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Introduction: Hypoxia is defined as a critically low-oxygen condition of water,

which, if prolonged, can be harmful to fish andmany other aquatic species. In the

context of ocean salmon fish farming, early detection of hypoxia events is critical

for farm managers to mitigate these events to reduce fish stress, however in

complex natural systems accurate forecasting tools are limited. The goal of this

research is to use amachine learning approach to forecast oxygen concentration

and predict hypoxia events in marine net-pen salmon farms.

Methods: The developed model is based on gradient boosting and works in two

stages. First, we apply auto-regression to build a forecasting model that predicts

oxygen concentration levels within a cage. We take a global forecasting

approach by building a model using the historical data provided by sensors at

several marine fish farms located in eastern Canada. Then, the forecasts are

transformed into binary probabilities that indicate the likelihood of a low-oxygen

event. We leverage the cumulative distribution function to compute

these probabilities.

Results and discussion: We tested our model in a case study that included

several cages across 14 fish farms. The experiments suggest that the model can

detect future hypoxic events with a commercially acceptable false alarm rate.

The resulting probabilistic predictions and oxygen concentration forecasts can

help salmon farmers to prioritize resources, and reduce harm to crops.
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1 Introduction

Fish farms produce large quantities of marine protein efficiently,

reducing pressure on wild fish populations. They promote

biodiversity and thus, the sustainability of wild fishing operations

(Subasinghe et al., 2009). Overall, fish farms are an increasingly

important food production system in our society for both economic

and environmental reasons, e.g. reducing overfishing.

Good farm management and fish health, critically require

reduction of fish stress and the ability to detect poor water

quality. In this regard, one of the main challenges for ocean farms

is maintaining optimal levels of dissolved oxygen in cages. Variable

farm conditions such as high water temperatures, algae blooms, and

or high stocking densities can all exasperate oxygen availability,

potentially triggering a low-oxygen event (Yokoyama, 1997; Burke

et al., 2021). These events, also referred to as hypoxia episodes,

occur when the oxygen level in the water falls below 7mgL−1

(Oppedal et al., 2011), though the severity depends on the specific

farm environment, age of salmon, and the available reactive

mitigation tools (i.e., oxygen dispersal systems) (Remen, 2012).

Hypoxia events cause stress to fish, negatively impacting fish

welfare and productivity, and in the most severe cases can lead to

mortalities, causing significant economic loss to producers. As such,

the availability of more accurate hypoxia prediction tools would

both improve the well-being of fish and the economic management

of farms. Similarly, this tool could help farmers reduce significant

costs associated with mitigation technologies.

The goal of this work is to build a model to i) forecast oxygen

concentration and ii) predict hypoxia events on farms using

machine learning. Specifically, at each time step, we aim to

predict the probability that the oxygen level will fall below a

critical threshold. A probabilistic approach is useful to decision-

makers within farms. For example, if there is a high likelihood of a

low-oxygen event, a farmer can proactively turn on mitigation

systems rather than waiting for the low-oxygen event to occur,

which can cause stress to fish, and delay return to more optimal

oxygen levels.

The probabilistic forecasting of binary events is usually tackled

as a classification problem. However, a classifier is unable to predict

the future values of oxygen – only the likelihood of a hypoxic event.

Complementing event probability estimates with oxygen forecasts is

valuable for having both an efficient means to alert operators of

impending low dissolved oxygen events and the ability to analyze

temporal trends in dissolved oxygen. In effect, we apply an auto-

regressive approach to forecast oxygen dynamics. Then, we resort to

the cumulative distribution function to convert these forecasts into

a hypoxic event probability following Cerqueira and Torgo (2022).

The developed model was validated using data from 14 fish

farms located in different locations across eastern Canada. Each

farm contains several cages where fish are grown in variable

stocking densities, leading to different micro-climates for each

cage. The results of the experiments showed that the model was

able to accurately predict critical events at the cage level on each of

the farms. Overall, this case study demonstrated the effectiveness of

using machine learning to forecast critical events in ocean

fish farms.
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2 Case study

In this section, we present the case study used in this work. We

start by describing the data structure and its main characteristics

(Section 2.1). We also carry out an exploratory data analysis to

uncover valuable insights before building a forecasting model

(Section 2.2).
2.1 Data description

We can define a database of n fish farms as F = F1, F2,…, Fnf g.
Each fish farm F ∈ F contains several cages   F = C1,…,CmF

� �
,

where mF is the number of cages in the farm. Finally, each cage

C ∈ F can be represented as a time series  C = c1, c2,…,  ctC
� �

,

where ci ∈ C is the observation of cage C at time i and tC is the

number of observations in the cage. Each observation c ∈ C

contains information about the oxygen concentration in the cage

(in  mgL−1). Effectively, each cage consists of a univariate time

series. In the original dataset, other information was available, such

as temperature or cage depth. However, in the experiments,

variables other than oxygen concentration were not found to

improve the hypoxia detection accuracy of the model. Therefore,

these were excluded from the model.

The case study comprises data collected from 14 fish farms

located in different places across eastern Canada. The data ranges

over five years, from 2017 to 2023. The sampling period is detailed

in Table 1. The observations of each time series are captured with a

high but, due to operator stocking plans, irregular sampling

frequency. The period between consecutive observations can

range from 1 to 3 minutes. We aim to forecast hourly values of
TABLE 1 General information about the fish farms in the case study.

Farm Start End #
Hourly
observations

#
Cages

SI 2017–10-19 2022–09-19 402226 12

LP 2017–11-10 2022–09-09 521250 14

BIS 2018–01-01 2023–03-21 201387 13

MI 2019–05-20 2022–06-17 135900 13

DL 2019–07-04 2022–12-02 111793 7

RI 2020–08-19 2022–12-02 97481 9

VB 2021–01-14 2023–03-21 48200 6

CI 2021–03-01 2023–03-21 68397 5

AD 2021–03-23 2022–03-03 31810 6

SC 2021–06-15 2022–04-04 14792 5

DH 2021–06-16 2022–12-02 54105 6

RB 2021–08-13 2023–03-21 40790 6

FB 2021–10-04 2022–12-02 50729 6

CC 2022–01-06 2022–12-11 32640 4
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oxygen concentration. Therefore, we aggregated the data in each

cage to an hourly granularity. This is accomplished by taking the

median of the collected values of each hour. If no observation was

captured in a given hour this represented a missing observation. As

an example, Figure 1 illustrates a sample of the time series of oxygen

concentration in a given cage.

Figure 2 shows the number of data points over each month by

fish farm, from October 2017 to December 2022. Until 2019, the

data came from only two farms (SI and LP). The data for the year

2022 comprises the most data points, while there is a period with

very little data during 2018.
2.2 Exploratory data analysis

We carried out an extensive exploratory data analysis to draw

insights about the oxygen concentration dynamics. We illustrate the

main findings in this section. Figure 3 shows the oxygen

concentration over time at each farm. For visualization purposes,

we aggregated the data in each farm by taking the median across all

available cages. Overall, this plot indicates the presence of yearly

seasonality influencing oxygen concentration.

There are some periods of missing data, especially in the years

2018 and 2019. The mechanisms behind the missingness are either

missing completely at random (e.g. random sensor malfunction in a

given observation) or missing at random (e.g. sensor shutdown

during some period for maintenance), according to the definitions

described by Schafer and Graham (2002).

We explored the distribution of oxygen concentration using

violin plots in Figure 4. For this analysis, we studied each farm as a

whole and disregarded information about individual cages. Overall,

the distribution varies across farms. Besides the different locations
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of each farm, one possible reason for this variability was the

sampling period at each farm is different, covering various lengths

of time and capturing data during different seasons which is known

to influence oxygen fluctuations (Burke et al., 2021).

This work is devoted to the prediction of hypoxia events, which

can be defined as an observation with an oxygen concentration

below 7 mgL−1 (Oppedal et al., 2011). In this context, we analyzed

the distribution of the oxygen condition (normal or hypoxia) across

fish farms and over different months. Figure 5 shows the relative

frequency (%) of each condition across all observations at each fish

farm. Hypoxia is generally a rare occurrence across all farms;

however, events are more common at some farms such as DH

and SI compared to others. Figure 6 also shows that hypoxia is more

common during the summer and fall seasons. This is expected as

these events are correlated with higher water temperatures, which

reduces the solubility of oxygen in seawater (Burke et al., 2021).
3 Background and problem definition

This section describes the background of this work. We start

by formalizing the forecasting task as an auto-regressive problem

(Section 3.1). Then, we explain how this formalization extends to

the exceedance probability estimation setting (Section 3.3). We

also describe how global forecasting models operate and how they

relate to our work (Section 3.2). Finally, in Section 3.4, we carry

out a brief literature review and describe previous efforts in

forecasting oxygen dynamics. We remark that the background

provided here focuses on statistical and machine learning models,

and does not consider deterministic biogeochemical models that

also have been used to predict oxygen at salmon farm sites (e.g

(Wild-Allen et al., 2020)).
FIGURE 1

Sample of the oxygen concentration time series in a cage within the LP fish farm. The horizontal dashed line denotes the threshold below which
hypoxia occurs (7 mgL−1).
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3.1 Time series forecasting

The general goal behind forecasting is to predict the value of the

upcoming observations of oxygen concentration in a given cage,

ctC+1,…, ctC+h, given the historical data, where h denotes the

forecasting horizon.
Frontiers in Aquaculture 04
We formalize the problem of time series forecasting based on an

auto-regressive strategy. Accordingly, observations of a time series

are modeled based on their recent lags. More precisely, the value of

ci is modeled based on the most recent q timesteps: Xi =

ci−1, ci−2,…, ci−p
� �

, where ci is the observation we want to predict

and Xi ∈ X ⊂ Rp represents the corresponding input lagged
FIGURE 3

Hourly oxygen concentration time series by farm. The values of the time series are aggregated (median) by cage. The plot suggests similar dynamics
across farms and yearly seasonality.
FIGURE 2

Number of data points by month and fish farm.
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features (Bontempi et al., 2013). This approach leads to a multiple

regression problem where the temporal dependency is modeled by

using past observations as explanatory variables. Using h = 1 for

illustration purposes, the goal is to transform each time series into a

matrix structure as follows:

D =

c1 c2 ⋯ cp−1 cp

⋮ ⋮ ⋮ ⋮ ⋮

ci−p+1 ci−p+2 ⋯ ci−1 ci

⋮ ⋮ ⋮ ⋮ ⋮

ctC−p+1 ctC−p+2 ⋯ ctC−1 ctC

j

cp+1

⋮

ci+1

⋮

ctC+1

2
666666664

3
777777775

Each row in the matrix above is a sample (X,c). The last column

of the matrix denotes the target variable (future observations) and

the remaining columns represent the lagged explanatory variables

(X). Di denotes the reconstructed time series in a matrix structure
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for a given cage Ci. For each forecasting horizon   h, the goal is to

build a multiple regression model f that can be written as ci+h =

f (Xi,Zi), where Zi represents additional covariates known at the i-th

instance. These covariates can be, for example, explanatory time

series related to the phenomenon. For example, the season of

the year.
3.2 Global forecasting models

Traditionally, forecasting models are trained using the historical

data of the time series of interest, often referred to as local models

(Januschowski et al., 2020). In our case, we need to forecast time

series from several cages that belong to multiple fish farms.

Leveraging the historical observations of all available time series

can be valuable to build a forecasting model. The dynamics of the
FIGURE 5

Distribution of oxygen concentration condition across fish farms. Hypoxia (< 7mgL−1) conditions are more common in some farms than others.
FIGURE 4

Distribution of oxygen concentration (mgL−1) by farm.
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time series are often related, and a model may be able to learn useful

patterns from some time series that have not revealed themselves in

others. Models that are trained on multiple time series are often

referred to as global forecasting models (Godahewa et al., 2021).

The popularity of global forecasting methods has surged

following their successful use in the M4 forecasting competition,

which featured 100000 time series from different application

domains. The contest was won by a global forecasting method

developed by Smyl (2020) that combines an exponential smoothing

method with a recurrent neural network. Since then, several other

works have been developed for training forecasting models with

multiple time series (Godahewa et al., 2021).

The key motivation for our use of a global forecasting approach

is giving the learning algorithm access to additional data. Machine

learning algorithms tend to perform better with larger training sets,

especially those with many parameters (Cerqueira et al., 2022). We

will build a global model to forecast oxygen concentration based on

the available information across all cages from all fish farms.
3.3 Exceedance probability forecasting

Conveying the uncertainty around forecasts is critical for better

decision-making. Uncertainty in numerical forecasts is usually

quantified by predicting intervals (Khosravi et al., 2011), or

probabilities (Gneiting and Katzfuss, 2014).

For binary events, we can simply output the probability of that

event occurring. An instance of a binary event is exceedance, which,

as mentioned before, refers to when a time series exceeds a

predefined threshold.

The probability of a hypoxia event hi denotes the probability that

the oxygen concentration ci falls below 7mgL−1 in any given instant i.

In this type of problem, hi is usually modeled by resorting to a binary

target variable bi, which can be formalized as shown in Equation 1:
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bi =
1 if ci ≤ 7mgL−1,

0 otherwise :

(
(1)

This setting leads to a classification problem where the goal is to

build a classifier g of the form bi = g(Xi). Logistic regression is

commonly used for this purpose (Taylor and Yu, 2016). However,

in our problem, a classification model would be unable to output the

numeric oxygen forecasts which can be important for on-farm

decision-making. Accordingly, in Section 4, we present an

alternative approach to standard classification.
3.4 Related work

Understanding and forecasting water quality and oxygen

dynamics is a relevant task and many works have been devoted to

it (Zhang et al., 2022; Hai et al., 2023; Zhao et al., 2023). Liu et al.

(2021) developed an ensemble based on Bayesian model averaging

using a hybrid approach that includes artificial neural networks.

Therein, the authors outline several state-of-the-art approaches to

forecasting dissolved oxygen in the context of aquaculture.

Several works address the problem of detecting hypoxic events

using data-driven methods. Arepalli and Naik (2024) tackle this

problem using a deep learning method based on self-attention and

LSTM layers. Besides dissolved oxygen, they also use other input

variables such as temperature or turbidity. They report 99.8%

accuracy, though this metric is usually a poor choice for problems

involving imbalanced distributions (Bronco et al., 2016). Similar to

us, Politicos et al. (2021) modeled hypoxia using tree-based models

and reported an F1 score ranging between 0.84 and 0.93. The F1

score is a classification metric that combines precision and recall

measures. However, while we deal with North Atlantic ocean data,

the data used in their study was collected from an enclosed lagoon

in the Greek Mediterranean.
FIGURE 6

Distribution of oxygen concentration condition across each month. Hypoxic (< 7mgL-1) conditions are more common in the summer and
fall seasons.
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We aim to predict hypoxic events and forecast oxygen

concentration using a single model, whereas previous research

addresses only one of these problems. As mentioned before,

coupling forecasts with hypoxia probabilities can be useful to

foster more informed decision-making by farmers.
4 Methodology

In this section, we describe the proposed approach for

estimating the probability of hypoxia events in fish farms. We

start by describing the forecasting approach based on a global model

and how it is used to compute probabilistic estimates (Section 4.1).

Then, we explain how the proposed method is evaluated

(Section 4.2).
4.1 Forecasting approach

The development of the model works in three main steps:
Fron
1. Data preparation;

2. Building a forecasting model based on a global strategy;

3. Convert the forecasts produced by the model into

probability estimates of hypoxia.
1 see https://www.rdocumentation.org/packages/forecast/versions/

8.22.0/topics/nsdiffs.
In the next subsections, we explain each step in turn.

4.1.1 Data preparation
Several data preparation steps were carried out before training a

model. The workflow is summarized in Figure 7. During the data

preparation stage, we conducted a time series analysis using

hypothesis testing to assess the presence of trend, seasonality, and

heteroscedasticity in the data concerning each cage.

Regarding trend, we used the KPSS test (Kwiatkowski et al.,

1992) to assess if differencing was required for stationarity. We

conducted yearly seasonal differencing before applying the

hypothesis test to control for seasonal effects. The column Trend

in Table 2 reports the ratio of cages in a given fish farm where the

null hypothesis that the time series is trend-stationary is rejected

with a significance value of 0.05. The null hypothesis is not rejected

in all cases. However, in the interest of consistency and to keep all

observations in a common value range, we took first differences in

all-time series.

Visual inspection (c.f. Figure 1) indicated the presence of a

strong yearly seasonal effect. We applied the heuristic byWang et al.

(2006) to measure the seasonal strength. They consider the presence

of a relevant seasonal component if the seasonal strength is above

0.641. The column Seasonality in Table 2 reports the ratio of times

that this occurs across each fish farm. The results corroborated the

visual inspection. In effect, we attempted to account for seasonal

variations using either Fourier series with yearly periods and

monthly dummy variables. However, none of these approaches

improved forecasting performance and were thus excluded from the

model. We hypothesize that the first differences preprocessing

operation has a sufficient stabilization effect and that it smooths
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out seasonal variations. Seasonality was checked in daily and weekly

periodicity but the results did not give evidence for the presence of

this component (results not showed).

Finally, we also checked whether each time series is

heteroskedastic using the White test (White, 1980). The column

Variance in Table 2 shows the ratio of cages in which the null

hypothesis of equal variance was rejected with a significance value

below 0.05. The results suggest that the time series are

heteroskedastic, and we attempted to stabilize the variance of the

data by taking the logarithm. This transformation did not improve

forecasting accuracy, so it was also excluded from the final model.1

After this analysis, we transformed each time series for

supervised learning using the process outlined in Section 3.1. This

involves computing lagged features for an auto-regressive modeling

approach, with a forecasting horizon h from 1 to 24. The number of

lags p is set to 24. This means that, at each time step, a model

produces forecasts for each of the next 24 hours given the past 24

hours of data.

As we reported during the exploratory data analysis stage in

Section 2.2, there are multiple observations with missing values in

the cages across all fish farms. The missingness is due to either

sensor malfunctions or sensor (or cage) maintenance periods and

not related to the observed oxygen values. In effect, before the

modeling stage we dropped the training samples that contain any

missing value. More precisely, a training sample is the set of 24

lagged features plus the subsequent 24 observations to be predicted.

If any of these 48 observations contain a missing value, the sample is

discarded. In the testing stage, which is detailed in Section 4.2

below, we conduct a similar process. Essentially, we assume that the

model works under the assumption that all lagged observations are

available for computing predictions.

4.1.2 Modeling
We follow a global approach to build a forecasting model (c.f.

Section 3.2). We built a single global model using the available data

from all fish farms, as illustrated in Figure 8. The time series of each

cage was preprocessed according to the process outlined in the

previous section. Then, the available observations from all cages

were concatenated into a single dataset that was used to train the

model. We use the lightgbm method, a popular regression

algorithm. This method was the backbone of the winning solution

of the M5 forecasting competition Makridakis et al. (2022), which

also involved multiple time series (in that case, sales data of different

retail products). The lightgbm is sensitive to different parameter

configurations, so we optimized it using random search. The

random search process was carried out with 200 iterations and

using a validation set (explained below). The pool of parameters is

detailed in Table 3.

We took a direct approach to multi-step forecasting. This

means that we built a model for each forecasting horizon. This

approach is a common alternative to the standard recursive

method, which reuses a single model over the forecasting horizon.
frontiersin.org
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We prefer a direct method as it avoids the propagation of errors

across the horizon (Taieb et al., 2012). After applying the model to

get differenced predictions for a given time series, we revert the

differencing operation to get the forecasts in the original scale.

4.1.3 Hypoxia probability estimates
Our goal is to forecast oxygen dynamics and predict the

probability of an impending hypoxic event. Binary events such as

hypoxia are usually modeled using a probabilistic binary

classification model (c.f. Section 3.4). Instead, we adopt a strategy
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based on a forecasting model. We use the numeric forecasts for the

upcoming instances to estimate the event probability according to

the cumulative distribution function. In this cumulative distribution

function, the location parameter of the distribution is derived from

the output of the forecasting model, while the dispersion is

estimated using the training data.

Let ĉ i denote the forecast for a future i-th observation of oxygen

concentration in a given cage produced by the lightgbm model. We

assume that this prediction ŷ i can be modeled using a Normal

distribution with mean ŷ i and standard deviation sy : N (ŷ i,  s 2
y ).

The standard deviation sy is computed using the historical

observations of the corresponding cage.

In this context, we can estimate hi, the hypoxia probability in a

given cage at the i-th time step, using the cumulative distribution

function (CDF) of  N (ŷ i,  s2
y ) (Equation 2):

hi = CDFN (ŷ i , s 2
y )(t) (2)

When evaluated at the threshold t, the CDF represents the

probability that the respective random variable will take a value less

than or equal to t. In our case, the threshold t is equal to 7 mgL−1.

The CDF-based approach to the problem is convenient because

the same forecasting model can be used to predict both the

upcoming values of oxygen concentration and to estimate

hypoxia probability. While probabilistic forecasts are desirable for

optimal decision-making, numeric forecasts may provide valuable

insights as well that help prioritize resources. From an application

standpoint, the classification approach simplifies the information

being given to an operator, which may help a more inexperienced

user with their decision-making, while a numeric forecast offers

more information, which might be useful for a more experienced
FIGURE 8

Training and prediction workflow.
TABLE 2 Results of time series analysis for each fish farm.

Farm Trend Seasonality Variance

BIS 1.0 1.0 0.92

CI 1.0 1.0 1.0

RB 1.0 1.0 0.83

VB 1.0 1.0 1.0

DH 1.0 1.0 1.0

DL 1.0 1.0 1.0

FB 0.75 1.0 0.83

LP 1.0 0.79 1.0

MI 1.0 1.0 0.92

RI 1.0 1.0 1.0

SI 1.0 0.67 1.0
The values represent the ratio of cages in the respective farm that require preprocessing on the
corresponding component.
FIGURE 7

Data preparation workflow.
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operator. For example, if it is near a threshold value, the predicted

trajectory offers insights into how the variable is expected to change.

Our approach also enables threshold flexibility. A standard

classification approach fixes the threshold t during training and it

cannot be changed afterward. Our approach only uses the threshold

during the prediction stage, so we can estimate the probability of an

event at different thresholds. This can be important for farmers as

the best threshold can depend on various factors, such as the

number and age of fish in a cage. Overall, having access to the

probabilities of an event at different thresholds might convey a

better sense of the cost-benefits of available interventions.
4.2 Evaluation

In this section, we detail the performance estimation procedure

and evaluation metrics used.
4.2.1 Estimation procedure
The data from different farms are collected in distinct periods,

which makes it difficult to have a consistent testing period for all farms.

In effect, we carried out a training and testing procedures for each fish

farm where the testing period changes across these farms. For each fish

farm, we set the last 40% of observations for testing. All previous

observations for all farms (including the initial 60% of observations of

the fish farm being tested) are compiled into a training set. The final

testing periods for each fish farm are detailed in Table 4.

We also use a validation set for parameter optimization. This

validation set is composed of the last 10% of observations of the

training set. More precisely, the models are fit using the initial part

of the training set (the initial 90% of observations of the complete

training set) and evaluated in the validation set. After optimization,

the model with the best parameters is then re-fit using the complete

training set.
4.2.2 Evaluation metrics
In terms of metrics, we quantify the quality of the model from

different perspectives. We use the absolute error to evaluate how

well the forecasts approximate the actual oxygen concentration
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values. We evaluate the hypoxia probability estimates using log loss.

This metric quantifies how close the estimated probability is from

the actual value (0 if no event occurs, or 1 otherwise).

We also evaluate the predictions made by the model from an

event detection point of view. Classification problems are usually

evaluated using metrics such as precision, recall, and F1-score.

However, these metrics can be misleading because, as Fawcett and

Provost (1999) argue, they ignore the temporal order of observations

and the value of timely predictions. The main goal of our work is to

detect, in a timely manner, an impending hypoxic event. In effect, we

resort to the evaluation approach proposed by Weiss and Hirsh

(1998) and Fawcett and Provost (1999). Specifically, we compute the

event recall (ER) and the false alarm rate by unit of time (FAR). We

can think of these metrics as variants of the standard recall and

precision metrics but tailored for time-dependent data.

The ER metric can be defined as follows. Let T denote the total

number of hypoxic events in a test dataset, and let T̂ m represent the

total number of those events correctly predicted by a model m. The

ER for model m is given by Equation 3:

ERm =
T̂ m

T
(3)

ER differs from the classical recall metrics because a single correct

prediction within an observation window leading to a hypoxic event

is enough to consider that the event was correctly predicted.

The idea behind ER is that multiple alarms after the first one

may add no value, assuming that action is taken after the initial

alarm is issued. The same argument can be made for false alarms.

The classical precision metric measures the ratio of positive

predictions that are correct. Similarly to recall, in a time-

dependent domain, the classical precision may be misleading

because multiple predictions on the same event are counted

multiple times. This idea is intuited in Figure 9. This graphic

shows a sequence in which predictions are being produced over

time. Starting from time ti, four false alarms are triggered.

Performance evaluation should take the first wrong prediction

into account as a false alarm. However, the subsequent false

alarms (as shown in Figure 9) are not meaningful since they add

no information.

We compute the FAR, which can be defined as follows. First, we

compute discounted false alarms (DFA) – the number of non-

overlapping observation periods associated with a wrong positive

prediction. Then, we divide this number by the length of the time

series. This leads to a measure of the expected number of false

alarms per unit of time. In effect, the daily FAR for a model m is

given by the Equation 4:

FARm =
DFAm

T
� 24 (4)

where T is the number of testing observations in the

corresponding cage. We normalize the false alarm rate to a daily

granularity in the interest of interpretability. This is accomplished

by multiplying the original score (on an hourly basis) by 24.

Besides these metrics, we also analyze the average anticipation

time of the model. That is, how long in advance the model is able to

detect hypoxic events.
TABLE 3 Pool of parameters for the lightgbm.

ID Parameter Value

num_leaves Max # of leaves per tree {3, 5, 10, 15}

max_depth Max depth per tree {-1, 3, 5, 10, 15}

lambda_l1 L1 regularization {0.1, 1, 10, 100}

lambda_l2 L2 regularization {0.1, 1, 10, 100}

learning_rate Learning rate {0.05, 0.1, 0.2}

min_child_samples Min # of points per leaf {7, 15, 30}

boosting_type Base algorithm gbdt

num_boost_round Boosting iterations 200

early_stopping_rounds Early stopping 30
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5 Experiments

In this section, we present the results of the experiments. We

start by illustrating the output of the model (Section 5.1) and then

evaluate it from different perspectives (Section 5.2).
5.1 Visualizing the predictions

For illustration purposes, the model was tested on a sample cage

in the LP fish farm and its predictions are shown in Figures 10, 11.

Figure 10 illustrates the forecasts for the next 24 hours, along with

the actual and previous values of the series. In this particular

example, the model can match the actual values closely.

Figure 11 shows the estimated probability of a hypoxic event in an

example sample period. In it, a hypoxia event occurs in the final part of

the sample (when the red line equals 1), and the model can detect it.
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5.2 Forecasting accuracy across farms

This section presents a quantitative evaluation of the model

described in Section 4.

We start by comparing the developed method that leverages

forecasts into exceedance probability estimates using the CDF

with a probabilistic binary classification model according to the

log loss. The log loss evaluates how close the probability estimates

are to the actual values (0 or 1). Having accurate probability

estimates is important so that farmers can assess and react to a

situation in a reliable way. The classification model is trained

using a lightgbm using the same procedure we used for training

the forecasting model (c.f. Section 4.1.2). The only change is that

the classifier is optimized for binary classification rather

than regression.

The results are shown in Figure 12. Overall, the developed

model (denoted as CDF) shows better performance across almost

all fish farms. We conducted a Wilcoxon signed rank test,

recommended by Dems ̌ar (2006), which confirmed that the

difference in performance is significant.

Figure 13 shows the results for each farm in terms of event recall

and false alarm rate, along with the number of hypoxia events that

occurred during the testing period. The results vary considerably

across fish farms. In some cases, the results are not representative

due to the low number of events.

(e.g., RB farm). For the farms with a higher number of events

(e.g., LP, RI, and SI), the event recall ranges from 60% to 85%. The

false alarm rate also varies across farms. For example, in the SI

farm, the score is about 0.05. This means that we can expect

around 5 false alarm events (sequences of false alarms) every 100

days. High scores in terms of ER are associated with either a low

number of events (which means the score is not representative) or a

high FAR score. The end-users can control this trade-off using the

decision threshold, which in these experiments is set to 0.5.

Notwithstanding, this parameter can be optimized using

cross-validation.

As mentioned before, the model is designed to make predictions

with a lead time of 12 hours. However, sometimes the model might

detect events with some delay. Figure 14 shows the average

anticipation time (in hours) for each fish farm. The results
TABLE 4 Training and testing periods across each farm.

Farm Testing Begin Testing End

SI 2020–08-12 03:00:00 2022–09-19 13:00:00

LP 2020–10-31 03:00:00 2022–09-09 10:00:00

BIS 2020–12-02 10:00:00 2023–03-21 12:00:00

MI 2021–10-13 18:00:00 2022–06-17 23:00:00

DL 2021–11-25 06:00:00 2022–12-02 21:00:00

RI 2022–01-24 17:00:00 2022–12-02 21:00:00

VB 2022–07-12 02:00:00 2023–03-21 12:00:00

CI 2022–06-09 11:00:00 2023–03-21 10:00:00

AD 2021–10-10 00:00:00 2022–03-03 12:00:00

SC 2021–11-25 08:00:00 2022–04-04 16:00:00

DH 2022–05-20 17:00:00 2022–12-02 20:00:00

RB 2022–10-30 13:00:00 2023–03-21 12:00:00

FB 2022–06-15 07:00:00 2022–12-02 21:00:00

CC 2022–07-29 00:00:00 2022–12-11 23:00:00
FIGURE 9

A sequence of consecutive false alarms. The first alarm is useful, but the subsequent ones may add no information.
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indicate that the model detects events with an anticipation time that

ranges from about 5 to 8 hours.

Finally, we also evaluated the numeric forecasts produced by the

model. Figure 15 shows the distribution of absolute error (i.e., the

absolute difference between the forecast and actual values) across

the forecasting horizon. The median absolute error varies across

farms. For example, this value is about 0.25 for the AD farm.

Absolute errors above 0.5 are usually outliers (depending on the

farm) according to the boxplot.
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6 Discussion

6.1 On the data preparation
and experiments

Pre-processing the data through differencing was found to be an

important step in obtaining the reported forecasting performance,

however, stabilizing the variance and modeling seasonal effects did not

have a significant impact. We remark that, during the development of
FIGURE 11

Sample of the forecasts for low oxygen concentration events, and respective true values. The y-axis represents the probability of hypoxia computed
with a lead time of 12 hours.
FIGURE 10

Sample of the forecasts for oxygen concentration, and respective true values, for a lead time of 12 hours.
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our model, we attempted to add extra meteorological and

oceanographic variables. These included wind speed and direction,

air temperature, solar radiation, or upwelling index. However, these did

not improve forecasting performance. Another important aspect is that
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we average the values collected within each hour by taking the median.

We adopted this approach to avoid potential anomalies due to sensor

errors. However, we could also potentially have missed some brief

hypoxia events that occur within each hour.
FIGURE 12

Log loss score across farms for the developed method (CDF) and a classification benchmark (Classifier).
FIGURE 13

Number of events, event recall, and false alarm rate by fish farm.
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The learning algorithm applied in this work is a lightgbm that

was optimized using random search. During the development stage,

we attempted other algorithms, such as linear models and different

types of neural networks. Overall, the lightgbm presented the best

forecasting accuracy according to the metrics listed.

An important aspect of our work is that we evaluate our model

based on realistic assumptions regarding its potential application.

Usually, hypoxia detection models are evaluated using standard

classification metrics such as precision, recall, and F1-score (e.g

(Arepalli and Naik, 2024)). However, these metrics are not suitable

for this problem due to the time-dependency among observations

(c.f. Section 4.2.2).
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The results suggest that the CDF-based approach for computing

exceedance probability estimates outperforms a binary classification

model. Beyond performance differences, it is important to note that

the classification model is unable to produce forecasts, which are

desirable in our application.

We could build two models, one regression model for

forecasting and one classification model for exceedance

probability estimation. However, two different models are

susceptible to inconsistencies. For example, instances where the

forecasts suggest a high chance of hypoxia but the classifier outputs

a small probability for this event. In effect, being able to serve the

two types of predictions using a single value provides consistency in
FIGURE 15

Distribution of absolute error across farms.
FIGURE 14

Average anticipation time (in hours) across all fish farms.
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the output. This can be important for a reliable use of the

predictions by end-users.
6.2 On future work

There are several ways the model can be improved. We assume

a constant variance when estimating the event probability using the

CDF. Specifically, at each time step, we evaluate the CDF using the

standard deviation of oxygen concentration of the corresponding

cage computed with the whole training set. However, this statistic

may vary over time, for example, due to seasonal effects. Thus, an

adaptive approach (e.g., a rolling standard deviation) may lead to

better probabilistic estimates.

Another point of improvement may be a better data

compilation process. We apply a global approach by merging the

training observations from all fish farms in a single dataset. This

approach has several advantages such as the increased training

sample size. This feature can be important if the user wants to

deploy the model in fish farms with fewer data points available.

However, introducing data from other farms may not bring value in

some cases due to the idiosyncrasies of the farm. We can improve

the global-local trade-off by, for example, clustering fish farms

before modeling (Bandara et al., 2020).

Finally, the proposed model is based on auto-regression. We

can also carry out an extended feature engineering process to

improve the representation of the dataset. For example, previous

works in the literature (e.g (Liu et al., 2021)) report that feature

engineering based on empirical mode decomposition improves

oxygen concentration forecasting accuracy.
7 Conclusions

The key role of fish farms in efficiently producing marine

protein and reducing pressure on wild fish populations

underscores their importance in our society. The occurrence of

hypoxia episodes requires a focused approach to mitigate the

potential environmental and economic impacts of these events.

In this work, we have introduced a machine learning approach

aimed at forecasting oxygen concentration and detecting hypoxic

events in fish farms. Our solution is based on two steps. First, we

build an auto-regressive global forecasting model, utilizing

historical data from multiple fish farms. Subsequently, these

forecasts are transformed into hypoxia probability estimates

through the CDF. The empirical results, derived from the

application of the proposed model across 14 diverse fish farms,

show its effectiveness in detecting hypoxia.

We identified some potential limitations of our method. One

area for improvement involves the representation of the dataset

used for training the model. A more comprehensive feature

engineering process could enhance the accuracy of the model.

Additionally, we can also explore a better trade-off between

employing a local a global forecasting model.
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