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Introduction: Statistical Process Control (SPC) charts are widely used to detect 
process shifts, yet classical Shewhart X̄ charts often fail in the presence of outliers 
and non-normal data distributions. To address these shortcomings, we propose a 
hybrid approach that integrates discrete wavelet decomposition with support vector 
machine (SVM) classification for enhanced outlier detection.
Methods: The proposed Dynamic Wavelet-SVM X̄ Chart (DWS-X̄) combines multi-
resolution wavelet feature extraction with an SVM classifier to distinguish between in-
control and out-of-control states. Its performance was assessed through extensive 
simulations varying subgroup size, number of subgroups, and contamination levels. 
Key metrics included Detection Rate (DR), False Alarm Rate (FAR), and Average Run 
Length (ARL).
Results: Simulation results consistently demonstrated the superiority of the 
DWS-X̄ chart compared to the traditional X̄ chart. The hybrid chart achieved 
higher detection rates (above 96%), lower false alarm rates (below 1-6% 
depending on variability), and shorter ARLs (1.6-5.1). Application to real neonatal 
heart rate data further confirmed its enhanced sensitivity in identifying abnormal 
cardiac patterns.
Discussion: The findings indicate that the proposed DWS-X̄ chart provides more 
reliable monitoring under contamination and high variability, offering earlier 
detection of abnormal signals with fewer false alarms. This hybrid method holds 
promise for both industrial quality control and healthcare process monitoring.
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1 Introduction

Production processes and healthcare supervision systems must be kept straight in industry 
as well as under clinical conditions. The use of Statistical Process Control or SPC charts to 
detect when a process mean has shifted, particularly via the well-known Shewhart X̄ chart, is 
not new. But they fail in cases of non-normal distributions of the data, when there are outliers, 
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or with small variations in the process, because they are not designed 
for that purpose, resulting in a later detection of the problem as well 
as reduced reliability of the process (1). These shortcomings have been 
taken into consideration, and more recently, attempts have been made 
to enhance traditional control charts using more sophisticated data 
processing tools, such as wavelet transformation and machine 
learning algorithms.

Wavelet analysis is gaining popularity in quality control because 
it can detect information at both local and global scales in a data 
series. The DWT is particularly useful as it decomposes data into 
approximation and detail coefficients, which “better separate noise 
and help in detection of small or ephemeral changes in process 
behavior.” Particularly, Abdullah et al. proposed the use of a CUSUM 
control chart based on Symlets wavelets and proved that wavelet-
based denoising yields control charts with greater sensitivity to small 
shifts in the process (2). Similarly, Ameen and Ali applied Haar 
wavelet coefficients to obtain separate charts of the low- and high-
frequency process components and demonstrated the superior 
sensitivity of wavelet charts to detect minor shifts in the context of 
both simulated and actual data (3).

In addition to wavelet-based methods, various Bayesian and 
machine learning methods have been incorporated into SPC. Tareq 
et al. performed a comparison of classical Shewhart and Bayesian 
control charts for monitoring blood glucose in newborns (4). Their 
results showed that the Bayesian chart produced earlier signals of 
detection and had a lower false alarm rate than its classical 
counterpart, which demonstrated the possibilities of data-driven 
techniques for increasing the accuracy of process monitoring.

Given these trends, there will still be the need for hybrid models 
that exploit the advantages of the wavelet transforming algorithm’s 
robustness to noise and the power of modern machine learning 
classification algorithms. The present work is one attempt to fill this 
gap by proposing a novel hybrid control chart based on discrete 
wavelet decomposition and the SVM classifier that improves outlier 
detection and the process monitoring shift. The advantages of the 
traditional X̄ chart in the expected detection capability of this 
approach versus the traditional approach are discussed using both 
simulated data as well as actual neonatal heart rate data.

This study makes two contributions. First, it proposes the use of 
a DWS-X̄ type control chart that merges DWS signal classification 
using wavelets with an SVM classifier that seeks to minimize false 
alarms while increasing the detection rate. Second, it demonstrates 
the advantages of this strategy through a set of simulated experiments 
and a case study of real data in a clinic.

More recent studies showed the employment of machine learning 
and wavelet-based techniques for improved sensitivity of control 
charts (2, 5–7).

2 Methodology

2.1 Classical-X̄ chart

The X ̄ chart is one of the most basic of the statistical process 
control charts and is designed to identify when the process mean 
is out of control. It assumes that observations are taken in 
subgroups of size n, and that the process variation is normally 
distributed (8).

Given observations Xij where i = 1, 2, …, m denotes the subgroup 
and j = 1, 2, …, n denotes the sample within the subgroup, the 
subgroup mean is calculated as shown in Equation 1:

	 =
= ∑i i, j1

1X Xn
jn 	

(1)

The overall mean process is (Target Line) estimated by Equation 2:

	

m
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1X X

=
= ∑

	
(2)

The process of standard deviation 𝜎 is either known or estimated 
from the sample data. Using the standard deviation, the control limits are 
defined according to the 3-sigma rule is determined using Equation 3 (9):

	
nUCL X 3 /σ= + ×

	 (3)

The lower control limit is defined by Equation 4, completing the 
three-sigma boundaries for process monitoring.

	
nLCL X 3 /σ= + ×

	 (4)

These limits represent thresholds for monitoring the process 
average. Points outside these limits signal potential out-of-control 
conditions requiring investigation. If σ is unknown, it can be estimated 
by calculating the standard deviation of the subgroup means or from 
historical data. The Classical X̄ chart plots each subgroup mean iX  
sequentially. Its strength lies in detecting significant shifts in the 
process mean. However, it can be less effective for identifying small or 
gradual changes and is sensitive to the presence of outliers (10).

2.2 Proposed methodology

This study proposes a novel hybrid control chart, namely the 
Dynamic Wavelet-Support Vector Machine X̄ Chart (DWS-X̄ Chart), 
aimed at improving anomaly detection performance in process 
monitoring applications. The approach synergistically integrates 
discrete wavelet transform (DWT) based multi-resolution signal 
analysis with an SVM classifier, enabling enhanced sensitivity and 
specificity compared to traditional X̄ charts.

	 I.	 Sample Means: Let i, jX  denote the j-th observation in the i-th 
subgroup, where 𝑖 = 1, 2, …, m and j = 1, 2, …, n. The sample 
mean for each subgroup is computed as in Equation 1. Here, n 
represents the subgroup size, while m corresponds to the total 
number of subgroups considered.

	II.	 Discrete Wavelet Transform (DWT): To capture both temporal 
and frequency characteristics of the sequence iX  The discrete 
wavelet transform is employed. The DWT decomposes the 
signal into its approximation and detail components across 
multiple resolution levels, thus facilitating the extraction of 
pertinent features associated with process shifts or anomalies 
(11). The discrete wavelet decomposition of the subgroup 
means is expressed in Equation 5, separating approximation 
and detail coefficients.
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	 ( )=l lA ,D DWT X,l 	 (5)

Where Al and Dl denote the approximation (low-frequency) and 
detail (high-frequency) coefficients, respectively.

	III.	 Feature Extraction: From the wavelet coefficients obtained, 
feature vectors fi are constructed for each subgroup i. These 
features typically include statistical summaries such as the 
mean, standard deviation, and energy of the coefficients. The 
feature vector constructed from wavelet coefficients for each 
subgroup is formulated in Equation 6:

	 ( ) ( ) ( ) ( ) = …  
i i i i

i l l l lì A ,ó A ,ì D ,ó D ,f
	

(6)

The mean and standard deviation operators, respectively, are μ(·) 
and σ(·).

	IV.	 Support Vector Machine Classification: A supervised SVM 
classifier is trained using the extracted feature vectors to 
differentiate between in-control and out-of-control states. The 
decision function of the SVM is expressed as in Equation 7 (12):

	
( ) ( )( )α

=
= +∑M

1 , ,k k kkg f sign y K f f b
	

(7)

Where M is the number of support vectors, αk are learned 
coefficients, yk ∈ {−1, +1} are class labels, K (·, ·) is the kernel function 
(e.g., radial basis function), and b is the bias term. Subgroups are 
classified as out-of-control when g(f) = +1, and as in-control otherwise.

In this study, the Support Vector Machine classifier was 
implemented using the Radial Basis Function (RBF) kernel, as it 
demonstrated superior performance in non-linear classification 
problems. The kernel parameter γ and the penalty parameter C were 
optimized through grid search combined with 10-fold cross-
validation on the training data. The grid search considered C values 
ranging from 0.1 to 100 and γ values between 0.001 and 10. The 
optimal parameters (C = 10, γ = 0.1) were selected based on the 
highest average classification accuracy across validation folds. The 
dataset was randomly split into training (70%) and testing (30%) 
subsets to ensure generalizability, and the SVM was trained 
exclusively on wavelet-derived feature vectors. To avoid potential bias 
due to imbalanced subgroup labeling, class weights were adjusted 
during training. The decision boundary produced by the trained 
SVM classifier was then applied to unseen subgroups to differentiate 
between in-control and out-of-control states.

	 V.	 Control Limits for the Hybrid Chart: The DWS-X̄ chart control 
limits are defined as in Equations 8 and 9:

	 = + ×DWSUCL T 3 /arget S n 	 (8)

	 = − ×DWSLCL 3 /Target S n 	 (9)

Where Target and S denote the in-control process mean and 
standard deviation, respectively.

In the proposed hybrid approach, these control limits are applied 
exclusively to subgroups classified as in-control by the SVM for DWT 

coefficients. Any subgroup flagged as out-of-control by the classifier 
immediately triggers an alarm, thereby enhancing sensitivity.

2.3 Performance metrics

The proposed method’s performance is evaluated based on the 
following criteria:

	 I.	 The Detection Rate (DR) is computed as described in 
Equation 10, reflecting No. of in-control points falsely:

	

− −
= ×

− −

.    
 

DR 100%
  

No of correctly detected out
of control points

Total out of control points 	
(10)

A higher detection rate is desirable, as it indicates the control 
chart’s ability to accurately identify out-of-control points (13).

	II.	 The False Alarm Rate (FAR) is evaluated using Equation 11, 
reflecting in-control samples misclassified as out-of-control:

	

−
− −

= ×
−

.     

FAR 100%
  

No of in control points falsely
classified as out of control

Total in control points 	
(11)

A lower false alarm rate is preferable, reflecting fewer in-control 
points mistakenly flagged as out-of-control (14).

	III.	 The Average Run Length (ARL), representing the expected 
number of samples before an alarm is triggered, is estimated by 
Equation 12:

	  =  ARL gE run len th 	 (12)

Lower ARL values under out-of-control conditions indicate a 
faster detection capability (11).

3 Discussion results

Analysis of real process data and simulation experiments. A series 
of simulation studies was conducted to evaluate the ability of the chart 
to identify changes in a controlled setting where the process is well 
understood. Shifts of varying magnitudes to the process mean were 
simulated to create different scenarios and enable direct comparisons 
between the new chart and the traditional X̄ Chart. Besides, a real 
dataset was employed to assess how the methods perform “in practice” 
as opposed to “in theory,” via a simulation study. This was a necessary 
step to ensure that the benefits shown in the simulation could also 
be  realized under actual process monitoring. The use of both 
approaches guarantees that DWS-X̄ Chart evaluation is as broad and 
pertinent as possible.
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3.1 Simulation experiments

To fully assess the proposed hybrid control chart, a set of 
simulation conditions was established by changing some of the most 
important features that influence the performance of monitoring 
processes. These included the number of outliers added to the data, the 
size of the subgroups (n), the total number of subgroups (m), and the 
standard deviation of the process (σ). Different combinations of these 
parameters were chosen to depict steady and disrupted processes. 
Subgroups of sizes 5 and 10 were used to evaluate the effect of sample 
size on the sensitivity of control charts. The number of subgroups 
ranged, similarly, between 20 and 100, with detection being tested in 
short and long sessions, always at an average of 20. An additional two 
levels of process variability (σ = 1 and σ = 2) were used, as well as two 
values of the proportion of outliers: 5% as representative of a small 
disturbance and 10% as a case where the process shifts are more evident.

Synthetic process data were created by selecting a given percentage 
of the data points and randomly altering those chosen to be  the 
outliers. Both the X̄ chart and the new hybrid control chart were 
constructed to evaluate the generated data for each of the simulation’s 
scenarios. They then went ahead and evaluated and compared their 
performances, using the following three key indicators: DR, FAR and 
ARL, providing a clear measure of each chart’s ability to detect a shift 
in the process while remaining in control of false alarms. To obtain 
stable and reliable results, each simulation scenario was performed 
1,000 times, and the average values of the performance metrics were 
obtained for further analysis. This approach allowed for a feasible 
assessment of the proposed chart’s performance in anomaly detection 
in varying scenarios, as well as a feasible comparison of the proposed 
chart’s performance to the classical X̄ chart’s performance under 
specific and controlled conditions.

The results of the first simulation case, in which the process was 
followed of 20 subgroups (m = 20) of 5 observations (n = 5), are 

shown in Figure 1, which compares the performance of the traditional 
X̄ chart and the proposed hybrid DWS-X̄ chart. Designed to test the 
robustness of each chart, the process standard deviation was σ = 1, and 
5% of outliers were intentionally added. Referring to the top panel of 
the classical X̄ control chart, there are two subgroups whose means are 
above the UCL = 21.342, suggesting there may be  a shift in the 
process. The control limits are relatively tight, with an LCL of 18.658. 
The narrow control range increases the capability of the chart to 
identify a shift but is associated with a higher risk of false alarms, as 
some random variation may also produce an out-of-control signal.

On the contrary, the hybrid DWS-X̄ chart in the bottom panel 
implements the DWS-X̄ chart, which blends discrete wavelet 
decomposition with support vector machine classification for the 
detection improvement process. The resultant hybrid chart has 
upper  and lower control limits, UCL = 22.322 and LCL = 18.310, 
which indicate a more forgiving boundary aimed at reducing false 
alarms without compromising detection strength. Despite the larger 
ranges, the hybrid representation remained sensitive in capturing 
important variations associated with the injected outliers.

In general, this comparison illustrates inherent sensitivity versus 
false alarm rate control chart design trade-off in control chart designs. 
Because of its narrower control limits, the standard X̄ chart is also 
more biased toward false positive results under outlier contaminations 
than the hybrid DWS-X̄ control chart, which achieves a more 
favorable compromise through employing wavelet filtering and 
machine learning based classification. Combining the two methods 
this way improves robustness and delivers a more reliable model when 
some data is anomalous.

Figure 2 displays the comparative results of 1,000 simulation runs 
for both the classical X̄ chart and the proposed hybrid DWS-X̄ chart 
across three key performance indicators: DR, FAR, and ARL. The top 
panel shows the DR for each simulation. The hybrid DWS-X̄ chart 
consistently achieved a higher DR, maintaining values close to 100% 

FIGURE 1

Classical X̄ chart versus hybrid DWS-X̄ chart for 20 subgroups (n = 5, σ = 1, Outliers = 5%).
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across nearly all simulations, while the classical X̄ chart exhibited 
considerable variability with lower and inconsistent detection rates.

The middle panel illustrates the FAR per simulation. Here, the 
classical X̄ chart frequently produced higher FAR, as indicated by the 
dense and scattered spikes throughout the simulations. The hybrid 
chart, on the other hand, showed a lower and more stable FAR, 
indicating better discriminatory power of normal vs. 
abnormal observations.

Lastly, the bottom panel shows the ARL of each simulation. The 
hybrid chart had significantly lower ARL in all the out-of-control 
scenarios, thus reacted more rapidly when there was a change in the 
process signals as opposed to the classical chart, which had more 
scattered and higher ARL values.

In general, it can be concluded that the efficiency and reliability of 
the hybrid control chart at detecting process aberrations while 
achieving improved control over false alarms is consistent 
and superior.

Figure 3 compares the classical X̄ chart and the hybrid DWS-X̄ 
chart for 50 subgroups (n = 5, σ = 1, outliers = 5%). The classical chart 
identified a small number of points outside the control limits, 
suggesting low sensitivity to outlier data points. On the contrary, the 
hybrid DWS-X̄ chart detected more significantly, and its signal 
detection pattern was dispersed and outperformed the remaining 
charts under contamination, thus proving to be  a better tool in 
identifying shifts in the process.

Figure 4 illustrates the DR, FAR, and ARL for the classical and 
hybrid DWS-X̄ charts over 1,000 simulations (n = 5, m = 50, σ = 1, 
outliers = 5%). The hybrid chart consistently showed superior 
performance with higher DR, lower FAR, and reduced ARL compared 
to the classical chart. This confirms the enhanced effectiveness and 
reliability of the hybrid approach in detecting process shifts in the 
presence of outliers.

Figure 5 compares the classical X̄ chart and the hybrid DWS-X̄ 
chart for 75 subgroups (n = 5, σ = 1, outliers = 5%). The classical chart 

showed limited detection ability, with few out-of-control signals and 
several undetected points. In contrast, the hybrid DWS-X̄ chart 
demonstrated higher sensitivity, identifying a greater number of 
out-of-control points and responding faster to shifts. This confirms 
the advantage of integrating wavelet decomposition and SVM filtering 
in improving detection performance under small sample sizes and 
moderate outlier presence.

Figure 6 illustrates the classical X̄ chart versus the hybrid DWS-X̄ 
chart in terms of the DR, FAR, and ARL from 1,000 simulation runs 
where n = 5, m = 75, σ = 1, and outliers = 5%. It was found that the 
hybrid chart has significantly higher DR and lower FAR than the 
classical chart. Also, the smaller ARL calculated for the hybrid DWS-X̄ 
chart suggests that it can identify shifts in the process more quickly. 
These results validate the improved efficiency and reliability of the new 
hybrid approach for handling outlier-contaminated data.

Figure 7 displays the classical X̄ chart and the hybrid DWS-X̄ 
chart for 100 subgroups (n = 5, σ = 1, outliers = 5%). Like previous 
results, the classical chart detected a few out-of-control points, leaving 
several anomalies unnoticed. In contrast, the hybrid DWS-X̄ chart 
showed clearer signals and a higher number of out-of-control 
detections. The improved responsiveness of the hybrid chart highlights 
its capability in identifying process shifts more effectively under 
outlier contamination.

Figure 8 compares the DR, FAR, and ARL of the classical and 
hybrid DWS-X̄ charts based on 1,000 simulation runs (n = 5, m = 100, 
σ = 1, outliers = 5%). The performance of the hybrid DWS-X̄ chart 
was superior to the traditional one in terms of having the highest DR 
and the lowest FAR and ARL. These findings support the higher 
sensitivity and accuracy of the hybrid chart in identifying changes in 
the process, even in the presence of outliers.

To achieve a comprehensive comparison between the proposed 
hybrid DWS-X̄ chart and the traditional X̄ chart, a set of simulation 
experiments was devised that explores several scenarios of the process. 
The simulations differed in subgroup sizes of 5 and 10, process 

FIGURE 2

DR, FAR, and ARL for classical and hybrid DWS-X̄ charts across 1,000 simulations (n = 5, m = 20, σ = 1, Outliers = 5%).
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standard deviations of σ = 1 and σ = 2, and two levels of proportions 
of outliers at 10 and 15%. Given that, m varied between 20 and 100 to 
represent distinct tracking horizons. To determine LCL, UCL, DR, 
FAR, and ARL, 1000 simulations were run for each of the proposed 
scenarios. Results from each of these four conditions are summarized 
in the next four tables.

Table 1 compares the performance of the classical X̄ chart and the 
proposed hybrid DWS-X̄ chart across different numbers of subgroups 
(m = 20, 50, 75, 100) under identical process settings. Across all cases, 

the DWS-X̄ chart consistently achieved a significantly higher DR, 
exceeding 96% in all scenarios, while the classical X̄ chart maintained 
very low DR values around 10%. In terms of the FAR, the classical 
chart consistently recorded rates close to 10%, indicating a high risk 
of unnecessary alarms. In contrast, the hybrid chart maintained much 
lower FAR values, remaining under 1% in all cases. Regarding the 
ARL under out-of-control conditions, the DWS-X̄ chart demonstrated 
notably faster detection, with ARL values ranging between 4.10 and 
5.06, compared to the classical chart, whose ARL values steadily 

FIGURE 3

Classical X̄ chart versus hybrid DWS-X̄ chart for 50 subgroups (n = 5, σ = 1, Outliers = 5%).

FIGURE 4

DR, FAR, and ARL for classical and hybrid DWS-X̄ charts across 1,000 simulations (n = 5, m = 50, σ = 1, Outliers = 5%).
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increased with larger m, reaching 31.48 when m = 100. These results 
reflect the superior detection capability, lower false alarm rate, and 
quicker response of the proposed hybrid DWS-X̄ chart, confirming its 
robustness and reliability in process monitoring applications.

Table 2 explains the results with n = 10; the hybrid DWS-X̄ chart 
consistently outperforms the classical chart. It achieves a much higher 
DR (~97.5% vs. ~11%) and significantly reduces the FAR (around 
0.4–1.25% compared to ~11%). Additionally, the ARL for the hybrid 
chart is much shorter (around 2.5–2.9), indicating faster detection, 

while the classical chart shows ARL values between 9.6 and 21.3. The 
control limits of the hybrid chart are slightly wider, which likely 
contributes to its improved sensitivity and reliability. Overall, the 
proposed DWS-X̄ chart offers a more effective and timely detection of 
process shifts while minimizing false alarms compared to the 
classical approach.

Table 3 presents a performance comparison between the classical 
X̄ chart and the hybrid DWS-X̄ chart with sample size n = 5, standard 
deviation σ = 2, and 10% outliers. The hybrid DWS-X̄ chart shows a 

FIGURE 5

Classical X̄ chart versus hybrid DWS-X̄ chart for 75 subgroups (n = 5, σ = 1, Outliers = 5%).

FIGURE 6

DR, FAR, and ARL for classical and hybrid DWS-X̄ charts across 1,000 simulations (n = 5, m = 75, σ = 1, Outliers = 5%).
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clear advantage, achieving DR above 97.5%, while the classical chart 
remains around 17%. FAR for the hybrid method is substantially lower 
(under 1.25%) compared to the classical chart’s 16–17.5%. 
Additionally, the ARL for the hybrid chart is consistently low 
(approximately 2.5–2.8), reflecting rapid detection of process shifts. In 
contrast, the classical chart’s ARL ranges from 8.0 to 13.5, indicating 
a slower response. The wider control limits of the hybrid chart likely 
contribute to its improved ability to distinguish true changes from 
noise. Overall, the hybrid DWS-X̄ chart provides more accurate and 

timely monitoring under increased variability and contamination, 
outperforming the classical approach in all key metrics.

Table 4 compares the classical X̄ chart with the proposed hybrid 
DWS-X̄ chart for a sample size of 10, a standard deviation of 2, and 
10% outliers. The hybrid chart outperforms the classical one, achieving 
detection rates close to 99%, while the classical chart detects about 
24% of shifts. Although the hybrid chart’s FAR is around 5–6%, it 
remains significantly lower than the classical chart’s high false alarm 
rate of nearly 24%. The difference is also evident in the ARL, where 

FIGURE 7

Classical X̄ chart versus hybrid DWS-X̄ chart for 100 subgroups (n = 5, σ = 1, Outliers = 5%).

FIGURE 8

DR, FAR, and ARL for classical and hybrid DWS-X̄ charts across 1,000 simulations (n = 5, m = 100, σ = 1, Outliers = 5%).
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the hybrid chart responds faster with ARL values between 1.6 and 1.7, 
compared to 5.6 to 6.6 for the classical chart. This improved 
performance is likely due to the wider control limits in the hybrid 
chart, which enhance its ability to distinguish real process changes 
from noise, especially under high variability and contamination. 
Overall, the hybrid DWS-X̄ chart strikes a better balance between 
quick detection and fewer false alarms, outperforming the classical 
chart under challenging conditions.

As a summary of Tables 1–4, results obtained from the four 
simulations confirm the advantages of the developed hybrid DWS-X̄ 

chart over the conventional X̄ chart in different situations regarding 
the process. Regarding the detection rate, the DWS-X̄ chart showed 
very high values, between 96 and 99% in all scenarios. The traditional 
X̄ chart, on the other hand, had detection probabilities of about 
10–24% depending on sample size, process variability, and percentage 
of outliers. This means that the hybrid chart is much more reliable in 
detecting a true shift in the process.

Looking at the FAR, the DWS-X̄ chart also showed low values in 
all the simulated scenarios. FAR did not exceed 1% for low process 
variation and increased to about 3–6% in the case of high process 
variation (σ = 2), remaining much lower than the classical chart. The 
traditional X̄ chart, on the other hand, tended to have false alarm 
percentages that exceeded 10%, and, in more challenging situations, 
even reached 24%. Considering average run length, the new hybrid 
DWS-X̄ chart was the fastest to indicate an out-of-control situation 
compared to the other charts. Its ARL ranged between 1.6 and 5.1, 
depending on the case, while the ARL of the classical one kept 
decreasing as the sample size and variability increased, and in some 
cases, it was more than 31. This highlights the benefit of the hybrid 
chart, which is that identifying a change in the process can be made 
faster, and being able to do this is essential in quality control. 
Performance was also dependent on sample size and variability of the 
process. The higher values of detection and ARL obtained by the 
DWS-X̄ chart when the sample size was doubled from 5 to 10 confirm 
these findings.

Although the hybrid chart FAR was marginally higher due to 
higher process variability and outlier percentage, the hybrid chart FAR 
was still consistently lower than the classical chart FAR in all metrics.

3.2 Real data application

This research uses a dataset consisting of anonymized neonatal 
heart rate measurements collected at Al-Khansa Maternity Hospital, 
East Mosul. The dataset included readings from 100 neonates, grouped 
into 20 subgroups (5 observations each). All data were fully 
de-identified before analysis, and no personal or identifiable 
information was available to the researchers. The study was conducted 
in accordance with institutional ethical guidelines. These indicators 
are also important measures of neonatal cardiac performance and 
cardiovascular stability. It sampled data at multiple sampling intervals 
so that statistical process control techniques could be used to detect 

TABLE 1  Performance comparison between the classical X̄ chart and the 
proposed hybrid DWS-X̄ chart across n = 5, σ = 1, and Outliers = 5%.

Chart m LCL UCL DR FAR ARL

Classical-X 20 18.6584 21.3416 11.41% 9.58% 9.39

DWS-X 18.1575 22.4214 97.23% 0.24% 4.10

Classical-X 50 18.6584 21.3416 10.53% 10.18% 21.13

DWS-X 18.1052 22.5129 96.57% 0.83% 4.54

Classical-X 75 18.6584 21.3416 9.87% 10.00% 26.84

DWS-X 18.1123 22.4960 96.83% 0.89% 4.85

Classical-X 100 18.6584 21.3416 10.51% 9.92% 31.48

DWS-X 18.1141 22.4811 96.85% 0.98% 5.06

TABLE 2  Performance comparison between the classical X̄ chart and the 
proposed hybrid DWS-X̄ chart across n = 10, σ = 1, and Outliers = 5%.

Chart m LCL UCL DR FAR ARL

Classical-X 20 19.0513 20.9487 10.71% 11.25% 9.64

DWS-X 18.7882 21.8154 97.88% 0.44% 2.46

Classical-X 50 19.0513 20.9487 11.12% 11.13% 16.63

DWS-X 18.7732 21.8251 97.44% 1.01% 2.76

Classical-X 75 19.0513 20.9487 11.26% 11.30% 19.48

DWS-X 18.7620 21.8425 97.82% 1.11% 2.71

Classical-X 100 19.0513 20.9487 11.14% 11.14% 21.26

DWS-X 18.7628 21.8362 97.73% 1.25% 2.89

TABLE 3  Performance comparison between the classical X̄ chart and the 
proposed hybrid DWS-X̄ chart across n = 5, σ = 2, and Outliers = 10%.

Chart m LCL UCL DR FAR ARL

Classical-X 20 17.3167 22.6833 17.66% 16.09% 8.01

DWS-X 16.1222 25.9852 98.24% 0.43% 2.48

Classical-X 50 17.3167 22.6833 17.35% 17.20% 12.58

DWS-X 16.0567 26.1212 97.58% 0.97% 2.76

Classical-X 75 17.3167 22.6833 17.41% 17.55% 12.98

DWS-X 16.0021 26.2145 97.83% 1.24% 2.68

Classical-X 100 17.3167 22.6833 17.42% 17.22% 13.54

DWS-X 16.0128 26.1744 98.00% 1.18% 2.63

TABLE 4  Performance comparison between the classical X̄ chart and the 
proposed hybrid DWS-X̄ chart across n = 10, σ = 2, and Outliers = 10%.

Chart m LCL UCL DR FAR ARL

Classical-X 20 18.1026 21.8974 24.22% 23.99% 5.59

DWS-X 17.6248 24.5748 99.10% 3.97% 1.60

Classical-X 50 18.1026 21.8974 24.09% 23.79% 5.86

DWS-X 17.5434 24.6740 98.97% 5.67% 1.68

Classical-X 75 18.1026 21.8974 23.96% 24.40% 6.12

DWS-X 17.4673 24.7648 99.09% 5.83% 1.63

Classical-X 100 18.1026 21.8974 24.35% 23.97% 6.56

DWS-X 17.4732 24.7272 98.95% 5.28% 1.67
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heart rate beyond the expected range. This type of continuous 
monitoring is meant to help in making rapid clinical decisions, which 
may help improve outcomes in neonatal care. In the analysis, heart 
rate data were utilized to construct both traditional and proposed 
hybrid control charts. The dataset included readings from 100 
neonates, which were grouped into 20 subgroups, with each subgroup 
comprising 5 observations. These subgroups provided the structure 
for chart construction and performance evaluation, with the resulting 
control charts illustrated in Figure 4.

Figure 9 compares two control charts for monitoring the average 
heart rate of newborns. The top chart illustrates the classical X̄ chart, 
whereas the bottom chart showcases the proposed hybrid chart that 
integrates wavelet-based techniques. In the classical chart, most 
sample means fall within the control limits (UCL = 157.25 bpm; 
LCL = 130.67 bpm). However, two points fall outside these limits: 
sample 10 exceeds the upper limit, and sample 16 falls below the lower 
limit. These points suggest potential outliers or unusual conditions 
that may require further investigation.

The hybrid DWS X̄ chart reveals a slightly different pattern. Here, 
four samples fall outside the control limits, samples 1, 2, and 10 
surpass the upper limit (UCL = 154.73 bpm), and sample 16 remains 

below the lower limit (LCL = 129.97 bpm). This indicates that the 
hybrid chart is more sensitive, detecting an additional out-of-control 
point that the classical chart missed.

Overall, these results suggest that the hybrid wavelet-based 
control chart offers a more responsive and precise way to detect early 
changes in newborns’ heart rates. This increased sensitivity can help 
healthcare providers identify potential issues sooner, enabling quicker 
intervention and ultimately improving patient care.

Table 5 compares the standard X̄ chart with the new Hybrid DWS 
X̄ chart across several common performance measures. The data show 
that the two techniques differ clearly in sensitivity and overall control 
action. The standard chart picked up 2 out-of-control points, the first 
warning arising at sample 10. The hybrid version, however, marked 4 
points beyond the limit, catching its earliest signal at sample 1. These 
figures imply that the hybrid scheme reacts faster when a shift or 
unusual trend appears. The two charts agreed on 2 points, yet the 
hybrid flagged 2 extra alarms that the classic method missed. This 
overlap, plus the additional detections, underlines the superior 
warning capability built into the new design.

For control limits, the standard X̄ chart sets an upper limit of 
157.25 bpm and a lower limit of 130.67 bpm, giving a full width of 

FIGURE 9

Classical and hybrid DWS X  charts for real data.

TABLE 5  Comparison of performance metrics between the classical and hybrid DWS X̄ charts for monitoring newborn heart rate.

Metric Classical X̄ Chart Hybrid DWS X̄ chart

Number of Out-of-Control Points 2 4

First Out-of-Control Point 10 1

Common Detected Points 2 0

UCL and LCL 157.25 and 130.67 154.73 and 129.97

Control Chart Width 26.58 24.76
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26.58 bpm. The Hybrid DWS version, by contrast, adopted marginally 
tighter bounds- UCL 154.73 bpm, LCL 129.97 bpm- resulting in a 
narrower span of 24.76 bpm and, therefore, closer oversight of the process.

The findings show the Hybrid DWS X̄ Chart spots small shifts in 
newborn heart rates faster than older methods, making it a handy tool 
for catching problems early and helping doctors act.

3.3 Comparison with other advanced 
control charts

The present study was designed to evaluate the performance of the 
proposed DWS–X̄ chart specifically against the traditional Shewhart 
X̄ chart, as the latter represents the most widely used baseline in 
statistical process control. More advanced methods, such as CUSUM, 
EWMA, and other hybrid control charts, are well established in the 
literature and are known to enhance sensitivity to small or gradual 
shifts. However, direct benchmarking with these approaches was 
beyond the scope of the current study and is left as an avenue for 
future research. Future work will extend the comparative evaluation 
of the DWS–X̄ chart by incorporating advanced methods under 
identical simulation settings, thereby providing a more comprehensive 
validation of its effectiveness.

3.4 Limitations

3.4.1 Limitations of the proposed approach
While the proposed DWS–X̄ chart demonstrates superior 

detection performance compared to the traditional X̄ chart, some 
inherent limitations must be acknowledged. First, the effectiveness of 
the method depends on the choice of wavelet family and 
decomposition level, which may influence sensitivity to different types 
of process shifts. Second, the classification accuracy of the SVM is 
strongly dependent on parameter tuning (e.g., C and γ for the RBF 
kernel), and inappropriate settings could reduce robustness. Finally, 
the study compares the proposed chart only with the classical X̄ chart. 
Although this establishes a baseline, a broader comparison with 
advanced control charting methods (e.g., CUSUM, EWMA, or robust 
charts) would provide a more comprehensive validation.

Moreover, the current simulation study was restricted to scenarios 
with outlier proportions of 5–15% and process variability levels of σ = 1 
and σ = 2. The performance of the proposed DWS–X̄ chart under more 
challenging conditions, such as very low contamination levels (outliers < 
2%) or lower process variability (σ < 0.5), was not explicitly investigated. 
Although it is expected that the hybrid design would still maintain a 
higher detection capability than the classical chart due to the wavelet–
SVM integration, this remains to be validated. Future research will extend 
the simulation framework to encompass these extreme conditions, 
thereby confirming the robustness of the proposed approach.

3.4.2 Limitations in real data application
The real data validation conducted in this study was based on a 

relatively small dataset of 100 neonatal observations. While the 
proposed DWS–X̄ chart demonstrated improved detection capability 
over the traditional X̄ chart, the limited sample size restricts the 
generalizability of the results. Future research should incorporate 
larger and more diverse datasets, either from broader clinical 

populations or from industrial monitoring systems, to provide a 
stronger empirical validation of the proposed method.

Some simulation figures (e.g., Figures  3–7) illustrate similar 
performance patterns across different subgroup sizes. To improve 
clarity and reduce redundancy, these figures could be consolidated or 
partially replaced with summary tables in future work, while 
preserving the key insights on DR, FAR, and ARL.

4 Conclusion

The study yielded two sets of conclusions: one based on simulation 
experiments, confirming the superior performance of the proposed 
Hybrid DWS-X̄ chart under various outlier scenarios, and another 
derived from real neonatal heart rate data, highlighting the chart’s 
enhanced sensitivity and faster response in clinical 
monitoring applications.

4.1 Conclusions from simulation 
experiments

	 1.	 The proposed hybrid DWS-X̄ chart consistently demonstrated 
superior performance over the classical X̄ chart in all 
simulated scenarios.

	 2.	 It achieved notably higher detection rates, consistently 
exceeding 96% even under challenging conditions, while the 
classical chart’s DR remained comparatively low, often 
below 25%.

	 3.	 The hybrid chart maintained a substantially lower FAR 
compared to the classical chart.

	 4.	 In most cases, the DWS-X̄ chart recorded FAR values below 1% 
when variability and outlier contamination were moderate and 
remained within acceptable limits (5–6%) even in high-
variance, high-outlier environments. In contrast, the classical 
chart frequently showed FAR rates above 10%, and sometimes 
exceeding 23%.

	 5.	 Average Run Length analysis confirmed the faster detection 
capability of the hybrid chart.

	 6.	 The DWS-X̄ chart achieved consistently lower ARL values, 
typically ranging from 1.6 to 5.1, while the classical chart’s ARL 
increased progressively with subgroup size and number of 
samples, sometimes reaching values over 31, indicating 
slower responsiveness.

	 7.	 Increasing the sample size (n) improved the performance of 
both charts, but the hybrid chart benefited more significantly.

	 8.	 Larger sample sizes enhanced the DR and slightly widened 
control limits for the hybrid chart, contributing to better 
detection of out-of-control conditions without notably raising 
the FAR.

	 9.	 Even with higher process variability (σ = 2) and a larger 
percentage of outliers (10%), the FAR of the hybrid chart was 
still higher, although it remained better than the other chart.

	10.	 Even so, DWS-X̄ control charts showed significantly lower false 
alarm rate than classical control charts while achieving high 
detection efficiency.

	11.	 The hybrid DWS-X̄ chart superiority in all process conditions 
demonstrates its robustness and flexibility.
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	12.	 It is useful in industrial process monitoring due to its high 
efficiency in processes with non-normal data, where it achieves 
good results in detecting online changes to the process while 
keeping false alarms low.

4.2 Conclusions from the real data analysis

	 1.	 There were two out-of-control points in the classical X̄ chart: 
sample 10 and sample 16, out of 20 subgroups. The hybrid 
DWS-X̄ plot presented samples 1, 2, 10, and 16 as being out-of-
control, thus being more sensitive at identifying out-of-
control conditions.

	 2.	 Though the first out-of-control signal was observed in sample 
10 of the classical X̄ chart, the hybrid chart signaled in sample 
01, indicating an early detection of a possible process shift.

	 3.	 Both charts agreed on two points (samples 10 and 16), but the 
hybrid chart captured two additional signals missing from the 
classical chart.

	 4.	 The control limits in the hybrid DWS-X̄ chart were narrower 
(UCL = 154.73 bpm, LCL = 129.97 bpm) compared to the 
classical-X̄ chart (UCL = 157.25 bpm, LCL = 130.67 bpm), 
resulting in tighter process monitoring.

	 5.	 The control chart width was reduced in the hybrid chart 
(24.76 bpm) relative to the classical chart (26.58 bpm), 
contributing to improved detection accuracy without 
increasing false alarms.

	 6.	 These outcomes demonstrate that integrating wavelet 
decomposition with SVM classification enhances early 
detection of abnormal heart rate patterns in 
neonatal monitoring.

	 7.	 The proposed hybrid control chart offers a practical and reliable 
decision-support tool for clinical settings, enabling faster 
identification of at-risk cases and supporting timely 
medical interventions.
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