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Introduction: Statistical Process Control (SPC) charts are widely used to detect
process shifts, yet classical Shewhart X charts often fail in the presence of outliers
and non-normal data distributions. To address these shortcomings, we propose a
hybrid approach that integrates discrete wavelet decomposition with support vector
machine (SVM) classification for enhanced outlier detection.

Methods: The proposed Dynamic Wavelet-SYM X Chart (DWS-X) combines multi-
resolution wavelet feature extraction with an SVM classifier to distinguish between in-
control and out-of-control states. Its performance was assessed through extensive
simulations varying subgroup size, number of subgroups, and contamination levels.
Key metrics included Detection Rate (DR), False Alarm Rate (FAR), and Average Run
Length (ARL).

Results: Simulation results consistently demonstrated the superiority of the
DWS-X chart compared to the traditional X chart. The hybrid chart achieved
higher detection rates (above 96%), lower false alarm rates (below 1-6%
depending on variability), and shorter ARLs (1.6-5.1). Application to real neonatal
heart rate data further confirmed its enhanced sensitivity in identifying abnormal
cardiac patterns.

Discussion: The findings indicate that the proposed DWS-X chart provides more
reliable monitoring under contamination and high variability, offering earlier
detection of abnormal signals with fewer false alarms. This hybrid method holds
promise for both industrial quality control and healthcare process monitoring.

KEYWORDS

statistical process control, X chart, discrete wavelet transform, support vector
machine, outlier detection

1 Introduction

Production processes and healthcare supervision systems must be kept straight in industry
as well as under clinical conditions. The use of Statistical Process Control or SPC charts to
detect when a process mean has shifted, particularly via the well-known Shewhart X chart, is
not new. But they fail in cases of non-normal distributions of the data, when there are outliers,
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or with small variations in the process, because they are not designed
for that purpose, resulting in a later detection of the problem as well
as reduced reliability of the process (1). These shortcomings have been
taken into consideration, and more recently, attempts have been made
to enhance traditional control charts using more sophisticated data
processing tools, such as wavelet transformation and machine
learning algorithms.

Wavelet analysis is gaining popularity in quality control because
it can detect information at both local and global scales in a data
series. The DWT is particularly useful as it decomposes data into
approximation and detail coefficients, which “better separate noise
and help in detection of small or ephemeral changes in process
behavior” Particularly, Abdullah et al. proposed the use of a CUSUM
control chart based on Symlets wavelets and proved that wavelet-
based denoising yields control charts with greater sensitivity to small
shifts in the process (2). Similarly, Ameen and Ali applied Haar
wavelet coefficients to obtain separate charts of the low- and high-
frequency process components and demonstrated the superior
sensitivity of wavelet charts to detect minor shifts in the context of
both simulated and actual data (3).

In addition to wavelet-based methods, various Bayesian and
machine learning methods have been incorporated into SPC. Tareq
et al. performed a comparison of classical Shewhart and Bayesian
control charts for monitoring blood glucose in newborns (4). Their
results showed that the Bayesian chart produced earlier signals of
detection and had a lower false alarm rate than its classical
counterpart, which demonstrated the possibilities of data-driven
techniques for increasing the accuracy of process monitoring.

Given these trends, there will still be the need for hybrid models
that exploit the advantages of the wavelet transforming algorithm’s
robustness to noise and the power of modern machine learning
classification algorithms. The present work is one attempt to fill this
gap by proposing a novel hybrid control chart based on discrete
wavelet decomposition and the SVM classifier that improves outlier
detection and the process monitoring shift. The advantages of the
traditional X chart in the expected detection capability of this
approach versus the traditional approach are discussed using both
simulated data as well as actual neonatal heart rate data.

This study makes two contributions. First, it proposes the use of
a DWS-X type control chart that merges DWS signal classification
using wavelets with an SVM classifier that seeks to minimize false
alarms while increasing the detection rate. Second, it demonstrates
the advantages of this strategy through a set of simulated experiments
and a case study of real data in a clinic.

More recent studies showed the employment of machine learning
and wavelet-based techniques for improved sensitivity of control
charts (2, 5-7).

2 Methodology
2.1 Classical-X chart

The X chart is one of the most basic of the statistical process
control charts and is designed to identify when the process mean
is out of control. It assumes that observations are taken in
subgroups of size n, and that the process variation is normally
distributed (8).
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Given observations X; where i = 1, 2, ..., m denotes the subgroup
and j=1, 2, ..., n denotes the sample within the subgroup, the
subgroup mean is calculated as shown in Equation 1:

*Zy;lxi,j (1)

_n j

The overall mean process is (Target Line) estimated by Equation 2:

— leewm—
XZ*Zizlxi (2)

m

The process of standard deviation o is either known or estimated
from the sample data. Using the standard deviation, the control limits are
defined according to the 3-sigma rule is determined using Equation 3 (9):

UCLIX+3XO’/\/; 3)

The lower control limit is defined by Equation 4, completing the
three-sigma boundaries for process monitoring.

LCL:X+3><0'/\/; (4)

These limits represent thresholds for monitoring the process
average. Points outside these limits signal potential out-of-control
conditions requiring investigation. If ¢ is unknown, it can be estimated
by calculating the standard deviation of the subgroup means or from
historical data. The Classical X chart plots each subgroup mean X;
sequentially. Its strength lies in detecting significant shifts in the
process mean. However, it can be less effective for identifying small or
gradual changes and is sensitive to the presence of outliers (10).

2.2 Proposed methodology

This study proposes a novel hybrid control chart, namely the
Dynamic Wavelet-Support Vector Machine X Chart (DWS-X Chart),
aimed at improving anomaly detection performance in process
monitoring applications. The approach synergistically integrates
discrete wavelet transform (DWT) based multi-resolution signal
analysis with an SVM classifier, enabling enhanced sensitivity and
specificity compared to traditional X charts.

I. Sample Means: Let X; ; denote the j-th observation in the i-th
subgroup, wherei = 1,2, ...,mand j =1, 2, ..., n. The sample
mean for each subgroup is computed as in Equation 1. Here, n
represents the subgroup size, while m corresponds to the total
number of subgroups considered.

II. Discrete Wavelet Transform (DWT): To capture both temporal
and frequency characteristics of the sequence X; The discrete
wavelet transform is employed. The DWT decomposes the
signal into its approximation and detail components across
multiple resolution levels, thus facilitating the extraction of
pertinent features associated with process shifts or anomalies
(11). The discrete wavelet decomposition of the subgroup
means is expressed in Equation 5, separating approximation
and detail coefficients.
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Ap,D; =DWT(X)) ®)

Where Al and DI denote the approximation (low-frequency) and
detail (high-frequency) coeflicients, respectively.

[II. Feature Extraction: From the wavelet coefficients obtained,
feature vectors f; are constructed for each subgroup i. These
features typically include statistical summaries such as the
mean, standard deviation, and energy of the coefficients. The
feature vector constructed from wavelet coefficients for each
subgroup is formulated in Equation 6:

fi:[i (A})s(a}) (D}),é(D}),...J ©)
The mean and standard deviation operators, respectively, are p(-)
and o(-).

IV. Support Vector Machine Classification: A supervised SVM
classifier is trained using the extracted feature vectors to
differentiate between in-control and out-of-control states. The
decision function of the SVM is expressed as in Equation 7 (12):

g(f) :Sigﬂ(Ziﬁk:ykK (fif )+b) @)

Where M is the number of support vectors, @; are learned
coefficients, y, € {—1, +1} are class labels, K (-, -) is the kernel function
(e.g., radial basis function), and b is the bias term. Subgroups are
classified as out-of-control when g(f) = +1, and as in-control otherwise.

In this study, the Support Vector Machine classifier was
implemented using the Radial Basis Function (RBF) kernel, as it
demonstrated superior performance in non-linear classification
problems. The kernel parameter y and the penalty parameter C were
optimized through grid search combined with 10-fold cross-
validation on the training data. The grid search considered C values
ranging from 0.1 to 100 and y values between 0.001 and 10. The
optimal parameters (C =10, y =0.1) were selected based on the
highest average classification accuracy across validation folds. The
dataset was randomly split into training (70%) and testing (30%)
subsets to ensure generalizability, and the SVM was trained
exclusively on wavelet-derived feature vectors. To avoid potential bias
due to imbalanced subgroup labeling, class weights were adjusted
during training. The decision boundary produced by the trained
SVM classifier was then applied to unseen subgroups to differentiate
between in-control and out-of-control states.

V. Control Limits for the Hybrid Chart: The DWS-X chart control
limits are defined as in Equations 8 and 9:

UCLpws :Target+3><S/\/; (8)

LCLpws =Target =3xS/ Jn 9)

Where Target and S denote the in-control process mean and
standard deviation, respectively.

In the proposed hybrid approach, these control limits are applied
exclusively to subgroups classified as in-control by the SVM for DWT
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coeflicients. Any subgroup flagged as out-of-control by the classifier
immediately triggers an alarm, thereby enhancing sensitivity.

2.3 Performance metrics

The proposed method’s performance is evaluated based on the
following criteria:

I. The Detection Rate (DR) is computed as described in
Equation 10, reflecting No. of in-control points falsely:

No.of correctly detected out
—of —control points
R= f P x100% (10)
Total out —of —control points

A higher detection rate is desirable, as it indicates the control
chart’s ability to accurately identify out-of-control points (13).

II. The False Alarm Rate (FAR) is evaluated using Equation 11,
reflecting in-control samples misclassified as out-of-control:

No.of in—control points falsely

classified as out — of — control
FAR = i f

x100% (11)
Total in—control points

A lower false alarm rate is preferable, reflecting fewer in-control
points mistakenly flagged as out-of-control (14).

III. The Average Run Length (ARL), representing the expected
number of samples before an alarm is triggered, is estimated by
Equation 12:

ARL:E[run length] (12)

Lower ARL values under out-of-control conditions indicate a
faster detection capability (11).

3 Discussion results

Analysis of real process data and simulation experiments. A series
of simulation studies was conducted to evaluate the ability of the chart
to identify changes in a controlled setting where the process is well
understood. Shifts of varying magnitudes to the process mean were
simulated to create different scenarios and enable direct comparisons
between the new chart and the traditional X Chart. Besides, a real
dataset was employed to assess how the methods perform “in practice”
as opposed to “in theory;” via a simulation study. This was a necessary
step to ensure that the benefits shown in the simulation could also
be realized under actual process monitoring. The use of both
approaches guarantees that DWS-X Chart evaluation is as broad and
pertinent as possible.
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3.1 Simulation experiments

To fully assess the proposed hybrid control chart, a set of
simulation conditions was established by changing some of the most
important features that influence the performance of monitoring
processes. These included the number of outliers added to the data, the
size of the subgroups (n), the total number of subgroups (m), and the
standard deviation of the process (o). Different combinations of these
parameters were chosen to depict steady and disrupted processes.
Subgroups of sizes 5 and 10 were used to evaluate the effect of sample
size on the sensitivity of control charts. The number of subgroups
ranged, similarly, between 20 and 100, with detection being tested in
short and long sessions, always at an average of 20. An additional two
levels of process variability (¢ = 1 and ¢ = 2) were used, as well as two
values of the proportion of outliers: 5% as representative of a small
disturbance and 10% as a case where the process shifts are more evident.

Synthetic process data were created by selecting a given percentage
of the data points and randomly altering those chosen to be the
outliers. Both the X chart and the new hybrid control chart were
constructed to evaluate the generated data for each of the simulation’s
scenarios. They then went ahead and evaluated and compared their
performances, using the following three key indicators: DR, FAR and
ARL, providing a clear measure of each chart’s ability to detect a shift
in the process while remaining in control of false alarms. To obtain
stable and reliable results, each simulation scenario was performed
1,000 times, and the average values of the performance metrics were
obtained for further analysis. This approach allowed for a feasible
assessment of the proposed chart’s performance in anomaly detection
in varying scenarios, as well as a feasible comparison of the proposed
charts performance to the classical X charts performance under
specific and controlled conditions.

The results of the first simulation case, in which the process was
followed of 20 subgroups (m =20) of 5 observations (n =5), are

10.3389/fams.2025.1682448

shown in Figure 1, which compares the performance of the traditional
X chart and the proposed hybrid DWS-X chart. Designed to test the
robustness of each chart, the process standard deviation was ¢ = 1, and
5% of outliers were intentionally added. Referring to the top panel of
the classical X control chart, there are two subgroups whose means are
above the UCL = 21.342, suggesting there may be a shift in the
process. The control limits are relatively tight, with an LCL of 18.658.
The narrow control range increases the capability of the chart to
identify a shift but is associated with a higher risk of false alarms, as
some random variation may also produce an out-of-control signal.

On the contrary, the hybrid DWS-X chart in the bottom panel
implements the DWS-X chart, which blends discrete wavelet
decomposition with support vector machine classification for the
detection improvement process. The resultant hybrid chart has
upper and lower control limits, UCL = 22.322 and LCL = 18.310,
which indicate a more forgiving boundary aimed at reducing false
alarms without compromising detection strength. Despite the larger
ranges, the hybrid representation remained sensitive in capturing
important variations associated with the injected outliers.

In general, this comparison illustrates inherent sensitivity versus
false alarm rate control chart design trade-off in control chart designs.
Because of its narrower control limits, the standard X chart is also
more biased toward false positive results under outlier contaminations
than the hybrid DWS-X control chart, which achieves a more
favorable compromise through employing wavelet filtering and
machine learning based classification. Combining the two methods
this way improves robustness and delivers a more reliable model when
some data is anomalous.

Figure 2 displays the comparative results of 1,000 simulation runs
for both the classical X chart and the proposed hybrid DWS-X chart
across three key performance indicators: DR, FAR, and ARL. The top
panel shows the DR for each simulation. The hybrid DWS-X chart
consistently achieved a higher DR, maintaining values close to 100%
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FIGURE 1
Classical X chart versus hybrid DWS-X chart for 20 subgroups (n = 5, ¢ = 1, Outliers = 5%).

Frontiers in Applied Mathematics and Statistics

04

frontiersin.org


https://doi.org/10.3389/fams.2025.1682448
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Aliet al. 10.3389/fams.2025.1682448
460 Detection Rate per Simulation
a ‘.H.T’J CIUTT T T T e gy ooy v Wegy TOmeer 1w me 1 rypumy’ w ' JT RN
a Classig)'( |
o W2 | M nk 00 .o o L
0 100 200 300 400 500 600 700 800 900 1000
10 False Alarm Rate per Simulation
. I I I l l I I -Classic)'( l
2 ——DWS-X
20 i
. L ﬁ,IMMIWI‘IMMMNIilh”lﬂ.lm lﬂlﬁ.l‘:lﬁlll n.dlllli‘wwal il o Wh“ﬂnﬂmmmun i lﬁluhﬂ |
0 100 200 300 400 500 600 700 800 900 1000
- Average Run Length per Slmulatlon
ik J ! HM i M | H A
f L ,|~ \‘ '{ w \‘ 1 ‘“‘ llb If Hh ﬂq?lﬁ ,‘n‘ ,v'“ V‘)‘ l\ ‘ L"ev,, ‘H «\ ’} ” ) § "{‘.““?""“( f “"‘ "N
O0 700 800 900 1000
Slmulatlon Number
FIGURE 2
DR, FAR, and ARL for classical and hybrid DWS-X charts across 1,000 simulations (n = 5, m = 20, ¢ = 1, Outliers = 5%).

across nearly all simulations, while the classical X chart exhibited
considerable variability with lower and inconsistent detection rates.

The middle panel illustrates the FAR per simulation. Here, the
classical X chart frequently produced higher FAR, as indicated by the
dense and scattered spikes throughout the simulations. The hybrid
chart, on the other hand, showed a lower and more stable FAR,
indicating better discriminatory power of normal vs.
abnormal observations.

Lastly, the bottom panel shows the ARL of each simulation. The
hybrid chart had significantly lower ARL in all the out-of-control
scenarios, thus reacted more rapidly when there was a change in the
process signals as opposed to the classical chart, which had more
scattered and higher ARL values.

In general, it can be concluded that the efficiency and reliability of
the hybrid control chart at detecting process aberrations while
achieving improved control over false alarms is consistent
and superior.

Figure 3 compares the classical X chart and the hybrid DWS-X
chart for 50 subgroups (n = 5, o = 1, outliers = 5%). The classical chart
identified a small number of points outside the control limits,
suggesting low sensitivity to outlier data points. On the contrary, the
hybrid DWS-X chart detected more significantly, and its signal
detection pattern was dispersed and outperformed the remaining
charts under contamination, thus proving to be a better tool in
identifying shifts in the process.

Figure 4 illustrates the DR, FAR, and ARL for the classical and
hybrid DWS-X charts over 1,000 simulations (n =5, m =50, 0 =1,
outliers = 5%). The hybrid chart consistently showed superior
performance with higher DR, lower FAR, and reduced ARL compared
to the classical chart. This confirms the enhanced effectiveness and
reliability of the hybrid approach in detecting process shifts in the
presence of outliers.

Figure 5 compares the classical X chart and the hybrid DWS-X
chart for 75 subgroups (n = 5, o = 1, outliers = 5%). The classical chart
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showed limited detection ability, with few out-of-control signals and
several undetected points. In contrast, the hybrid DWS-X chart
demonstrated higher sensitivity, identifying a greater number of
out-of-control points and responding faster to shifts. This confirms
the advantage of integrating wavelet decomposition and SVM filtering
in improving detection performance under small sample sizes and
moderate outlier presence.

Figure 6 illustrates the classical X chart versus the hybrid DWS-X
chart in terms of the DR, FAR, and ARL from 1,000 simulation runs
where n =5, m =75, o = 1, and outliers = 5%. It was found that the
hybrid chart has significantly higher DR and lower FAR than the
classical chart. Also, the smaller ARL calculated for the hybrid DWS-X
chart suggests that it can identify shifts in the process more quickly.
These results validate the improved efficiency and reliability of the new
hybrid approach for handling outlier-contaminated data.

Figure 7 displays the classical X chart and the hybrid DWS-X
chart for 100 subgroups (n = 5, o = 1, outliers = 5%). Like previous
results, the classical chart detected a few out-of-control points, leaving
several anomalies unnoticed. In contrast, the hybrid DWS-X chart
showed clearer signals and a higher number of out-of-control
detections. The improved responsiveness of the hybrid chart highlights
its capability in identifying process shifts more effectively under
outlier contamination.

Figure 8 compares the DR, FAR, and ARL of the classical and
hybrid DWS-X charts based on 1,000 simulation runs (n = 5, m = 100,
o =1, outliers = 5%). The performance of the hybrid DWS-X chart
was superior to the traditional one in terms of having the highest DR
and the lowest FAR and ARL. These findings support the higher
sensitivity and accuracy of the hybrid chart in identifying changes in
the process, even in the presence of outliers.

To achieve a comprehensive comparison between the proposed
hybrid DWS-X chart and the traditional X chart, a set of simulation
experiments was devised that explores several scenarios of the process.
The simulations differed in subgroup sizes of 5 and 10, process
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FIGURE 3

Classical X chart versus hybrid DWS-X chart for 50 subgroups (n = 5, ¢ = 1, Outliers = 5%).
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FIGURE 4

DR, FAR, and ARL for classical and hybrid DWS-X charts across 1,000 simulations (n = 5, m = 50, ¢ = 1, Outliers = 5%).

standard deviations of 0 = 1 and ¢ = 2, and two levels of proportions
of outliers at 10 and 15%. Given that, m varied between 20 and 100 to
represent distinct tracking horizons. To determine LCL, UCL, DR,
FAR, and ARL, 1000 simulations were run for each of the proposed
scenarios. Results from each of these four conditions are summarized
in the next four tables.

Table 1 compares the performance of the classical X chart and the
proposed hybrid DWS-X chart across different numbers of subgroups
(m =20, 50, 75, 100) under identical process settings. Across all cases,
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the DWS-X chart consistently achieved a significantly higher DR,
exceeding 96% in all scenarios, while the classical X chart maintained
very low DR values around 10%. In terms of the FAR, the classical
chart consistently recorded rates close to 10%, indicating a high risk
of unnecessary alarms. In contrast, the hybrid chart maintained much
lower FAR values, remaining under 1% in all cases. Regarding the
ARL under out-of-control conditions, the DWS-X chart demonstrated
notably faster detection, with ARL values ranging between 4.10 and
5.06, compared to the classical chart, whose ARL values steadily
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Classical X chart versus hybrid DWS-X chart for 75 subgroups (n = 5, ¢ = 1, Outliers = 5%).
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FIGURE 6

DR, FAR, and ARL for classical and hybrid DWS-X charts across 1,000 simulations (n = 5, m = 75, ¢ = 1, Outliers = 5%).

increased with larger m, reaching 31.48 when m = 100. These results
reflect the superior detection capability, lower false alarm rate, and
quicker response of the proposed hybrid DWS-X chart, confirming its
robustness and reliability in process monitoring applications.

Table 2 explains the results with # = 10; the hybrid DWS-X chart
consistently outperforms the classical chart. It achieves a much higher
DR (~97.5% vs. ~11%) and significantly reduces the FAR (around
0.4-1.25% compared to ~11%). Additionally, the ARL for the hybrid
chart is much shorter (around 2.5-2.9), indicating faster detection,
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while the classical chart shows ARL values between 9.6 and 21.3. The
control limits of the hybrid chart are slightly wider, which likely
contributes to its improved sensitivity and reliability. Overall, the
proposed DWS-X chart offers a more effective and timely detection of
process shifts while minimizing false alarms compared to the
classical approach.

Table 3 presents a performance comparison between the classical
X chart and the hybrid DWS-X chart with sample size n = 5, standard
deviation o = 2, and 10% outliers. The hybrid DWS-X chart shows a
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DR, FAR, and ARL for classical and hybrid DWS-X charts across 1,000 simulations (n = 5, m = 100, ¢ = 1, Outliers = 5%).

clear advantage, achieving DR above 97.5%, while the classical chart
remains around 17%. FAR for the hybrid method is substantially lower
(under 1.25%) compared to the classical charts 16-17.5%.
Additionally, the ARL for the hybrid chart is consistently low
(approximately 2.5-2.8), reflecting rapid detection of process shifts. In
contrast, the classical chart's ARL ranges from 8.0 to 13.5, indicating
a slower response. The wider control limits of the hybrid chart likely
contribute to its improved ability to distinguish true changes from
noise. Overall, the hybrid DWS-X chart provides more accurate and
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timely monitoring under increased variability and contamination,
outperforming the classical approach in all key metrics.

Table 4 compares the classical X chart with the proposed hybrid
DWS-X chart for a sample size of 10, a standard deviation of 2, and
10% outliers. The hybrid chart outperforms the classical one, achieving
detection rates close to 99%, while the classical chart detects about
24% of shifts. Although the hybrid chart’s FAR is around 5-6%, it
remains significantly lower than the classical chart’s high false alarm
rate of nearly 24%. The difference is also evident in the ARL, where
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TABLE 1 Performance comparison between the classical X chart and the
proposed hybrid DWS-X chart across n = 5, ¢ = 1, and Outliers = 5%.

10.3389/fams.2025.1682448

TABLE 4 Performance comparison between the classical X chart and the
proposed hybrid DWS-X chart across n = 10, ¢ = 2, and Outliers = 10%.

Chart m LCL UCL DR FAR  ARL Chart m LCL UCL DR FAR  ARL
Classical-X 20 | 186584 | 213416  11.41% | 9.58% 9.39 Classical-X 20 | 181026 = 21.8974 | 2422% | 23.99% | 559
DWS-X 181575 | 224214 | 97.23% | 0.24% 4.10 DWS-X 17.6248 | 245748 | 99.10% | 3.97% 1.60
Classical-X 50 | 18.6584 = 213416 | 1053% @ 10.18% = 2113 Classical-X 50 | 181026 | 21.8974 | 24.09%  23.79% | 5386
DWS-X 18.1052 | 225129 | 96.57% = 0.83% 454 DWS-X 17.5434 | 246740 = 9897% | 5.67% 1.68
Classical-X 75 | 186584 | 213416  9.87% | 10.00% | 26.84 Classical-X 75 | 181026 | 21.8974 | 23.96%  24.40% | 6.12
DWS-X 181123 | 224960 = 96.83% | 0.89% 4385 DWS-X 17.4673 | 247648 | 99.09% | 583% 1.63
Classical-X 100 18.6584 | 213416 | 10.51% = 9.92% | 31.48 Classical. X | 100 | 181026 = 21.8974 | 2435%  23.97%  6.56
DWS-X 18.1141 | 224811 = 96.85%  0.98% 5.06 DWS-X 174732 | 247272 | 9895%  5.28% 1.67

TABLE 2 Performance comparison between the classical X chart and the
proposed hybrid DWS-X chart across n = 10, ¢ = 1, and Outliers = 5%.

Chart m LCL UCL DR FAR ARL
Classical-X 20 19.0513 20.9487 10.71% 11.25% 9.64
DWS-X 187882 | 21.8154 = 97.88% 0.44% 2.46
Classical-X 50 19.0513 | 20.9487 | 11.12% 11.13% 16.63
DWS-X 187732 | 21.8251 | 97.44% 1.01% 2.76
Classical-X 75 19.0513 20.9487 11.26% 11.30% 19.48
DWS-X 18.7620 | 21.8425 | 97.82% 1.11% 2.71
Classical-X 100 19.0513 | 20.9487 | 11.14% 11.14% 21.26
DWS-X 18.7628 = 21.8362 | 97.73% 1.25% 2.89

TABLE 3 Performance comparison between the classical X chart and the
proposed hybrid DWS-X chart across n = 5, ¢ = 2, and Outliers = 10%.

Chart m LCL UCL DR FAR ARL
Classical-X 20 | 173167 | 226833 | 17.66% = 16.09% 8.01
DWS-X 161222 259852 | 9824% | 0.43% 248
Classical-X 50 | 173167 | 226833 17.35% = 17.20% | 12.58
DWS-X 160567 261212 | 97.58% | 0.97% 2.76
Classical-X 75 173167 226833 | 17.41% | 17.55% | 12.98
DWS-X 160021 262145 = 97.83% | 1.24% 2.68
Classical-X 100 | 173167 = 22.6833 | 17.42%  17.22%  13.54
DWS-X 160128 261744 = 9800%  1.18% 2.63

the hybrid chart responds faster with ARL values between 1.6 and 1.7,
compared to 5.6 to 6.6 for the classical chart. This improved
performance is likely due to the wider control limits in the hybrid
chart, which enhance its ability to distinguish real process changes
from noise, especially under high variability and contamination.
Overall, the hybrid DWS-X chart strikes a better balance between
quick detection and fewer false alarms, outperforming the classical
chart under challenging conditions.

As a summary of Tables 1-4, results obtained from the four
simulations confirm the advantages of the developed hybrid DWS-X
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chart over the conventional X chart in different situations regarding
the process. Regarding the detection rate, the DWS-X chart showed
very high values, between 96 and 99% in all scenarios. The traditional
X chart, on the other hand, had detection probabilities of about
10-24% depending on sample size, process variability, and percentage
of outliers. This means that the hybrid chart is much more reliable in
detecting a true shift in the process.

Looking at the FAR, the DWS-X chart also showed low values in
all the simulated scenarios. FAR did not exceed 1% for low process
variation and increased to about 3-6% in the case of high process
variation (¢ = 2), remaining much lower than the classical chart. The
traditional X chart, on the other hand, tended to have false alarm
percentages that exceeded 10%, and, in more challenging situations,
even reached 24%. Considering average run length, the new hybrid
DWS-X chart was the fastest to indicate an out-of-control situation
compared to the other charts. Its ARL ranged between 1.6 and 5.1,
depending on the case, while the ARL of the classical one kept
decreasing as the sample size and variability increased, and in some
cases, it was more than 31. This highlights the benefit of the hybrid
chart, which is that identifying a change in the process can be made
faster, and being able to do this is essential in quality control.
Performance was also dependent on sample size and variability of the
process. The higher values of detection and ARL obtained by the
DWS-X chart when the sample size was doubled from 5 to 10 confirm
these findings.

Although the hybrid chart FAR was marginally higher due to
higher process variability and outlier percentage, the hybrid chart FAR
was still consistently lower than the classical chart FAR in all metrics.

3.2 Real data application

This research uses a dataset consisting of anonymized neonatal
heart rate measurements collected at Al-Khansa Maternity Hospital,
East Mosul. The dataset included readings from 100 neonates, grouped
into 20 subgroups (5 observations each). All data were fully
de-identified before analysis, and no personal or identifiable
information was available to the researchers. The study was conducted
in accordance with institutional ethical guidelines. These indicators
are also important measures of neonatal cardiac performance and
cardiovascular stability. It sampled data at multiple sampling intervals
so that statistical process control techniques could be used to detect
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heart rate beyond the expected range. This type of continuous
monitoring is meant to help in making rapid clinical decisions, which
may help improve outcomes in neonatal care. In the analysis, heart
rate data were utilized to construct both traditional and proposed
hybrid control charts. The dataset included readings from 100
neonates, which were grouped into 20 subgroups, with each subgroup
comprising 5 observations. These subgroups provided the structure
for chart construction and performance evaluation, with the resulting
control charts illustrated in Figure 4.

Figure 9 compares two control charts for monitoring the average
heart rate of newborns. The top chart illustrates the classical X chart,
whereas the bottom chart showcases the proposed hybrid chart that
integrates wavelet-based techniques. In the classical chart, most
sample means fall within the control limits (UCL = 157.25 bpmy;
LCL = 130.67 bpm). However, two points fall outside these limits:
sample 10 exceeds the upper limit, and sample 16 falls below the lower
limit. These points suggest potential outliers or unusual conditions
that may require further investigation.

The hybrid DWS X chart reveals a slightly different pattern. Here,
four samples fall outside the control limits, samples 1, 2, and 10
surpass the upper limit (UCL = 154.73 bpm), and sample 16 remains

10.3389/fams.2025.1682448

below the lower limit (LCL = 129.97 bpm). This indicates that the
hybrid chart is more sensitive, detecting an additional out-of-control
point that the classical chart missed.

Overall, these results suggest that the hybrid wavelet-based
control chart offers a more responsive and precise way to detect early
changes in newborns’ heart rates. This increased sensitivity can help
healthcare providers identify potential issues sooner, enabling quicker
intervention and ultimately improving patient care.

Table 5 compares the standard X chart with the new Hybrid DWS
X chart across several common performance measures. The data show
that the two techniques differ clearly in sensitivity and overall control
action. The standard chart picked up 2 out-of-control points, the first
warning arising at sample 10. The hybrid version, however, marked 4
points beyond the limit, catching its earliest signal at sample 1. These
figures imply that the hybrid scheme reacts faster when a shift or
unusual trend appears. The two charts agreed on 2 points, yet the
hybrid flagged 2 extra alarms that the classic method missed. This
overlap, plus the additional detections, underlines the superior
warning capability built into the new design.

For control limits, the standard X chart sets an upper limit of
157.25bpm and a lower limit of 130.67 bpm, giving a full width of
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FIGURE 9
Classical and hybrid DWS X charts for real data.

TABLE 5 Comparison of performance metrics between the classical and hybrid DWS X charts for monitoring newborn heart rate.

Classical X Chart Hybrid DWS X chart
Number of Out-of-Control Points 2 4
First Out-of-Control Point 10 1
Common Detected Points 2 0

UCL and LCL 157.25 and 130.67 154.73 and 129.97
Control Chart Width 26.58 24.76
Frontiers in Applied Mathematics and Statistics 10 frontiersin.org
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26.58 bpm. The Hybrid DWS version, by contrast, adopted marginally
tighter bounds- UCL 154.73 bpm, LCL 129.97 bpm- resulting in a
narrower span of 24.76 bpm and, therefore, closer oversight of the process.

The findings show the Hybrid DWS X Chart spots small shifts in
newborn heart rates faster than older methods, making it a handy tool
for catching problems early and helping doctors act.

3.3 Comparison with other advanced
control charts

The present study was designed to evaluate the performance of the
proposed DWS-X chart specifically against the traditional Shewhart
X chart, as the latter represents the most widely used baseline in
statistical process control. More advanced methods, such as CUSUM,
EWMA, and other hybrid control charts, are well established in the
literature and are known to enhance sensitivity to small or gradual
shifts. However, direct benchmarking with these approaches was
beyond the scope of the current study and is left as an avenue for
future research. Future work will extend the comparative evaluation
of the DWS-X chart by incorporating advanced methods under
identical simulation settings, thereby providing a more comprehensive
validation of its effectiveness.

3.4 Limitations

3.4.1 Limitations of the proposed approach

While the proposed DWS-X chart demonstrates superior
detection performance compared to the traditional X chart, some
inherent limitations must be acknowledged. First, the effectiveness of
the method depends on the choice of wavelet family and
decomposition level, which may influence sensitivity to different types
of process shifts. Second, the classification accuracy of the SVM is
strongly dependent on parameter tuning (e.g., C and y for the RBF
kernel), and inappropriate settings could reduce robustness. Finally,
the study compares the proposed chart only with the classical X chart.
Although this establishes a baseline, a broader comparison with
advanced control charting methods (e.g., CUSUM, EWMA, or robust
charts) would provide a more comprehensive validation.

Moreover, the current simulation study was restricted to scenarios
with outlier proportions of 5-15% and process variability levels of 6= 1
and ¢ = 2. The performance of the proposed DWS-X chart under more
challenging conditions, such as very low contamination levels (outliers <
2%) or lower process variability (6 < 0.5), was not explicitly investigated.
Although it is expected that the hybrid design would still maintain a
higher detection capability than the classical chart due to the wavelet—
SVM integration, this remains to be validated. Future research will extend
the simulation framework to encompass these extreme conditions,
thereby confirming the robustness of the proposed approach.

3.4.2 Limitations in real data application

The real data validation conducted in this study was based on a
relatively small dataset of 100 neonatal observations. While the
proposed DWS-X chart demonstrated improved detection capability
over the traditional X chart, the limited sample size restricts the
generalizability of the results. Future research should incorporate
larger and more diverse datasets, either from broader clinical
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populations or from industrial monitoring systems, to provide a
stronger empirical validation of the proposed method.

Some simulation figures (e.g., Figures 3-7) illustrate similar
performance patterns across different subgroup sizes. To improve
clarity and reduce redundancy, these figures could be consolidated or
partially replaced with summary tables in future work, while
preserving the key insights on DR, FAR, and ARL.

4 Conclusion

The study yielded two sets of conclusions: one based on simulation
experiments, confirming the superior performance of the proposed
Hybrid DWS-X chart under various outlier scenarios, and another
derived from real neonatal heart rate data, highlighting the chart’s
enhanced faster clinical

sensitivity  and response  in

monitoring applications.

4.1 Conclusions from simulation
experiments

1. The proposed hybrid DWS-X chart consistently demonstrated
superior performance over the classical X chart in all
simulated scenarios.

2. Tt achieved notably higher detection rates, consistently
exceeding 96% even under challenging conditions, while the
classical chart's DR remained comparatively low, often
below 25%.

3. The hybrid chart maintained a substantially lower FAR
compared to the classical chart.

4. In most cases, the DWS-X chart recorded FAR values below 1%
when variability and outlier contamination were moderate and
remained within acceptable limits (5-6%) even in high-
variance, high-outlier environments. In contrast, the classical
chart frequently showed FAR rates above 10%, and sometimes
exceeding 23%.

5. Average Run Length analysis confirmed the faster detection
capability of the hybrid chart.

6. The DWS-X chart achieved consistently lower ARL values,
typically ranging from 1.6 to 5.1, while the classical chart’s ARL
increased progressively with subgroup size and number of
samples, sometimes reaching values over 31, indicating
slower responsiveness.

7. Increasing the sample size (n) improved the performance of
both charts, but the hybrid chart benefited more significantly.

8. Larger sample sizes enhanced the DR and slightly widened
control limits for the hybrid chart, contributing to better
detection of out-of-control conditions without notably raising
the FAR.

9. Even with higher process variability (6 =2) and a larger
percentage of outliers (10%), the FAR of the hybrid chart was
still higher, although it remained better than the other chart.

10. Even so, DWS-X control charts showed significantly lower false
alarm rate than classical control charts while achieving high
detection efficiency.

11. The hybrid DWS-X chart superiority in all process conditions
demonstrates its robustness and flexibility.

frontiersin.org


https://doi.org/10.3389/fams.2025.1682448
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Aliet al.

12. Tt is useful in industrial process monitoring due to its high
efficiency in processes with non-normal data, where it achieves
good results in detecting online changes to the process while
keeping false alarms low.

4.2 Conclusions from the real data analysis

1. There were two out-of-control points in the classical X chart:
sample 10 and sample 16, out of 20 subgroups. The hybrid
DWS-X plot presented samples 1, 2, 10, and 16 as being out-of-
control, thus being more sensitive at identifying out-of-
control conditions.

2. Though the first out-of-control signal was observed in sample
10 of the classical X chart, the hybrid chart signaled in sample
01, indicating an early detection of a possible process shift.

3. Both charts agreed on two points (samples 10 and 16), but the
hybrid chart captured two additional signals missing from the
classical chart.

4. The control limits in the hybrid DWS-X chart were narrower
(UCL =154.73 bpm, LCL =129.97 bpm) compared to the
classical-X chart (UCL = 157.25 bpm, LCL = 130.67 bpm),
resulting in tighter process monitoring.

5. The control chart width was reduced in the hybrid chart
(24.76 bpm) relative to the classical chart (26.58 bpm),
contributing to improved detection accuracy without
increasing false alarms.

6. These outcomes demonstrate that integrating wavelet
decomposition with SVM classification enhances early
detection of abnormal heart rate patterns in
neonatal monitoring.

7. The proposed hybrid control chart offers a practical and reliable
decision-support tool for clinical settings, enabling faster
identification of at-risk cases and supporting timely
medical interventions.
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