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Microbial community structure
variability over the development
of healthy and underperforming
oyster larval hatchery broods
Jacob A. Cram*, Alexandra J. McCarty, Stacey M. Willey
and Stephanie T. Alexander

Horn Point Laboratory, Center for Environmental Science, University of Maryland, College
Park, MD, United States
Hatcheries nationwide suffer from unexplained acute production failures, termed

crashes. The microbiota of oysters relates to larval health with previous studies

showing that some bacterial species have positive and others negative effects on

oyster health. To investigate microbial correlates of crashes, we collected

samples from every batch of oyster larvae (Crassostrea virginica) produced by

the Horn Point Laboratory Oyster Hatchery since 2021 and analyzed the

microbiota of 15 of those batches over their duration in the hatchery, from age

of 3 to 5 days until either harvest or complete die off of the batch. Across events,

die-offs generally became evident at or after six days of age. We found that the

microbiota of oyster larvae appears to respond to die-off events with crashed

batches having fundamentally different microbiota than good batches at age 7 to

9 and 9 to 12 days. Crashed batches were often taken over by microeukaryotes

and bacterial taxa from the Protobacteria and Bacteroidetes phyla. However, this

presumably opportunistic community differed between batches. Observed Vibrio

species level groups did not appear to be oyster pathogens and appeared to

respond to, rather than precede, crashes. The microbiota of 3 to 5 day old larvae

were statistically related to whether a die-off occurred later in the larval batches’

life, only when the taxa were first agglomerated to family level. The detection of

two microbial species not previously known to associate with oysters, along with

an increased presence of Dinophyceae, predominantly the toxin-producing

Gyrodinium jinhaense, in 3 to 5 day old oyster larvae was statistically linked

with subsequent batch crashes. This study suggests that the health of larval

oysters shapes their microbiome. Conversely, it provides hints that the

microbiome of larvae, and perhaps harmful algae, may drive hatchery crashes.
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Introduction

Private and government run shellfish hatcheries support oyster

aquaculture and restoration efforts by providing farmers and

managers with broodstock oyster larvae and spat on shell

(Wallace et al., 2008). Although hatchery production has

improved immensely over the past several decades (Helm and

Millican, 1977; Elston et al., 1981; Urban and Langdon, 1984;

Lewis et al., 1988; Robert and Gérard, 1999), hatcheries regularly

experience massive unexplained die-off of stock (termed “crashes”)

without clear causative factors (Walker, 2017; Gray et al., 2022).

Identifying underlying common characteristics of crashes is an

important step towards identifying causes merging evidence

suggests that one primary characteristic affecting oyster larval

health is their microbiota.

Microbial communities are known to modulate the health of a

range of animal hosts (Peixoto et al., 2021), including many

aquaculture species (Infante-Villamil et al., 2021), and both adult

and larval oysters (Yeh et al., 2020). Some bacteria are pathogenic,

such as many species of the bacterial genus Vibrio, which have been

shown to sicken oyster larvae (Elston and Leibovitz, 1980; Richards

et al., 2015). Contrastingly, other bacteria can help their hosts.

Additions of probiotic species, including Bacillus pumilus RI06-95

and Phaobacter inhibens S4, have been shown to protect their hosts

from Vibrio coralliilyticus infection by shaping the host’s innate

immune response (Stevick et al., 2019; Modak and Gomez-Chiarri,

2020). Beyond affecting larval health, bacteria can serve as

indicators of changes in the host’s environment and health. For

instance, oysters fed compromised microalgae, representing an

unhealthy environment, showed both decreased health and a

concurrent change in their microbiome (Vignier et al., 2021).

Specifically, microbiomes with many species from the

Rhodobacteraceae family positively associated with multiple

measures of host fitness, while two species of Flavobacteriaceae

associated with low fitness (Vignier et al., 2021). Given the

importance of microbiota in modulating the health of oysters, it

is essential to explore how certain microbiota may relate to observed

hatchery crashes in more detail.

Microbial communities in animals and environmental systems,

such as hatcheries, are in a state of constant change (Fauci and Dick,

1994; Fuhrman et al., 2015; Bashan et al., 2016; Arora-Williams

et al., 2022). Studies have explored the microbial community

composition in oyster hatcheries (Le Deuff et al., 1996;

Ramachandran et al., 2018; Arfken et al., 2021; Gray et al., 2022)

and the dynamics of those communities (Stevick et al., 2019), but

these studies focused on single time-point observations or

experimental setting rather than normal production conditions

over an extended period. Time-series observations offer an

advantage over those taken at a single point in time by

identifying statistical associations in which one factor changes

before the other factor, providing clues about causality (Fuhrman

et al., 2015). Specifically, if changes in one variable lead changes in

another variable, the lagging variable cannot predict the leading

variable. In hatchery crashes, this is important because crashes and

microbes both shape each other – microbial changes that happen
Frontiers in Aquaculture 02
before crash events are unlikely to be caused by the crash itself and

are therefore more likely to shape crashes, or else are associated with

another variable that leads to crashes. No previous study of oyster

hatcheries has, to our knowledge, addressed the temporal dynamics

of the microbial communities that could provide the information

necessary to predict hatchery crashes.

The Horn Point Laboratory Oyster Hatchery (HPLOH) is the

largest producer of oyster seed (Crassostrea virginica) on the

Atlantic Coast of the United States, and experiences slowdowns

and halts to its production every year (Gray et al., 2022). These

yearly crashes at HPLOH have common characteristics, with most

to all of the larvae in a feeding tank ceasing to feed and then dying at

the age of 6 to 21 days. While preliminary observations associate

low salinity in the oysters’ overwintering location with lower spat

yield (Gray et al., 2022), a causal relationship is not established.

Preliminary investigation of only two larval batches suggests that

microbial communities differed between one crashed and one non-

crashed larval batch at HPLOH (Cram et al., 2022; Gray et al.,

2022). To more thoroughly assess how microbiota change over time

and how these changes relate to crash and non-crash events within

HPLOH, we systematically collected samples of larvae and their

associated microbiota during every water change at the HPLOH

since the beginning of the 2021 growing season. Amplicon

sequencing was conducted on a subset of these samples to

determine whether the microbiota of the three to five day old

larvae were predictive of crashes, as crashes manifest in all larvae

over six days of age. Additionally, this study aims to further identify

any consistent microbial patterns associated with healthy versus

underperforming batches. Our aim was to identify patterns in

microbial community structure that are predictive of potential

die-offs. Such predictive microorganisms have the potential to

help hatcheries defend and prepare to avoid future die-off events.
Materials and methods

Sampling

The Horn Point Laboratory Oyster Hatchery spawns

broodstock oysters and transfers fertilized eggs into Mass Larval

Tanks (MLT), where they grow normally into pediveliger larvae

over a span of 12 or more days. During this time, tank water is

changed once every two to three days, which includes collecting the

larvae briefly on a sieve. Finally, pediveliger larvae are allowed to

settle on shells to form spat, or on shell fragments to produce seed,

both of which can be sold or used for restoration.

During the growing season of 2021, we collected samples of

~100 mg of larvae from every MLT tank water change for every

batch of oyster larvae, totaling 265 samples from 72 batches. Larvae

were collected by filtering water from the MLTs and scraping the

larvae collected on the filter mesh with a clean plastic coffee stirrer.

The temperature, salinity and pH of hatchery intake water were

measured prior to filtration using a YSI Pro 1030 handheld meter.

The larval sample was then transferred to a screw-caped 2 ml

cryogenic vial pre-loaded with 250 ml of Zymo DNA/RNA shield
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buffer (#R1100). If there were dead larvae in the hatchery tanks,

those were co-isolated on the mesh and collected alongside the

living larvae. Hatchery staff quantified the abundance of larvae in

each tank during water changes and transfers between tanks.

Survivorship curves for each batch in the 2021 season at each

time point were generated by counting the number of living larvae

plus larvae that had been saved for planting or sale. Batches in

which there were fewer than one million larvae surviving to the

pediveliger stage were considered “crashes,” while others were

considered to be “good.” From the set of all 76 batches, we

selected nine batches that crashed and six that were good for

amplicon sequencing.
Amplicon sequencing

We sequenced the microbiome from three time points for each

of the 15 batches, and additional time-points for one batch that was

run for longer than the others, for a total of 51 samples. The three

time points collected occurred between days 3 and 5, between days 7

and 8, and between 9 and 12 days of age. DNA was extracted with

E.Z.N.A Tissue DNA kits (Omega Bio-Tek SKU: D3396-00S).

Samples were then amplified using 515F-926R universal primers,

with overhang sequences so that primers can be added with a

second amplification step. Thus, for the first round of PCR our

primers were Overhang+515FY: 5’: TCGTCGGCAGCGTCAG

ATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA;

Overhang + 926R: 5’ GTCTCGTGGGCTCGGAGATGTG

TATAAGAGACAGCCGYCAATTYMTTTRAGTTT.

Samples were amplified in 25 ul of 1X Accustart master mix;

with 0.3mM each of the forward and reverse primers, and 1ng of

host DNA. Samples were denatured at 95°C for 120 seconds.

Samples then underwent 25 cycles of denaturation (95°C, 45

seconds), annealing (50°C, 45 s), and elongation (68°C, 90 s).

There was then a final elongation step at 68°C for 300 seconds.

Sample quality was assessed on an agarose gel and cleaned using

Ampure XP beads following manufacturer instructions. After

cleaning, samples underwent a second round of PCR, with

primers containing barcodes and Illumina adapters with the

following sequences — Index primer 1: 5 ’CAAGCAGA

AGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGG;

Index Primer 2: ATGATACGGCGACCACCGAGATCTACACX

XXXXXXXTCGTCGGCAGCGTC.

Xs stand for an eight-base barcode corresponding to Illumina

XT i7 and i5 barcodes. All primers were purchased from IDT. These

samples were amplified in a 25 ul reaction mixture containing the

same concentration of AccuStart master mix and primers, with 7 ml
of first round amplification product added. Samples underwent five

additional rounds of amplification using the same temperatures as

in the first round. Samples were again assessed and cleaned using 10

uL EBT (10mM TREIS ph8, 0.1% Tween20) for the final elution

step. Samples were quantified, diluted to a common concentration,

pooled alongside barcoded samples from several other projects, and
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sent to UC Davis DNA technologies core where they were run on an

Illumina MiSeq.
Amplicon bioinformatics

Samples were demultiplexed by the sequencing facility and

returned to us as plain text, quality scored “FASTQ” files.

Amplicon sequence variants, which are genus to species level

groups, were called using the DADA2 algorithm (Callahan et al.,

2016), following a modified version of the Lee (2019) protocol. In

brief, primers were removed from sequences with cutadapt (Martin,

2011). We used the DADA2 `filterandtrim()` algorithm to retain

sequences with fewer than one error on the forward read and fewer

than two errors on the reverse read, and truncated sequences to 270

sequences in the forward and 200 in the reverse direction. DADA2

was then used to learn error rates, depreplicate identical sequences,

call amplicon sequence variants, and to merge forward and reverse

reads. Chimeric sequences were then removed. Taxonomy was

called using DADA2’s `assignTaxonomy()` function using the

Silva database, version 132 (Quast et al., 2013; Yilmaz et al.,

2014). This scheme allowed us to classify bacterial, archaeal, and

eukaryotic sequences, including host sequences.
Data analysis

We used logistic regression to determine whether median

temperature, salinity and pH over the course of a batch were

related to whether or not a hatchery crash occurred using the glm

function in the R stats package (Team, 2022). We determined the

odds ratios of these effects using the `standardize_parameters`

function of the `effectsize` R package (Ben-Shachar et al., 2020).

We divided microbial amplicon read counts by the counts of

host 18S genes to determine microbe to host gene ratios. These data

are more quantitative than relative abundance, and scale with the

abundance of each organism relative to host biomass.

We performed canonical correspondence analysis (CCA) to

explore whether microbial community structure over the entire

dataset was related to the age of the larvae and whether the larvae

crashed. For this CCA, gene ratio data was normalized through a

square-root transformation. We used a permutation test for CCA,

implemented in the vegan package in R (Oksanen et al., 2024), to

identify whether the community structure was statistically

significantly related to crash status and time.

We also examined whether the microbial community structure

differed between crash and non-crash samples at each of the major

time-points (3 to 5 day larvae, 7 to 8 day larvae and 10 to 12 day

larvae). We tested for associations with crashes after lumping the

community data to Phylum, Class, Order, Family, and Genus levels

as well as using the original ASV data. To lump the data, we

summed the microbe to host gene ratios in each group. Then, the

data were square-root transformed and the CCA performed. Again,
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we used an ANOVA-like permutation test to determine whether the

community structure was statistically significantly related to

whether the host species crashed. Between the three different time

points and seven taxonomic levels, we performed 21 separate CCA

analyses. Therefore, we applied a false discovery rate correction

(Benjamini and Hochberg, 1995) to adjust for multiple testing.

We then plotted the microbe to host gene ratios of key

taxonomic groups over time, focusing at first on the coarsest

taxonomic levels, and then looking within course taxonomic

groups that seemed to relate to crashes to identify which finer

level taxa appeared to drive those patterns. T-tests were used to

identify taxa at each taxonomic level that were statistically

associated with differences between crashed and healthy batches

at each time point. False discovery rate corrections (Benjamini and

Hochberg, 1995; Dabney and Storey, 2004) were applied to the T-

test data.
Results

Hatchery output varied over the 2021
growing season and was punctuated by
die-off events

Over the 2021 growing season, HPLOH produced 4.4 billion

pediveliger larvae over 74 batches. Batches began with 0 to 1.7 billion

fertilized eggs (0 day old larvae; median: 498 ± median adjusted

deviation (MAD): 203) and resulted in 0 to 184 million pediveliger

larvae per batch (median: 50.2 million ± MAD: 68.4 million). 15

batches resulted in crashes in which fewer than ten million

pediveliger larvae were produced (Supplementary Figure S1). In 7

of these batches, no larvae survived to the pediveliger stage.

We sampled the microbiome of 15 distinct batches from the

water changes that happened between days 3 and 5, days 7 and 8,

and days 10 and 12. Of these batches, six showed normal

production over the lifetime of each batch, producing from 33.1

million to 139 million larvae. The remaining nine batches
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represented crashes and had between 0 and 5.6 million surviving

larvae (Figure 1).
Crashes are more likely when water is
warm and basic

Temperature, salinity and pH all varied across the year, with pH

high in April and August, and low in June; salinity lowest in May,

and temperature highest in August (Figure 2). A logistic regression

model that considered the effects of salinity, temperature and pH

together indicated that salinity was not related to the probability of

crashes (p = 0.64), temperature was just outside of statistical

significance (p = 0.067), while pH was statistically significant

(salinity p = 0.064 temperature p = 0.067, pH p = 0.023).

Therefore, we reran the linear model excluding salinity. This

model showed that both temperature and pH were statistically

significantly related to the odds of a crash (temperature p = 0.0009,

pH p = 0.002). The odds ratios associated with a one standard

deviation (temperature SD = 4.90°C, pH SD = 0.207) increase in

both temperature and salinity were large (temp OR = 6.22 [95% CI

2.27 – 20.33], ph OR [2.08 – 19.81]).

However, our crashed and non-crashed samples were

intentionally collected near the same time of year as each other

(Figure 2), and so the effects of salinity, temperature and pH among

these samples were all not statistically significant (salinity p = 0.24,

temperature p = 0.15, pH p = 0.16). Therefore, we felt comfortable

carrying out our microbial community analysis with statistics that

did not account for variability in these factors.
Larval microbiota change across time in
ways that differ between crashed and non-
crashed batches

Canonical correspondence analysis revealed that microbial

community structure at the ASV (effectively species to genus)
FIGURE 1

Survivorship curves for the batches of larvae sampled in this experiment. The x-axis shows the age of the larvae in days, and the y axis shows the
number of larvae incubating in tanks, plus the number of pediveliger larvae harvested for planting or other purposes. Red curves indicate batches in
which there were fewer than ten million larvae that survived to harvest. The dashed brown line indicates ten million larvae.
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level was related to both the age of the larvae and whether that batch

of larvae experienced a crash. At the ASV level, microbial

community structure at the 10 to 12 day time-point appeared to

relate, statistically significantly, to whether a crash was ongoing (p =

0.02; Table 1). In contrast, the microbial community from the 3 to 5

(p = 0.06) and 7 to 8 day (p = 0.06) time-points did not appear to

relate statistically significantly to whether the host would go on to

crash (in the case of the 3 to 5 day samples) or was crashing (in the

case of 7 to 8 day samples; Table 1). Canonical correspondence

analysis of data at all time-points showed that the microbial

community was statistically significantly related to whether the

sample was from a good or crashed batch (p = 0.0043) and over time

(p = 0.0022; Supplementary Figure S2). A model including an

interaction term between the two variables showed the interaction

between batch outcome and time was not statistically significantly

related to community structure (p = 0.215).
Family level microbial community structure
at days 3 to 5 associates with whether that
batch goes on to crash after day 6

We found that at the 3 to 5 day time-point the microbial

community, aggregated to Family level, but not other taxonomic

levels, associated with whether the larval hosts went on to crash later

in the study (Table 1). At the 7 to 8 day time-point, the microbial

community aggregated to Genus, Family and Class levels were

associated with whether the larval hosts experienced a crash. And at

the 10 to 12 day time-point, community structure at the Genus and

ASV levels associated with whether the larval hosts experienced a

crash (Table 1; p < 0.05). False discovery rate analysis indicated that

around 17% of these observations may have emerged due to

random chance (FDR< 0.17 for all tests; Table 1). Microbial

community aggregated to Order, Phylum and Domain levels

never related to batch outcomes.

A CCA of all samples, from all time-points, spanning the 3 to 5,

7 to 8 and 10 to 12 age ranges, showed that the microbial

community, agglomerated to family level, differed between good
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and crashed samples (p = 0.007), and changed over time (p =

0.0049) (Figure 3). Additionally, a separate CCA that explored the

interaction between the outcome term (crashed vs good) and age

suggested a statistically significant interaction between these two

factors, the outcome term (crashed vs good) and age (days), on the

family level microbial community structure (p = 0.047). Visual

interpretation revealed that differences in the community structure

between good and crashed batches increases over time (Figure 3).
The development of the oyster larval
microbiota over the lifetime of healthy and
crashed batches

Analysis of the microbial community over the lifetime of the

crash suggested that several eukaryotic and bacterial taxa increased

in abundance over the course of the crash, but that the taxa differed

between crash events. Many groups statistically differed in their

abundance relative to hosts between crashed and non-crashed

samples at the day 7 to 8 and day 10 to 12 time-points

(Supplementary Table S1).

The ratio of Bacterial 16S genes to larval host 18S genes was on

the order of 10-2 bacterial genes per host gene at the three day time-

point, with variability between batches (Figure 4). In crashing

batches, this ratio increased over the lifetime of the batch, often

terminating at a ratio of 10-1 to 101 bacterial genes per host gene.

Nine bacterial phyla appeared in at least 30% of all samples

with at least five sequences (Figure 5A) and increased over the

course of crashes. These were Acidobacteria, Actinobacteria,

Bacteroidetes , Chloroflexi , Cyanobacteria , Firmicutes ,

Planctomycetes, Proteobacteria (from the Alpha (a-), Gamma

(g-) and Delta (d-) sub-phyla) and Verrumicrobia. Bacteroidetes

and Gammaproteobacteria had the highest abundances, often

reaching levels of 10-2 to 101 over the life of crashes.

Within the Gammaproteobacteria sub-phylum (Figure 5B),

there were six abundant ASVs (with at least 5 reads in at least

30% of all samples; Figure 5A). One, from the genus Ralstonia (ASV

143), was abundant both in healthy and crashed samples. The
FIGURE 2

Properties of hatchery intake water and how they varied over time, including pH, Temperature (A) and Salinity (B). The first timepoint collected each
month is labeled with a rounded rectangle. Sample shapes and colors indicate whether a crash occurred at each time-point. Stars indicate the
samples that were sequenced in this study.
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TABLE 1 Results of permutation tests of canonical correspondence.

Age (Days) Taxonomic Level X2 F p FDR

3-5

Kingdom 0.0078 1.4 0.23 0.32

Phylum 0.030 0.81 0.59 0.65

Class 0.042 1.1 0.30 0.39

Order 0.075 1.2 0.15 0.27

Family 0.10 1.4 0.024 0.17

Genus 0.11 1.2 0.096 0.22

ASV 0.16 1.1 0.20 0.30

7-8

Kingdom 0.0021 0.28 0.72 0.72

Phylum 0.058 1.5 0.079 0.21

Class 0.069 1.6 0.049 0.17

Order 0.074 1.3 0.11 0.23

Family 0.090 1.5 0.041 0.17

Genus 0.12 1.3 0.047 0.17

ASV 0.19 1.2 0.061 0.18

10-12

Kingdom 0.00071 0.31 0.71 0.72

Phylum 0.023 0.94 0.35 0.40

Class 0.026 0.99 0.31 0.39

Order 0.039 1.2 0.20 0.30

Family 0.044 1.2 0.12 0.24

Genus 0.084 1.7 0.0010 0.021

ASV 0.17 1.7 0.019 0.17
F
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Each row includes samples taken from larvae of only a specific Age (Days) and uses ASV data agglomerated to a given Taxonomic Level. In all cases, we tested whether larvae from good batches
are different from crashed batches (batches that experienced die-offs and produced fewer than one million ready-to-settle larvae). All tests have one degree of freedom. The chi-square of the
constrained portion of the model (X2), and the pseudo-F statistic, representing the ratio of the constrained and unconstrained X2 values (F) are shown. The p value indicates the proportion of the
time permuted data returns higher F values than the un-permuted model. Our threshold a was p = 0.05 and values below this are bolded. FDR is the false discovery rate, using the Benjamini-
Holchberg approach. FDR values < 0.20 are bolded.
FIGURE 3

Canonical correspondence analysis showing the progression of the microbial community, aggregated to the family level, across 15 distinct larval
hatchery batches. Points that are closer together indicate samples with more similar microbial communities. Shape indicates larval age while color
indicates batch performance (crash vs good).
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FIGURE 4

Microbe to host gene ratios of microbial domains. The x-axis indicates larval age, measured in days since fertilization. The y-axis indicates the log of
the ratio of microbial 16S or 18S genes to host 18S genes. Higher values correspond to greater microbial loading on hosts. Color and point shape
indicate whether the batch experienced a crash (with fewer than 1 million larvae surviving to harvest), or did not experience a crash.
FIGURE 5

Microbe to host gene ratios of common (present in at least 30% of samples) bacterial phyla and proteobaterial sub-phyla (A) and common ASVs
from within the gammaproteobacterial sub-phylum (B). ASV names indicate the lowest identified taxonomic level of each ASV, followed by that
ASV’s ID for this study. Sequence information for each ASV can be found in Supplementary Table S2.
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others increased in abundance during crashes, with different crashes

characterized by different ASVs (Figure 5B). Within Bacteroidetes,

there were six phyla, all of which increased in abundance over

crashes, and which varied in their abundance between different

crashed batches (Supplementary Figure S3).

Bacteria from the genus Vibrio were rare. While they did at

times reach abundances of 10-2 per host gene (Supplementary

Figure S4), Vibrio only appeared in some but not other crash

samples and some species only showed up in one sample of one

batch (ASVs numbered 1251 and higher). Vibrio tended to occur

late during the development of crashes. However, ASV 1251

appeared only in a healthy batch. Vibrio, when blasted against

NCBI, were often 100% similar to multiple genera because the V4 –

V5 hypervariable region of the 16S rRNA gene does not

unambiguously differentiate Vibrio species (Kwok et al., 2002).

Vibrio were identified as belonging to a range of genera including

human pathogens V. Vulnificus and V. Cholarae (Colwell et al.,

1977). Only two ASVs had sequences identical to oyster pathogens:

Both ASVs 826 and 1251 had 100% sequence identity to V.

Coralliticus and V. alginoliticus (known oyster pathogens); these

sequences were also 100% similar to V. parahemoliticus. Of these,

ASV 826 appeared in three crash batches while ASV 1251 only

appeared in the first-time point of one batch of “good” (non-

crashed) larvae.

Eukaryotic 18S sequences, representing primarily multicellular

organisms, showed similar patterns to those of total bacteria

(Figure 4). They began with around 10-3 18S gene copies per host

18S gene and increased to between 10-1 to 100.5 over the course of

the crash. Healthy cells in contrast increased much less, and

sometimes showed decreases in eukaryotic abundance between

days 7 and 9.

There were six abundant eukaryotic phyla that showed up in at

least 30% of samples with at least five reads per phylum

(Supplementary Figure S5A). The Annilida, Ciliophora,

Platyhelmenthes and Rotifera phyla were the most abundant, and

were all present both in good and crashed samples reaching ratios of

10-2 in good samples and 100 in crashed samples. Furthermore,

there were ten Eukaryotic ASVs that met this same occurrence

threshold (Supplementary Figure S5B). All phyla and ASVs showed

the same pattern as the Gammaproteobacteria and Bacteroides:

Higher abundance in crashed samples, increasing over time, with

variability between groups.

Archaea were rare in healthy hosts (on the order of 10-4 to 10-3.5

copies per host gene) but became more abundant by the 11 day

time-point in crashed batches. In all cases, Archaea were less

common than Bacteria and Eukaryota (Figure 4).
Three taxonomic groups are statistically
more abundant prior-to crashes

Three taxa are statistically more abundant in crashed than in

non-crashed samples at the 3 to 5 day time-point (before the crash

is otherwise detectable; Supplementary Table S1; Figure 6A, t-test

p<0.05). The first of these is ASVs that fall into the family

Dinophyceae (p = 0.046; Supplementary Table S2). The second is
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ASV 53, which is 88% similar to a mitochondrial sequence

(Supplementary Table S2), suggesting that this is either a

previously unsequenced mitochondrial group or unsequenced

bacterial group. The third, ASV 205 was 97.4% percent similar to

an organism cal led Planctomycetaceae bacterium D2

[Planctomycetaceae bacterium D2 gene for 16S ribosomal RNA,

partial sequence LC075346.1 (Nakamura et al., 2016)]. Of these

taxa, Dinophiceae and ASV 53 genes increased in abundance

relative to host genes in many, but not all, crash batches, while

ASV 205 remained at low abundance over the course of the crashes

Within 3 to 5 day old larvae, these indicator taxa were often present

late in the growing season, but were not detected at the crash that

happened in the early spring (Supplementary Figure S6).

False discovery rate correction, when applied to the p-values of

all taxa at all time-points, suggested a Benjamini-Hochberg False

Discovery Rate (FDR; Benjamini and Hochberg, 1995) of 0.19 and a

q-value (Dabney and Storey, 2004) of 0.03. When this analysis was

instead applied only to bacteria from the day 3 to 5 time point, the

FDR was 0.55 and there were too few p-values to calculate q-values.

The class Dinophyceae was comprised of six ASVs which

appeared in at least 5% of observed samples (Figure 6B) – the

most abundant of these, Gyrodinium 189 and Gyrodinium 555,

appeared to be primarily responsible for the overall patterns in this

class. NCBI Blast indicated these sequences were species

Gyrodinium jinhaense MH665396.1, while the other taxa within

Dinophyceae were from other groups (Supplementary Table S2).
Discussion

Over the course of each of nine hatchery crashes in 2021, the

gene content of numerous phylogenetic groups increased relative to

host genes. These increasing microbial gene copy numbers, relative

to host gene copy numbers, presumably reflect increases in cell

abundance (see methodological advantages and considerations). In

the case of eukaryotes, it reflects either greater numbers of

organisms or larger organisms.

We show preliminary evidence that microbial community

patterns detected at the day 3 to 5 time point, when aggregated to

family level and some microbial taxa, are associated with whether

the larval batch crashes after day 6. These taxa include the family

Dinophyceae, which is dominated by Gyrodinium jinhaense, a

known toxic algae. These family level community structure and

taxon specific patterns suggest that, with a larger sample size, the

microbial community could predict crashes.
Hatchery crashes favor the growth of
many microbial taxa

Numerous species from diverse phylogenetic groups (Figures 4,

Supplementary Figures S3-S5) across all domains of life appear to

increase in abundance in oysters over the span of crashes. These

organisms likely thrive in either or both of two niches that are

opened over the course of the crash: The first niche is sick hosts.

Dying oyster larvae may be unable to prevent bacteria and
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microeukaryotes from growing in or on them and so these

microorganisms use the larvae as a habitat. Indeed, opportunistic

bacteria and eukaryotes have been seen to take advantage of a range

of diseased and stressed hosts (Burge et al., 2013; Derome et al.,

2016; Lloyd and Pespeni, 2018). Such a phenomenon could

accelerate crashes as more of the host’s nutrients and energy are

transferred to the microorganisms. The second is that crashes

produce larval carcasses which may also provide habitats and

food for microorganisms (Kolmakova et al., 2019). Thus, we may

be seeing an increase in carcass degraders. In principle, one could

separate living larvae from dead ones to deconvolve whether the

microorganisms are growing on live or dead larvae. This was not

done in this study because our sampling method was designed to

piggyback on ongoing hatchery operations, which collect living and

dead larvae together. ASVs that increased in abundance during

crashes included Bacteria, Archaea and Eukarya. Many of the

eukaryotes seen in our amplicon analysis, including Rotifers and

Annelids, were both seen by hatchery staff during microscopic

monitoring of their tanks.

Most of the bacteria that appeared to grow during crashes are

not known oyster larvae pathogens. A few organisms are pathogens

of animals other than oysters: Bordetella (ASV 28; Figure 5) include

known pathogens on mammals (Gerlach et al., 2001); S. Ralstonia,

the gammaproteobacterial genus found on both healthy and

diseased oysters (ASV 143; Figure 5), is primarily described in the
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literature as a plant pathogen (Carstensen et al., 2017; Rivera-

Zuluaga et al., 2023); and Polydora websteri (ASV 11;

Supplementary Figure S5) is a known shell burrowing pathogen

on adult oysters (Barros et al., 2017; Martinelli et al., 2020). None of

the species that grew on diseased oysters (Supplementary Tables S1,

S2) are known pathogens of oyster larvae, to our knowledge.
Vibrio probably do not drive
observed crashes

Known pathogens such as vibrio (Elston and Leibovitz, 1980)

were not common in our dataset. Each observed Vibrio genus was

only present in some batches and Vibrio were usually detected at

low abundance, with Vibrio 16S to host 18S gene ratios on the order

of 10-3 to 10-2 (Supplementary Figure S4). Most observed Vibrio

ASVs had 100% sequence identity to multiple species, indicating

that our ASVs provide only ambiguous taxonomy (Supplementary

Figure S4). A few of the Vibrio appeared to have sequence identity

of known oyster pathogens (Supplementary Figure S4), however,

those Vibrios were always rare. More common were known

pathogens of humans including V. vulnificus and V. cholarae.

Thus, even though Vibrio have been implicated in oyster disease,

including diseases in oyster hatcheries, in the past (Elston et al.,

1981; Richards et al., 2015), they do not appear as likely causes of
A

B

FIGURE 6

Microorganisms whose abundances precede crashes. (A) Abundance of three taxonomic groups, one at the Class level (Dinophyceae) and two at the
ASV level, that were statistically significantly more abundant in crashed batches than in non-crashed batches at the 3 to 5 day time point.
(B) Common (present in >= 5% of samples) ASVs within the class Dinophyceae.
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disease in this study. Rather, Vibrio are often opportunistic bacteria

(Brown et al., 2012; Purgar et al., 2022), and so they may be growing

on oyster carcasses.
The microbial community differs between
crashed and good batches before the
crash occurs

The microbial community differed before crashes become

evident, after day 6 (Figure 1), between good batches and batches

that crash at the 3 to 5 day time point., Two ASVs and one Class

level group associated with batch outcome at the 3 to 5 day time-

point (Supplementary Table S1). The class level group,

Dinophiceae, was dominated by the species Gyrodinium

jinhaense. Gyrodinium jinhaense is a heterotrophic dinoflagellate

that was previously found and isolated from a fish kill incident. It

has also been found to harbor fragments of genes for polyketide

synthase (necessary for the production of many algal toxins) and

Saxitoxin production (Sprecher et al., 2021). However, G. jinhaense

has not been observed to produce Saxitoxin in situ, nor does it have

the stxA4 domain that is likely necessary for Saxitoxin synthesis

(Sprecher et al., 2021). This association could indicate that the

Dinophyceae may contribute to crashes by poisoning larvae,

possibly though a toxin other than Saxitoxin. Alternatively, larvae

might consume Dinophyceae only when they are stressed. G.

jinhaense has not been previously reported in the Chesapeake

Bay, to our knowledge. However, unidentified species of the

Gyrodinium genera have been reported to form blooms in the

Chesapeake Bay (Anderson, 1998).Planctomycetaceae bacterium

D2 (ASV 205), the second ASV associated with crashes at the 3

to 5 day time-point, has, to our knowledge, only been observed in

the Bay of Tokyo as part of a study examining a novel approach to

isolating bacteria (Nakamura et al., 2016) — nothing is known

about its ecology. The planctomycetes phylum, including

Planctomycetaceae, contains many particle associated bacteria

and some of the species have been identified as human pathogens

(Kaboré et al., 2020 and references therein). Bacteria in the

Planctomycetes phylum are common across the Chesapeake Bay,

but Planctomycetaceae bacterium D2 hasn’t been reported

previously in the Chesapeake Bay, to our knowledge. The closest

abundant reported relative is an ASV from the Gimesiaceae family,

which shares the order Planctomycetales with Planctomycetaceae

bacterium D2, and is often abundant in small (< 5 mm) particles

across the bay (Cram et al., 2024). The third ASV, ASV 53, did not

match any sequences in NCBI, but bears some genetic similarity to

mitochondria. Thus, ASV 53 could be the mitochondria of some

eukaryotic organism, or else is an unidentified bacterium.

Given the number of comparisons that we carried out and the

post-hock nature of our analysis, it is possible that the association of

any of these three taxa (Dinophyceae, ASV53, Planctomycetaceae

bacterium D2) are statistical flukes (false discovery rate of 0.21). In

all cases, it will be valuable to evaluate whether these groups are

associated with crashes in other datasets, by repeating this study, or

ideally expanding it with more observations from the already

collected samples. If they do associate with crashes in other data,
Frontiers in Aquaculture 10
steps to identify them and learn about their ecology will be valuable

in determining whether they might cause or otherwise be good

predictors of crashes. As with the community level patterns, these

taxa are not “predictive” of crashes, since we lacked the sample size

to carry out robust validation approaches. Rather, they are

associated with whether given batches in our dataset went on to

crash, after the observations were made. Additionally, an important

future direction will be to determine how these potential crash

causing organisms enter the hatchery in the first place. Identifying

their sources, such as whether they come in through hatchery

intakes and somehow avoid removal by the hatchery’s filters,

through contamination of food, or by other sources, would

provide a step towards keeping these organisms out of hatcheries

and perhaps preventing crashes.
Salinity and pH modulate crashes, but do
not confound the observed microbe-
crash relationships

The observation that temperature and pH but not salinity relate

to crashes disagree with the observations of Gray et al., 2022 who

found in the same hatchery, but over a different time interval (2011-

2020), that low salinity but not temperature and pH appeared to

relate to crashes. This suggests that the environmental conditions in

2021 were different enough from the interval Gray et al. (2022)

considered and that different patterns emerged over the time

interval that we considered. The observation that over the

samples that we considered there was no relationship between

temperature and pH and the probability of crashes suggest that

these parameters, while predictive do not confound our data.

Indeed, we selected crash and healthy samples during similar

times of year to each other to minimize the effect of

environmental variability and to focus on microbial effects

on crashes.
Methodological advantages
and considerations

The co-amplification (with universal primers) of microbial 16S

and 18S genes with host 18S genes has the unique advantage of

expressing microbial abundances as ratios relative to host genes,

rather than proportions of total microbial community (relative

abundance). These microbes to host gene ratios allow us to

identify trends in microbial loading on hosts. It was clear in this

study that microbial gene abundance, relative to host gene

abundance, increased over time in crashed hatchery batches, but

did not in healthy batches. While it is true that 16S and 18S gene

abundances per cell vary between organisms (Větrovský and

Baldrian, 2013), gene abundances per cell do not vary much over

the life-time of organisms, beyond doubling during DNA

replication and halving after cell division (Alberts, 2015). Thus,

differences in microbe to host gene ratios between different samples

must be directly proportional to differences in microbe to host

cellular ratios. The observed increases in total microbe to host gene
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ratios presumably reflect increased total microbial loading over the

course of the crashes. Furthermore, the increase in the microbe to

host gene ratios of individual taxa presumably indicates the loading

of individual taxa on hosts. This approach provides one solution to

the problem of compositionality, in which relative abundance

information can provide misleading information about microbial

trends (Gloor et al., 2017).

Conversely, sequencing host 18S genes comes at a cost –most of

our reads (often by factors of 100 to 1000; Figure 4) are copies of the

same host 18S gene. Therefore, much of this study’s sequencing

effort went towards re-sequencing oyster 18S genes. Thus, with this

approach, greater sequencing efforts are needed to ensure sufficient

microbial sequences are obtained. As a result, this approach likely

detects fewer rare microbial species than do other approaches.

Combining amplicon based sequencing with CRISPR-Cas based

removal of host genes (Zhong et al., 2021) and the use of blocking

primers (Clerissi et al., 2020) have shown promise in sequencing

eukaryotes without having the signal swamped by oyster hosts. Such

an approach, combined with qPCR of oyster and bacterial genes to

provide microbial loading information, could be used to provide

similar information about host to gene ratios while devoting more

sequencing effort to microbial sequences.

Amplicon sequencing has known biases that can over-represent,

under-represent, and miss some organisms (Krehenwinkel et al., 2017

and references therein), introducing additional caveats worth

discussing. This primer set has been validated and is shown to

sequence most bacterial, archaeal, and many eukaryotic taxa

(McNichol et al., 2021). Furthermore, mock communities amplified

in these same amplicon sequence runs, with the same primers, have

shown good affinity to the known sequences (the data were run

together with some of the sequences from Cram et al. (2024)). Using

multiple primers concurrently (McNichol et al., 2021) might allow

greater coverage of other species. Additionally, sequencing of different

genes, such as hsp60, could allow better differentiation of vibrio species

(Kwok et al., 2002; Jesser and Noble, 2018) or other microbial groups.

Untargeted metagenomic sequencing (Ramachandran et al., 2018)

could also provide greater insight into the diversity and functional

gene content of the community, but would also face the challenge of

most reads being from the host genome. While amplicon sequencing

may over or underrepresent, lump or miss certain taxa, the observed

variability between batches (N = 15, 6 with normal production and 9

that crashed) and changes over time (through day 12, capturing the

lifecycle of a batch) are likely representative of real variability in the

underlying microbial community.
Conclusion

This study provides a framework and proof of concept for

detecting potential causes and predictive agents of oyster crashes.

We advocate approaches that, like this one, meet the following

criteria: (1) Studies should sequence from all three domains of life,

because both bacteria and eukaryotes appear to relate to hatchery

crashes. (2) Studies should examine larval tissue (rather than or in

addition to tank water), because it informs about microorganisms

that directly associate with oysters. Additionally, larval samples are
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easier for hatchery staff to collect as part of normal operations than

other sample types. (3) Studies should quantify the ratio of

microbial genes relative to host genes because these ratios mirror

microbial loading on hosts.

Given our small sample size, conclusions about causative agents

and predictions are not possible. However, we hypothesize that

Gyrodinium jinhaense, a known toxic alga that was found in larvae

both before and during crashes but not in non-crashed samples,

may have been responsible or partially responsible for many of the

crashes at the Horn Point Laboratory Oyster Hatchery during the

2021 growing season.
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