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Optimal portfolio selection in
jump-uncertain stochastic
markets via maximum principle
and dynamic programming
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This study develops a unified framework for optimal portfolio selection in jump–

uncertain stochastic markets, contributing both theoretical foundations and

computational insights. We establish the existence and uniqueness of solutions

to jump–uncertain stochastic di�erential equations, extending earlier results in

uncertain–stochastic and Liu–uncertain settings without jumps, and provide a

rigorous proof of the principle of optimality, thereby reinforcing the link between

dynamic programming and the maximum principle under both continuous and

discontinuous uncertainty. Applying this framework to a financial market with

jump uncertainty, we demonstrate that under constant relative risk aversion

(CRRA) utility, the optimal portfolio rule preserves the constant–proportion

property, remaining independent of wealth. Numerical analysis further reveals

consistent comparative statics: The optimal fraction ρ allocated to the risk–

free asset rises with Brownian volatility σ1 and jump intensity λ, reflecting

precautionary behavior under uncertainty, while it declines with the expected

risky return µ and the risk–aversion parameter κ , indicating greater exposure to

risk when returns are higher or investors are less risk–averse. Taken together,

these results confirm the robustness, tractability, and economic relevance of the

framework, aligningwith classical findings in jump–di�usionmodels and o�ering

implementable strategies for decision-making in financial markets subject to

both continuous and jump risks.

KEYWORDS

optimal control, jump–uncertain stochastic di�erential equation, uncertain stochastic

maximum principle, V-jump process, backward uncertain stochastic di�erential

equation

1 Introduction

Optimal control theory, a core area of applied mathematics, focuses on determining

strategies that optimize a performance criterion under system dynamics. The two main

approaches are dynamic programming, introduced by Bellman [1], and the maximum

principle, developed by Pontryagin et al. [2]. This study examines an optimal control

problem under a jump-uncertain stochastic framework, using dynamic programming to

derive the value function and connect it with the uncertain stochastic maximum principle.

As an application, we analyze a portfolio selection problem in a financial market with jump

uncertainty, extending Chirima et al. [3], who considered models without jumps.
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Dynamic programming solves optimal control problems

recursively through a value function that satisfies the Hamilton–

Jacobi–Bellman (HJB) equation. In deterministic systems, this

yields a first-order partial differential equation, while in stochastic

settings with Brownian motion, it becomes a second-order non-

linear partial differential equation. Liu’s uncertainty theory adapts

dynamic programming using belief-based measures, resulting in

uncertain differential equations (UDEs) and a modified HJB

equation with the Liu expected value. In jump-diffusionmodels, the

HJB includes an integro-differential term that accounts for sudden

events, offering more realistic dynamics.

Dynamic programming has been applied in many settings.

Bellman’s work [1] laid the foundation for deterministic control;

stochastic extensions were developed by Kushner [4] and Fleming

and Rishel [5]. Liu [6] extended the framework to uncertain

systems, and Yong and Zhou [7] unified dynamic programming

and maximum priciple for stochastic control. Øksendal and

Sulem [8] applied dynamic programming to jump-diffusions in

finance, while Chirima et al. [3] studied uncertain stochastic

systems without jumps.

The maximum principle provides necessary conditions for

optimality by introducing adjoint (costate) variables and requiring

the maximization of the Hamiltonian function. In deterministic

settings, this formulation typically leads to a two-point boundary

value problem. In stochastic control, Peng [9] developed a

backward stochastic differential equation (BSDE) formulation,

which was subsequently extended by Yong and Zhou [7] to

broader stochastic contexts. For systems governed by jump-

diffusion dynamics, additional terms are incorporated to represent

the effects of Poisson, Lévy, or uncertain jumps. In uncertain

systems, the principle has been adapted to uncertain differential

equations, featuring modified adjoint processes and transversality

conditions [10].Within uncertain stochastic frameworks, uncertain

stochastic adjoint equations have been introduced to model both

randomness and belief-based uncertainty [11].

Since its introduction by Pontryagin et al. [2], the maximum

principle has evolved into a versatile tool for optimal control

across diverse settings. Peng’s BSDE-based formulation [9] and

the extensions by Yong and Zhou [7] advanced its applicability

in stochastic environments. Ge and Zhu [10] broadened its scope

to uncertain systems, while Chikodza and Hlahla [11] applied it

within uncertain stochastic frameworks. In the realm of jump-

diffusion control, Framstad et al. [12] demonstrated its effectiveness

and established its connection with dynamic programming. These

developments collectively underscore the maximum principle’s

flexibility and its unifying role in addressing optimal control

problems across a wide range of mathematical models.

A fundamental link exists between the maximum principle

and dynamic programming, the two main approaches in optimal

control theory. Dynamic programming characterizes the optimal

value function through the Hamilton–Jacobi–Bellman (HJB)

equation. When the value function is sufficiently smooth,

maximum principle adjoints can be expressed as gradients of the

value function, showing consistency between the two methods.

Yong and Zhou [7] established this equivalence in stochastic

systems, and Framstad et al. [12] extended it to jump-diffusion

models, affirming its validity even with discontinuities.

Financial markets often experience sudden, unpredictable

events—known as jumps—that cause sharp changes in asset prices.

These deviations differ from the continuous variations captured by

Brownian models. For instance, Brent crude rose over 13 percent

intraday on 13 June 2025 following Israeli airstrikes on Iranian

facilities and climbed further after renewed missile attacks [13–15].

Such movements underscore the need to model jumps explicitly.

Ignoring jumps can misrepresent risk and lead to inaccurate

pricing, underestimated Value-at-Risk, and suboptimal investment

decisions. Models that incorporate jump processes—such as

Poisson, Lévy, or V-uncertain terms—better capture market

realities and improve portfolio and hedging strategies. Thus, jump

modeling is essential for robust financial decision-making.

Liu’s uncertainty theory, introduced in 2007 [16], models belief-

based uncertainty that arises from subjective judgment rather than

randomness. Unlike probability theory, which relies on frequencies,

Liu uncertainty theory uses axiomatic uncertain measures to define

uncertain variables and processes, such as the canonical Liu process

and uncertain differential equations. It is especially useful where

probabilities are unreliable or unknown, such as expert-based

financial forecasts.

In this framework, Zhu [17] applied dynamic programming to

uncertain optimal control and solved a portfolio selection problem.

Deng and Zhu [18] addressed uncertain systems with jumps driven

by both Liu andV-jump processes, applying dynamic programming

to pension fund control. Zhu [19] later introduced optimistic

and expected value-based models for uncertain dynamic systems.

These studies highlight Liu uncertainty theory’s role in addressing

ambiguity beyond classical stochastic tools.

Uncertain stochastic systems combine randomness and belief-

based uncertainty, capturing dynamics influenced by both

Brownian motion and Liu-uncertain processes. This hybrid

framework is effective in contexts where some variables are

stochastic, while others reflect subjective expectations. Researchers

have extended both dynamic programming and maximum

principle to such systems, developed Itô–Liu calculus, and

solved problems in portfolio optimization, inventory control, and

differential games.

Fei [20] studied uncertain stochastic systems with Markov

switching, derived a generalized HJB equation, and solved optimal

consumption and investment problems. In related work, Fei [21]

proved the existence and uniqueness of backward uncertain

stochastic differential equations (BUSDEs). More recently, Chirima

et al. [3] used dynamic programming to address uncertain

stochastic control without jumps in portfolio models, while Hlahla

and Chikodza [11] developed a maximum principle involving both

Brownian and Liu-uncertain drivers. These contributions show

that Liu uncertain stochastic systems offer a practical and flexible

framework for modeling decisions under both randomness and

human ambiguity.

Portfolio selection involves deciding how to allocate wealth

across financial assets to balance expected return and risk. The goal

is to either maximize return for a given risk level or minimize risk

for a target return. For example, investing equally in a risk-free

bond yielding 2% and a stock expected to return 8 percent yields

an average return of 5% with lower risk than full stock investment.

By adjusting asset proportions, investors create portfolios offering
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different risk-return combinations, forming the efficient frontier–

portfolios that optimize return for each risk level.

Harry Markowitz [22] established the foundation of portfolio

theory with the mean–variance optimization model, showing that

diversification reduces risk without lowering expected return.

Merton [23] later extended this to continuous time, using stochastic

calculus to derive dynamic investment strategies. His model

showed that, under certain assumptions, optimal investment

proportions depend on market parameters and risk preferences,

not current wealth. Together, Markowitz and Merton laid the

foundation for modern quantitative finance and the analysis of

optimal investment under uncertainty.

More recent research addresses complex uncertainties.

Deterministic models assume known returns, while stochastic

models use processes such as Brownian motion to reflect

randomness. Framstad et al. [12] included jump-diffusion to

capture price shocks. In contrast, Liu’s uncertainty theory models

belief-based uncertainty with uncertain variables. Zhu [17] applied

uncertain differential equations to portfolio problems under

this framework. Hybrid models now combine stochastic and

uncertain elements. Chirima et al. [3] used dynamic programming

for portfolio selection in a setting with both randomness and

belief-based uncertainty but no jumps. These advances reflect a

growing need for models that integrate stochastic processes, Liu

uncertainty, and jump components in financial decision-making.

The central contribution of this article is the study of an optimal

control problem within a jump–uncertain stochastic framework

using the dynamic programming approach. First, we establish an

existence and uniqueness theorem for jump–uncertain stochastic

differential equations, thereby extending the results of Chen and

Liu [24], who proved a similar result in a Liu–uncertain framework

without jumps, and Chirima et al. [25], who established it in

an uncertain–stochastic setting without jumps. Second, we prove

the principle of optimality and derive the corresponding Bellman

optimality equation in the jump–uncertain stochastic framework,

extending the work of Chirima et al. [3], who considered the

case without jumps. Third, we extend the work of Framstad

et.al [12] on the connection between the maximum principle and

dynamic programming in jump–diffusion models, by providing a

rigorous link between the dynamic programming principle and

the uncertain stochastic maximum principle in a jump–uncertain

setting. Finally, we demonstrate the applicability of these theoretical

results through a portfolio selection problem, thereby providing

a unified framework for optimal portfolio choice that integrates

theoretical foundations with computational insights.

The remainder of this study is organized as follows. Section 2

reviews the fundamental concepts and theorems of jump–

uncertain stochastic theory and establishes an existence and

uniqueness result for jump–uncertain stochastic differential

equations. Section 3 proves the principle of optimality and derives

the associated Bellman optimality equation. Section 4 develops the

maximum principle and shows that, under suitable conditions,

the adjoint processes in the uncertain stochastic control problem

can be expressed through derivatives of the value function

V(t, x). Section 5 applies these theoretical results to a portfolio

selection problem in a jump–uncertain stochastic financial

market, thereby presenting a unified framework for optimal

portfolio choice that integrates both theoretical foundations

and computational insights. Finally, Section 6 concludes

the study.

2 Preliminary

This study explores an optimal control problem applied to

portfolio selection in a Liu-uncertain stochastic market with jumps.

To support the analysis, this section reviews key concepts related

to the chance space, defined as the product space (Ŵ,L,M) ×

(�,F , P). Here, (�,F , P) represents a classical probability space,

where � is the sample space, F is a σ -algebra, and P is a

probability measure. Meanwhile, (Ŵ,L,M) denotes an uncertain

space, where Ŵ is the universal set, L is a σ -algebra, and M is an

uncertain measure. For a comprehensive treatment of the chance

space, we refer the reader to Hou [26], Liu [27], Fei [21], and

Liu [28].

Definition 2.1Hou [26] Let (Ŵ,L,M)× (�,F , P) be a chance

space, and let 2 ∈ L × F be an event. Then, the chance measure of

2 is defined as

Ch(2) =

∫ 1

0
P
(

ω ∈ �
∣

∣M
{

γ ∈ Ŵ
∣

∣(γ ,ω) ∈ θ
}

≥ x
)

dx.

where (�,F , P) and (Ŵ,L,M) are a probability space and an

uncertainty space in that order.

Hou [26] and Liu [27] proved that a chance measure satisfies

normality, duality, monotonicity, and subadditivity properties, that

is

(i) Normality Ch{Ŵ ×�} = 1, Ch{∅} = 0.

(ii) Monotonicity Ch{21} ≤ Ch{22}, for any events21 ⊂ 22.

(iii) Self- duality Ch {2} + Ch {2c} = 1, for any event2.

To illustrate this axiom, consider an event 2 ∈ L ×

F . When an observation is performed, the total chance

that the event 2 either occurs or does not occur must

be equal to 1. This reflects the intuitive requirement that

one of the two mutually exclusive outcomes must happen

with certainty.

(iv) Subadditivity Ch

{

∞
⋃

i=1

2i

}

≤

∞
∑

i=1

Ch{2i}, for any

countable sequence of events21,22, · · · .

Definition 2.2 Liu [28]. An uncertain random variable is a

function ξ from a chance space (Ŵ,L,M) × (�,F , P) to the set of

real numbers such that {ξ ∈ B} is an event in L × F for any Borel

set B of real numbers.

Definition 2.3 Liu [28]. Let ξ be an uncertain random variable,

then its chance distribution of ξ is defined by

8(x) = Ch{ξ ≤ x}, (1)

for any x ∈ R.

Definition 2.4 (i) Liu [28]. Let ξ be an uncertain random

variable. Then, its expected value is defined by

Ech[ξ ] =

∫ +∞

0
Ch{ξ ≥ x}dx

−

∫ 0

−∞

Ch{ξ ≤ x}dx, (2)

provided that at least one of the two integrals is finite.
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(ii) Fei [21]. The expected value of an uncertain random variable

ξ is defined by

Ech[ξ ] = Ep [EM[ξ ]]
1
=

∫

�

[∫ +∞

0
M{ξ ≥ x}dx

]

P(dω)

−

∫

�

[∫ 0

−∞

M{ξ ≤ x}dx

]

P(dω),

where Ep and EM are the expected values under the Liu uncertainty

and the probability space, respectively.

The expected value of the uncertain random variable ξ is

the probability expectation of the expected value of ξ under Liu

uncertainty. In order to simplify the work and presentation, Ech(.)

shall be denoted by E(.).

Definition 2.5 Fei [21]. A hybrid process Xt is an uncertain

stochastic process if Xt is an uncertain random variable for each

t ∈ [0,T].

An uncertain stochastic process X(t) is said to be continuous if

the sample paths of X(t) are all continuous functions of t for almost

all (γ ,ω) ∈ Ŵ ×�.

Definition 2.6Wu [29] (Jump Ito-Liu Integral) Suppose X(t) =
(

Y(t),Z(t)
)

is a jump-uncertain stochastic process, for any partition

of closed interval
[

a, b
]

with a = t1 < t2 < · · · < tN+1 = b, the

mesh is expressed as

1 = max
1≤i≤N

|ti+1 − ti|. (3)

The jump Ito-Liu integral of X(t) with respect to
(

W(t),C(t),N(t)
)

is defined as follows:

∫ b

a
Xsd

(

W(t),C(t),N(t)
)

= lim
17→0

N
∑

i=1

[Y(ti)
(

Wti+1 −Wti

)

+ Z(ti)
(

Cti+1 − Cti

)

+
(

Nti+1 − Nti

)

]. (4)

In the case above, X(t) is called jump Ito-Liu integrable.

Definition 2.7 Deng and Zhu [18]. An uncertain variable

Z(r1, r2, t) is said to be an uncertain Z-jump uncertain variable with

parameters r1 and r2 (0 < r1 < r2 < 1) for t > 0 if it has a jump

uncertainty distribution

8(x) =























0, if x < 0
2r1
t x, if 0 ≤ x < t

2

r2 +
2(1−r2)

t

(

x− t
2

)

, if t
2 ≤ x < t

1, if x ≥ t

Definition 2.8 Deng and Zhu [18]. An uncertain process Nt is

said to be a V-jump process with parameters r1 and r2 (0 < r1 <

r2 < 1) for t ≥ 0 if (i) N0 = 0, (ii) Nt has stationary and independent

increments, (iii) every increment Ns+t − Ns is an uncertain Z-jump

variable Z(r1, r2, t). Let Nt be an uncertain V-jump process, and

1Nt = Nt+1t − Nt . Then

E [1Nt] =
(3− r1 − r2)

4
1t. (5)

Definition 2.9 Deng and Zhu [Jump–uncertain stochastic

differential equation (jUSDE)] Suppose Bt is a one-dimensional

Brownian motion, Ct is a one-dimensional Liu-canonical process,

and Nt is a V–jump uncertain process with pararmeters 0 < r1 <

r2 < 1, independent of (Bs,Cs), all defined on the chance space

(Ŵ,L,M) × (�,F , P) with the natural filtration {Gt} generated by

(Bs,Cs,Ns). For T > 0 and t ∈ [0,T], a process Xt is said to satisfy a

jump–uncertain stochastic differential equation if

dXt = α(t,Xt) dt + σ (t,Xt) dBt + θ(t,Xt) dCt + η(t,Xt) dNt ,

X0 = x ∈ R (6)

where α, σ , γ , η :[0,T]× R → R are progressively measurable with

respect to {Gt} in t and continuous in x.

Theorem 2.1 (Existence and uniqueness for jump–uncertain

stochastic differential equation) A jump-uncertain stochastic

differential equation (Equation 6) admits a unique (up to

indistinguishability) adapted solution X ∈ S2
∗([0,T]) if the

coefficients α(t, x), σ (t, x), θ(t, x), and η(t, x) the coefficients of

the jump-uncertain stochastic differential Equation 6 satisfies the

Lipschitz condition

|α(t, x)− α(t, y)| + |σ (t, x)− σ (t, y)| + |θ(t, x)− θ(t, y)|

+ |η(t, x)− η(t, y)| ≤ L(1+ |x− y|), ∀x, y ∈ R, t ≥ 0.

and linear growth condition

|α(t, x)|2 + |σ (t, x)|2 + |θ(t, x)|2 + |η(t, x)|2 ≤ K
(

1+ |x|2
)

.

for L > 0 and K > 0 such that, for a.e. t ∈ [0,T] and all x ∈ R.

Define

S
2
∗([0,T]) =

{

X : X is {Gt}-adapted, càdlàg, and

E
[

sup
0≤t≤T

|Xt|
2
]

<∞

}

.

Furthermore, we assume the following

(A1) (Canonical Liu process: pathwise Lipschitz) For each γ ∈ Ŵ, the

path t 7→ Ct(γ ) is Lipschitz on [0,T], with Lipschitz constant

KC(γ ) <∞, and E[K2
C] <∞.

(A2) (Uncertain V–jump: bounded variation/moment bound) N has

càdlàg bounded–variation paths and E[sup0≤t≤T |Nt|
2] <∞.

Proof of Theorem 2.1 To establish existence, we construct a

Picard iteration scheme as in Chen and Liu [24], starting from

a constant process and defining successive approximations by

plugging the previous iterate into the integrals.

As in [24], set X
(0)
t ≡ x and, for n ≥ 0,

X
(n+1)
t = x+

∫ t

0
α
(

s,X(n)
s

)

ds+

∫ t

0
σ
(

s,X(n)
s

)

dBs

+

∫ t

0
θ
(

s,X(n)
s

)

dCs +

∫ t

0
η
(

s,X(n)
s

)

dNs. (7)

By Theorem 2.1, each term is well–defined and X(n) is adapted

càdlàg.

We derive uniformL2 bounds for the iterates using inequalities

tailored for each noise component—Burkholder–Davis–Gundy for
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the Brownian part, pathwise Lipschitz bounds for the Liu integral,

and bounded- variation estimates for the V–jump part.

(i) For any square–integrable progressively measurable ψ ,

E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0
ψs dBs

∣

∣

∣

2
]

≤ C∗ E

[

∫ T

0
|ψs|

2 ds

]

. (8)

(ii) Since C(γ ) is Lipschitz with constant KC(γ ), for any

integrable ϕ and 0 ≤ a < b ≤ T,

∣

∣

∣

∫ b

a
ϕs(γ ) dCs(γ )

∣

∣

∣
≤ KC(γ )

∫ b

a
|ϕs(γ )| ds.

Hence, by Cauchy–Schwarz and Fubini,

E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0
ϕs dCs

∣

∣

∣

2
]

≤ E[K2
C]T

∫ T

0
E[|ϕs|

2] ds. (9)

(iii) Each sample path of N is of bounded variation. For any

integrable φ and each γ ,

∣

∣

∣

∫ b

a
φs(γ ) dNs(γ )

∣

∣

∣
≤ Var(N; [a, b])(γ ) sup

a≤s≤b

|φs(γ )|

≤ KN(γ )

∫ b

a
|φs(γ )| ds,

for some finite pathwise constant KN(γ ). Consequently,

E

[

sup
0≤t≤T

∣

∣

∣

∫ t

0
φs dNs

∣

∣

∣

2
]

≤ E[K2
N]T

∫ T

0
E[|φs|

2] ds. (10)

Using Minkowski inequality, Equations 8–10, and the linear

growth condition, there exists C1 > 0 (depending on

K,T,E[K2
C],E[K

2
N],C∗) such that

E

[

sup
0≤t≤T

|X
(n+1)
t |2

]

≤ C1

(

|x|2 +

∫ T

0
E
[

|α(s,X(n)
s )|2

+|σ (s,X(n)
s )|2 + |θ(s,X(n)

s )|2 + |η(s,X(n)
s )|2

]

ds
)

≤ C1

(

|x|2 + K

∫ T

0
E
[

1+ |X(n)
s |2

]

ds

)

.

Let un(t) : = E[sup0≤r≤t |X
(n)
r |2]. Then

un+1(T) ≤ C2

(

1+

∫ T

0
un(s) ds

)

.

To ensure these bounds remain finite, we apply the Gronwall’s

inequality:

sup
n≥0

E

[

sup
0≤t≤T

|X
(n)
t |2

]

≤ C < ∞. (11)

Let D(n+1)
: = X(n+1) − X(n). Subtract Equation 7 for

consecutive indices:

D
(n+1)
t =

∫ t

0

(

α(s,X(n)
s )− α(s,X(n−1)

s )
)

ds+

∫ t

0

(

σ (s,X(n)
s )

−σ (s,X(n−1)
s )

)

dBs +

∫ t

0

(

θ(s,X(n)
s )− θ(s,X(n−1)

s )
)

dCs

+

∫ t

0

(

η(s,X(n)
s )− η(s,X(n−1)

s )
)

dNs.

Since the Lipschitz condition guarantees the iteration sequence

is Cauchy in the space of adapted câdlàg processes with finite

second moments, using Theorem 2.1 together with Equations 8–10

yields,

E

[

sup
0≤t≤T

|D
(n+1)
t |2

]

≤ C3

∫ T

0
E

[

sup
0≤r≤s

|D(n)
r |2

]

ds.

By dominated convergence, using the linear growth, and

the continuity of the integrals with respect to S2 convergence

Equations 8–10, pass to the limit in Equation 7 to conclude that

X satisfies Equation 6. Moreover, Equation 11 gives X ∈ S2
∗([0,T]).

To establish uniqueness of the solution to Equation 6, letX,Y ∈

S2
∗([0,T]) be two solutions and define their difference by Z : =

X − Y . Then, Z satisfies

Zt =

∫ t

0

(

α(s,Xs)− α(s,Ys)
)

ds+

∫ t

0

(

σ (s,Xs)− σ (s,Ys)
)

dBs

+

∫ t

0

(

θ(s,Xs)− θ(s,Ys)
)

dCs +

∫ t

0

(

η(s,Xs)− η(s,Ys)
)

dNs.

Applying Theorem 2.1 together with the inequalities Equations

8–10, we obtain

E

[

sup
0≤t≤T

|Zt|
2

]

≤ C4

∫ T

0
E

[

sup
0≤r≤s

|Zr|
2

]

ds.

By Gronwall’s lemma, it follows that

E

[

sup
0≤t≤T

|Zt|
2

]

= 0,

which implies that Zt = 0 almost surely for all t ∈ [0,T]. Therefore,

X and Y are indistinguishable, and we conclude that Equation 6

admits a unique adapted solution (up to indistinguishability).

3 The uncertain stochastic optimal
control with jump

This study assumes that the uncertain stochastic optimal

control model with jump is given by











































V(t, x) ≡ supus E

[

∫ T

t
f (s,Xs, us)ds+ G(T,XT)

]

subject to

dXs = α(s,Xs, us)ds+ σ (s,Xs, us)dBs

+θ(s,Xs, us)dCs + η(s,Xs, us)dNs

Xt = x.

(12)

where us is the control variable, and Xs represents the state variable.

The functions f andG are the objective function and terminal utility

function, respectively. Finally, the four functions α, σ , γ and η are

functions of state Xs, control us and time s. Bs,Cs and Ns are the

Brownian motion, Liu-uncertain canonical process, and uncertain

V-jump process with parameters r1, r2 for s > 0, respectively.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2025.1667889
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Hlahla et al. 10.3389/fams.2025.1667889

Next, we present the principle of optimality and hence derive

the equation of optimality.

Theorem 3.1 (Principle of optimality). For any (t, x) ∈ [0,T)×

R and1t ∈ (0,T− t], the value function V(t, x) can be expressed as

V(t, x) ≡ sup
us

E

[∫ t+1t

t
f (s,Xs, us)ds+ V(t +1t, x+1Xt)

]

,

(13)

where x+1Xt = Xt+1t .

The proof of Theorem 3.1 follows the dynamic programming

approach of Chirima et al. [3], which we extend to incorporate the

Brownian–Liu–V-jump framework.

Proof of Theorem 3.1. Let X : = Xt,x;u and assume

the standard admissibility conditions on the control process u

(progressive measurability, integrability, and continuity) so that the

system is well posed and satisfies the controlled Markov property.

Then, the value function satisfies

V(t, x) = sup
u

E

[∫ t+1t

t
f
(

s,Xt,x;u
s , us

)

ds+ V
(

t +1t, Xt,x;u
t+1t

)

]

.

(14)

For any admissible u, the performance functional can be

decomposed as

J(t, x; u) = E

[∫ t+1t

t
f (s,Xs, us) ds

+ E

[

∫ T

t+1t
f (s,Xs, us) ds+ G(XT)

∣

∣

∣

∣

Gt+1t

]]

.

By the Markov property and independence of future

increments (Bs − Bt+1t ,Cs − Ct+1t ,Ns − Nt+1t) from Gt+1t , the

conditional expectation equals the cost-to-go under the tail control

ut+1t
: = {us}s∈[t+1t,T] starting from Xt+1t , that is,

E

[

∫ T

t+1t
f (s,Xs, us) ds+ G(XT)

∣

∣

∣

∣

Gt+1t

]

= J
(

t +1t, Xt+1t; u
t+1t

)

a.s.

Hence,

J(t, x; u) = E

[∫ t+1t

t
f (s,Xs, us) ds+ J

(

t +1t, Xt+1t; u
t+1t

)

]

.

(15)

Since V is the supremum over all admissible tail controls, it

follows that

J
(

t +1t, Xt+1t; u
t+1t

)

≤ V(t +1t, Xt+1t) a.s.

Substituting into Equation 15 and maximizing over all u on

[t,T] yields

V(t, x) = sup
u

J(t, x; u)

≤ sup
u

E

[∫ t+1t

t
f (s,Xs, us) ds+ V

(

t +1t, Xt+1t

)

]

.

Conversely, fix ε > 0. For each y ∈ R, let vε,y be an ε–optimal

tail control on [t +1t,T] such that

V(t +1t, y) ≤ J(t +1t, y; vε,y)+ ε.

Using a measurable selection argument, one may construct the

mapping y 7→ vε,y measurably. Define a combined control ū by

setting ūs = us for s ∈ [t, t + 1t) and ūs = vε,Xt+1t
s for s ∈

[t + 1t,T]. Admissibility of ū follows by construction. Applying

Equation 15 with u replaced by ū gives

J(t, x; ū) ≥ E

[∫ t+1t

t
f (s,Xs, us) ds+ V

(

t +1t, Xt+1t

)

]

− ε.

Maximizing over all admissible controls u on the interval

[t, t + 1t] and then refining the approximation by taking ε

arbitrarily small yields the reverse inequality. Taken together,

the two inequalities establish the dynamic programming relation

Equation 14, thereby completing the proof of Theorem 3.1.

Theorem 3.2 (Equation of optimality). Let V(t, x) :[0,T]×R be

a twice continuously differentiable function. Then

− Vt(t, x) = sup
ut

[

f (t, x, ut)+ α(t, x, ut)Vx(t, x)+
1

2
σ 2(t, x, ut)

Vxx(t, x)+
3− r1 − r2

4
η(t, x, ut)Vx(t, x)

]

, (16)

where Vt(t, x) and Vx(t, x) are the partial derivatives of the function

V(t, x) in t and x, respectively, and Vxx(t, x) is the partial derivative

of Vx(t, x).

Proof of Theorem 3.2: For any1t > 0, we have

∫ t+1t

t
f (s,Xs, us)ds = f (t, x, u(t, x))1t + o(1t). (17)

By using the Taylor series expansion, we get

V(t +1t, x+1Xt) = V(t, x)+ Vt(t, x)1t + Vx(t, x)1Xt

+
1

2
Vtt(t, x)1t2

+
1

2
Vxx(t, x)1X2

t + Vtx(t, x)1t1Xt + o(1t).

(18)

By substituting Equations 17 and 18 into Equation 13, we

generate

0 = sup
ut

E[f (t, x, ut)+ Vt(t, x)1t + Vx(t, x)1Xt +
1

2
Vtt(t, x)1t2

+
1

2
Vxx(t, x)1X2

t + Vtx(t, x)1t1Xt + o(1t)]

= sup
ut

{f (t, x, ut)+ Vt(t, x)1t + E[Vx(t, x)1Xt +
1

2
Vtt(t, x)1t2

+
1

2
Vxx(t, x)1X2

t + Vtx(t, x)1t1Xt]+ o(1t)}.

(19)

We know that (1Bt)
2 = 1t, and (1Nt)

2 = (1Ct)
2 =

(1t)2 = 1t1Bt = 1t1Ct = 1t1Nt = 0. Based on
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the jump-uncertain stochastic differential equation, the constraint

in Equation 12, 1Xt = α(t,Xt , ut)1t + σ (t,Xt , ut)1Bt +

θ(t,Xt , ut)1Ct+η(t,Xt , ut)1Nt , we can generate Equations 20 and

21 as follows:

(1Xt)
2 = (α1t + σ1Bt + θ1Ct + η1Nt)

2

= (α)2(1t)2 + (σ )2(1Bt)
2 + (θ)2(1Ct)

2 + (η)2(1Nt)
2

+ 2ασ1t1Bt + 2αθ1t1Ct + 2αη1t1Nt

+ 2σθ1Bt1Ct + 2ση1Bt1Nt + 2θη1Ct1Nt

(20)

and

1t1Xt = α(t,Xt , ut)(1t)2 + σ (t,Xt , ut)1t1Bt

+ θ(t,Xt , ut)1t1Ct + η(t,Xt , ut)1t1Nt . (21)

Substituting Equations 20, 21 into Equation 19 yields

−Vt(t, x)1t = sup
ut

{f (t, x, ut)+ Vx(t, x)E[1Xt]+
1

2
Vtt(t, x)(1t)2

+
1

2
Vxx(t, x)E[(1Xt)

2]+ Vtx(t, x)E[1t1Xt]} + o(1t)

= sup
ut

{f (t, x, ut)+ Vx(t, x)E[α(t,Xt , ut)1t + σ (t,Xt , ut)1Bt

+θ(t,Xt , ut)1Ct + η(t,Xt , ut)1Nt]+
1

2
Vtt(t, x)(1t)2

+
1

2
Vxx(t, x)E[(α)

2(1t)2 + (σ )2(1Bt)
2 + (θ)2(1Ct)

2

+(η)2(1Nt)
2

+2ασ1t1Bt + 2αθ1t1Ct + 2αη1t1Nt + 2σθ1Bt1Ct

+2ση1Bt1Nt + 2θη1Ct1Nt]+ Vtx(t, x)E[1t1Xt]

+o(1t)}. (22)

Since E(1Bt) = E(1Ct) = 0, and from Equation 5

−Vt(t, x)1t = sup
ut

{f (t, x, ut)1t + Vx(t, x)α(t,Xt , ut)1t

+
1

2
Vxx(t, x)(σ )

2(t,Xt , ut)1t +
(3− r1 − r2)

4
η(t,Xt , ut)Vx(t, x)1t}. (23)

Dividing Equation 23 by1t, we obtain

−Vt(t, x) = sup
ut

{f (t, x, ut)+ Vx(t, x)α(t,Xt , ut)

+
1

2
Vxx(t, x)(σ )

2(t,Xt , ut)+
(3− r1 − r2)

4

η(t,Xt , ut)Vx(t, x)}.

(24)

Thus, Theorem 3.2 has been proved.

4 Relation to uncertain random
maximum principle

In this section, we examine the relationship between the

maximum principle and dynamic programming within a jump-

uncertain stochastic control framework. Under appropriate

regularity and non-degeneracy conditions adapted to the uncertain

jump setting, we demonstrate that the value function V(t, x) is

the unique classical solution to the associated Hamilton-Jacobi-

Bellman (HJB) equation. Consequently, the adjoint processes

arising in the maximum principle formulation can be identified

with the derivatives of the value function, thereby establishing a

rigorous correspondence between the two approaches.

Moreover, we verify that the optimal control derived from

the HJB equation coincides with that obtained via the maximum

principle, confirming their internal consistency in the context of

uncertain jump-diffusion models. To illustrate this connection, we

present a concrete example from a portfolio selection problem.

4.1 Maximum principle formulation

We consider a controlled uncertain stochastic system:

dXt = α(t,Xt , ut) dt + σ (t,Xt , ut) dBt + θ(t,Xt , ut) dCt

+ η(t,Xt , ut) dNt , (25)

as defined by Equation 5 and the contraint in Equation 12. We

consider a performance criterion J(t, x) of the form

J(t, x) = E

[

∫ T

t
f (s,Xs, us) ds+ G(XT)

]

,

where ut ∈ U ⊂ R
m is an admissible control process, and f , G

are the running and terminal rewards, respectively. The control

objective is to maximize J(t, x), such that

V(t, x) = sup
u∗∈U

J(t, x), (26)

provided V(t, x) ∈ C1,2([0,T] × R), so that classical derivatives

Vt ,Vx,Vxx exist and are continuous. In the stochastic maximum

principle framework, we define the Hamiltonian:

H(t, x, u, p, q, r, s) = f (t, x, u)+ α(t, x, u)p+ σ (t, x, u)q

+ θ(t, x, u)r + η(t, x, u)ψ . (27)

The adjoint process (pt , qt , rt ,ψt) satisfies the backward

uncertain stochastic differential equation (BUSDE):

{

dpt = − ∂H
∂x (t,Xt , ut , pt , qt , rt ,ψt)dt + qtdBt + rtdCt + ψtdNt ,

pT = Gx(XT).

(28)
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To rigorously connect the dynamic programming and

maximum principle approaches, we require that the value function

V(t, x) be sufficiently smooth, specifically V ∈ C1,2([0,T] × R),

so that the Hamilton-Jacobi-Bellman (HJB) equation holds in the

classical sense.

For classical smoothness, we impose the following conditions:

(H1) The coefficients α, σ , θ , η and the reward functions f ,G are

Lipschitz continuous in x, uniformly in t and u, and twice

continuously differentiable with respect to x.

(H2) The terminal reward G(x) ∈ C2(R) satisfies polynomial

growth.

(H3) The control set U ⊂ R
m is compact and convex.

(H4) The diffusion coefficients satisfy a uniform

non-degeneracy condition:

∃ ζ > 0 such that σ 2(t, x, u)+ θ2(t, x, u) ≥ ζ > 0, ∀(t, x, u).

(H5) The uncertain-jump process Nt is of finite activity, and its

expectation is smooth in t.

To achieve regularity via viscosity solution theory, under

assumptions (H1)–(H5), the value function satisfies the dynamic

programming principle and is a continuous viscosity solution to

the Hamilton–Jacobi–Bellman equation:

−Vt(t, x) = sup
u∈U

{

f (t, x, u)+ α(t, x, u)Vx(t, x)+
1

2
σ 2(t, x, u)Vxx(t, x)

+
3− r1 − r2

4
η(t, x, u)Vx(t, x)

}

. (29)

Existence and uniqueness of viscosity solutions to HJB

equations are well-established (see Barles and Imbert [30]), and

extensions to uncertain differential equations have been developed

in the Liu process framework (see Chen and Liu [24]).

To obtain a classical solution, note that viscosity solutions are

not generally smooth in most cases. However, under the non-

degeneracy condition (H4), if the jump terms have finite activity

and the coefficients are smooth, the associated HJB equation

becomes uniformly parabolic. In this setting, Krylov’s existence–

uniqueness theorem for Bellman equations, together with standard

regularity theory, ensures that the viscosity solution V is in fact

smooth:

V ∈ C1,2([0,T]× R).

Therefore, under standard regularity and non-degeneracy

conditions adapted to the uncertain-jump setting, the value

functionV(t, x) is the unique classical solution to the HJB equation.

Consequently, the adjoint processes in the maximum principle

approach can be identified with the derivatives of V , ensuring

a rigorous connection between dynamic programming and the

maximum principle.

4.2 Connection between dynamic
programming and maximum principle

Under the smoothness assumption, the value function satisfies

the Hamilton–Jacobi–Bellman (HJB) Equation 29.

Given that V(t, x) ∈ C1,2, we can express the adjoint processes

from the maximum principle in terms of derivatives of the value

function from dynamic programming:

pt = Vx(t,Xt),

qt =
1

2
σ (t,Xt , ut)Vxx(t,Xt),

rt =
1

2
θ(t,Xt , ut)Vxx(t,Xt),

ψt =
3− r1 − r2

4
Vx(t,Xt).

(30)

Substituting into the Hamiltonian:

H(t, x, u,Vx, qt , rt ,ψt) = f (t, x, u)+ α(t, x, u)Vx +
1

2
σ 2(t, x, u)Vxx

+
3− r1 − r2

4
η(t, x, u)Vx, (31)

which matches the integrand of the HJB equation. Thus, the

maximization condition in the maximum principle is equivalent to

the supremum condition in the HJB.

In summary, the connection between the dynamic

programming and maximum principle approaches is established

through the smoothness of the value function. Under appropriate

regularity conditions, the adjoint process pt corresponds to the

gradient Vx(t,Xt), while the integrands qt , rt ,ψt correspond

to expressions involving the second-order derivative Vxx(t,Xt)

and the gradient Vx(t,Xt). Moreover, the Hamiltonian in the

maximum principle coincides with the integrand appearing inside

the supremum in the Hamilton–Jacobi–Bellman (HJB) equation.

Therefore, when the value function V ∈ C1,2, both methods

provide consistent characterizations of the optimal control, thereby

completing the connection between dynamic programming

and the maximum principle in the jump uncertain-stochastic

framework.

4.3 Example

In order to illustrate how the maximum principle’s adjoint

process pt = Vx(t,Xt) aligns with the derivative of the value

function from dynamic problem in a jump uncertain-stochastic

portfolio selection problem, we consider a financial market in

which an investor allocates wealth between a risk-free asset and a

risky asset. We let Xt denotes the investor’s wealth at time t, and

ut ∈ U ⊂ R denotes the proportion of wealth invested in the

risky asset. The wealth is governed by the following jump-uncertain

stochastic differential equation:

dXt = µutdt + σutdBt + θuttdCt + ηutdNt , (32)

where µ is the excess return of the risky asset over the risk-

free asset, and σ > 0, γ > 0, and η > 0 are the volatility.
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Bt ,Ct , and Nt are the standard Brownian motion, Liu Canonical

process, and an uncertain V-jump process with parameters r1 and

r2, respectively.

The investor seeks to maximize the expected utility of terminal

wealth. LetG(x) = log(x) be the utility function. The value function

is

V(t, x) = sup
u∈U

E
[

log(XT) | XT = x
]

,

and is assumed to belong to C1,2([0,T]× R+).

Using Theorem 3.2, the Hamilton–Jacobi–Bellman (HJB)

equation is

−Vt(t, x) = sup
u∈U

{

µuVx(t, x)+
1

2
σ 2u2 Vxx(t, x) (33)

+
3− r1 − r2

4
ηuVx(t, x)

}

.

Combining terms:

−Vt(t, x) = sup
u∈U

{

ξuVx +
1

2
σ 2u2Vxx

}

,

where ξ : = µ+
3−r1−r2

4 η.

On the other hand, the Hamiltonian is

H(t, x, u, p, q, r,ψ) = µu p+ σu q+ θu r + ηuψ ,

and the adjoint process satisfies

{

dpt = − ∂H
∂x dt + qtdBt + rtdCt + ψtdNt ,

pT = ∂G
∂x (XT) =

1
XT

.

Under the assumption V ∈ C1,2, we identify

pt = Vx(t,Xt),

qt =
1

2
σutVxx(t,Xt),

rt =
1

2
θutVxx(t,Xt),

ψt =
3− r1 − r2

4
Vx(t,Xt).

Thus, the Hamiltonian becomes

H(t, x, u) = uξVx(t, x)+
1

2
u2σ 2Vxx(t, x),

which is the same expression as inside the supremum in the HJB

equation.

Maximizing the Hamiltonian or solving the HJB yields

∂H

∂u
= ξVx + uσ 2Vxx = 0,

implying the optimal control:

u∗(t, x) = −
ξVx(t, x)

σ 2Vxx(t, x)
. (34)

This matches the control derived from the HJB equation,

demonstrating the consistency of the dynamic programming and

maximum principle approaches under the smoothness of the value

function.

5 Application: portfolio selection in a
jump-uncertain stochastic market

The portfolio selection problem, a core topic in financial

economics, addresses how to allocate wealth between risk-free and

risky assets. Seminal works by Merton [23] and Kao [31] employed

stochastic optimal control to model this decision. Zhu [17]

later incorporated uncertain returns using uncertain optimal

control. This study extends Zhu’s framework by introducing jump-

uncertain stochastic dynamics.

5.1 Optimal portfolio allocation

Let Xt represents the investor’s wealth at time t in a market with

two assets: a risk-free security and a risky asset. A fraction ρ of the

wealth is invested in the risk-free asset and the remainder in the

risky asset.

The risk-free asset earns a constant return b. The risky asset has

an expected return µ (µ > b), and its volatility is influenced by

both randomness and uncertainty, modeled by σ1 (stochastic), σ2
(uncertain), and λ (jump volatility). Asset dynamics are driven by

independent processes: Brownian motion Bt , jump process Nt , and

canonical Liu process Ct .

The return on the risky asset over (t, t + dt) is given by

drt = µ dt + σ1 dBt + σ2 dCt + λ dNt .

Thus,

Xt+dt = Xt + bρXtdt + (1− ρ)Xtdrt ,

= Xt + bρXtdt + Xtdrt

− ρXtdrt

= Xt + bρXtdt + Xt

[

µdt + σ1dBt + σ2dCt + λdNt

]

− ρXt

[

µdt + σ1dBt + σ2dCt + λdNt

]

= Xt + bρXtdt + µXtdt − µρXtdt + σ1XtdBt − σ1ρXtdBt

+ σ2XtdCt − σ2ρXtdCt + λXtdNt − λρXtdNt

= Xt +
[

bρXt + µXt − µρXt

]

dt + [σ1Xt − σ1ρXt] dBt

+ [σ2Xt − σ2ρXt] dCt + [λXt − λρXt] dNt

= Xt +
[

bρ + µ(1− ρ)
]

Xtdt +
[

σ1(1− ρ)Xt

]

dBt

+
[

σ2(1− ρ)Xt

]

dCt +
[

λ(1− ρ)Xt

]

dNt . (35)

We assume that the investor’s risk aversion remains constant

over time and therefore uses the constant relative risk aversion

(CRRA) utility function similar to Zhu [17]. Assume that an

investor is interested in maximizing the expected utility over an
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infinite time horizon. Then, a portfolio selection model is provided

by































V(t, x) ≡ max
ρ

E

[∫ ∞

0
e−βt

(ρXt)
κ

κ
dt

]

subject to

dXs =
[

bρ + µ(1− ρ)
]

Xtdt +
[

σ1(1− ρ)Xt

]

dBt

+
[

σ2(1− ρ)Xt

]

dCt +
[

λ(1− ρ)Xt

]

dNt ,

(36)

where b > 0, 0 < k < 1.

By Theorem 3.2, the value function satisfies

−Vt(t, x) = max
ρ

[

e−βt
(ρx)κ

κ
+ Vx(t, x)

[

(b− µ)ρx+ µx
]

+
1

2

[

σ1x(1− ρ)
]2
Vxx(t, x)+

3− r1 − r2

4
λx(1− ρ)Vx(t, x)

]

.

(37)

In Equation 37, define the function

M(ρ) = e−βt
(ρx)κ

κ
+ Vx

[

(b− µ)ρx+ µx
]

+
1

2
(σ1x− σ1ρx)

2

Vxx +
3− r1 − r2

4
(λx− λρx)Vx,

then the first-order condition with respect to ρ yields

∂M(ρ)

∂ρ
= e−βtxκρκ−1 + xVx(b− µ)− σ

2
1 x

2(1− ρ)Vxx

−
3− r1 − r2

4
λxVx = 0. (38)

We conjecture that

V(t, x) = e−βt
Kxκ

κ
, K > 0,

so that

Vt = −βe−βt
Kxκ

κ
, Vx = e−βtKxκ−1, Vxx = e−βtK(κ−1)xκ−2.

Substituting the derivatives into Equation 38 and dividing by

the common factor e−βtxκ yields the equation

ρκ−1 = K
{

σ 2
1 (κ − 1)(1− ρ)−

(

b− µ
)

+
3− r1 − r2

4
λ
}

. (39)

Hence, the optimal fraction invested in the risk-free asset is

independent of total wealth.

Since Equation 39 does not generally admit a closed-form

solution, we solve it numerically and project the result onto the

interval [0, 1] to ensure feasibility under the standard no-leverage

and no-shorting constraints. This implicit optimality condition

characterizes the optimal portfolio allocation, where ρ denotes the

proportion of wealth invested in the risk-free asset and (1 − ρ) in

the risky asset.

5.2 Numerical illustration and comparative
statics

We use financially plausible, annualized baseline parameters:

risk–free rate b = 0.02, expected risky return µ = 0.08, Brownian

volatility σ1 = 0.20, jump volatility scale λ = 0.10, V–jump

parameters (r1, r2) = (0.2, 0.8) so that 3−r1−r2
4 = 0.5, and CRRA

parameter κ = 0.5. We set the value–function scale constant to

K = 10 to obtain interior solutions. Each experiment varies one

parameter over a common, realistic grid while holding the others at

their baseline values.

Response to Brownian volatility σ1.

σ1 0.10 0.15 0.20 0.25 0.30

ρ 0.839 0.852 0.868 0.884 0.899

Response to risk–aversion κ .

κ 0.30 0.50 0.70 0.85 0.95

ρ 0.904 0.868 0.787 0.611 0.199

Response to expected return µ.

µ 0.06 0.08 0.10 0.12 0.15

ρ 1.000 0.868 0.659 0.509 0.358

Response to jump scale λ.

λ 0.00 0.05 0.10 0.20 0.30

ρ 1.000 1.000 0.868 0.450 0.262

5.3 Discussion of computational results

The computational experiments provide important insights

into the comparative statics of the optimal portfolio fraction ρ in

the jump–uncertain setting, highlighting how different market and

preference parameters shape investment behavior. First, the results

show that as the Brownian volatility σ1 increases, the optimal

allocation ρ to the risk–free asset rises monotonically. This pattern

reflects the natural precautionary response to higher diffusion risk:

Investors reduce exposure to the risky asset and seek safety in the

risk–free asset, consistent with the negative coefficient of (κ − 1)

in Equation 39. This finding underlines the stabilizing role of the

risk–free asset in portfolios when market uncertainty is driven

by continuous volatility. Second, the risk–aversion parameter κ

exerts a powerful influence on the portfolio rule. For highly risk–

averse investors (small κ), ρ is large, meaning that most wealth is

allocated to the risk–free asset. As κ increases, reflecting weaker

risk aversion and greater willingness to tolerate variability in

returns, ρ declines, and wealth is shifted toward the risky asset.

This comparative static emphasizes the theoretical consistency of

the model with classical portfolio theory. Third, the effect of the

expected return µ is particularly striking: As µ rises, ρ decreases

sharply, shifting wealth into the risky asset. This is intuitive since

higher expected reward offsets risk, encouraging more aggressive
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investment. Notably, when µ is low, the no–shorting constraint

binds and the model projects ρ to one, implying a complete

allocation to the risk–free asset. This binding case illustrates how

constraints can dominate investor preferences when returns are

insufficient to justify risky exposure. Finally, the V–jump intensity

λ captures discontinuous risks that amplify downside exposure.

The numerical results show that higher values of λ significantly

increase ρ, reflecting investors’ tendency to shield wealth from rare

but severe shocks. For small λ, the projection again binds at ρ =

1, consistent with highly conservative behavior under jump risk,

while for moderate to large λ, the optimal policy shifts markedly

toward the risk–free asset. Overall, these findings demonstrate that

the fraction ρ responds in economically consistent ways to both

risk parameters and preference parameters. The comparative statics

not only validate the theoretical formulation of the model but also

provide practical guidance for portfolio selection, illustrating how

investors adjust their allocation between risky and risk–free assets

in response to changes in volatility, return, risk aversion, and jump

exposure.

5.4 Summary

The computational findings indicate that the proposed model

effectively replicates realistic investor decision-making across

a range of market environments. The numerical simulations

consistently exhibit comparative statics: The optimal proportion

ρ allocated to the risk-free asset increases with both the

Brownian volatility σ1 and the jump intensity λ, signifying

a heightened precautionary stance in response to elevated

uncertainty. Conversely, ρ declines as the expected return on the

risky asset µ rises, reflecting stronger incentives to assume risk

for higher potential gains. Similarly, ρ decreases with the risk

aversion coefficient κ , suggesting that less risk-averse investors

allocate a smaller share to safe assets. Crucially, the value of ρ is

determined solely by investor preferences and market parameters

and remains independent of current wealth levels. This confirms

the persistence of the constant-proportion investment rule under

CRRA preferences, even in the presence of jump risk. Collectively,

these outcomes substantiate the reliability and economic relevance

of the proposed framework, emphasizing its practical effectiveness

in guiding portfolio decisions under both continuous and jump-

driven sources of uncertainty.

6 Conclusion

This study develops a unified framework for optimal portfolio

selection in jump–uncertain stochastic markets, making both

theoretical and computational contributions. On the theoretical

side, we establish the existence and uniqueness of solutions

to jump–uncertain stochastic differential equations, thereby

extending the results of Chirima et al. [25], who studied the

case without jumps in an uncertain–stochastic setting, and

complementing the work of Chen and Liu [24], who proved an

existence and uniqueness theorem in a Liu–uncertain framework

without jumps. In addition, we provide a rigorous proof of

the principle of optimality for jump–uncertain stochastic control

problems. This result extends the work of Chirima et al. [3],

who considered uncertain–stochastic systems without jumps, and

generalizes the dynamic programming foundation developed by

Chen and Liu [24], thereby reinforcing the link between dynamic

programming and the maximum principle under both continuous

and discontinuous uncertainty.

From a computational perspective, our analysis demonstrates

that the framework captures realistic investor behavior across

diverse market conditions. The numerical experiments reveal

consistent comparative statics: The optimal fraction ρ invested

in the risk–free asset increases with Brownian volatility σ1 and

jump intensity λ, reflecting stronger precautionary allocation under

heightened uncertainty, while ρ decreases with the expected risky

return µ and the risk–aversion parameter κ , indicating greater

exposure to risk when expected returns rise or when investors are

less risk–averse. Importantly, ρ depends only on preferences and

market parameters, and not on current wealth, thereby confirming

that the constant–proportion property of CRRA preferences

persists in jump–uncertain settings.

Taken together, these findings underscore the robustness,

tractability, and economic relevance of the proposed model.

The result that the optimal fraction of wealth allocated to

the risk-free asset remains independent of total wealth is a

direct consequence of the constant–proportion investment rule

under CRRA utility, which holds even in the presence of both

Brownian and jump uncertainty. This outcome aligns with classical

results in jump–diffusion models, notably those of Øksendal

and Sulem [8], who demonstrated the same independence

property. Similar conclusions were reached by Zhu [17] and

Chirima et al. [3], further reinforcing the generality of this

principle. More broadly, by integrating existence and uniqueness

theory, the dynamic programming principle, and computational

validation, this study offers a mathematically rigorous and

practically applicable framework for portfolio optimization in

markets subject to both continuous and discontinuous sources

of risk.
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