the gap between deterministic forecasting and
generative probabilistic modeling, addressing a critical lacuna in
the literature.

2.3 Empirical evidence from recent studies

Empirical studies highlight the superiority of hybrid deep
learning models over classical or individual models. The
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LSTM-GARCH models have better performance in forecasting
commodity volatility, outpacing standalone GARCH models [10].
Transformer-based models have achieved enhanced prediction
accuracy in highly volatile areas such as cryptocurrency markets
[9]. South African studies provide further validation, classical
models, such as historical, Monte Carlo, and variance-covariance,
etc, are reported to underestimate Value-at-Risk by 22% for
Sasol Ltd during crisis periods. According to Hemraj [24], the
Carbon Tax Act is one of several structural headwinds weighing
on Sasol—and it is factored heavily into its depressed share
price. The stock may struggle if carbon pricing alarms grow
louder and allowances shrink. However, should Sasol succeed
in its decarbonisation roadmap and operational improvements,
there is room for a meaningful rebound. Similarly, Xaba
et al. [25] demonstrated that EGARCH forecasts were 34%
less accurate during episodes of sharp ZAR depreciation.
Moreover, dynamic ensemble methods such as those evaluated
by Li et al. [9] reduced RMSE by 18% through data-adaptive
weighting. In contrast, Smyl [26] in their study indicated that
the ESRNN model ranked among the top performers in the M4
forecasting competition, highlighting the efficacy of combining
structural decomposition with neural networks. Despite these
advancements, a dual challenge remains unaddressed: the
simultaneous modeling of structural periodicity and volatility
asymmetry in commodity-linked equities.

Although several new general-purpose machine learning
methodologies have surfaced, they are still poorly understood and
incompatible with conventional statistical modeling techniques.
Dixon [27] presents a new type of exponentially smoothed
recurrent neural networks that work well for modeling changing
systems found in industries. The author looked closely at how
well these networks can describe the complex patterns in time
series data and clearly show the effects of changes over time,
like seasonal variations and trends. Using exponentially smoothed
recurrent neural networks to forecast power demand, weather data,
and stock market prices shows how well exponential smoothing
works for making predictions over multiple time steps. In their
study, Xie [28] looks at three common ways to estimate value-
at-risk: historical simulation, the variance-covariance method,
and Monte Carlo simulation, using ten years of data from the
NASDAQ Composite Index. The results demonstrate that, at the
95% confidence level, VaR estimates from the three methods
show a high degree of consistency. At the 99% confidence
level, the Monte Carlo and variance-covariance methods usually
produce slightly higher Value at Risk (VaR) values compared
to historical simulation. Historical simulation, while not based
on specific assumptions and providing fairly dependable results,
is not as strong as the ESRNN-VAE model presented in this
study. However, our proposed ESRNN-VAE is different from
the method of Xie [28] because it can predict stock prices in
real-time and better understands complex patterns and hidden
changes in volatility, making it more effective for modeling risks
in unstable, commodity-related stocks. No published study has
integrated ESRNN and VAE for downside risk forecasting in
resource equities within emerging market contexts. This study fills
that gap by proposing a regime-sensitive hybrid model specifically
tailored to the volatility dynamics of resource-dependent equities in
volatile economies.

3 Methodology

This section outlines the comprehensive methodological
framework employed to forecast downside risk in Sasol Ltd.’s
stock using a hybrid deep learning model that synergises
the Ensemble of Seasonal Recurrent Neural Networks with
the Variational Autoencoder. The methodology is based on
quantitative time series forecasting and is tailored to consider
latent volatility and deterministic structures. It integrates structural
decomposition with generative volatility modeling to address
nonlinear dynamics, regime shifts, and tail-risk sensitivity
inherent in Sasol Ltd.’s commodity-linked equity (JSE: SOL).
This chapter offers comprehensive insights into the training
strategy, model architecture, data preprocessing, study design,
and assessment metrics to guarantee methodological transparency
and repeatability.

3.1 Research design

The modeling structure proposed in this study combines
interpretable time-series decomposition via ESRNN with
probabilistic residual modeling in a rolling-horizon design [26, 29].
Its key innovation is the joint modeling of structural components
(trend and seasonality) alongside latent volatility regimes through
variational inference. To enhance sensitivity to shocks, the
model incorporates several exogenous drivers in the post hock
analysis via explainable AI (that is SHAP for feature impotance):
COVID-19 daily cases (South Africa): Sourced from Our World
in Data, capturing the health shock intensity over time. 2015–2016
Shanghai stock market crash: Included as a shock dummy
based on event timing identified through financial archives and
public resources such as Investopedia. Data extraction involved
web scraping and text mining, specifically topic modeling via
Latent Dirichlet Allocation (LDA) (see https://www.investopedia.
com/articles/investing/022716/4-consequences-government-
intervention-chinas-markets.asp). Russia–Ukraine war indicator:
A binary variable marking the conflict’s onset and persistence,
derived from web-scraped reports and processed using LDA-based
topic modeling for the period from 24 February 2022 to 27 July
2025 (https://www.russiamatters.org/news/russia-ukraine-war-
report-card/russia-ukraine-war-report-card-july-30-2025). Oil
prices: Benchmarked Brent crude prices obtained via the Python
yfinance package. Monetary policy news (South Africa):
Incorporated as a qualitative driver, extracted via automated web
scraping and text mining techniques analogous to those used
for the Shanghai crash and Russia-Ukraine war data. Investor
sentiment: Weekly data from the American Association of
Individual Investors (AAII) Sentiment Survey, quantifying bullish,
bearish, and neutral market outlooks. These data were collected
through automated web scraping of the AAII website (https://
www.aaii.com/sentimentsurvey) to align sentiment shifts with
exchange rate dynamics into the VAE’s latent space, amplifying
tail-risk capture during structural breaks (e.g., the implementation
of the Carbon Tax Act) [30, 31]. Validation is conducted through
5-fold time-series cross-validation with chronological blocking to
prevent look-ahead bias as demonstrated by Bergmeir et al. [32].
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3.2 Data description and pre-processing

The dataset comprises daily adjusted closing prices of Sasol
Ltd., listed on the Johannesburg Stock Exchange (JSE), spanning
from January 2010 to May 2025, denominated in South African
Rand (ZAR) to avoid exchange-rate distortion. This extended 15-
year horizon captures a wide range of market regimes, including
macroeconomic shocks, periods of economic contraction, and
episodes of heightened volatility—conditions critical for robust
downside risk modeling. The target variable is specified as the
natural logarithm of prices to stabilize variance and linearize
exponential growth trends given in Equation 5 as

yt = ln(Pt), (5)

where Pt denotes the adjusted closing price at time t. This
transformation stabilizes the variance and ensures additive time
series behavior [33]. To ensure data quality and statistical
validity, the preprocessing pipeline consists of the following
sequential steps:

• Handling of missing values: Gaps of three trading days or
fewer were addressed using linear interpolation to preserve
temporal continuity without introducing systematic bias. This
approach ensures that short-term gaps—often caused by
market holidays or brief data outages—do not distort the
time series’ statistical properties. In contrast, Ndlovu and
Chikobvu [34] filled missing values with zeros, reasoning that
since stock markets are closed on weekends and holidays, no
profits or losses could occur during these periods. While their
justification aligns with market closure logic, zero imputation
may underestimate volatility and suppress the magnitude of
extreme events in tail-risk modeling, particularly when applied
to high-frequency financial data.

• Stationarity testing: The Augmented Dickey-Fuller (ADF)
test is applied to the log-transformed series:

�yt = α + βt + γ yt−1 +
p∑

i=1

�i�yi−1 + εi, (6)

To make it stationary, we differentiate the data for p-
values greater than 0.05. This is a requirement for many deep
learning models, such as RNNs [33]. Nevertheless, Bature et al.
[40] argues that testing stationarity helps in deciding if the
dynamic model should be implemented or a static model and
this is based on the results of the ADF test.

• Calculation of log returns: For components of the model
which are sensitive to volatility (e.g., VAE latent variables), we
calculate the log returns as follows:

Normalization: We normalize all continuous inputs,
including log prices and returns, shown in 7 as

Zt = Rt − μ

σ
, (7)

where σ is the standard deviation of the log returns and μ is
the sample mean.

• Data splitting: The time series is split into three sets: training
set, 70% validation set, 15% and test set, 15%. This is done to
maintain temporal consistency and to avoid data leakage.

3.2.1 External variables: definitions and data
sources

This study implemented a Bottom-Up Hierarchical Time
Series (BUHTS) framework to improve predictive accuracy and
account for the multiscale characteristics of financial time series.
This structure facilitates the integration of internally derived
components from the BWP/USD exchange rate series with
externally sourced macroeconomic and geopolitical indicators.
Each component is analyzed as a disaggregated series at the lower
hierarchical level and later aggregated to create the final forecasting
input. Based on a bottom-up disaggregated time hierarchy, the
BWP/USD exchange rate is broken down into a number of
interpretable time series components for the internal structure.
Daily trends, weekend impacts, and more general seasonalities,
including monthly, quarterly, semi-annual, and yearly cycles, are
some examples of these elements. These components are extracted
using classical decomposition, which captures a variety of temporal
characteristics within the series. The forecasting model can identify
and use significant signals across a variety of time scales thanks to
this hierarchical decomposition, which also maintains the integrity
of the time series.

3.3 ESRNN-VAE hybrid integration:
architecture and computation

The hybrid Exponential Smoothing Recurrent Neural
Networks–Variational Autoencoder architecture, which is used for
modeling Sasol’s equity, is presented in this section. The model
architecture jointly captures the latent volatility (via VAE) and the
deterministic patterns (via ESRNN). This enables modeling both
the stochastic and structured elements of the financial time series.

3.3.1 ESRNN component
The Exponential Smoothing Recurrent Neural Network

(ESRNN) is a hybrid forecasting architecture that combines the
strengths of exponential smoothing and recurrent neural networks
to produce accurate and interpretable time series forecasts.

3.3.2 Purpose
The ESRNN sub-model is designed to extract the structural

components of the time series—specifically, the level lt , trend
bt , and seasonality st—while maintaining temporal consistency
and interpretability. It handles deterministic decomposition for
improved forecasting accuracy. In Figure 1, we present the 24
business day closing stock prices daily closing stock prices for
November 2017 (i.e., a month). The time series for this month
exhibits a trend with weekly, monthly variabilities, and random
fluctuations. For 5 and 60 business days, see Appendix Figures 5, 6.
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FIGURE 1

Time series plot for the 24 business day closing stock prices daily closing stock prices for November 2017.

3.3.3 Mathematical formulation of the ESRNN
The Exponential Smoothing Recurrent Neural Network,

introduced by Smyl [26], combines classical exponential smoothing
with recurrent neural networks to produce interpretable and
accurate forecasts for time series exhibiting trend and seasonality.
In this study, the ESRNN is implemented using an additive
decomposition structure owing to the variance reduction achieved
by the logarithmic transformation of the time series. The final
forecast is computed as

ŷESRNN
t = lt + bt · h + st−m+h (8)

where lt is the estimated level component at time t, bt is the
estimated local trend, and st−m+h is the seasonal component
extrapolated h steps ahead and h is the forecasting horizon. Finally,
m ∈ {5, 24, 60} represents the seasonal lag in trading days.

3.4 Model inputs and smoothing

The model first removes trend and seasonality from the input
series using exponential smoothing, estimating the components
recursively as

lt = α · (yt − st−m) + (1 − α)(lt−1 + bt−1)

bt = β · (lt − lt−1) + (1 − β)bt−1

st = γ · (yt − lt) + (1 − γ )st−m

(9)

where α, β , γ ∈ (0, 1) are smoothing parameters learned
during training. The residual (i.e., seasonally adjusted) series is
computed as

zt = yt − lt − st−m (10)

3.5 Recurrent neural network component

The residual component zt in Equation 10 is passed to a
recurrent neural network (typically LSTM) by

ht = RNN(zt , ht−1). (11)

The RNN learns nonlinear temporal dynamics in the
adjusted signal and forecasts the deseasonalized component
ẑt+h, which can be reintegrated with the trend and seasonal
parts for the final prediction in Equation 9. To enhance
memory detection over multiple temporal horizons, the model
incorporates 5-day and 24-day lagged log prices as input
features. Hence, our training setup consists of Adm as an
optimiser, 500 epochs, the pinball loss (quantile regression),
which is robust to outliers and effective in modeling asymmetric
downside risk.

3.5.1 VAE component
Purpose: The VAE sub-model is tasked with modeling the

stochastic residuals defined as:

εt = yt − ŷESRNN
t (12)

This residual modeling captures latent volatility regimes,
especially during tail-risk episodes, regime shifts, or structural
breaks (e.g., implementation of the Carbon Tax Act). The
architecture consists of: (1) the Endcoder that maps residuals
to a latent space using a parameterised Gaussian distribution
given by

q�(z|εt) = ℵ(z;μz , σ 2
z ) (13)

(2) Reparameterization Trick that enables backpropagation
through stochastic nodes given by
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z = μz + σz � ε, ε ∼ ℵ(0, 1) (14)

(3) The decoder, which reconstructs the residual sequence using
the learned latent variable by

ε̂t ∼ pθ(εt|z) = ℵ(με , σ 2
ε ). (15)

and finally, the loss Function (Evidence Lower Bound)—ELBO
which is given by

L = Eq�

[
logpθ (εt|z)

] − DKL
(
q�(z|εt) ‖ p(z)

)
. (16)

Residual sequences are passed as input through a 24-day rolling
window to detect local volatility anomalies [26, 35], and this
joint ESRNN-VAE configuration combines deterministic structure
extraction with variational inference of volatility, providing a
robust hybrid model designed for nonlinearities and tail-risk
behavior in commodity-linked equities such as Sasol Ltd.

3.6 Weighted hybrid integration

The final forecast combines outputs from both sub-models
using a weighted ensemble strategy to balance deterministic
accuracy and stochastic responsiveness which is now given as

ŷhybrid
t = w1 · ŷESRNN

t + w2 · (ŷESRNN
t + ε̂VAE

t ) (17)

where w1 = 0.6 is the base weight assigned to the ESRNN forecast,
w2 = 0.4 is the VAE-corrected forecast, w1 + w2 = 1, ensuring
convex weight. Equation 17 means that the combined forecast is
an ensemble of ESRNN and ESRNN-VAE corrected outputs. This
enables the model to ensure predictability of ŷESRNN

t and adapt to
volatility spikes via

(
ε̂VAE

t
)
.

3.6.1 Dynamic weighting option
During elevated volatility or structural breaks, w2 can be

increased adaptively to reflect greater reliance on the stochastic
correction. For example, if volatility is detected via a GARCH-
based volatility filter or realized variance threshold, the system
dynamically adjusts as

w2 = min(0.4 + α · σt , 0.7), w1 = 1 − w2, (18)

where α is a sensitivity hyperparameter and σt is the detected
conditional volatility. This ensures the ensemble model reallocates
trust to the VAE during turbulent market regimes.

The ESRNN-VAE hybrid, however, is a multi-resolution
architecture that captures both deterministic structure and
uncertainty-driven dynamics. Its layered integration enables
the model to generalize across market conditions, performing
accurately during stable trends and remaining robust during
crashes or regime shifts. This makes it particularly well-suited for
forecasting downside risk in highly sensitive stocks such as Sasol
Ltd., which are exposed to commodity and regulatory shocks.

3.7 Final forecasting formulation and
training protocol

The final ESRNN-VAE hybrid forecast combines the ESRNN’s
structural output with VAE-modeled residuals to account for latent
volatility as

ŷt = ŷESRNN
t + ε̂VAE

t . (19)

This allows the model to preserve trend, seasonality, and level
components while correcting for nonlinear shocks and tail risks.
We first train the ESRNN on the full dataset using the quantile
pinball loss. Once converged, its parameters are frozen. The VAE is
trained on the ESRNN residuals using the Evidence of Lower Bound
(ELBO) loss. Finally, ensemble weights w1 and w2 are tuned based
on validation metrics such as Quantile Loss and VaR exceedance
ratios. Lastly, the k step ahead forecasts are given by

ŷt+h = w1 · ŷESRNN
t+h + w2 · (ŷESRNN

t+h + ε̂VAE
t+h ) (20)

subject to w1 + w2 = 1 where these weights are optimized using
validation metrics, including: (1) Quantile Loss (for downside risk)
and (2) Value-at-Risk exceedance ratios (for tail-event calibration).
Last but not least, we dynamically adjust the weights based on
realized volatility. When volatility spikes, w2 increases, amplifying
the VAE’s influence as Zhang and Lin [19] has recommended. And
this follows

w2 = min(wbase
2 + α · σ , wmax

2 ), (21)

where σt is realized volatility or GARCH-estimated conditional
variance, α being a sensitivity parameter and wbase

2 = 0.4, wmax
2 =

0.7. This formulation ensures that the model increases reliance
on the VAE correction during extreme market turbulence (e.g.,
oil price collapses, political shocks) while maintaining ESRNN
dominance during stable regimes.

3.8 Evaluation metrics

To rigorously assess the predictive performance and risk
sensitivity of the hybrid ESRNN-VAE model, this study employs
a suite of both point forecast accuracy and risk-based evaluation
metrics. These metrics ensure that the model is statistically
sound and aligned with financial risk management standards.
They facilitate the robust evaluation of the model’s ability to
capture extreme events, volatility clustering, and distributional
asymmetries that typify financial time series, such as Sasol Ltd.’s
stock returns.

3.8.1 Quantile loss (pinball loss)
The model’s performance is assessed over several quantiles of

the prediction distribution using quantile loss, sometimes called
the pinball loss function. Because it directly assesses the precision
of Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
calculations, this metric is especially suitable for risk forecasting,
and it is given by
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QL(τ ) = 1
n

n∑
i=1

[(τ − Iyi<ŷi )(yi − ŷi]. (22)

This quantile level of interest (e.g., 0.05 for the 5% VaR) is
represented by τε (0, 1) and I{·} is the indicator function that
captures whether the realized value yi falls below the predicted
quantile ŷi. The quantile loss is essential for downside risk
modeling since it asymmetrically penalizes both overestimation
and underestimation of quantiles [36].

3.8.2 Root mean squared error
Captures the average magnitude of forecast error:

RMSE =
√

1
n

(yt − ŷt)2 (23)

RMSE captures the average magnitude of forecast errors
without regard to direction. While not specifically tailored for
tail risk, RMSE provides a general-purpose evaluation of the
model’s ability to capture the central tendency of Sasol’s stock
returns. It offers a baseline comparison for assessing improvements
introduced by the probabilistic latent representations of the
VAE component.

In summary, these evaluation metrics collectively offer a
comprehensive validation charter. They assess not only central
forecast accuracy (via RMSE) but also distributional tail behavior
(via QL and QLIKE) and statistical reliability of risk forecasts
(via Kupiec and Christoffersen tests). Their combined application
ensures that the ESRNN-VAE model is empirically accurate,
theoretically sound, and practically relevant for financial risk
management and investment decision-making under uncertainty.

4 Empirical results and discussion

The empirical analysis employs time series data to implement
combined forecasting for stock prices, specifically by utilizing
Sasol’s adjusted closing stock prices from January 2010 to May
2025. The architectures are implemented in TensorFlow version
2.15, developed by Ramchandani et al. [37]. We do time series
cross-validation on the training and test sets. Each set covers a
continuous sample period to avoid look-ahead bias, and the test set
has the most recent data. Figure 2a presents the stock’s closing price
trends, revealing significant fluctuations, including a notable crash
around 2020, followed by a recovery and a more recent decline.
The kernel density plot in Figure 2b indicates a non-normal,
multimodal distribution with a primary peak around a closing price
of 10.5 and other clusters at lower values, a characteristic further
supported by the Q-Q plot in Figure 2c, which shows deviations
from a theoretical normal distribution, particularly in the lower
tails. While the Box Plot in Figure 2d visualizes a median closing
price slightly above 10.0 and an interquartile range largely between
9.5 and 10.7, it highlights numerous lower-priced occurrences
identified as outliers, emphasizing the complex and volatile nature
of the closing price behavior over the observed period.

The summary data in Table 1 indicate that the distribution of
the closing prices deviates significantly from a normal distribution.

The skewness of –1.49 shows a strong left tail, which means that the
Sasol closing stock has had a few large losses that have happened
very seldom. Most of the observations are to the right of the mean.
A kurtosis of about 56.2926 (greater than the typical value of 3)
indicates that the tails are more pronounced than a price of 10.33,
and the low volatility, with a standard deviation of 0.50, helps
to establish the scale. The very high Jarque–Bera statistic (2,375)
reveals that the joint skew/kurtosis severely violates normality;
hence, the calculated probability value is less than 5% level of
significance. This led to the rejection of normality in the Sasol
closing stock prices.

To sum up, Sasol’s closing price distribution is not symmetrical.
Most days, there are small gains or losses, but the occasional
large losses create a long left tail and strong non-normal
impacts. Moreover, the left-skewed and leptokurtic profile suggests
a downside risk that may undermine investor confidence. In
practice, investors anticipate ‘frequent small gains and a few large
losses’, indicating that the observed asymmetry reveals high tail
events. Sasol’s profitability is associated with fluctuating oil and
chemical prices, which means that abrupt changes in commodity
values (such as a drop in oil or petrol prices) have led to
significant negative returns observed in the data [38]. In the
context of South Africa, the connection between foreign investment
and growth is intricately linked to commodity cycles, making
such volatility particularly significant. In Sub-Saharan Africa, a
downturn in commodity prices often aligns with a decrease in
inward investment, highlighting that Sasol’s volatility reflects wider
risks associated with resource dependence [39].

4.1 Short-, medium-, and long-term
forecasts of closing stock prices

This section employs exponentially smoothed recurrent neural
networks and Variational Autoencoders to generate short- to long-
term forecasts of closing stock prices. Before training and testing
these architectures, we perform the Augmented Dickey-Fuller
(ADF) test to assess stationarity. The test results indicate that
the null hypothesis of a unit root cannot be rejected at the 5%
significance level. Consequently, these findings support the use of a
dynamic modeling approach rather than a static model for the time
series data because the data are non-stationary; hence, a dynamic
model that accounts for temporal changes is more appropriate and
effective than a static one.

4.1.1 Exponentially smoothed recurrent neural
network

The ESRNN architecture is designed to predict stock prices in
the next five, 24, and 60 business days. To achieve this, the data is
first divided into training and test sets, with the final five, 24, and
60 observations set aside for testing and validation. The model 5-
day and 24-day lag values, to provide contextual insight into recent,
medium and long-term market trends. These features effectively
help the model interpret short- and medium-term momentum and
seasonality. To enhance sensitivity to shocks, several exogenous
drivers discussed previously are incorporated in the post-hoc

Frontiers in Applied Mathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2025.1662252
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Sigauke et al. 10.3389/fams.2025.1662252

FIGURE 2

Time series plot for the Sasol adjusted closing price: Time series plot (a), Kernel density plot (b), QQ Plot (c), and Box plot (d).

TABLE 1 Descriptive statistics for closing prices.

Min Mean Std 25% 75% Max Skewness Kurtosis JB

7.6895 10.3305 0.5016 10.1667 10.6380 11.0715 –1.4907 56.2926 2,375 (0.001)

The value in () for the JB test is the p-value.

analysis via explainable AI (SHAP for feature importance). We
configure our ESRNN to detect a seasonality pattern of five, 24,
and 60 business days, reflecting a typical weekly, monthly and 3-
month trading cycle. The model bases its predictions on the last 5,
24, and 60 business days, which correspond roughly to one week,
a month and 3 months of data. It is trained on the historical data
for up to 500 iterations or epochs. This design allows ESRNN to
capture regular seasonal behaviors and complex, nonlinear market
dynamics that frequently arise in financial time series.

Table 2 shows how well the exponential smoothing recurrent
neural network performs for short-term (5-step), medium-term
(24-step), and long-term (60-step) forecasts. Forecast accuracy is
enhanced with an increasing prediction horizon, as evidenced
by a decrease in mean squared error from 0.1399 in the short
term to 0.0053 in the long term and a reduction in mean
absolute error from 0.3087 to 0.0674. The forecast error percentage
exhibits a notable decline, indicating a reduction in substantial
forecast errors over extended horizons. Theil’s inequality coefficient
decreases from 0.0216 to 0.0041, suggesting that ESRNN’s forecasts
significantly surpass naı̃ve benchmarks at extended horizons. The
trends indicate that the ESRNN model effectively captures long-
term dependencies and smoother patterns in the data, rendering
it highly suitable for extended forecast intervals.

Regarding training performance, the model stays efficient;
training time rises slightly from 0.40 seconds (short-term) to 2.17
seconds (long-term), and training loss is quite low throughout
all horizons. This efficiency supports the viability of the ESRNN
for real-world applications in which both speed and accuracy
are critical. Long-term projections are often the most accurate
and reliable tool for macro-level studies and investment planning.

Appropriate for operational or policy planning, the medium-term
predictions provide a solid mix of accuracy and computing cost.
However, short-term predictions have bigger errors because it is
harder to predict unpredictable market changes, which indicates
that using more specialized methods or faster data might be helpful
for these tasks.

4.1.2 Variational autoencoder
We use a variational autoencoder (VAE) to find hidden patterns

in the time series data and forecast future prices. The VAE design
has an encoder that reduces the lag features (5-day and 24-day
lags) into a simpler form and a decoder that rebuilds the expected
price from this simpler form. VAE facilitates uncertainty-aware
predictions by modeling the distribution over latent variables.
The reparameterization trick facilitates model training through
backpropagation, while the overall loss function maintains a
balance between reconstruction accuracy and the regularization
enforced by the Kullback–Leibler (KL) divergence. The model was
trained for 100 epochs using the Adam optimiser, which facilitated
stable convergence. The VAE demonstrates robust generalization
across various market conditions, making it an appropriate option
for probabilistic forecasting. The system accurately identifies
patterns based on current market behavior, providing a flexible,
nonlinear model that captures its inherent volatility. This feature is
important in financial settings where visible trends and underlying
factors influence price fluctuations. We constructed datasets for
short-term (H = 5), medium-term (H = 24), and long-term
(H = 60) horizons using rolling windows to assess forecasting
performance. We made predictions using past data with the trained
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TABLE 2 Short, medium, and long term rolling forecasts for ESRNN.

H MSE MAE FEP TIC Training time Training loss

Short-term 5 0.139936 0.308715 3.50% 0.021619 0.40438 0.00375

Medium-term 24 0.020476 0.132909 1.51% 0.008189 0.79828 0.00388

Long-term 60 0.005259 0.067361 0.76% 0.004135 2.16647 0.00690

TABLE 3 Short, medium, and long term rolling forecasts for VEA.

H MSE MAE FEP TIC Training time Training loss

Short-term 5 0.018430 0.084466 92.73% 0.006544 47.71 4.6439

Medium-term 24 0.067073 0.180292 73.65% 0.012424 46.55 8.2762

Long-term 60 0.081800 0.175149 68.16% 0.013811 45.29 13.5388

VAE and then compared these predictions to the real values. The
results are reported in Table 3.

Table 3 shows the performance of the Variational Autoencoder
model on short-term (5-day), medium-term (24-day), and long-
term (60-day) rolling forecast horizons. Short-term forecasts are
the most accurate, with the lowest Mean Squared Error (0.0184),
lowest Mean Absolute Error (0.0845), and highest Forecast
Efficiency Percentage (92.73%). Furthermore, exhibiting excellent
short-term prediction performance is Theil’s Inequality Coefficient
(0.0065). Minimum training duration and resultant loss in the
short-term environment indicate that the VAE fits short-term
market dynamics with less complexity and quicker convergence.
In contrast to medium- and long-term predictions, which undergo
a gradual decrease in performance, medium- and long-term
projections do not suffer from such significant loss. With the
Forecast Efficiency Percentage being 73.65%, MSE and MAE go
up to 0.0671 and 0.1803, respectively, over the 24-day horizon;
the final training loss increases to 8.2762. Forecast accuracy is also
reduced (MSE of 0.0818, FEP of 68.16%), and loss is at its highest
point at 13.5488 for the 60-day horizon. Training times continue
to be very stable across all horizons despite diminishing accuracy
with longer horizons, further bringing out the scalability of the
VAE paradigm. The VAE provides a computationally lightweight,
uncertainty-aware architecture that is computationally tractable
with increasing prediction horizons and exhibits overall good
short-term predictability. Large economic and financial effects
depend on how well the Variational Autoencoder (VAE) model
works over different times for making predictions. The high
short-term accuracy (MSE = 0.0184, FEP = 92.73%) shows that
recent trends affect current price changes, which are well caught
by features that look back in time. Such performance supports
the idea that short-term market behaviors may follow structured
patterns, which aligns with the idea that prices quickly reflect new
public information while allowing for clever trade strategies. The
bigger estimate errors for the medium forecast (MSE = 0.0671,
FEP = 73.65%) and long-term (MSE = 0.0818, FEP = 68.16%)
ranges, on the other hand, show that longer rolling windows
come with more doubt and volatility. It is harder to figure out
how these things affect prices in the future just by looking at
price lags. These trends show how macroeconomic forces, market
mood, and policy changes affect prices over time. This makes the

VAE model especially helpful for high-frequency or short-term
forecasting techniques, including day trading or short-horizon
portfolio rebalancing, where fast and precise forecasts are crucial
for stock price prediction. However, its declining performance over
longer timeframes indicates little independent relevance for long-
term planning or strategic investment guidance. Still, its latent
variable model and uncertainty-aware design make it useful for
applications such as stress testing and Value-at-Risk relating to
volatility forecasting and risk management. The VAE’s probabilistic
modeling of transient price fluctuations enhances deterministic
models such as ESRNN to provide a more complex understanding
of market dynamics over periods.

4.1.3 Combined ESRNN-VAE and feature
importance for forecasting downside risk

To enhance the reliability of our forecasting system, we adopt
a model combination strategy that merges predictions from the
ESRNN and the VAE using a weighted average—60% ESRNN and
40% VAE. This weighting is informed by empirical findings: the
ESRNN provides superior accuracy in long-term forecasting, while
the VAE performs better in the short term but is less consistent
over extended horizons. By amalgamating the strengths of both
architectures, the model achieves improved generalizability across
diverse forecast periods. In this model, investor sentiments, oil
prices, 24 lags (i.e., month), COVID-19, the Russia and Ukraine
war, 5 lags (i.e., a week), the 2015/2016 Shanghai stock crash and
SA monetary policy news are included. The aim is to enhance the
prediction and interpretability of the model for downside risk.

As shown in Table 4, the combined model performs well across
all horizons, with particularly strong long-term results. In the
short term (H = 5), the model yields low error metrics (MSE
= 0.000412, MAE = 0.00161), though it requires the longest
training time and incurs the highest training loss, reflecting the
complexity of short-term dynamics. In the medium term (H =
24), it maintains balanced accuracy (MSE = 0.00052, MAE =
0.00057) with improved training efficiency, demonstrating the
effective interplay between the ESRNN and VAE. For long-term
forecasts (H = 60), the model achieves its lowest MSE (0.000224),
lowest forecast error percentage (0.09%), and fastest training,
although a higher MAE (0.09716) suggests the presence of a few
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TABLE 4 Forecasting performance of the combined ESRNN-VAE model.

Horizon H MSE MAE FEP TIC Training time Training loss

Short-term 5 0.000412 0.00161 0.51% 0.00171 1.45 0.0027

Medium-term 24 0.00052 0.00057 0.32% 0.006558 0.45 0.00125

Long-term 60 0.000224 0.09716 0.09% 0.006558 0.15 0.00017

larger deviations. Overall, the results validate the effectiveness of
the weighted combination, delivering reliable and generalisable
forecasts across varying time horizons.

The empirical application of the ESRNN-VAE model on SASOL
stock prices demonstrates its ability to generate robust, horizon-
sensitive forecasts that enhance downside risk management.
By combining the ESRNN’s strength in capturing long-term
dependencies with the VAE’s ability to model short-term volatility,
the model improves return prediction accuracy. These forecasts
enable forward-looking risk assessments, including Maximum
Drawdown (MDD), Marginal Expected Shortfall (MES), and the
Sortino Ratio—key metrics for evaluating downside exposure.
Given the sensitivity of SASOL’s performance to oil prices, market
conditions, and geopolitical events, this approach supports the
anticipation of large losses, portfolio stress testing, and systemic
risk evaluation. Additionally, it informs trading decisions by
identifying periods of heightened risk or favorable risk-adjusted
returns and supports dynamic asset allocation across varying
market regimes. The model’s adaptability makes it suitable for
broader financial applications, including equities, commodities,
and multi-asset portfolios.

The model integrates economic and stock market features
pertinent to the Johannesburg Stock Exchange (JSE) to improve
predictive performance. The factors encompass “SA Monetary
Policy News,” “Oil Prices,” “Investor Sentiments,” “COVID-19,”
the “2015/2016 Shanghai Stock Exchange Crash,” and the “Russia
and Ukraine War,” along with autoregressive components like “5-
lags” and “24-lags.” By employing Shapley Additive exPlanations
(SHAP), we are able to quantify the contribution of individual
features to the predictions of our combined model; therefore,
Figure 3 illustrates that the most influential features include oil
prices, investor sentiment, and time-dependent behavior (24 lags),
which are equivalent to monthly seasonal variation, which are
essential for understanding the real-world dynamics of Sasol’s
returns. The results suggest that downside risk in Sasol stock market
is primarily influenced by significant uncertainty and changes in
sentiment, followed by oil prices, particularly during crisis events
such as the COVID-19 pandemic or geopolitical tensions.

By integrating behavioral, macroeconomic, geopolitical, and
autoregressive signals, the ESRNN-VAE model—supported by
SHAP analysis—provides interpretable and actionable insights
into downside risk. The model not only identifies key risk
contributors but also quantifies their effects, enhancing its utility
in proactive risk management and adaptive portfolio construction.
This reinforces its value as a practical tool for understanding and
responding to complex financial environments. The global SHAP
analysis is conducted to quantify the contribution of each feature,
indicating that the 24-day lag is the most influential in predicting
Sasol’s returns, with a mean absolute SHAP value of 0.1014. This

finding underscores the significance of long-term autoregressive
dynamics and possibly monthly seasonality in influencing return
behavior. Investor sentiments represent the second most significant
feature (0.0718), underscoring the influence of behavioral factors
and market psychology on asset prices, especially the propensity for
heightened sentiments to precede corrections. Oil prices (0.0505)
demonstrate a significant impact, which is expected due to Sasol’s
involvement in global energy markets; variations in oil prices
directly influence profitability and investor expectations. The 5-day
lag (0.0411) and SA Monetary Policy News (0.0252) significantly
contribute, suggesting that the model effectively incorporates
both short-term memory effects and localized macroeconomic
policy signals. These findings demonstrate the model’s capacity
to integrate internal time series patterns with pertinent external
drivers. Refer to Table 5.

Geopolitical and systemic events also feature prominently. The
2015/2016 Shanghai Stock Exchange Crash (0.0414), the Russia-
Ukraine War (0.0398), and COVID-19 (0.0239) all significantly
influence the model’s forecasts, validating its sensitivity to
exogenous shocks, but have less impact as compared to investor
sentiments and oil prices among others. These events typically
increase uncertainty and risk premiums, leading investors to re-
price assets, which the ESRNN-VAE effectively captures. The
contribution of such rare but impactful events demonstrates the
model’s strength in recognizing downside risk triggers. Overall, the
SHAP values provide a transparent and interpretable breakdown
of how macroeconomic, behavioral, and autoregressive factors
shape forecasted returns. This enhances the model’s practical
utility in informing risk-aware decision-making and highlights
its robustness in environments characterized by both persistent
patterns and sudden shocks.

4.2 Forecasting downside risk

We use maximum drawdown, Sortino ratio, and marginal
expected shortfall metrics to model downside risk. Table 6 indicates
that the integrated ESRNN-VAE model successfully predicts
downside risk metrics for all investment horizons. The predicted
values for Maximum Drawdown align closely with actual values
across all horizons, exhibiting only minor discrepancies, such
as 0.6812 predicted vs. 0.6283 actual over five business days,
demonstrating the model’s effectiveness in capturing potential
peak-to-trough losses. The Sortino Ratio, emphasizing downside
volatility, shows a marginal improvement in predictions across
all horizons (e.g., from –0.0865 actual to –0.0647 predicted in
the short term), suggesting the model forecasts slightly enhanced
risk-adjusted returns. In contrast, marginally expected shortfall
predictions exhibit a more conservative approach, indicating
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FIGURE 3

SHAP values for feature importance.

TABLE 5 Global feature importance based on mean absolute SHAP values.

Feature Mean absolute SHAP
value

24-Lags 0.1014

Investor sentiments 0.0718

Oil Prices 0.0505

2015/2016 Shanghai stock exchange crash 0.0414

5-Lags 0.0411

Russia-Ukraine war 0.0398

SA monetary policy news 0.0252

COVID-19 0.0239

slightly greater losses than the actual values, with a prediction of
–0.0096 compared to an actual value of –0.0082 over five days. This
indicates that the model prioritizes caution in estimating tail risk,
which may be advantageous for risk-averse decision-making. The
horizon extending to 60 business days shows that all three predicted
metrics remain closely aligned with actual values, reinforcing the
model’s ability to generalize over extended forecasting periods.
These results indicate that the ESRNN-VAE model delivers reliable
and realistic forecasts of downside risk, which can facilitate
informed investment and risk management strategies.

The practical use of the combined ESRNN-VAE model on
SASOL stock prices and the wider financial markets shows that
it effectively predicts downside risk over different investment
time frames. Table 6 shows that the model reliably estimates the
real values of Maximum Drawdown, Sortino Ratio, and Marginal
Expected Shortfall (MES), which are important for evaluating
different parts of downside risk. Over short (5-day), medium (24-
day), and long-term (60-day) periods, the predicted values match
the actual risk measurements, showing that the model works
well in both unstable and stable situations. The predicted Sortino

TABLE 6 Performance metrics for actual and predicted returns.

Horizon Metric Actual Predicted

Five business
days

Maximum drawdown 0.6283 0.6812

Sortino ratio –0.0865 –0.0647

Marginal expected shortfall –0.0082 –0.0096

Twenty-four
business days

Maximum Drawdown 0.9788 0.9795

Sortino ratio –0.1729 –0.1389

Marginal expected shortfall –0.0183 –0.0201

Sixty-business
days

Maximum drawdown 1.0000 1.0000

Sortino ratio –0.3171 –0.2828

Marginal expected shortfall –0.0310 –0.0329

Ratios consistently exhibit lower negative values than the actuals,
indicating that the model forecasts reduced downside volatility.
In contrast, the MES values maintain a realistic and forward-
looking perspective regarding tail risk. For SASOL, which is affected
by changes in oil prices and market issues, these predictions
can help make smarter and safer adjustments to investment
strategies, protection methods, and ways to keep capital safe. This
integrated forecasting approach can be applied to various financial
assets, enabling investors and risk managers to more effectively
anticipate drawdowns, evaluate tail losses, and maximize risk-
adjusted performance across diverse market conditions.

4.3 Testing the stability of ESRNN-VAE

Evaluating the stability of the model is necessary to determine
whether the model accurately predicts extreme market fluctuations
and whether potential losses are underestimated. The average
prediction interval width (PIW) of 3.4398 at the 99% confidence
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FIGURE 4

Assessment of model stability.

level shows that the model expects future values to vary widely,
covering 99% of the predicted results. This large period greatly
benefits from forecasting downside risk, enabling the model to
incorporate infrequent yet severe events that significantly impact
financial performance. The larger prediction interval ensures that
risks of extreme losses and tail risks are properly considered
in risk metrics like Maximum Drawdown, Sortino Ratio, and
Marginal Expected Shortfall (MES). For example, this cautious
projection range helps Maximum Drawdown discover possible
peak-to-trough losses. In a similar vein, a larger interval that
captures more downward dispersion improves the Sortino ratio,
which emphasizes negative volatility. Additionally, combining the
99% PIW with MES enhances the model’s ability to show systemic
risk in very challenging situations. Generally, the 99% PIW of
3.4398 enables a more accurate and careful appraisal of downside
risk, which is crucial for educated financial decision-making
and risk-reducing techniques. These results are also reported in
Figure 4.

5 Conclusion and recommendations

This study demonstrates the effectiveness of a hybrid ESRNN-
VAE model in forecasting the stock prices of Sasol Limited,
a commodity-linked equity characterized by non-normal, left-
skewed return distributions driven by geopolitical shocks and
commodity super-cycles. The ESRNN component excels in
capturing long-term structural patterns such as trend and
seasonality, while the VAE proves particularly adept at modeling
short-term volatility and tail-risk regimes. When combined in
a weighted ensemble (60% ESRNN, 40% VAE), the model
yields robust forecasts across various time horizons, with the
long-term mean squared error reaching as low as 0.000224.
Importantly, Shapley value analysis confirms that oil prices,
investor sentiment, and monetary policy announcements are
critical drivers of downside risk, reinforcing the model’s economic
relevance. The ESRNN-VAE accurately estimates risk measures
such as Maximum Drawdown and Marginal Expected Shortfall,
with the 99% prediction interval (PIW: 3.4398) demonstrating the
model’s reliability under extreme market conditions.

The results provide compelling evidence that this combined
approach offers a practical and scalable solution for downside
risk forecasting in resource-sensitive markets. Its capacity to
account for structural seasonality, nonlinear volatility regimes,
and exogenous shocks renders it highly applicable to real-
world financial decision-making. As such, the model offers
valuable insights for institutional investors, risk managers, and
policymakers operating in commodity-dependent economies.
Future research could expand the model’s application to other
emerging market equities with similar exposure profiles, while also
incorporating real-time macroeconomic indicators for adaptive
learning. Furthermore, integrating attention-based architectures
or transformer models may enhance the model’s capacity to
capture long-range dependencies and improve interpretability in
multivariate settings.
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Appendix

FIGURE 5

Five business day trend.

FIGURE 6

Sixty business day trend.
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