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Application of genetic
technology in support of the
northern hard clam (Mercenaria
mercenaria) aquaculture industry
Alexandra J. McCarty 1*†, Jan R. McDowell 1,
Kimberly S. Reece 1, Richard A. Snyder2 and Karen Hudson1

1Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA, United States,
2Virginia Institute of Marine Science Eastern Shore Laboratory, College of William & Mary,
Wachapreague, VA, United States
Introduction: The northern quahog (hard clam, Mercenaria mercenaria)

aquaculture industry on the Eastern Shore of Virginia produces the top

seafood item by value in the Commonwealth of Virginia and is the largest hard

clam aquaculture industry in the United States. This work resulted from industry

interest in using molecular tools to assess and manage the genetic health of their

proprietary broodstock lines.

Methods: To demonstrate the application of molecular methods, scientists and

extension specialists genotyped hard clam samples from three commercial

companies in Virginia, compared the results with previous work documenting

the genetic structure of wild populations along the East Coast of North America,

and compiled a toolbox of genetic tests appropriate for industry use.

Results: Principal component analysis, pairwise FST values, and Discriminant

Analysis of Principal Components (DAPC) indicated that each group of cultured

hard clam samples were significantly different from the wild populations and

from each other. However, observed and expected heterozygosity, inbreeding

values, and relatedness were similar between the wild populations and cultured

stocks. These results have encouraged industry to monitor the genetic features

of their broodstock to prevent the loss of genetic diversity and

unintentional inbreeding.

Discussion: This project was successful in providing information on the genetic

health (diversity and inbreeding) of Virginia hard clam cultured stocks,

communicating the utility of genetic tools available for assessing and managing

broodstock lines, and providing the hard clam industry with pathways to access

additional genetic information in support of industry resilience.
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1 Introduction

Broodstock management and hatchery spawning require careful

attention to ensure the long-term sustainability of clam fisheries.

Hatchery spawning tends to include fewer animals than are expected

to contribute to a wild spawning event, which can lead to decreases in

genetic diversity compared to wild populations (e.g. Doublet et al.,

2019; Hargrove et al., 2015; Hornick and Plough, 2019; Luo et al.,

2022; Venney et al., 2021). Selection pressures experienced during

hatchery production and commercial field grow out operations can

also affect the underlying genetics (i.e. domestication selection,

Christie et al., 2012; Frankham, 2008; Howe et al., 2024). Decreased

genetic diversity can reduce the adaptive potential of a population,

compromising the ability to respond to environmental changes,

habitat shifts, and disease outbreaks (e.g. Frankham, 1996;

Hoffmann and Sgrò, 2011; Reed and Frankham, 2003; Houston

et al., 2020; Fjalestad et al., 2003). Hatchery selection can also result

in unintentionally high levels of inbreeding and a subsequent

reduction in fitness (i.e. inbreeding depression), which can manifest

as reductions in growth, survival, and fecundity (e.g. Evans et al.,

2004; Ibarra et al., 1995; Wada and Komaru, 1994; Deng et al., 2005;

Zheng et al., 2012). The negative impacts of long-term unintentional

inbreeding on spawning success, survival, and economically

important traits (such as growth) could have a devasting impact on

a company’s success and potentially collapse an entire industry if seed

production depends on only a few hatcheries.

The negative consequences of hatchery practices can bleed into

wild populations with accidental interbreeding (Ryman-Laikre

effects, Ryman and Laikre, 1991; Ryman et al., 1995). Accidental

interbreeding can introduce traits that are unfavorable for wild

populations (e.g. traits favoring hatchery survival, fast growth;

Christie et al., 2012; Frankham, 2008; Howe et al., 2024), cause

reductions in local environmental adaptation (e.g. Waal et al.,

2013), and reduce overall fitness (Araki et al., 2007, 2008). While

selection inevitably decreases genetic diversity and increases levels

of inbreeding, it is vital to ensure hatcheries are using the best

practices for the sustained success of both commercial operations

and wild populations.

Coastal Virginia is home to the largest northern quahog (hard

clam, Mercenaria mercenaria) aquaculture industry in the United

States. Due to the high salinity requirement of hard clams (Castagna

and Chanley, 1973), the Virginia hard clam aquaculture industry is

confined to the Eastern Shore of Virginia (ESVA) and the lower

Chesapeake Bay, with almost all production (99.9%) occurring on

the ESVA. The Virginia hard clam industry has developed

considerable expertise in commercial-scale production, and

several large private hatcheries supply seed to the majority of

growers on the ESVA. For decades, industry hatcheries have

relied on broodstock development strategies based on

assumptions about genetic diversity and observations of field

performance in different locales. While this approach has been

successful, commercial hatchery leaders have requested support to

ensure sustainability and resilience, especially considering the

potential dangers from climate and disease-related threats.

Practitioners have voiced concerns about genetic unknowns and
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have asked how genetic data could provide the information

necessary to more accurately manage the genetic health of their

proprietary broodstocks.

Hard clam aquaculture in Virginia preceded the growth of the

oyster culture industry in the mid-Atlantic region based on

pioneering work at the Virginia Institute of Marine Science

(VIMS) Eastern Shore Laboratory (Castagna and Kraeuter, 1981;

Castagna et al., 1970). Unlike the oyster aquaculture industry that

developed with support from the breeding program and genetic

expertise at the Aquaculture Genetics & Breeding Technology

Center at VIMS, the hard clam industry developed independently,

with companies establishing proprietary broodstock lines,

intellectual property, and specialized growing procedures and

techniques. Today, the major hard clam companies in Virginia

produce seed from these proprietary lines. Previous efforts to

incorporate industry broodstock into research studies (e.g.

Gallivan and Allen, 2000) have been hindered by concerns about

researchers’ ability to maintain confidentiality. While general

awareness of genetic tools for broodstock management exists, the

perceived difficulty of implementing genetic assessments has largely

prevented their use in this private sector. Recent work at VIMS

characterized the geographic genetic structure of hard clams along

the East Coast of North America from Canada to South Carolina,

USA (Ropp et al., 2023). These efforts gave the hard clam industry a

look at the genetic variation among hard clam populations in the

mid-Atlantic region, further stimulating interest in the technology

and providing a context for comparing the genetic composition of

aquaculture lines to wild populations.

With both a genetic baseline established for wild populations

and advances in genetic analysis tools, scientific and extension

personnel at VIMS sought to facilitate industry access to genetic

assessments useful for broodstock management. The approach was

two-fold: 1) to analyze genetic diversity and inbreeding metrics of

industry-produced hard clam broodstocks, and 2) to educate

industry on the utility of genetic assessments and how to

incorporate these tests into operations. Population structure and

diversity metrics were analyzed using hard clam genotype data from

three independent commercial hard clam companies in Virginia

and 14 wild populations from the East Coast of the United States

(previously reported in Ropp et al., 2023). Research findings were

presented to industry as a formal report during an in-person

workshop. This project showed industry how genetic questions

can be addressed and the potential utility of various genetic tools

available to them.
2 Materials and methods

2.1 Sample collection and DNA extraction

Littleneck hard clams (7/8–1 inch width across hinge) were

collected from three retail stores in Virginia (samples labeled

cultured Virginia A, B, C) and shellfish tags were checked to

ensure the product was sourced from three separate commercial

companies. Mantle tissue was sampled lethally from all 71 hard clams
frontiersin.org
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(N = 23–24 per retail outlet) and stored in 95% ethanol at -20°C until

DNA extraction. Genomic DNA was isolated from mantle tissue

using the NucleoSpin Tissue Mini kit for DNA from cells and tissues

(Macherey-Nagel Inc., Allentown, PA) with the optional RNAse A

step. Extracted DNA was assessed for quality using agarose gel

electrophoresis and for quantity and purity using a NanoDrop

Spectrophotometer (NanoDrop Technologies Inc., Wilmington, DE).
2.2 Genotyping and molecular marker
filtering

For each sample, 30 µL of 100 ng/µL extracted genomic DNAwas

sent to Diversity Arrays Technology (DArT Pty Ltd, Canberra,

Australia) for high-density, high-throughput genotyping-by-

sequencing (GBS) using the DArTseq method. DArT sequencing of

the commercial hard clams was completed and the resulting Illumina

data was combined with the DArT Illumina sequence data previously

obtained from 14 wild populations along the East Coast of the United

States (Ropp et al., 2023): Middle Bay, ME (MB); Harbor Cove; MA

(HC); Cape Cod, MA (CC); Orient Bay, NY (OB); Raritan Bay, NY

(RB); Great Bay, NJ (GB); Atlantic City, NJ (AC); Assateague, MD

(AT); Wachapreague, VA (WP); Pocomoke Sound (PS); Mobjack

Bay (MJ); James River, VA (JR); Bogue Sound, NC (BS); and North

Inlet, SC (NI). Acronyms for the wild sample collection location are

used when referring to each wild sample group moving forward.

Single nucleotide polymorphisms (SNPs) were called from the

combined Illumina sequence data for the 3 commercial stocks and 14

wild populations from a total of 491 hard clam samples. The raw SNP

file from Diversity Arrays Technology (DArT Pty Ltd, Canberra,

Australia) was filtered to ensure only high quality and high

confidence markers were used for genomic analyses (Ropp, 2020;

Ropp et al., 2023). Filtering was conducted using dartR (version 2.7.2;

Gruber et al., 2018; Mijangos et al., 2022) and radiator (Hardy

Weinberg filter, version 1.2.8; Gosselin, 2020) packages in R (R

Core Team, 2024). Markers with poor (<5) or high (>75) coverage

were removed, along withmarkers with less than 99% reproducibility.

Monomorphic loci, indicating no variation, were removed from the

dataset. Markers with a call rate <95% (i.e., >5% missing data) and

individuals with a call rate <90% (i.e., >10% missing data) were

removed. Redundant data was then addressed by filtering out

secondary SNPs and markers with a Hamming distance <20%.

Markers with a minor allele frequency <0.1% were removed.

Finally, markers that did not conform to Hardy-Weinberg

expectations in at least 4 populations using a p-value of 0.01 were

removed from the dataset to further ensure that markers used for

downstream analyses did not contain genotyping errors or data

inconsistencies. R code for filtering is available (see Data Availability).
2.3 Genetic analyses

Genetic analyses were performed using the SNPs remaining after

filtering to assess population genetic parameters within and between
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groups. Genetic diversity and population structure were evaluated

using three exploratory and statistical methods. A principal

component analysis (PCA) was conducted with the adegenet

package in R (version 2.1.10; Jombart, 2008; Jombart and Ahmed,

2011) using 17 PCA axes to visually explore genetic variation both

within and among the 17 hard clam sample groups (14 wild

populations and 3 commercial stocks). Unbiased F-statistics (FST;

Weir and Cockerham, 1984) were estimated in GenoDive (version

3.06, Meirmans, 2020) to infer population structure, and the

significance of each pairwise comparison was assessed using

10,000 iterations of the data. Lastly, a discriminate analysis of

principal components (DAPC) (Jombart et al., 2010) was

performed in adegenet to assess individual-based population

structure. The function find.clusters was run to determine the

optimal number of PCAs and clusters for grouping the genetic

data based on the lowest BIC value. The function xvalDapc was run

to determine an optimal number of PCAs to include in the DAPC

with 2 discriminant functions (Jombart and Collins, 2015).

Inbreeding was assessed for each sample group by estimating

expected heterozygosity (He), observed heterozygosity (Ho) and the

level of inbreeding (GIS) in GenoDive (version 3.06, Meirmans,

2020) based on Nei’s genetic distance (Nei, 1987). Average

relatedness between individuals in a sample group was estimated

using the gl.grm function in dartR (version 2.7.2, Gruber et al., 2018;

Mijangos et al., 2022). Significant differences in mean relatedness

between the 17 hard clam sample groups were assessed using a

Kruskal-Wallis test (Kruskal and Wallis, 1952).
2.4 Communicating results to industry

To address the second objective of this project, we engaged

industry representatives during the planning, implementation, and

reporting phases. Before genetic samples were collected and

analyzed, extension specialists met with industry members to

introduce the project and assess which questions or needs were

most important to their companies. Based on industry feedback, we

obtained commercial samples to explicitly address their concerns by

demonstrating the application of genetic tools. Commercial samples

were masked during all phases of the project to demonstrate that

confidentiality can be maintained. To guide industry members, an

infographic was created to outline available genetic tools and

describe how these tools can be used within a breeding program.

After sample processing was complete, results from the genetic

analyses were summarized in a comprehensive report that paired

figures with detailed descriptions of how to interpret the results of

each genetic analysis (see Data Availability). A draft of the report

and genetic tools table were distributed to industry members so they

could familiarize themselves with the concepts and results and

respond with questions. An in-person workshop with industry

members was subsequently held to present the report and table,

have an open discussion on the project results, and discuss how the

industry might access the genetic tools. The report and table were

structured in a similar manner and the workshop stepped through
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both resources (the report and table) in a sequential manner to

ensure consistency when introducing, explaining, and

demonstrating each genetic tool and its applications.
3 Results

3.1 Genotyping and molecular marker
filtering

A total of 52,397 single nucleotide polymorphisms (SNPs) from

491 hard clam samples and 17 sample groups were identified from

the DArTseq dataset. The final filtered dataset contained 2,435

SNPs and 479 hard clam samples (Table 1). Filtering for markers

with <5% missing data removed the greatest number of markers

(Table 1). Two wild Wachapreague and 10 cultured Virginia hard

clam samples were removed when filtering for individual call rate

because they were missing data for >10% of loci.
3.2 Genetic diversity and population
structure

The FST values depict genetic differentiation between the 14 wild

and three cultured commercial stocks. Diversity among wild

populations and cultured stocks range from 0 between MJ and JR

to 3.5% between MB and cultured Virginia group B (Table 2, upper

matrix), and most pairwise comparisons are statistically

significantly different (Table 2, lower matrix, p-value < 0.05).
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Cultured VA hard clam group B is most differentiated from the

wild populations (2.4 – 3.5% in comparison with OB and MB,

respectively) and is significantly different from every wild

population and stock. Within cultured groups, Cultured VA hard

clam group B samples are most closely related to cultured Virginia

group A samples (0.7%) and most distant from cultured VA group

C samples (1.9%). Cultured Virginia groups A and C are

intermediate (1.2%). Within the wild populations, the Maine

sample group (MB) is most differentiated from the Carolina

sample groups (NI 2.2% and BS 2.5%).

Observed heterozygosity (Ho), expected heterozygosity (He),

and inbreeding values (GIS) were 0.170 – 0.186, 0.212 – 0.221, and

0.154 – 0.222 for the wild clusters, respectively (Table 3). For the

three Virginia cultured stocks, genetic diversity statistics were Ho =

0.172 – 0.173, He = 0.211 – 0.215, and GIS = 0.18 – 0.202 (Table 3).

Mean relatedness (r) ranged from 0.0278 – 0.0810 and 0 – 0.0423

for the cultured stocks and wild populations, respectively (Table 3).

There was no statistically significant difference in relatedness

between groups (Table 3, mean coefficient of relatedness (r)

column, Kruskal-Walis, p > 0.05). These results suggest that

genetic heterozygosity and inbreeding are not being significantly

altered by selective breeding practices within the hatcheries from

which these animals originated.

The principal component analysis (PCA) illustrates population

genetic differences between samples from the 14 wild populations

and three cultured stocks. The population structure depicted in the

PCA results (Figure 1) is consistent with the diversity metrics (FST
values, Table 2). Within each population and stock, hard clams were

more closely related to each other than to clams from different

populations or stocks, resulting in distinct clusters (colored-coded

and grouped with circles, Figure 1). The wild hard clam samples

cluster in a north-to-south gradient starting with the northern most

New England samples (furthest left, blue), then New York and New

Jersey (blue to gold), Maryland (yellow), Virginia (orange), and

lastly the southernmost North Carolina and South Carolina samples

(red and burgundy, respectively). The cultured Virginia hard clams

(green) cluster separately from the natural wild samples, suggesting

accrued differences from hatchery-based selection for production.

The first two principal components account for only a small

percentage of the overall variation—0.80% and 0.76% for

principal component 1 and 2, respectively (Figure 1)—yet they

effectively distinguish samples based on population or stock origin.

The DAPC analysis of samples from the 14 wild populations

and the three cultured Virginia stocks supports and better defines

the PCA results (Figure 2). The analysis shows that the samples

comprise three larger-scale clusters. Cluster 1 (blue) includes wild

samples from Maine to Massachusetts (MB, HC, CC); cluster 2

(orange) includes wild samples from New York to South Carolina

(OB, RB, GB, AC, AT, WP, PS, MJ, JR, BS, NI); and cluster 3 (green)

includes the three cultured Virginia stocks (A, B, C). Cultured

Virginia group C includes samples with genetic backgrounds that

indicate shared ancestry with clusters 2 and 3. Grouping the

samples into 4 clusters was also highly likely and resulted in the

Carolina wild populations (BS and NI) forming a distinct cluster

(Supplementary Figure 1).
TABLE 1 Filters applied to the Diversity Array Technology SNP dataset,
including the threshold for removal and the number of SNPs or
individuals remaining post-filter.

Order Filter
Threshold
for removal

Number of
SNPs

post-filter

1 Read depth <5x and >75x 47,151

2 Reproducibility <99% 40,146

3
Monomorphic
SNPs 36,346

4 Call Rate (loci) <95% (>5% missing data) 7,423

5
Secondary
SNPs 3,976

6
Hamming
Distance <20% 3,656

7
Minor Allele
Frequency <1% 2,546

8
Call rate
(individual) <90% (>10% missing data) 479 individuals

9

Hardy
Weinberg

Out of HWE in at least 4
populations at p-value
= 0.01 2,435

FINAL DATASET 2,435 SNPs and 479 samples
Initial dataset included 52,397 SNPS from 491 clam samples.
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3.3 Communicating results to industry

This project was successful in demonstrating the applicability of

various genetic metrics to the hard clam industry. All industry

members had the opportunity to share concerns and interests in a

pre-project meeting, and attention was given to each of these topics

in the final materials. Confidentiality of commercial hard clam

origin, which is important to gain trust from the companies, was

maintained throughout the entire project, successfully

demonstrating the ability to handle proprietary material

discreetly. The genetic tools infographic distributed to industry

described different genetic applications for breeding in order of

increasing cost and complexity (columns from left to right,

Figure 3). For each genetic application, the table outlines the

samples required, the data generated, the genetic/genomic

analyses involved, and the technical expertise required in a menu

format. The next two rows describe the ease of interpretation
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relative to one another (easier – medium – harder – hardest) and

how the data can be used internally within a program/business. The

last row provides the genetic/genomic metrics to measure and

monitor. During the workshop, industry members referenced

information in the table when asking questions regarding

inbreeding, one of their top concerns.

The project report and workshop were structured to explain the

genetic tools demonstrated by the comparison of industry samples

to wild populations. Distribution of the project report before the

workshop allowed time for companies to digest the information and

develop follow-up questions. Four of the five major Virginia

hatcheries attended the in-person workshop and were active

participants. Following the workshop, participants requested

additional resources outlining specific steps companies need to

take to address questions such as inbreeding (see Data

Availability), demonstrating comprehension of the material and

presentation. Immediate requests were made for project leaders to
TABLE 2 Pairwise FST values indicating the difference between each hard clam wild population and cultured stock (upper half of matrix) and the
significance value (p-value, lower half of matrix) generated by 10,000 iterations of the data.
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collect industry hard clam samples to assess the genetic health of

their proprietary material before the next spawning cycle began.

Other industry needs that require the development of research

projects were identified, providing an opportunity for future

collaborative efforts between scientists and industry. The

interaction resulted in a subsequent industry-led project that

funded the development of a low-density genotyping tool to

directly assess the genetic health of industry broodstock (Virginia

Fishery Research Grant Program 2024-01).
4 Discussion and conclusions

Understanding genetics, how scientists delineate genetic

structure within populations, and how this data can be used to

assess the genetic health of organisms often lies beyond the

experience of the average person. This impediment often arises

from scientists’ failure to communicate complex concepts and

research outcomes in a way that is accessible to non-scientists.

This is certainly the case for practitioners of aquaculture, who

understand the importance of genetics for their work but are

hesitant to incorporate genetic assessments into their operations

due to a technology transfer gap between basic genetic research and
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application. This project specifically addressed that gap by

conducting, demonstrating, and interpreting a genetic analysis of

hard clam broodstocks and distilling available genetic technologies

into a clear and accessible matrix of options.
4.1 Demonstrating genetic technology

Genetic diversity of wild hard clam populations along the

Atlantic coast was used to contextualize Virginia commercial

broodstock samples. The PCA plot depicted the presence of

population structure in wild samples based on the geographic

location of capture. For the wild populations, northern groups

were most genetically differentiated from southern groups

(Table 2, FST values: Middle Bay, ME and North Inlet, SC = 2.2%,

Middle Bay, ME and Bogue Sound, NC = 2.5%). The DAPC

clustering further supports this clustering by geographic location

as the northern (MA/ME) and southern (VA/NC/SC) groups form

distinct clusters, with the clams from the most southern states (NC

and SC) forming a distinct cluster when using K = 4

(Supplementary Figure 1). Previous studies of hard clams on the

east coast have shown distinct population structure for populations

north of Cape Cod into Canada and populations south of Cape

Hatteras (Dillon and Manzi, 1992; Baker et al., 2008; Ropp et al.,

2023), with populations in these geographically opposite regions

showing the highest level of differentiation (Ropp et al., 2023). The

clustering based on geographic origin likely coincides with the three

biogeographic provinces that differ in their temperature, salinity,

and seasonality: the Acadian north of Cape Cod, the Virginian, and

the Carolinian south of Cape Hatteras (Hale, 2010; Mach et al.,

2011). Our analyses resulted in fewer clusters (K=3) than previously

detected (K=6, Ropp et al., 2023), with samples from New York to

South Carolina (the Virginian and Carolinian provinces) forming

one cluster. This difference is likely due to the inclusion of the more

genetically distinct cultured, which resulted in obscuring the finer-

scale wild population structure. Differences in the wild samples and

implications of these results have previously been discussed in detail

(see Ropp et al., 2023).

The cultured stocks from Virginia were found to be significantly

different from the wild populations. Cultured hard clam samples

were more similar to each other than to the wild population samples

and aligned nearly orthogonal to the wild population north-south

gradient of samples (green commercial stocks, Figure 1). This

suggests that the selective pressures shared between the cultured

hard clams during hatchery spawning and rearing are different than

those experienced by the wild populations. The limited number of

adults (relative to spawning in the wild) used in hatchery spawning

events often results in lower genetic diversity and greater genetic

similarity on shorter timescales than is typically observed in wild

populations (e.g. Doublet et al., 2019; Hargrove et al., 2015; Hornick

and Plough, 2019; Luo et al., 2022; Venney et al., 2021). These effects

are further intensified if hatchery populations are founded using

very few individuals (Gosling, 1982; Hedgecock and Sly, 1990).

Domestication selection can also occur in hatchery settings and

results in nontargeted selection for genes specific to favorable
TABLE 3 Genetic diversity statistics by sampling location organized
geographically (North to South): observed heterozygosity (Ho), expected
heterozygosity (He), inbreeding (GIS), and mean coefficient of
relatedness (r).

Location Samples Ho He GIS r *

Middle Bay, ME 32 0.186 0.22 0.154 0.0423

Harbor Cove, MA 32 0.174 0.221 0.214 0.0113

Cape Cod, MA 30 0.172 0.221 0.222 0.0148

Orient Bay, NY 32 0.175 0.221 0.209 0.00395

Raritan Bay, NY 31 0.177 0.218 0.188 0.00167

Great Bay, NJ 24 0.175 0.219 0.198 -0.00102

Atlantic City, NJ 31 0.177 0.217 0.181 0.00270

Assateague, MD 32 0.175 0.218 0.195 0.000428

Wachapreague, VA 29 0.17 0.215 0.211 0.00277

Pocomoke Sound, VA 20 0.172 0.215 0.200 0.0126

Mobjack Bay, VA 31 0.176 0.217 0.188 0.00717

James River, VA 32 0.176 0.216 0.186 0.00685

Cultured VA A 23 0.172 0.215 0.202 0.0365

Cultured VA B 16 0.173 0.211 0.180 0.0811

Cultured VA C 22 0.173 0.214 0.190 0.0278

Bogue Sound, NC 31 0.171 0.212 0.194 0.0226

North Inlet, SC 31 0.17 0.214 0.202 0.0177

OVERALL 479 0.174 0.219 0.195 0.0171
*There was no statistically significant difference in relatedness between groups (Kruskal-
Walis, p > 0.05).
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hatchery rearing conditions (e.g. Christie et al., 2012; Frankham,

2008; Howe et al., 2024), further contributing to increased similarity

within the cultured groups. Similar signs of increased rates of

genetic drift and differentiation were previously observed for

cultured versus wild stocks of hard clams in Florida (Hargrove

et al., 2015), likely due to hatchery practices. It is unknown if the

broodstock from the three hatcheries in this study share common

ancestry or if the similarities represent different origins converging

to a shared genetic make-up consistent with hatchery-based

spawning and domestication selection (larval survival) and

regional climatic forces.

When compared to the wild populations, the cultured Virginia

hard clams are most closely related to wild populations in the mid-

Atlantic (NY – VA), specifically populations in the mid-Atlantic

Ocean rather than the Chesapeake Bay (smaller FST values between

cultured stocks and wild populations from New York to

Wachapreague, VA, than cultured stocks and wild populations

from Chesapeake Bay; Table 2). Broodstock for these commercial

hard clam stocks is likely derived from mid-Atlantic animals

(Gallivan and Allen, 2000), but the exact history of origin of these

cultured clam stocks is unknown and largely undocumented.

Commercial broodstock could be genetically similar to mid-

Atlantic oceanic populations due to similar selective pressures of

the regional grow-out conditions. The major hard clam hatcheries

are located on the seaside of the ESVA and the oceanic environment

is similar along the coast. The highly variable estuarine

environment of the Chesapeake Bay likely results in different
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selective pressures due to greater temperature and salinity

fluctuations. A meta-analysis detected a genetic break at the

Delmarva peninsula for multiple species with long pelagic larval

phases (Altman et al., 2013), including data from two hard clam

studies (Dillon and Manzi, 1987; Baker et al., 2008), further

supporting the idea of differing selective and adaptive pressures

between these two environments. It is unknown if the

genetic similarities are because commercial broodstock originated

from mid-Atlantic environments, or because the environmental

pressures of the mid-Atlantic Ocean (i.e. temperature, salinity, tidal

fluxes, etc.) have resulted in genetic similarities between Virginia

commercial stocks and wild mid-Atlantic populations.

Despite industry selection for unique broodstock, diversity

metrics were similar between the cultured stocks and wild

populations. The results indicated no substantial loss in genetic

diversity resulting from hatchery-based breeding, which was the

main concern communicated to us by industry. This finding is

consistent with previous observations using microsatellite markers

(Dillon and Manzi, 1987; Hargrove et al., 2015). Higher levels of

heterozygosity and diversity have been shown to correlate with

increased fitness in wild populations (e.g. Markert et al., 2010; Reed

and Frankham 2003), providing the material needed to adapt and

survive long-term. It is important to measure and maintain diversity

in cultured populations because they typically have lower

heterozygosity and diversity (e.g. Alarcón et al., 2004; Benzie and

Williams, 1996; Lind et al., 2009; Xu et al., 2001), which may decrease

overall fitness and increase vulnerability to stressors. The level of
FIGURE 1

Principle component analysis (PCA) of PCA 1 versus PCA 2 for 14 wild sample populations and three cultured Virginia hard clam stocks explaining
1.56% of the total variance in the genetic data. Individual clam samples (dots) are color-coded and grouped (colored circle) based on their wild
population or cultured stock.
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relatedness within a sample was not statistically significantly different

between the wild and cultured groups, providing further evidence for

a lack of unintentional inbreeding based on the stocks examined.

Genetic diversity statistics were slightly different from previously
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reported values (Ropp et al., 2023), but previous analyses included

wild samples from PEI and did not include the cultured samples,

which resulted in different parameters for the analyses (e.g., a

different set of included loci).
FIGURE 2

DAPC of the 14 hard clam wild populations and three cultured Virginia stocks. Samples are listed on the x-axis in order from north to south (left to
right) and the three clusters are represented by different colors (blue, orange, and green).
FIGURE 3

Genetic application table with genetic tools listed in order of increasing cost and complexity (left to right). The tools are grouped as either being
important for evaluating, monitoring or assessing current stocks (light blue), or for selective breeding (turquoise). The requirements for sample
number, data/analyses, expertise level, and relative cost are outlined, including information regarding the scale of interpretability and complexity,
how the results can be used, and the coinciding genetic/genomic metrics. $ = $100 – $1,000s; $$ = $1,000 – $10,000s; $$$ = $10,000 –
$100,000s; $$$$ = $100,000 +. *See Data Availability for Glossary.
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It is worth noting that our sample sizes, especially for the

cultured stocks, were small. Additionally, cultured samples in this

project were purchased from the market, so authors can only

assume the samples represent seed produced from industry

proprietary broodstock lines. Therefore, values reported here

should be interpreted lightly and are presented solely to

demonstrate the ability to assess similarities among hard clam

samples for the industry. By demonstrating the ability of genetic

analyses to define distinct groups of hard clams on spatial and

temporal scales and transferring this information and technology to

the hard clam industry, practitioners can now analyze and manage

their broodstock lines to ensure the continued success of the hard

clam industry.
4.2 Report and workshop outcomes

Engagement of the hard clam industry was key to the success of

this project. We were able to gain industry trust and participation by

tailoring the project to address their information needs based on

pre-project input. Masking the company names throughout the

entire project ensured that confidentiality was maintained, which

addressed a major industry hesitation in seeking help for genetic

analysis. The tiered structure of the genetic tools infographic

successfully broke down complex information. The format of the

table and report to focus on explaining genetic tools using the

comparison of industry samples to the wild populations allowed the

authors to focus on educating industry personnel on options for

addressing the genetic health of their material. Distribution of the

report before the workshop allowed for complete transparency

about what was going to be discussed during the in-person

workshop to further gain trust. The workshop stepped through

the project report in a practical way that built understanding and

acceptance. This project serves as an example of how to effectively

build trust and address needs when serving the private sector.

This project successfully communicated the relevance of genetic

applications to industry, an area of interest often perceived as out of

reach for general practitioners. All industry members participated

in discussions either during or after the workshop. Requests to

proceed immediately with the analysis of their broodstock indicated

both a comfort level and desire to use these tools in their programs.

Specific questions regarding further testing of inbreeding levels with

reference to specifics in the genetic application table prove that this

project was successful in communicating genetic concepts. The

numerous requests for additional resources and new collaborative

research projects further indicate the success of our efforts. A high

level of trust between researchers and industry members, along with

a willingness to seek assistance from scientific professionals, is

essential for them to function effectively as a service.

This project has resulted in industry members and scientific

professionals further collaborating to secure funding for the

development of a genotyping tool that industry is actively using.
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Collaborations with government agencies, academic institutions,

research centers, and private sequencing facilities can help develop

and improve access to the genetic tools and expertise needed to

effectively manage broodstock. Industry may also consider voicing

the importance of genetic assessments to private companies and

state governments to ensure routine genetic services and expertise

are affordable and accessible to all hard clam industry members. To

ensure the continued success of the hard clam industry, hatchery

operators should consider educating themselves about genetic

assessments for broodstock management by attending workshops,

technical training sessions, or seeking out online resources. The

deliverables from this project serve as resources not only to the hard

clam industry in Virginia, but to extension specialists, professionals,

and industry members interested in communicating or applying

genetic tools within their programs beyond this region. The authors

hope these resources will be useful for other professionals when

communicating the importance of genetics to industry.
4.3 Management strategies for commercial
hatcheries

It is vital that commercial hatcheries use adequate breeding

techniques to sustain both the hard clam aquaculture industry and

wild populations. When selecting broodstock, it is worth

considering the genetic source population, as wild hard clam

populations exhibit genetic structure based on geographic

location (e.g. Dillon and Manzi, 1992; Baker et al., 2008; Ropp

et al., 2023). For example, companies operating on the seaside of the

ESVA should usually source broodstock animals from the seaside

and mid-Atlantic Ocean. Animals from the bayside of the ESVA, as

well as other northern or southern regions, are likely to perform

worse in the mid-Atlantic seaside environment. However, other

broodstock animals may be deliberately interbreed with typical,

local broodstock animals if trying to breed in specific traits of

interest. For example, broodstock animals from the Chesapeake Bay

may be used if trying to breed in tolerance for low salinity. If

sourcing broodstock animals from non-local areas, careful attention

should be given to monitoring the genetics of the local wild

populations. Interbreeding of broodstock or hatchery animals

could result in reduced fitness and potential loss of important

adaptive traits in the wild population (e.g. Waal et al., 2013; Araki

et al., 2007, 2008).

Commercial hatcheries maintaining broodstock should conduct

regular genetic assessments to monitor genetic diversity and

inbreeding over time. This is particularly important for

aquaculture species like the hard clam that are highly fecund, have

small effective population sizes, and large variances in parental

success during spawns (known as sweepstakes reproductive

success; Hedgecock and Pudovkin, 2011, reviewed in Hollenbeck

and Johnston, 2018; Plough, 2016; Plough et al., 2016). If not

managed properly, these attributes can result in reduced genetic
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variation. With advancements in genotyping capabilities, hatcheries

can determine relatedness frommolecular markers with significantly

more accuracy than estimates based solely on pedigree relationships

(Daetwyler et al., 2007; Dekkers, 2007; Vandeputte and Haffray,

2014), allowing for better control of inbreeding. Relatedness can be

measured within cohorts and tracked through generations (parents

to offspring) to ensure trends remain in a safe range. Regular

assessments will generate long-term data to monitor changes in

diversity metrics and population structure over time, which can be

indicative of selection for different environmental and disease

pressures. The identification of genetic variants underlying

adaptation to certain stressors allows for more precise breeding

using genome-based breeding techniques. SNP arrays and whole

genome sequencing can be used to provide more accurate

assessments of genetic variation. Environmental data, phenotypic

traits, and spatial data can be analyzed alongside the genetic data to

identify signatures of localized adaptation, hatchery production (i.e.

selected broodstock, reduced number of parents, signatures of

hatchery selection), and to track shifts in these signatures over

time. By regularly monitoring diversity metrics, hatcheries can

confidently manage their broodstock and implement new practices

to introduce and maintain genetic diversity when necessary.

Until recently, integrating genetic information into everyday

management has been nearly impossible for hard clam farms.

Development of genomic resources, such as reference genomes

and genotyping arrays, combined with decreases in the cost of

sequencing and genotyping, have increased the feasibility of

genome-based breeding approaches in aquaculture species

(reviewed by Hollenbeck and Johnston, 2018; Houston et al.,

2020; Zenger et al., 2019). Reference genomes allow for

quantitative trait locus mapping and genome-wide association

studies to identify causative genetic variants, detection of

epigenetic markers associated with specific environmental

conditions, and comparative genomic analysis to determine the

function of specific genetic variants (reviewed in Houston et al.,

2020). These tools collectively help identify genes and pathways

underlying traits of interest. More practically for hard clam

companies, animals can now be genotyped using arrays

containing hundreds to tens of thousands of genome-wide

markers at a relatively low cost (reviewed in Hollenbeck and

Johnston, 2018; Houston et al., 2020; Zenger et al., 2019).

Genotyping arrays provide commercial companies with a feasible

solution for integrating genetic assessments into their programs.

Companies offering genotyping services often have experts available

to interpret results, providing a direct line of expertise and guidance

to commercial companies. Genotyping animals also eliminates the

necessity of housing individuals from different broodstock lines or

families separately, greatly reducing infrastructure requirements

(Fernández et al., 2014). The development of a hard clam

reference genome (Song et al., 2021) and both a high-density

(Grouzdev et al., 2024) and low-density genotyping panel

(Virginia Fishery Research Grant Program Award 2024-01)

provide the hard clam commercial industry with ample genomic

resources to start incorporating genetic assessments into

their programs.
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