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Replacement of fish oil with a
high-DHA algal oil in a fishmeal-
free diet fed to Florida pompano
(Trachinotus carolinus)

Marty Riche1*, Frederic T. Barrows2, Zachary Nilles1,
Sahar Mejri1, Kelly Campbell3 and Paul S. Wills1

1Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States,
2Aquatic Feed Technologies, Islamorada, FL, United States, 3Anthropocene Institute, Palo Alto,
CA, United States
A 12-week growth trial was conducted to evaluate the complete co-

replacement of fish meal (FM) and fish oil (FO) in juvenile Florida pompano

(Trachinotus carolinus) diets. Five open-formula experimental diets were

formulated as iso-nitrogenous (approximately 46% crude protein) and iso-

lipidic (approximately 15% crude lipid). It is assumed that Florida pompano lack

the mechanisms for synthesizing sufficient LC-PUFA. In the FM/FO-free diets, to

meet the necessary dietary intake of LC-PUFA, a commercially available

Schizochytrium algal oil was used. Four diets were prepared from a basal mix,

with spirulina and poultry by-product meal as the principal protein sources. They

differed only in their oil source, containing fish oil (FO), algal oil (AO), soy oil (SO),

or a 50/50 blend of algal oil and soy oil (A/S). The fifth experimental diet (control)

was a standard open-formula FM diet. In addition to the experimental diets, two

commercial closed-formula diets served as references. The seven diets, each

with four replicates, were stocked with 20 Florida pompano (approximately 4 g)

in each. The experimental open-formula diets were tested against the control

using Dunnett’s t-test, and different oil sources were tested against each other

using orthogonal contrasts. The four experimental diets were each tested against

the two reference diets with equivalency tests. Feed intake and survival were not

different between the experimental diets and control. However, all production

metrics were lower in the SO diet than the control. No other differences were

observed between the FO, AO, and A/S diets and the control, or between the

three diets. The feed conversion ratio (FCR) was higher in fish fed the SO diet than

in fish fed the control diet, and no other differences were found. The protein

efficiency ratio (PER) was higher in fish fed the control diet than in fish fed the

experimental diets. Protein productive values (PPV) were similar to PER, except

that the PPV in fish fed the AO diet was not different from the control. The

contrasts revealed that the FO, AO, and A/S diets resulted in a lower FCR than the

SO diet. The PER was higher in fish fed the AO diet, and lower in fish fed the SO

diet. The PPV was higher in fish fed the AO diet than in fish fed the A/S and SO

diets, but similar to that of fish fed the FO diet. There were striking differences in

performance between the two commercial reference feeds, underscoring the

importance of using well-defined open-formula diets as a reference or control.
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To our knowledge this is the first study to demonstrate that co-replacement of

FM and FO can be achieved in Florida pompano by supplying an FM- and FO-free

diet. The development of successful open-formula diets without FO will help

spur innovation and sustainability in aquaculture production.
KEYWORDS

DHA, EPA, Florida pompano, microalgae, open-formula, fish-meal free,
Trachinotus carolinus
1 Introduction

Global human dependence on aquaculture products continues

to increase (Froehlich et al., 2018; FAO, 2020). Concomitantly,

there has been a marked increase in aquafeed utilization to enhance

both the quantity and the quality of farm-raised products.

Aquaculture feeds for marine fish typically utilize fish meal (FM)

and fish oil (FO) as the primary nutritive ingredients. Despite

improvements in feed conversion ratios and reductions in dietary

inclusion rates, due to the increasing growth of the aquaculture

sector, demand has increased (Naylor et al., 2009). However, FM

and FO are regarded as expensive and unsustainable at their current

and projected rate of usage (Tacon and Metian, 2008). In addition,

the nutritional benefits of fish oil may be diminished by

contaminants found in wild-caught fish (Hong et al., 2015).

Therefore, there is substantial interest in developing and

discovering alternatives to their use (Gatlin et al., 2007; Rust

et al., 2011; Froehlich et al., 2018).

Fish feed manufacturers are turning to a diverse array of

alternative feedstuffs of plant, animal, and microbial origin, each

with inherent characteristics and limitations (Bureau, 2015). These

alternatives to FM and FO are complex and require further

investigation to determine their nutritional value, productivity,

and profitability (Gatlin et al., 2007; Glencross et al., 2007).

The transition away from FM and FO requires accurate

information on the nutritive value of prospective alternatives

(Gatlin et al., 2007; NRC, 2011) and nutritional requirements of

the fed species (McLean et al., 2022). Availability, ease of use,

relative animal safety, and nutritional value relative to cost are the

drivers that affect the extent to which new and underutilized

ingredients will be used (NRC, 2011; Glencross et al., 2020).

Accurate assessment of the nutritional value of these ingredients

is essential for the formulation of cost-effective feeds with reduced

levels of FM and FO (Bureau, 2015).

Feeds typically represent the highest variable cost in aquaculture

production (Naylor et al., 2009). Economics and sustainability

therefore create a fiscal imperative to understand the interactions

of nutrients and their utilization by the fish. Alternatives to FM and

FO that provide an economic advantage without affecting health,

wellness, and performance are generally accepted as viable

alternatives (Rust et al., 2011). Improved animal feeding, animal

health and welfare, product quality, and food safety are directly
02
correlated with efficiency, productivity, and profitability (NRC,

1995; Pickova and Mørkøre, 2007).

Completely fish-free diets have proven to be a challenge for

many carnivorous marine finfish. While a reduction of dietary FM

has been demonstrated in a number of species, complete FO

replacement continues to present a greater challenge (NRC,

2011). It is well accepted that most carnivorous marine fish

require long-chain polyunsaturated fatty acids (LC-PUFAs), such

as docosahexaenoic acid (22:6 n-3, DHA) and eicosapentaenoic acid

(20:5 n-3, EPA), in their diets (Tocher, 2003). The requirements are

generally met through the utilization of FO and the residual oil

associated with FM products. Plant seed oils or terrestrial vegetable

oils (VOs) such as soybean, canola/rapeseed, palm, linseed (flax),

corn, and olive oil, and poultry oil and beef tallow, are generally

deficient in the LC-PUFAs required by marine carnivores

(Mourente et al., 2005; Trushenski and Lochman, 2009; Bowzer

et al., 2016). These LC-PUFAs are desirable in the final end product

(Miller et al., 2011).

An alternative for meeting LC-PUFA requirements is

microalgae and other single-cell organisms (SCOs). There is

increasing interest in utilizing microalgal oils and/or biomass as

partial replacements in aquafeeds. Both heterotrophic and

autotrophic organisms have received attention, although, due to

their nutritional quality heterotrophic microalgae, are thought to be

more promising than other autotrophic organisms (Shah et al.,

2018). Due to its compositional profile, the heterotrophic

microalgae Schizochytrium sp. is of particular interest (Lewis

et al., 1999; Miller et al., 2007).

It has been demonstrated that lipid-rich microalgae, including

Schizochytrium, can supplement or replace FO in aquafeeds (Qiao

et al., 2014; Kousoulaki et al., 2015; Bélanger-Lamonde et al., 2018;

Seong et al., 2019). Schizochytrium oil/biomass is a rich source of

LC-PUFA, with particularly high levels of DHA (Lippmeier et al.,

2009; Ren et al., 2010; Shah et al., 2018). Moreover, the utilization of

SCO as an FO substitute reduces the risk of exposure to persistent

organic pollutants sometimes associated with FO (Drew et al., 2007;

Bélanger-Lamonde et al., 2018). In addition, algal oil from

Schizochytrium sp. is one of only seven algae-based products that

carries the generally regarded as safe (GRAS) status as an animal

feed ingredient (Shah et al., 2018).

It is assumed that Florida pompano, like other carnivorous

marine finfish, lack the mechanisms for synthesizing sufficient LC-
frontiersin.org
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PUFA to meet their metabolic needs (Sargent et al., 2002;

Rombenso et al., 2016). There is evidence to suggest that they

have a dietary requirement for LC-PUFA (Jackson et al., 2020),

although this has not yet been verified. Nevertheless, there is

evidence that LC-PUFA residuals from FM-based products can

contribute substantially to these dietary requirements (Miller et al.,

2007). In this context, it is important to understand the benefits of

microalgal contributions to meeting these requirements in an FM-

free diet, and to understand whether or not feeding Florida

pompano a diet free of both FM and FO is technically feasible

without adversely affecting performance.

The objectives of this study were to:

evaluate FM-free basal diets, varying only in oil sources, relative

to a FM/FO open-formula control diet, with the conditions

H0 : FM − free   =   FM − based(control)

HA : FM − free   ≠ FM − based(control);

evaluate a high-DHA microalgal oil relative to fish oil, with the

conditions

H0 : FM − free(algal oil) =   FM − free(fish oil)

HA : FM − free(algal oil) ≠   FM − free(fish oil); and

evaluate the experimental basal diets relative to two commercial

closed-formula reference feeds, with the conditions

H0 : q ≤   qL or q ≥   qU

HA : qL <   q < qU

where qL and qU represent the lower and upper bounds of the

equivalence interval of the two CF diets, respectively (Wachs, 2015).

Under this scenario, the question is not if the diets are different, but

if they are similar enough in their response (Ialongo, 2017) to

evaluate their suitability relative to commercial diets that contain

both FM and FO. This third objective should be viewed in the

framework of empirical discovery for directing future studies

(Kerr, 1998).
2 Materials and methods

2.1 Fish and experimental system

Florida pompano juveniles were commercially spawned and

weaned on to a commercially prepared larval diet (Proaquatix, Vero

Beach, FL). At approximately 4 g, juveniles were then transported to

Florida Atlantic University’s Harbor Branch Oceanographic

Institute (HBOI), Fort Pierce, FL. Fish handling and experimental

procedures followed all guidelines regarding animal care in the

Public Health Service (PHS) policy on the Humane Care and Use of

Animals and was approved by Florida Atlantic University’s

Institutional Animal Care and Use Committee (protocol A-19-07).

An 8,750-L experimental recirculating system (RAS) with

associated filtration, temperature control, and ultraviolet (UV)
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sterilization was used. Filtration included a 6-ft3 bubble-washed

bead filter, for both solids and biofiltration, and a 60-gpm foam

fractionator for fine particulates. Culture water on the continuous

loop was treated with 30,000 μw-cm–2·−1·sec–1 of 256-nm UV

exposure. A 5-ton heat pump with a titanium heat exchanger

provided temperature control within 1°C.
2.2 Water quality

Dissolved oxygen (DO), salinity, temperature, and pH were

measured (YSI, Yellow Springs, OH). Dissolved oxygen and

temperature were measured twice per day (YSI Pro ODO).

Salinity (YSI Pro30) and pH (YSI Pro 10) were measured once

per day. Ammonia, nitrite, and nitrate were measured using a

HACH DR2800 spectrophotometer (HACH Company, Loveland,

CO). Total ammonia nitrogen (TAN; HACH method 8155) and

Nitrite-NO2 (HACH method 8507) were measured three times per

week. Nitrate-NO3 (HACH method 8171) was measured weekly.

Alkalinity was also measured three times per week using a HACH

digital titrator with bromcresol green-methyl red indicator (HACH

method 8203).
2.3 Experimental diets

Five open-formula experimental diets were formulated as iso-

nitrogenous (46% CP) and iso-lipidic (15% CL), meeting the

optimal levels for Florida pompano (Riche, 2009). The control

diet was a Feed Innovation Network (https://f3fin.org/) standard

open-formula FM diet. It contained FM and FO and was formulated

to contain ingredients common in commercial feeds (Table 1).

Four diets (basal formulation) were formulated as FM free with

spirulina, poultry by-productmeal, and corn protein concentrate as the

principal protein sources. To maximize the effect of AO substitution

for FO, the four experimental diets varied only in lipid source and did

not contain FM. The four basal formulations contained either fish oil

(FO), algal oil (AO), soy oil (SO), or an algal and soy oil blend (A/S).

The FO diet did not contain FM but did contain FO, and this diet has

been shown to be effective with California yellowtail (Seriola dorsalis)

(Drawbridge et al., unpublished).

The algal oil was a commercially available liquid product

extracted from the whole-cell, heterotrophic microalgae

Schizochytrium sp. (Veramaris®, Blair, NE). The AO diet

contained only algal oil and the SO diet contained only soy oil

and served as a negative control. The A/S diet was a 50/50 mix of

algal oil and soy oil evaluated to determine if the very high levels of

DHA found in the AO are necessary to maintain health and

performance (Table 1) and ultimately reduce feed costs. Oil

supplements were incorporated at 10.8% of the dry diet.

Experimental diets were manufactured by cooking extrusion at

Prairie AquaTech (Brookings, SD) using standard commercial

operating temperatures and pressure to produce a sinking feed. A

portion of the liquid oil was top-coated on the feed after drying. The

feeds were stored in plastic-lined paper bags, shipped to HBOI, and

stored in a temperature- and humidity-controlled environment.
frontiersin.org
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In addition, two commercially produced closed-formula diets

labeled CF1 and CF2 were included in the trial as reference diets to

examine the potential equivalency of the four FM-free diets to

existing commercial products. These two reference diets were

selected because they are frequently fed to Florida pompano in

production systems (Riche, personal communication). The

proximate, essential amino acid (EAA), and fatty acid (FA)

analyses of the seven diets are given in Tables 2–4, respectively.
2.4 Experimental design and sampling

A completely randomized design was employed with the seven

diets (treatments) as the fixed factor effect. Subsequent to stocking,

the seven diets were randomly assigned to tanks. All treatments
Frontiers in Aquaculture 04
were run with four replicates. For statistical purposes, each tank of

fish represented an experimental unit (n = 4).

The fish were stocked into twenty-eight 80-L tanks in the RAS on

the day of delivery to HBOI. Each tank was stocked with 20 Florida

pompano with a mean weight of 4.1 ± 1.6 g, mean total length (TL) of

6.2 ± 1.1 cm, and mean condition factor (K) of 1.6 ± 0.1.

Fish in each tank were fed, by hand, their respective diet ad

libitum to apparent satiation up to a maximum of 5% of their body

weight per day (BW/D). Feed was offered four times per day between

8:00 a.m. and 4:00 p.m. Eachweek, fish in one randomly selected tank

from each treatment were bulk weighed to adjust the maximum feed

rates (5%). Feed intake (FI) was weighed and recorded daily. There

were no uneaten pellets observed or recovered.

The photoperiod (L:D) was set to 12 h light:12 h dark using a

system of lights with intensity ramping up in the morning and
TABLE 1 Formulations of experimental diets fed to Florida pompano (Trachinotus carolinus) during a 12-week comparative growth trial.

Ingredient (g/100g diet)

Diet formula (g/100 g)

FO AO SO A/S Control CF1 CF2

Menhaden meal1 – – – – 20.49 – –

Spirulina2 30.00 30.00 30.00 30.00 – – –

Poultry by-product meal, pet food grade3 23.12 23.12 23.12 23.12 18.32 – –

Soy protein concentrate, Profine VF4 – – – – 14.23 – –

Soybean meal, solvent extracted5 – – – – 13.23 – –

Corn protein concentrate, E756 7.14 7.14 7.14 7.14 – – –

Wheat flour7 16.75 16.75 16.75 16.75 18.65 – –

Veramaris® algae oil8 – 10.80 – 5.40 – – –

Soybean oil – – 10.80 5.40 – – –

Fish oil, menhaden9 10.80 – – – 9.12 – –

Dicalcium phosphate 4.16 4.16 4.16 4.16 – – –

Mono-dicalcium phosphate – – – – 2.96 – –

Vitamin premix ARS 70210 1.50 1.50 1.50 1.50 1.00 – –

Lysine-HCL 2.68 2.68 2.68 2.68 0.65 – –

Choline CL 0.60 0.60 0.60 0.60 0.60 – –

DL-methionine 0.64 0.64 0.64 0.64 0.40 – –

Stay-C11 0.20 0.20 0.20 0.20 0.20 – –

Trace mineral premix ARS 152010 0.10 0.10 0.10 0.10 0.10 – –

Taurine 2.00 2.00 2.00 2.00 – – –

Threonine 0.31 0.31 0.31 0.31 0.05 – –
frontier
CF1 and CF2 diets were commercially produced closed-formula diets.
1 Omega Protein Corp., Hammond, Louisiana, USA.
2 Earthrise Nutritional Products, LLC, Irvine, California.
3 Poultry by-product meal (pet food grade), Tyson Foods, Inc., Rogers, Arkansas.
4 The Solae Company, St. Louis, Missouri.
5 Archer Daniels Midland, Decatur, Illinois.
6 Cargill, Inc., Minneapolis, Minnesota.
7 Manildra Milling, Leawood, Kansas.
8 Veramaris®, Blair, Nebraska.
9 Bio-Oregon Proteins, Newport, Oregon.
9 Omega Proteins, Reedville, Virginia.
10 Davidson et al. (2016).
11 DSM Nutritional Products, Basel, Switzerland.
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down in the evening over a 30-min period. The water temperature

was maintained at 28 ± 1°C (27.2–28.5°C).

At stocking, a randomly selected sample of 15 juveniles from the

total population used to stock the experiment was euthanized with

MS-222 (Western Chemical, Ferndale, WA) at 300 mg/L. Individual

euthanized fish were weighed to the nearest 0.1 g, had their TL

(mm) measured, and were stored at –80°C for proximate and

micronutrient analysis. The experiment lasted 85 days. At

termination of the study all remaining fish were counted,

weighed, and had their TL measured. A subsample of 8–10

arbitrarily selected animals from each replicate tank were

euthanized, pooled by tank, and stored at –80°C for subsequent

compositional analysis.
Frontiers in Aquaculture 05
2.5 Whole-body composition and
nutritional indices

The pooled fish samples were ground, freeze dried, and

pulverized prior to shipping to the University of Missouri (UM).

The diets, which had previously been stored at –20°C, were shipped

as fed.

All analytical procedures were conducted by the UM

Experiment Station Chemical Labs (Columbia, MO) and followed

AOAC (2006) methods. Nitrogen (N) was determined using a

LECO analyzer (AOAC Method 990.03) and crude protein (CP)

was calculated as N × 6.25. Crude lipid (CL) in the fish tissue was

determined by AOAC Method 920.39, and CL in the feeds by
TABLE 3 Amino acid (AA) composition (% dry diet) of experimental diets fed to Florida pompano (Trachinotus carolinus) during a 12-week
comparative growth trial.

Amino acids FO AO SO A/S Control CF1 CF2

Essential AA (EAA)a

Arginine 2.68 2.56 2.62 2.70 2.84 2.97 2.90

Cysteine 0.50 0.52 0.48 0.50 0.51 0.54 0.56

Histidine 0.83 0.91 0.84 0.84 1.01 1.33 1.26

Isoleucine 2.01 1.88 1.93 2.03 1.80 1.88 2.15

Leucine 3.81 3.76 3.63 3.82 3.04 3.96 3.84

Lysine 4.08 4.02 4.02 4.15 3.35 3.28 3.72

Methionine 1.42 1.39 1.41 1.45 1.20 1.03 1.33

Phenylalanine 1.95 1.96 1.88 1.96 1.85 2.17 2.17

Taurine 2.11 1.80 1.93 2.11 0.29 0.40 0.50

Threonine 1.99 1.86 1.91 2.02 1.65 1.85 2.05

Tryptophan 0.46 0.50 0.44 0.46 0.52 0.44 0.57

Valine 2.34 2.23 2.27 2.36 2.06 2.55 2.61

S EAA 24.18 23.39 23.36 24.40 20.12 22.40 23.66

S non-essential AA (NEAA) 22.21 22.27 21.79 22.47 21.92 25.49 25.39

Total AA (EAA + NEAA) 46.39 45.66 45.15 46.87 42.04 47.89 49.05
fr
aEssential amino acids + cysteine + phenylalanine + taurine.
TABLE 2 Proximate analysis (dry matter basis) of experimental diets fed to Florida pompano (Trachinotus carolinus) during a 12-week comparative
growth trial.

Proximate analysis (g/100 g diet)

Dietary component FO AO SO A/S Control CF1 CF2

Dry matter (DM) 96.80 95.87 93.19 96.17 96.62 93.15 92.53

Moisture 3.20 4.13 3.83 3.38 5.33 6.85 7.47

Crude protein 48.41 47.55 47.62 49.27 44.68 50.97 52.63

Crude fat 14.24 14.12 14.40 12.75 12.78 12.46 14.56

Crude fiber 0.94 1.68 1.02 0.96 2.47 1.59 0.44

Ash 10.00 9.78 9.77 10.18 10.72 11.58 10.55
ontiersin.org
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AOAC Method 954.02. Moisture was determined following drying

at 95–100°C under vacuum (AOAC Method 934.01). Ash was

determined gravimetrically following ignition at 600°C for 2 h

(AOAC 942.05). Crude fiber was determined following the

procedures of AOAC Method 978.10. Amino acids were

determined following AOAC Method 982.30 E(a,b,c) and

complete fatty acid profiles using AOAC Method 996.06

(AOAC, 2006).

Production metrics evaluated comprised the following:
Fron
• weight gain (WG) = Wt(final) – Wt(initial) × 100 (%),

• specific growth rate (SGR) = (ln Wt(final) – ln Wt(initial)/t) ×

100%,

• biological feed conversion ratio (bFCR) = FI/WG + Wt

(mortalities),

• economic feed conversion ratio (eFCR) = FI/WG,

• crude protein intake (CPI) = FI × CP(feed),

• protein efficiency ratio (PER) = WG/CPI,
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• protein productive value (PPV) = [(CP(feed) – CP(intake))/

CPI)] × 100%,

• protein productive value (PPV) = [(Wt(final) × CP(final)) –

(Wt(initial) × CP(initial))]/CPI × 100%, and

• Fulton’s condition factor (K) = Wt (g)/TL3 (cm) × 100

(Ricker, 1975),
where
• Wt(final) = final body weight (g),

• Wt(initial) = initial body weight (g),

• Wt(mortalities) = weight of mortalities (g),

• t = experimental duration (days),

• FI = feed intake (g dry weight),

• CP(feed) = crude protein proportion of feed (g dry weight),

• CPI = crude protein intake (g dry weight),

• CP(initial) = initial crude protein in the fish (g dry weight), and

• CP(final) = final crude protein in the fish (g dry weight).
TABLE 4 Fatty-acid composition (g/100 g diet) of experimental diets fed to Florida pompano (Trachinotus carolinus) during a 12-week comparative
growth trial.

Fatty acids FO AO SO A/S Control CF1 CF2

14:0 11.89 11.88 2.47 12.90 18.38 5.78 6.96

16:0 27.14 23.91 25.23 36.86 26.86 23.52 15.53

18:0 2.97 2.65 3.30 2.19 2.62 4.13 2.62

S saturated fatty acids 42.00 38.44 31.00 51.95 47.86 33.43 25.11

16:1 12.34 10.35 3.63 8.47 14.27 7.71 7.26

18:1 12.39 12.18 16.36 8.88 11.05 18.65 11.71

20:1 n-9 0.60 0.41 0.35 0.29 0.51 2.74 9.89

S monoenoic fatty acids 25.33 22.94 20.34 17.64 25.83 29.10 28.86

18:2 n-6 8.48 8.68 33.19 7.56 7.94 17.64 5.00

18:3 n-6 1.83 0.90 1.30 1.69 0.20 0.12 0.13

20:3 n-6 ND ND ND ND ND ND ND

20:4 n-6 0.48 0.37 0.16 0.42 0.37 0.49 0.40

S n-6 polyunsaturated fatty acids 10.79 9.95 34.65 9.67 8.51 18.25 5.53

18:3 n-3 1.01 1.33 4.27 0.68 1.26 2.16 1.17

18:4 n-3 1.36 0.96 0.11 0.55 1.34 1.20 3.28

20:4 n-3 ND ND ND ND ND ND ND

20:5 n-3 4.48 2.80 0.31 2.97 3.34 3.75 8.24

22:5 n-3 0.38 0.17 0.00 0.35 0.24 0.32 0.67

22:6 n-3 1.25 0.64 0.17 0.31 1.00 1.90 6.41

S n-3 polyunsaturated fatty acids 8.48 5.90 4.86 7.56 7.18 9.33 19.77

EPA + DHA 5.73 3.44 0.48 3.28 4.34 5.65 14.65

DHA/EPA ratio 0.28 0.23 0.55 0.10 0.29 0.51 0.78

n-3/n-6 ratio 0.79 0.59 0.14 0.78 0.84 0.51 3.58

ARA/EPA ratio 0.11 0.13 0.52 0.14 0.11 0.13 0.05
fr
ND, not detected.
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2.6 Fatty acid analysis in juveniles

Frozen juvenile samples were placed on ice and thawed to room

temperature to reduce and avoid lipid degradation by hydrolysis or

oxidation of carbon–carbon double bonds. Dichloromethane

solvent, an organic lipid solvent, was immediately added

(Couturier et al., 2020). Lipids were extracted using the methods

described by Folch et al. (1957) and modified by Parrish (1999). The

resulting extracts were methylated using methods described by

Lepage and Roy (1984) to produce fatty acid methyl esters

(FAMEs) for analysis with gas chromatography–mass

spectrometry (GC–MS). Samples were then analyzed on a Clarus

680/600 T GC-MS (Perkin-Elmer, Waltham, Mass., USA) using a

30-m Thermo Fisher TR-5 general purpose column with a 250-μm

diameter. Samples were individually injected into the column (using

an 82-vial autosampler) at a volume of 1.0 μL, heated to 250°C, and

held at this temperature for 10 min. Different FAs detected were

compared with a 37-component FAME standard (Supelco 37

FAME Mix, Millipore Sigma, Burlington, Mass., USA) with

known concentrations for quantification purposes.
2.7 Statistical analysis

All efficiency parameters and production metrics for the four non-

fishmeal experimental diets (FO, AO, SO, and A/S) and the control

were subjected to a one-way ANOVA using the general linear model

procedure of SAS version 9.4 (SAS Institute, Cary, NC). Parametric

assumptions were tested using the Shapiro–Wilks test for normality

and Levene’s test for homogeneity of variance. A temporary loss of

water flow during routine biofilter maintenance resulted in low DO,

leading to mortality in one replicate tank each in the FO and control

treatments. Therefore, the results for the FO and control diets were

based on three replicates for the parameters survival, final weight, and

condition factor. Data analysis on these parameters was corrected for

unequal sample size. Means for the non-fishmeal diets were tested

against the control diet using Dunnett’s t-test. Pairwise orthogonal

contrasts were used to evaluate differences between experimental diets

with different oil sources. Significance was reported at p ≤ 0.05 unless

otherwise reported. Permutational analysis of variance

(PERMANOVA with 9,999 permutations), including an a posteriori

pairwise comparison, was performed on the fatty acid profiles in

juveniles. Each PERMANOVA was tested with one factor: diet (FO,

AO, SO, A/S, and control). Assumptions of multivariate

homoscedasticity were verified with a PERMDISP test, and data

were transformed (arcsine square root) when necessary. Analyses

were run using a Bray–Curtis similarity matrix with PRIMER 7 (v.

7.1.12) and PERMANOVA+ (v.1.0.2).

To determine the relative efficacy of the non-FM (basal) diets

relative to the two closed-formula commercial diets, the parameters

weight gain and FCR were evaluated. Two one-sided t-tests (TOST)

of equivalence were performed for each of the four non-fishmeal-

based diets against CF1, and again against CF2 (Schuirmann, 1987;

Lakens, 2017), where the closed-formula diets served as the

reference. It was assumed that the maximum acceptable decrease

in performance that could potentially be overcome by cost
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reduction in feed production was 10%. Therefore, the equivalence

limits (qL, qU) for CF1 and CF2 were set to 0.10, defining the

equivalence interval around the means. The confidence interval (CI)

was set as a = 0.05. Data analysis was performed using the XLSTAT

(version 2021.1) add-in for Microsoft Excel.
3 Results

Dissolved oxygen was at 100% saturation or slightly higher, and

never fell below 80%. Salinity ranged from 33 to 36 ppt (x = 34.4)

and pH from 7.24 to 8.25 (x = 7.75). Temperature ranged from 27.2

to 29.4°C (x = 28.5°C). All were within nominal limits considered

acceptable for Florida pompano. Nitrite levels of 0.012–0.167 mg/L

and TAN levels of 0–0.20 mg/L were within acceptable limits for

Florida pompano (Weirich and Riche, 2006).

The macronutrients (proximate analysis) of the experimental

diets and commercial diets are given in Table 2. The data suggest

that the commercial diets (CF1 and CF2) were slightly higher in CP

and the control diet was slightly lower in CP than the experimental

diets. All diets were fairly similar in their essential amino acid

(EAA) composition and balance, with the exception of methionine

levels in CF1, which were approximately 20%–40% lower than in

the other diets (Table 3). Conversely, the level of taurine was higher

in the experimental diets than in the control and the

commercial diets.

Fatty acid compositions of the experimental diets are given in

Table 4. The SO diet had less 14:0 than the other experimental diets,

resulting in lower total saturated fatty acids (SFAs). Although 16:1

was also lower in the SO diet, the overall levels of monounsaturated

fatty acids (MUFAs) were similar across the experimental diets.

Both linoleic acid (18:2 n-6, LA) and linolenic acid (18:3 n-3, LNA)

levels were also higher in the SO diet than the other diets. This

resulted in a higher total n-6 PUFA concentration in this diet

relative to the other diets. Despite the higher concentration of LNA

in the soy diet, the total n-3 PUFA concentration was slightly lower

than in the other experimental diets. In conjunction with the higher

LNA concentration in the SO diet, the concentrations of the

essential fatty acids (EFAs) DHA and EPA were considerably

lower than the concentration of arachidonic acid (ARA) was less

than half of that in the rest of the diets.

Multivariate analysis, i.e., PERMANOVA, showed that fatty

acid profiles in juvenile fish varied significantly according to diet

(pseudo-F(4, 19) = 9.19, p = 0.001).

Overall, MUFAs and PUFAs made up the largest fraction of the

total fatty acid content. Total MUFA ranged from 34% of total FA

in the A/S treatment to 38% in the control treatment. PUFA relative

percentages were the lowest in the AO treatment and the highest in

the FO and A/S treatments (Table 5).

Fatty acid profiles were similar between the 100% FO and A/S

diets, as shown in the n-MDS figure (Figure 1), where they had

similar FA profiles. Fatty acid profiles from the control, AO, and SO

diets were clustered separately in the n-MDS figure, indicating

completely different profiles. Juveniles receiving the SO treatment

were characterized by higher percentages of 16:0, 18:3 n-3, 18:2 n-6,

and 18: 3 n-6, and the lowest percentages of essential fatty acids
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TABLE 5 Whole-body fatty-acid compositions.

Fatty acids (g/100 g diet) Control FO AO SO A/S

C12:0 0.38 ± 0.06 1.51 ± 0.24 10.86 ± 1.61 2.20 ± 0.41 1.74 ± 0.16

C14:0 3.06 ± 1.08 2.39 ± 0.67 2.55 ± 0.96 5.09 ± 0.64 3.61 ± 1.06

C15:0 2.91 ± 0.28 2.61 ± 0.31 2.32 ± 0.19 1.55 ± 0.25 2.53 ± 0.22

C16:0 2.15 ± 0.22 0.91 ± 0.74 0.96 ± 0.65 3.22 ± 2.19 1.13 ± 0.77

C17:0 2.64 ± 0.21 2.77 ± 0.17 2.29 ± 0.25 2.31 ± 0.27 2.58 ± 0.23

C18:0 2.84 ± 0.61 4.66 ± 2.32 2.35 ± 1.01 4.3 ± 1.55 2.83 ± 1.47

C20:0 2.97 ± 0.06 2.72 ± 0.18 2.45 ± 0.28 2.89 ± 0.51 2.45 ± 0.04

C22:0 2.35 ± 0.16 1.98 ± 0.11 1.69 ± 0.28 2.63 ± 0.60 1.76 ± 0.16

C24:0 1.04 ± 0.19 0.76 ± 0.15 0.69 ± 0.35 0.73 ± 0.26 0.71 ± 0.06

S SFAa 20.83 ± 3.01 20.68 ± 4.95 26.56 ± 5.77 25.40 ± 6.76 19.64 ± 4.24

C16:1 11.23 ± 1.61 9.48 ± 2.17 11.00 ± 2.05 8.61 ± 0.55 9.97 ± 2.33

C17:1 1.14 ± 0.12 0.96 ± 0.18 0.82 ± 0.07 0.82 ± 0.57 1.00 ± 0.23

C18:1 6.97 ± 1.61 6.48 ± 1.69 6.18 ± 1.75 5.68 ± 1.64 7.07 ± 2.39

C18:1 n-9 11.12 ± 4.84 11.86 ± 2.18 13.47 ± 6.09 10.86 ± 3.82 10.61 ± 2.89

C20:1 3.42 ± 0.21 3.10 ± 0.16 3.02 ± 0.12 4.71 ± 0.39 2.95 ± 0.14

C22:1 1.22 ± 0.49 0.91 ± 0.28 0.92 ± 0.18 1.37 ± 1.13 0.70 ± 0.24

C24:1 3.11 ± 0.25 2.69 ± 0.40 2.12 ± 0.40 2.71 ± 0.60 1.95 ± 0.12

S MUFAb 38.56 ± 9.17 35.84 ± 7.10 37.97 ± 10.77 35.02 ± 10.72 34.54 ± 9.32

C18:2 n-6 4.54 ± 0.57 4.41 ± 0.60 3.67 ± 0.95 5.53 ± 2.55 4.54 ± 1.09

C18:3 n-6 0.83 ± 0.16 3.16 ± 0.59 2.63 ± 0.33 4.34 ± 0.30 3.43 ± 0.41

C20:3 n-6 0.94 ± 0.15 2.84 ± 0.24 2.03 ± 0.35 4.14 ± 0.37 3.08 ± 0.38

C20:4 n-6 (ARA) 3.50 ± 0.79 3.14 ± 0.59 2.48 ± 0.31 1.73 ± 0.35 3.86 ± 0.15

S n-6 PUFAc 9.80 ± 1.67 13.55 ± 2.02 10.80 ± 1.94 15.73 ± 3.57 14.91 ± 2.04

C18:3 n-3 3.12 ± 0.71 3.03 ± 0.23 2.54 ± 0.50 3.70 ± 0.30 2.98 ± 0.68

C20:5 n-3 (EPA) 10.63 ± 0.88 9.81 ± 0.63 8.02 ± 1.07 1.36 ± 0.23 8.94 ± 0.77

C22:6 n-3 (DHA) 12.02 ± 1.52 12.75 ± 0.77 9.88 ± 1.09 6.33 ± 0.96 14.93 ± 1.49

C20:2 3.96 ± 0.50 3.48 ± 0.17 3.43 ± 0.17 8.13 ± 1.17 3.45 ± 0.41

C22:2 0.96 ± 0.27 0.84 ± 0.13 0.75 ± 0.22 2.34 ± 0.57 0.59 ± 0.10

S n-3 PUFA 30.68 ± 3.88 29.90 ± 1.92 24.62 ± 3.05 21.87 ± 3.23 30.88 ± 3.45

S Total PUFA 40.49 ± 5.55 43.45 ± 3.94 35.42 ± 4.99 37.60 ± 6.81 45.79 ± 5.48

EPA + DHA 22.64 22.55 17.89 7.69 23.87

DHA/EPA ratio 1.13 1.30 1.23 4.65 1.67

ARA/EPA ratio 0.33 0.32 0.31 1.27 0.43

n-3/n-6 ratio 3.13 2.21 2.28 1.39 2.07
F
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aSum of saturated fatty acids (SFA) C21:0 and C23:0 for which the combined percentages are ≤ 0.5% of total fatty acids.
bSum of monounsaturated fatty acids (MUFA) C14:1 percentages are ≤ 0.5% of total fatty acids.
cSum of polyunsaturated fatty acids (MUFA).
Relative percentages of fatty acids (mean ± SD) in Florida pompano (Trachinotus carolinus) juveniles fed a control diet, 100% fish oil-based diet (FO), algal oil-based diet (AO), 50/50 blend of
algal oil and soy oil-based diet (A/S), and soy oil-based diet (SO) during a 12-week feeding trial.
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EPA, ARA, and DHA compared with other treatments. Conversely,

the control treatment was characterized by higher percentages of

EPA and ARA. The AO treatment samples were mainly rich in

SFAs and MUFAs.
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The mean production metrics (Table 6) indicated that there

were no significant differences in FI or survival between fish

receiving the experimental diets and the control diet. However,

weight gain, SGR, final weight, and final biomass were significantly

lower in the SO-fed fish than in the control-fed fish. Other than a

slightly, but significantly, lower SGR in FO-fed fish than in control-

fed fish, no other significant differences were detected between the

FO-, AO-, and A/S-fed fish and the control-fed fish. The production

performance metrics in fish fed the similarly formulated

experimental diets varying only in their lipid composition (FO,

AO, SO, and A/S) were analyzed in comparison to each

other (Table 6).

Final weight, weight gain, final biomass, and feed intake were

significantly higher in fish fed diets containing FO, AO, or A/S than

in fish fed the diet containing SO. No other differences were

detected between the other three diets for these parameters.

Conversely, SGR was significantly higher in fish fed AO than in

fish fed FO and A/S, and no differences were detected between fish

fed FO and A/S. As with the other performance parameters, SGR in

fish fed SO was lower than in fish fed the other experimental diets.

The mean efficiency parameters are shown in Table 7. Feed

conversion ratio was significantly higher in fish fed SO than in fish

fed the control diet. No other differences were found in FCR

between fish fed the control diet and the other diets. Although

there were no differences in final whole-body protein, the PER was

significantly higher in the control-fed fish than in fish fed the

experimental diets. The results for the PPV were similar to the PER,

except that the PPV in the AO-fed fish was not significantly

different from the PPV in the control-fed fish. The condition
FIGURE 1

Non-metric multidimensional scaling (n-MDS) of the Bray–Curtis
similarity matrix based on the relative abundance of fatty-acid
profiles associated with Florida pompano (Trachinotus carolinus).
Juveniles were fed a control diet (inversed triangles); a 100% fish oil-
based diet (FO; triangles); an algal oil-based diet (AO; filled squares);
a 50/50 blend of algal oil and soy oil-based diet (A/S; empty
squares); and a soy oil-based diet (SO; stars). The n-MDS shows four
main clusters: the first cluster regroups all juvenile samples fed the
SO diet; the second and third clusters regroup juveniles fed the
control and AO diets (inversed triangles and filled squares,
respectively); the fourth cluster regroups juveniles fed the A/S and
FO diets. The arrows’ length and direction represent the fatty acids
responsible for most of the variation.
TABLE 6 Mean (SD) production metrics for Florida pompano (Trachinotus carolinus) fed experimental diets during a 12-week comparative growth trial.

Diet IB (kg/m3) FB (kg/m3) Wt (initial) (g) Wt (final) (g) Wt gain (%) SGR (%/day) Feed intake (g) Survival (%)

Control 1.1 (0.1) 15.4 (2.0) 4.4 (0.4) 64.9 (6.5) 1,143.0 (149.5) 3.11 (0.05) 1,760.3 (169.2) 100.0 (0.0)

FO 1.2 (0.1) 14.6 (0.5) 4.6 (0.2) 59.3 (2.8) 1,077.2 (32.6) 2.99 (0.03)* 1,821.8 (57.5) 98.8 (2.5)

AO 1.1 (0.1) 15.4 (1.2) 4.3 (0.6) 61.8 (4.9) 1,149.4 (85.9) 3.14 (0.07) 1,814.2 (220.3) 100.0 (0.0)

SO 1.0 (0.0) 11.4 (0.6)* 4.2 (0.1) 45.6 (2.4)* 827.8 (47.4)* 2.81 (0.07)* 1,547.5 (19.1) 100.0 (0.0)

A/S 1.1 (0.1) 14.6 (0.9) 4.5 (0.4) 59.5 (5.3) 1,077.7 (63.5) 3.01 (0.05) 1,778.6 (138.4) 98.8 (2.5)

p-value 0.473 0.001 0.473 < 0.001 < 0.001 < 0.001 0.082 0.573

CF1 1.1 (0.0) 19.4 (1.0) 4.4 (0.2) 77.7 (4.0) 1,467.1 (80.8) 3.39 (0.08) 2,131.5 (81.0) 100.0 (0.0)

CF2 1.1 (0.1) 13.3 (0.9) 4.4 (0.4) 53.8 (2.6) 975.1 (72.6) 2.92 (0.10) 1,740.8 (149.1) 98.8 (2.5)

Orthogonal contrasts

FO vs. AO 0.248 0.367 0.248 0.453 0.255 0.002 0.941 0.281

FO vs. SO 0.110 0.001 0.110 < 0.001 0.001 < 0.001 0.015 0.281

FO vs. A/S 0.746 0.977 0.746 0.952 0.995 0.504 0.672 1.000

AO vs. SO 0.625 < 0.001 0.625 < 0.001 < 0.001 < 0.001 0.018 1.000

AO vs. A/S 0.397 0.382 0.397 0.489 0.255 0.006 0.727 0.281

SO vs. A/S 0.191 0.001 0.191 < 0.001 < 0.001 < 0.001 0.036 0.281
IB, initial body weight; FB, final body weight; Wt, weight; SGR, specific growth rate.
Asterisks (*) represent significant differences from the control diet. Values for the orthogonal contrasts represent the p-values for that specific contrast.
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factor (K) was higher in the fish fed the two soy oil-containing diets

than in the control-fed fish. No other differences in K were detected.

The contrasts between the fish fed the similarly formulated

experimental diets varying only in their lipid composition indicated

that the FO, AO, and A/S diets resulted in a significantly lower FCR

than the SO diet. No differences in FCR were detected among the

other diets. The PER was significantly higher in the AO-fed fish

than in the other experimental diets. Conversely, PER was

significantly lower in the SO-fed fish than in the other

experimental diets. The protein productive value was significantly

higher in fish fed the AO diet than in fish fed the A/S and SO diets,

but similar to that of fish fed the FO diet. The PPV in fish fed FO

was significantly higher than the PPV in fish fed the SO diet only.

The mean weight gain and respective equivalence intervals for

the fish fed diets CF1 and CF2 were substantially different (Table 6;

Figure 2). The TOST equivalency test for weight gain (%) between

the fish fed the four experimental diets varying only in lipid

composition and the closed commercial feeds CF1 and CF2

suggests that there was not an equivalency with CF1 or CF2, with

the upper (qU) and lower (qL) limits of the equivalence interval set

at 10% of the CF1 and CF2 means (Figure 2). The mean weight

gains and the 95% CIs of fish fed the experimental diets were well

below the equivalence interval offish fed CF1. Conversely, the mean

weight gains were higher in the FO-, AO-, and A/S-fed fish, and

lower in the SO-fed fish than in fish fed CF2, although the 95% CIs

for the experimental diets overlapped the CF2 equivalence

interval (Figure 2).

Similar to weight gain, the respective equivalence intervals for

FCR were substantially different for fish fed diets CF1 and CF2

(Table 7; Figure 3). Feed conversion ratios in fish fed the FO and SO
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diets were considerably higher than in fish fed CF1, and the means

and 95% CIs for these diets were outside the equivalence interval.

Although the FCRs in fish fed the algal oil -containing diets were

determined as not equivalent with CF1, their 95% CIs overlapped

with the equivalence interval. Similarly, the 95% CIs for the fish fed

the AO, SO, and A/S diets overlapped with the CF2 equivalence

interval. Although the mean FCR and 95% CI in fish fed the FO diet

graphically appears to meet equivalence to CF2, the large variability

in FCR within the CF2 treatment (1.63–2.00) resulted in a wide 95%

CI, precluding a declaration of equivalency (Figure 3).
4 Discussion

To our knowledge, the use of an FM- and FO-free diet has not

previously been demonstrated in Florida pompano. That the growth

and performance offish fed the experimental FM-free diets with AO

and A/S was in line with that of fish fed the FM control diet was

anticipated. Both the protein (spirulina) and oil (Schizochytrium)

components of the diets are high-quality ingredients in aquafeeds

(Sarker et al., 2016; Ragaza et al., 2020). Similarly, poultry by-

product meal is well utilized by Florida pompano (Riche, 2015),

particularly when supplemented with taurine (Rossi and Davis,

2012). The results of this current study are in agreement with those

in California yellowtail also fed an FM-free, FO-free,

Schizochytrium-based diet (Stuart et al., 2020).

Florida pompano perform well on SCO biomass, within defined

limits. Rhodes et al. (2015) demonstrated that dried fermented

biomass from bacteria was well utilized in Florida pompano in an

FM-free diet supplemented with taurine. However, unlike in the
TABLE 7 Mean (SD) efficiency parameters for Florida pompano (Trachinotus carolinus) fed experimental diets during a 12-week comparative growth trial.

Diet bFCR eFCR CP feed (g/100 g) CP(initial fish) (g/100 g) CP(final fish) (g/100 g) PER PPV CF (K)

Control 1.5 (0.1) 1.5 (0.1) 44.7 56.1 (0.0) 49.3 (2.1) 1.4 (0.06) 70.7 (2.3) 1.55 (0.11)

FO 1.7 (0.0) 1.7 (0.0) 48.4 56.1 (0.0) 52.1 (1.8) 1.2 (0.01)* 63.6 (2.8)* 1.57 (0.10)

AO 1.6 (0.1) 1.6 (0.1) 47.6 56.1 (0.0) 49.8 (1.4) 1.3 (0.07)* 66.1 (5.1) 1.59 (0.10)

SO 1.9 (0.1)* 1.9 (0.1)* 47.6 56.1 (0.0) 50.2 (2.5) 1.1 (0.07)* 55.7 (1.8)* 1.62 (0.12)*

A/S 1.7 (0.1) 1.7 (0.1) 49.3 56.1 (0.0) 48.2 (1.2) 1.2 (0.06)* 58.8 (3.6)* 1.60 (0.08)*

p-value < 0.001 < 0.001 — — 0.108 < 0.001 < 0.001 0.011

CF1 1.5 (0.1) 1.5 (0.1) 51.0 56.1 (0.0) 48.9 (1.8) 1.3 (0.05) 63.4 (4.7) 1.60 (0.11)

CF2 1.8 (0.2) 1.8 (0.2) 52.6 56.1 (0.0) 47.0 (2.0) 1.1 (0.10) 51.1 (5.2) 1.53 (0.11)

Orthogonal contrasts

FO vs. AO 0.072 0.052 — — 0.100 0.016 0.303 0.418

FO vs. SO 0.004 0.005 — — 0.184 0.021 0.004 0.021

FO vs. A/S 0.514 0.470 — — 0.011 0.843 0.062 0.093

AO vs. SO < 0.001 < 0.001 — — 0.724 < 0.001 0.001 0.102

AO vs. A/S 0.225 0.189 — — 0.262 0.024 0.008 0.351

SO vs. A/S < 0.001 0.001 — — 0.148 0.014 0.202 0.447
fr
bFCR, biological feed conversion ratio; eFCR, economic feed conversion ratio; CP, crude protein; PER, protein efficiency ratio; PPV, protein productive value; CF, condition factor.
Asterisks (*) represent significant differences from the control diet. Values for the orthogonal contrasts represent the p-values for that specific contrast.
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current study, which utilized Schizochytrium-extracted oil, their diet

contained FO, and the biomass principally provided dietary protein.

The dietary EAA and the EAA : NEAA ratio were similar across all

the diets, suggesting that the differences observed were due to

differences in individual FA composition. Fish fed the SO diet

exhibited a significantly lower PER, the lowest PPV, and the highest

condition factor (K), suggesting a metabolic impairment.

In agreement with the results presented here, Seong et al. (2019)

successfully reared the red seabream Pagrus major on FM- and FO-

free diets with the addition of Schizochytrium dried powder (whole

organism). The investigators demonstrated that Schizochytrium

substituted for FO at 11% of the diet resulted in equivalent
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growth to the FO control diet. Rainbow trout (Oncorhynchus

mykiss) were able to utilize diets with 75% FO replacement with

vegetable oils and Schizochytrium biomass (Bélanger-Lamonde

et al., 2018). The fish were able to accumulate equivalent

percentages of EPA compared with the FO-fed fish and the

Schizochytrium algal biomass contributed to muscle-tissue DHA

(Bélanger-Lamonde et al., 2018). Betiku et al. (2016) found that

feeding SCO biomass at 6% in an FM-free diet to rainbow trout

resulted in equivalent growth and survival to trout fed a control diet

incorporating FM and FO. Reports were similar in hybrid striped

bass (Morone crhysops ♀ × M. saxatilis ♂) (Perez-Velazquez et al.,
2019) and red drum (Sciaenops ocellatus) (Perez-Velazquez et al.,
A

B

FIGURE 2

Weight gain of fish fed experimental diets FO (fish oil), AO (algal oil), SO (soy oil), and A/S (algal/soy oil, 50:50 w/w) relative to two closed-formula
commercial diets, CF1 (A) and CF2 (B). Data were analyzed using a two one-sided t-tests (TOST) equivalency test. Boxes represent the bounds of
quartiles 2 and 3; bars with endcaps represent the 95% CI around the treatment mean (stars), n = 4. Bars within the box represent the median.
Dotted lines represent the upper and lower bounds of the equivalency interval, set at ±10% of the mean.
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2018); however, both of those trials were short (6 weeks). In the

closely related Golden pompano (Trachinotus ovatus), diets

incorporating SCO biomass at 5% of the dry diet (approximately

25% FO replacement) resulted in growth and increased deposition

of DHA and EPA (He et al., 2018). The benefit of using liquid oil as

opposed to Schizochytrium biomass is that it can be used as a direct

FO replacement (Tocher et al., 2019), as was done in the current

study at 100%.

The SO diet was chosen as a negative control because soy oil is

known to be low in DHA, EPA, and ARA (Morais et al., 2005). The

FA composition of the SO diet used in the current study supports
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this assertion (Table 4). The high levels of 18:2 n-6 in soy oil may

have interfered with LC-PUFA utilization in fish fed this diet

(Glencross, 2009; Rombenso et al., 2016).

Arachidonic acid plays an important role in promoting growth,

survival, and resistance to stress (Bell and Sargent, 2003). ARA

modulates the stress response in fish through the regulation of

cortisol (Wendellar Bonga, 1997; Van Anholt et al., 2004). Gilthead

seabream were more susceptible to stress when dietary ARA was

low (Van Anholt et al., 2004). Cortisol levels due to chronic stress,

including confinement, affect metabolism and present as reduced

appetite, lower body weight, reduced FCR, and lower
A

B

FIGURE 3

Feed conversion ratio (FCR) of fish fed experimental diets FO (fish oil), AO (algal oil), SO (soy oil), and A/S (algal/soy oil, 50:50 w/w) relative to two
closed formula commercial diets, CF1 (A) and CF2 (B). Data were analyzed using a two one-sided t-tests (TOST) equivalency test. Boxes represent
the bounds of quartiles 2 and 3; bars with endcaps represent the 95% CI around the treatment mean (stars), n = 4. Bars within the box represent the
median. Dotted lines represent the upper and lower bounds of the equivalency interval, set at ±10% of the mean.
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immunocompetence, which all contribute to reduced growth

(Wendellar Bonga, 1997; Van Anholt et al., 2004).

In some fish species ARA may be more important than EPA

(Barry and Trushenski, 2020). It has been suggested Florida

pompano juveniles have an ARA requirement (Mejri et al., 2021),

which may not have been met by the SO diet but was met in the AO,

A/S, and FO diets. This is consistent with findings in larval Florida

pompano (Hauville et al., 2014).

Fatty acid profiles in fish juveniles mimicked FA profiles in the

diets (Mejri et al., 2021). Juveniles from SO treatments mirrored the

FA profiles of the SO diet, showing higher relative percentages of

LA and LNA, and lower percentages of EFAs EPA, ARA, and DHA

than fish fed other diet treatments. Our results were comparable to

results from Watson et al. (2020). Red drum (Sciaenops ocellatus)

juveniles, fed a 100% soy oil-based diet for 9 weeks, exhibited high

levels of 18:2 n-6 and 18:3 n-3 FAs with low EFA concentrations

under the minimum required by red drum species (Watson et al.,

2020). A 100% replacement of FO by SO in largemouth bass

(Micropterus salmoides) juveniles led to a decrease in the content

of long-chain polyunsaturated fatty acids such as ARA, EPA, and

DHA (Chen et al., 2020). In our study, the FA profiles in juveniles

fed a blend of 50% AO and 50% SO and those fed 100% FO were

similar, highlighting that 50% replacement of fish oil by soy oil

could be beneficial, as shown in previous studies (Chen et al., 2020;

Watson et al., 2020). Juveniles from the A/S oil treatment had

comparable FA profiles to juveniles from the FO treatment. Our

results demonstrate that the FA profile of the feed was well reflected

in the fillet, suggesting that the 50% algal oil, 50% soy oil

replacement of fish oil can be successfully used to produce Florida

pompano species, maintaining high levels of EFA with a lower

marine footprint than diets formulated with fish oil and a lower cost

of feed production.

Growth suppression following FO replacement is not typically

encountered as long as essential FAs are provided in adequate levels

(Montero et al., 2001; Salini et al., 2015; Weirich et al., 2021). For

many species, this condition is met with as much as a 75%

replacement of FO in the diet (Sales and Glencross, 2011), and

with complete replacement of FO by algal oil in the current 12-week

growth trial. It is possible that supplying the diets over the course of

an entire production cycle may have resulted differently. It took 27

weeks for a reduction in performance to present itself in rainbow

trout fed a 75% reduction in FO (Turchini et al., 2013). Complete

replacement of FO with Schizochytrium and olive oil resulted in

reduced growth in seabream (Sparus aurata) (Ganuza et al., 2008).

Conversely, replacing 60% of FO with various plant oils in the diets

of European sea bass (Dicentrarchus labrax) had no effect on growth

and survival, although tissue DHA and EPA were significantly

reduced (Mourente et al., 2005).

It was suggested that the LC-PUFA requirement of Florida

pompano may be lower than for many other marine species

(Jackson et al., 2020), and EPA may be less important than DHA

in meeting this requirement (Bowzer et al., 2016; Rombenso et al.,

2017). The fatty acid profile of Veramaris® algal oil is well

characterized. Reported levels are as high as 39.8% and 15.7% of

lipid content for DHA and EPA, respectively, with an Omega-3 to

Omega-6 ratio of 14 (Santigosa et al., 2020). An evaluation of
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Veramaris® compared with FO also indicated no difference in

performance, digestibility of LC-PUFA, or fillet fatty acid

deposition in the diets of rainbow trout (Santigosa et al., 2020).

This is the first study we are aware of that evaluated the use of

an FM-free diet and an SCO as a sole source of oil in Florida

pompano diets. When reducing both FM and FO in the diets of

marine fish there is the risk of essential fatty acid (EFA) deficiencies

(Benedito-Palos et al., 2010). However, the current study suggests

that the LC-PUFA requirements were met by the AO diet as there

was no residual LC-PUFA, which is often associated with dietary

FM, in the FM-free diets. Diluting the AO contribution with 50%

soy oil appears to have little effect on growth and performance (AO

vs. A/S) for most of the parameters evaluated. The exception was

protein utilization measured as PER and PPV (Table 6). This was

likely less related to the oil sources and more related to the slightly

higher dietary CP and slightly lower lipid content in the A/S diet, as

feed intake was the same between the two diets (p = 0.727).

It is likely the LC-PUFA (i.e., DHA and EPA) requirements for

Florida pompano were met even at the 5.4% AO inclusion rate.

However, this remains inconclusive as tissue FA profiles were not

conducted at termination of the trial. Moreover, a quantitative

requirement for DHA and EPA has yet to be determined for Florida

pompano and this area requires much-needed investigation.

Nevertheless, it was estimated that EPA and DHA, each at 0.4%

of the diet, may be adequate to meet the metabolic needs of Florida

pompano when they are fed diets rich in saturated fatty acid and

MUFA (Rombenso et al., 2017), although Mejri et al. (2021) suggest

that the required amounts may be slightly higher. These estimates

are in line with the dietary requirements of hybrid striped bass, red

drum, and many other marine species (Turchini et al., 2009;

NRC, 2011).

Diets rich in SFA and MUFA result in a “sparing effect” on LC-

PUFA in Florida pompano (Rombenso et al., 2017), hybrid striped

bass (Bowzer et al., 2016), and white seabass (Atractoscion nobilis)

(Rombenso et al., 2015; Salini et al., 2017). Therefore, in addition to

determining the EFA requirements of Florida pompano, a better

understanding of the required ratio of LC-PUFA and SFA/MUFA is

also needed in Florida pompano (Mejri et al., 2021) and other

species with low LC-PUFA requirements (Menoyo et al., 2003;

Navarro-Guillén et al., 2014).

It is well documented that dietary FA muscle composition

reflects dietary FA profiles in Florida pompano (Rombenso et al.,

2016; Rombenso et al., 2017; Jackson et al., 2020), Golden pompano

(Sun et al., 2018), and many other species (Bell et al., 2002;

Trushenski and Lewis, 2008; Turchini et al., 2009; Trushenski

et al., 2011). Golden pompano fed a diet containing FO and

supplemented with dried Schizochytrium exhibited significantly

better growth performance and feed conversion than fish fed FO

alone (Xie et al., 2019). The addition of Schizochytrium also

increased intestinal integrity and feed intake in Golden pompano

(Xie et al., 2019), but this was not observed in the current trial.

Although histology and other tissue indicators were not

evaluated, the high survival among all the treatments would

suggest the biological safety of the algal oil when incorporated at

up to 10.8% of the diet. Efficacy and safety were also demonstrated

in Atlantic salmon (Salmo salar) (Carter et al., 2003) and longfin
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yellowtail (Seriola rivoliana) (Kissinger et al., 2016) fed similar

thraustochytrid biomass incorporated at 5%–10% of the dry diet.

This is in general agreement with other demonstrated safe

incorporation rates for algal biomass (Patterson and Gatlin, 2013).

There are varying reports on the suitability of ingredients used in

aquafeeds. Much of this is due to a lack of standardization in feed

ingredients, experimental design, feed formulation, and

methodologies (Glencross et al., 2007; Barrows et al., 2008; Collins

et al., 2012). In addition, the approaches and methods used by

investigators vary appreciably, including methods of analysis,

measured biological responses, and predictive modeling of those

responses based on different data analysis and interpretation

(Shearer, 2000; Glencross et al., 2007; Sales and Glencross, 2011).

The importance of using well-defined open-formula diets as a

control in animal studies is well documented (Barnard et al., 2009;

Pellizzon and Ricci, 2020). Using closed-formula diets makes it

difficult to make scientific inferences and contributes to varying

interpretations of results (Rust et al., 2015). Open-formula control

diets with well-defined ingredients, as used in this study, can

standardize approaches across species and laboratories and

provide a basic platform for comparisons (Rust et al., 2015).

Reference and control diets and the ingredients used to make

them often vary spatially and temporally, and are often unknown

or ill-defined. This is an issue that has not received enough attention

(Bureau, 2015; Ricci, 2015).

The addition of the closed-formula diets in this study was

designed to determine if the growth and survival rates of fish fed

the experimental diets was similar to fish fed commercial diets. If

that were to occur, then the experimental diets might be considered

for testing under commercial conditions. However, as

demonstrated here, the choice of closed-formula reference and

control diets used can have a profound effect on the

interpretation of the results. This is generally the case with

closed-formula reference and control diets (Barnard et al., 2009).

The economic feed conversion ratio (eFCR) is a metric used to

determine the cost–benefit ratio of feed utilization; it represents the

total feed input divided by the total harvested fish output over the

entire production cycle (Robb and Crampton, 2013). It integrates a

number of not easily quantifiable factors into a single number and

ideally it should be averaged over multiple production cycles (MBA,

2016). It allows for comparing the cost of feed to the net gain in

productivity at the farm level. For a farmer to track the best use of

resources, eFCR is a very useful tool. In commercial production, eFCR

is a principal criterion assessed in sustainability certification (MBA,

2016). The bFCR on the other hand accounts for feed eaten, which is

impossible to measure in a practical farming system, but is useful in

research settings for direct comparisons under controlled conditions

(Robb and Crampton, 2013). Under the conditions of this study, as in

most controlled studies, these were the same, so no distinction was

made for reporting the results of the FCR equivalency tests.

Standard statistical tests can suggest differences between

treatments but do not demonstrate similarity among treatments.

Moreover, they do not demonstrate biological importance (Perry,

1986). However, the TOST equivalency tests can be used to

determine the probability that two treatments are similar enough
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to be considered “equivalent” (Dixon et al., 2018). Using this

approach, a fish farmer can then determine if the results

(efficiency, mortality, fish welfare, FCR, etc.) are similar enough

that the difference may result in a lower production cost or higher

profit margins. This can provide a valuable tool for producers to

make on-farm cost–benefit decisions.

TOST equivalency tests were performed on weight gain and

FCR. These parameters were chosen for their impact on the cost of

protein production. It was deemed that a reduction in performance

greater than 10% was beyond a reasonable and practicable cost–

benefit breakpoint. Therefore, the equivalence interval was set at

10% around the mean of both closed-formula diets (i.e., CF1 and

CF2). This is all a compelling factor for distinguishing between

statistical significance and an economically relevant difference (van

der Voet and Paoletti, 2019).

To declare equivalency, the CI must fall entirely within the

equivalence interval. All of the experimental diets were non-

equivalent to CF1 in weight gain and could be considered inferior

(Figure 2). Conversely, the CI for the weight gain data crossed the

CF2 equivalence interval. The interpretation of the data for the AO,

A/S, and FO diets suggests that they more likely than not performed

better than CF2 (EFSA, 2011; van der Voet and Paoletti, 2019).

The FCR data also suggest that the fish fed SO converted the feed

into weight less efficiently than fish fed CF1; the interpretation of the

data for the other diets is less clear. The FCRs for the fish fed the

experimental diets, with the exception of those fed the FO diet, were

also not equivalent to the FCRs for the fish fed the CF2 diet, although

equivalence was more likely than not for the fish fed the A/S and SO

diets. (Lakens, 2017). The FCR of fish fed the FO diet fell within the

CF2 equivalence interval; however, the FCR of those fed the CF2 diet

did not and therefore there was insufficient evidence to declare the

experimental diets equivalent (Castelloe andWatts, 2015). In addition,

the data suggest that the fish fed the AOdiet more likely than not had a

better FCR than those fed CF2. However, all these results should be

regarded with caution as both the power and sample size were small.

The inherent large standard error variability in Florida pompano

growth makes it difficult to make inferences (Campbell and

Gustafson, 2018; Dixon et al., 2018). This approach would benefit

from a larger sample size and a power analysis (Lakens, 2017; van der

Voet and Paoletti, 2019). A post hoc analysis with the Proc Power

statement of SAS, using the variability observed in this study and

with a power of 80%, would suggest an appropriate sample size for

more conclusive evidence (Goodman and Berlin, 1994)

We understand the limitations of the analysis for this study and

consider this as a preliminary screening (Campbell and Gustafson,

2018). However, we believe that this approach demonstrates the

power in designing experiments to evaluate new formulations with

a high probability of declaring equivalence to an open-formula

“gold-standard” or other reference diet.

Nevertheless, what is striking is the distinct differences in the

equivalence intervals between the twoCF diets (Figures 2, 3). Although

both interval boundaries were set at 10% of the CF references, the

interpretation of the results are different depending on the reference

diet chosen. This underscores the importance of using well-defined

and open-formula diets for standardizing diet evaluations.
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5 Conclusion

In the current study we have demonstrated for the first time that

co-replacement of FM and FO can be achieved in juvenile Florida

pompano via an FM- and FO-free diet. It is possible to meet the

EFA requirements of Florida pompano in an FM-free diet when

substituting 100% of the dietary FO with fermented Schizochytrium

algal oil (Veramaris®) without incurring loss of growth or

efficiency. Furthermore, when feeding an FM-free diet to Florida

pompano, a blend of algal oil and soy oil can replace FO without

negative effects on bFCR, eFCR, weight gain, or survival. Pompano

fed the FM- and FO-free feeds had growth and FCR comparable to

pompano fed one commercial feed but not the other, underscoring

the need for well-defined control and reference diets. These FM-

and FO-free diets show potential, but there is still room for

improvements. The use of microalgal oil or dried biomass in fish

of different physiological and developmental stages is also an area in

great need of investigation. It is important to note that the results of

the equivalence test suggest that the use of closed-formula

commercial feeds as control diets can lead to very different

results. As stated, this trial should be viewed as a framework for

directing future research and further areas of investigation.
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