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Introduction: Sea lice are parasitic copepods that harm salmon health, reduce

farm productivity, and create ecological and economic challenges

for aquaculture.

Methods: A stochastic, state-based, time-dependent epidemiological model was

developed to characterize the dynamics of adult female sea lice (Lepeophtheirus

salmonis) infestation in Atlantic salmon farms in New Brunswick, Canada. The

model integrated covariates associated with farming practices and

environmental conditions (stocking week, farming cycle week as proxy of fish

age, sea lice treatments, seaway distance to neighboring farms as a proxy for

waterborne transmission, and sea surface temperature). Data from 57 farming

sites were used for model training and validation. An initial exploratory analysis

assessed the relationship between treatment timing and recovery from

infestation. Treatment effects were incorporated into weekly transitions

between infestation states, accounting for severity and time-varying

environmental factors.

Results: Results suggest that spring and summer stocking increases exposure to

external infestation pressure and raises the probability of high lice

concentrations. Further, reduced winter treatments are associated with

elevated infestation levels. Treatment effectiveness appeared to be

compromised by continued waterborne transmission from nearby farms.

Discussion: The model achieved an overall likelihood of 59%, reaching up to 74%

during the first 10 weeks following stocking. Limitations included the use of proxy

connectivity measures, i.e. seaway distance, rather than hydrodynamic
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connectivity, and the absence of data on fish size, salinity, and other farming

practices such as fish density. Additionally, we were unable to include information

from all farms in the study area, potentially underestimating transmission risk.

Addressing these gaps and integrating hydrodynamic connectivity and fish

growth models could improve predictive performance.
KEYWORDS

Lepeophtheirus salmonis, stochastic modeling, infestation dynamics, treatment
effectiveness, Eastern Canada, salmon aquaculture
1 Introduction

Sea lice (Lepeophtheirus salmonis and Caligus sp.) are

ectoparasitic copepods that negatively impact the welfare and

health of salmon and may lead to reduced productivity and

economic losses in farms (Costello, 2009; Abolofia et al., 2017).

Lepeophtheirus salmonis is present in areas such as the southeastern

coast of New Brunswick, Canada, where Atlantic salmon farming

contributes to the regional economy with an estimated production

of 9,593 tons of salmon and 73.7 CAD million dollars in 2022

(Government of Canada, 2023).

Managing L. salmonis can be challenging due to its complex life

cycle, which involves 10 life stages, including two nauplii and eight

copepodid stages: the infective copepodid, four chalimus stages, two

pre-adults, and the adult stage (Hamre et al., 2013; Stien et al., 2005;

Brooker et al., 2018). Each stage has different characteristics and

environmental requirements, making it necessary to understand the

various life stages to effectively control and manage the population.

The growth of L. salmonis and its developmental stages rely heavily

on environmental conditions, where water temperature and salinity

are particularly important (reviewed by Fast and Dalvin, 2020).

Stien et al. (2005) demonstrated a positive relationship between

water temperature and growth rate of each life stage, while specific

optimal temperatures vary across stages (Brooker et al., 2018).

According to Brooker et al. (2018) and citations therein, a 100%

hatching and development success has been observed at 20°C and

15°C, decreasing to 28% ± 4% success at 3°C. Outside the

temperature range of 6°C to 21°C, development, egg production,

and host infestation capability are reduced.

Given their central role in parasite reproduction and

transmission dynamics, adult female (AF) lice are widely used as

a proxy for infestation pressure in farm-level monitoring programs

and serve as the primary target of regulatory limits and operational

decision-making in many jurisdictions (Ministry of Fisheries and

Coastal Affairs (Norway); Fisheries and Oceans Canada, 2023a;

Mowi ASA, 2025; SERNAPESCA, 2014, 2022).

In Chile, a new strategy was introduced in 2014 to control sea

lice (Caligus rogercresseyi) infestation in salmon farms, using the

concentration of ovigerous females (OF) as the primary indicator

for classifying high dissemination farms (SERNAPESCA, 2014,
02
2022). Previously, farms with an average weekly load of at least

nine total adult Caligus were classified as high dissemination, which

favored individual rather than coordinated control. To address this,

the National Fisheries Service recommended redefining high-

dissemination farms based on post-treatment monitoring of OF

loads. OF were chosen because they are easier to identify due to

their larger size and represent the parasite’s main reproductive

stage. A farm is classified as high dissemination if it presents at least

three OF during this monitoring. This threshold, part of the

national health program, complements the broader treatment

trigger of six total adult lice per fish. The revised definition

encourages coordinated treatments and accounts for efficacy, as

treatments with less than 80% effectiveness can leave significant OF

reservoirs. Importantly, the 3-OF threshold does not necessarily

indicate biological stress, which depends on the total lice load.

In Norway, L. salmonis is widely recognized as the primary

parasitic threat to both farmed and wild salmonids, with Caligus

elongatus being more prevalent in the northern region (Guttu et al.,

2024). Lice counts are conducted every 7 days when seawater

temperature is 4°C or higher or every 14 days when the

temperature is below 4°C. Action is triggered by counts exceeding

an average of 0.2 AF lice per fish between weeks 16 and 21 of the

year in southern Norway or between weeks 21 and 26 in the

northern parts of the country, and above 0.5 AF lice per fish for

the rest of the year (Jevne, 2020).

In Eastern Canada, the decision-making process regarding the

treatment of lice infestations on farms lacks a singular trigger point or

strict protocol. Rather, it is determined by farm managers and

veterinarians, both company and government, who assess factors

such as actual lice numbers and trends, seasonal variations, weather

conditions, neighboring farm lice activity, proximity to treatment

resources, and the anticipated harvest timeline. Historical data on

infestation patterns also inform their decisions, as some sites exhibit

consistent trends over time. Treatment options are costly, prompting a

cautious approach, wherein veterinarians and operators closely

monitor lice numbers and may conduct additional surveys to

validate observed increases before administering treatment (A.

Swanson, personal communication, 28 March 2024).

The West Coast of Canada has regulations set by the

Department of Fisheries and Oceans (DFO) regarding sea lice
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thresholds. FromMarch to June, when juvenile wild salmonmigrate

from their native lakes and streams, if the average sea lice count on

farmed fish exceeds 3 motile L. salmonis (including pre-adult to

adult free-living copepodid stage) per fish, farm operators must

promptly report to the authority and take measures to decrease lice

levels (Fisheries and Oceans Canada, 2023b). Measures include

intensification of monitoring and establishment of a sea lice

management plan, although treatment is not compulsory to

minimize fish stress (Fisheries and Oceans Canada, 2020).

Several modeling approaches have been developed to

characterize sea lice dynamics at farm and regional scales. In

Eastern Canada, Rittenhouse et al. (2016) developed a

deterministic model of the sea lice life cycle, showcasing

differences in reproduction timing and abundance between British

Columbia and southern Newfoundland, primarily driven by

variations in water temperature and salinity, and secondarily by

life history parameters. Parent et al. (2021) implemented a

multilevel mixed-effects linear regression model to estimate the

impact of the internal (within sites) and external (among sites)

infestation pressures of sea lice, among other factors, on the

abundance of L. salmonis in New Brunswick. Parent et al. (2024a)

developed a multivariable autoregressive linear mixed-effects model

to predict the abundance of adult female Lepeophtheirus salmonis

(sea lice) in the Bay of Fundy, New Brunswick. They found that

external infestation pressure significantly influenced sea lice

abundance and highlighted the need for coordinated mitigation

strategies across aquaculture sites. Finally, Elghafghuf et al. (2020,

2021) evaluated sea lice abundance and infestation pressure on

salmon farms using multivariate state-space modeling, emphasizing

the need to integrate data at relevant spatial scales to generate a

more comprehensive assessment of sea lice abundance and

transmission dynamics among and beyond single farms.

Recent global gap analyses have systematically highlighted

major limitations in modeling sea lice infection pressure,

including uncertainties in transmission pathways, treatment

effectiveness, and environmental conditions (Murphy et al., 2024;

Moriarty et al., 2024). Additionally, Murray et al. (2025) have

introduced the concept of “knowledge strength” to assess the

reliability of environmental model outputs in the face of

uncertainty. These studies underscore the importance of

transparently identifying model limitations to strengthen

predictive capabilities in sea lice management.

In this study, we develop a stochastic, state-based, time-dependent

epidemiological model to characterize adult female sea lice infestation

dynamics in Atlantic salmon farms in New Brunswick, Canada. The

model integrates farming practices (stocking week and treatment

application), environmental covariates (sea surface temperature,

seasonality, and seaway distances among farms), to predict weekly

transitions among infestation states. By explicitly modeling treatment

effects, incorporating environmental drivers, and addressing model

uncertainty, the present study contributes to a more realistic and

actionable understanding of sea lice dynamics in aquaculture systems.
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2 Materials and methods

2.1 Study area

In this study, we analyzed a subset of the Fish-iTrends database,

focusing on farming sites located in Passamaquoddy Bay (New

Brunswick, Canada) and adjacent Canadian waters from 2010 to

December 2023 (see study area in Figure 1). This subset comprises

57 of the 140 farms registered in the system, which covers all

Maritime provinces of Eastern Canada. The dataset does not

include farms located in the U.S. portion of Passamaquoddy Bay,

whose exact number is unknown but is estimated to include about

12 active sites according to the Maine Department of Marine

Resources (DMR, 2025).
2.2 Data and exploratory analysis

2.2.1 The Fish-iTrends database
The Fish-iTrends system, developed by the Atlantic Veterinary

College-Centre for Aquatic Health Sciences (AVC-CAHS) at the

University of Prince Edward Island in collaboration with the

Atlantic Canada Fish Farmers Association (ACFFA), underpins

the epidemiological model of sea lice dynamics in this study. The

database contains abundance records of the parasitic sea lice, L.

salmonis, including the life stages: chalimus (CHAL), adult female

(AF), and pre-adult/adult male (PAAM). Although the system relies

on submissions using multiple counters, which can contribute to

counting and misclassification errors, the New Brunswick

provincial government performs audits to compare site counters

to independent official counters, and previous comparisons showed

a general agreement with experienced counters, particularly for the

adult female stages (Elmoslemany et al., 2013). It also includes

geographic coordinates of the sampled farming sites, stocking and

harvesting dates of farms, and sea lice treatment records. The

treatment data include treatment start and end dates and

treatment type (chemical, thermal, or mechanical delousing).

Prior published research that used this database includes Parent

et al. (2024b); Parent et al. (2021); Parent et al. (2024a); Elghafghuf

et al. (2020), and Elghafghuf et al. (2021).

2.2.2 Data preparation and cleaning
The raw data obtained from the sea lice monitoring database

underwent cleaning procedures to ensure accuracy and consistency.

The main procedures, applied in the following order, included:
1. Outlier filtering: Obvious errors and extreme values in sea

lice concentration were removed based on the 99.9th

percentile thresholds.

2. Reconciliation of multiple weekly surveys: While weekly

sampling was the norm (99.6% of 70,320 original

records), some farming cycles had two surveys in the
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same week, often related to treatment events. To retain one

record per week and farming cycle, a prioritization scheme was

applied: post-treatment surveys were preferred, followed by

regular weekly surveys, and then pretreatment surveys.

3. Imputation of missing observations: Missing weeks within a

farming cycle were imputed using the most recent preceding

observation (classified as free [F], low [L], high [H], or recovered

[U]). For weeks immediately after stocking, infestation-free

values and zero lice counts were assigned. The model was

trained both with observed data only and with the inclusion

of imputed values, and performance was evaluated under

both scenarios.

4. Treatment data aggregation: Treatment information was

aggregated from batch level (groups of fish treated

simultaneously) to cage level to enable integration with sea

lice monitoring data and facilitate analysis by farming cycle.

5. Outbreak identification: Sea lice outbreaks were defined as

transitions to a high concentration of adult females (H)

following a previous state of free (F), low (L), or recovered (U)

within individual farming cycles. Consequently, for the purpose

of analysis, if a widespread outbreak affects, for example, 20

neighboring farms, it is recorded as 20 distinct outbreak events,

one per farm.
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6. Exclusion of incomplete farming cycles: Farming cycles that

lacked initial data, i.e., those that began before the first

available observations, were excluded from further analysis.

2.2.3 Additional independent and derived
variables

In addition to the variables reported within the Fish-iTrends

database, a series of supplementary derived variables were

calculated to ensure that the model considered as many possible

pertinent factors to maximize applicability across diverse farming

conditions. These derived variables include:

Average parasite load or concentration per fish: Computed by

dividing the abundance of the different parasite life stages by the

number of sampled fish, this variable indicates the average parasite

load or concentration per individual fish by life stage of sea lice.

Farming cycle length: Farming cycles were identified using farm

and cage identifiers, along with associated stocking and harvesting

dates. To ensure temporal consistency, these dates were

systematically reviewed. Among the 87,620 records in the original

dataset, 17.7% contained stocking dates recorded as January 1st,

and 5.4% had harvest dates as December 31st—likely reflecting

default system values or placeholder entries in the absence of

specific dates. These were changed to missing values for analysis.
FIGURE 1

Area where salmon farms are located in New Brunswick (NB), Canada (57 farms). For detailed site locations, readers may consult the public Map
Viewer of the Department of Aquaculture of the Government of New Brunswick (Marine Aquaculture Site Mapping Program, MASMP): https://
www2.gnb.ca/content/gnb/en/departments/10/aquaculture/content/masmp.html.
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Chronological inconsistencies were also addressed: 0.4% of records

listed stocking dates after the corresponding survey, and 2.9% listed

harvest dates before it; in both cases, the date was adjusted to match

the survey date to maintain internal coherence. The cleaned and

corrected dates were then used to define farming cycles by site

and cage.

Temporal information: The season, week of the year, and

corresponding week of the initiation of the farming cycle were

calculated for each sea lice survey record (after imputing missing

values as explained later).

Distinct farm states: We classified the infestation status of fish

into four categories based on the number of adult female (AF) sea

lice per fish: free-of-adult-females (F), low concentration (L), high

concentration (H), and fully recovered (U). The F state denotes the

absence of AF since stocking, while U signifies that although no AF

has been reported in the current week, infestation had taken place

earlier in the production cycle. A threshold (above or equal) of 3 AF

per fish was selected to differentiate low and high concentration

levels. Adult females were selected as the focal life stage for

modeling due to their relatively easier identification during

monitoring (Gautam et al., 2016), which improves data reliability,

and the key role of ovigerous females in parasite transmission. The

chosen threshold is consistent with regulatory practices in regions

such as Norway, Canada, and Chile (see review in the

Introduction section).

Exposure to waterborne transmission of sea lice among farms:

The cumulative exposure to waterborne transmission of AF (Cexp,

AF) from surrounding (source) farms j (Equation 1) was calculated

following Equations 1 and 2 by summing up the Gaussian kernel

weights (Gij) computed from the seaway distances (Dij) to each

active farm (AFj) within a kernel’s bandwidth (s) of 100 km to each

(sink) farm i.

Cexp,AF =o
j
GijAFj (1)

AFj =
0 non − active farm

1 active farm

(
(2)

The Gaussian kernel function, Gij, is given by Equation 3:

Gij =
1

s
ffiffiffiffiffiffi
2p

p e−w1 (3)

The kernel incorporates a distance decay function (w1), which

allocates more weight to farms located closer than farms further

away and was the distribution of choice for the transformation of

seaway distance in multiple studies (e.g., Kristoffersen et al., 2013).

The Gaussian weight (w1) is given by Equation 4:

w1 = e−
D2
ij

2s2 (4)

According to Brewer-Dalton et al. (2014) and Wu et al. (2014),

current speed in the Bay of Fundy varied from almost zero to over

100 cm s−1, driven mainly by tidal forces. Brewer-Dalton et al.

(2014) stated that sea lice dispersal stages last 1 to 10 days, with pre-

infective stages traveling 10–100 km. Concordantly, a 100-km
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dispersal distance of sea lice was chosen, which coincides with the

maximum observed seaway distances among farms in the study

area. As a result, only farms within a seaway distance of 100 km

were considered in the kernel density estimation. This distance

allows the recognition of the potential influence of the more distant

farms given the considerable water exchange in the study area, as

well as the higher probability of significant influence from closer

farms as evaluated in the study area by Parent et al. (2021) and

Parent et al. (2024a).

Sea surface temperature (SST): SST was retrieved from the

NOAA Multi-scale Ultra-high Resolution (MUR)-SST Analysis

from 2009 to 2023. MUR-SST was preferred over in situ

measurements from farm sites to avoid issues related to missing

data and inconsistencies in measurement techniques. The MUR-

SST is created using a combination of level-2 satellite observations

and numerical models and provides daily global coverage with a

spatial resolution of 1/25th of a degree (approximately 4 km).

MUR-SST time series were used to train the model with realistic

weekly variability. No comparison with other remote products was

performed in this study.

Once the model was trained with MUR-SST data, a sinusoidal

function was used to represent SST inputs in model simulations.

This simplification replaced the full weekly time series with just two

parameters: the mean SST and the annual amplitude, capturing

seasonal variation while reducing input complexity in model

simulations. This mathematical model is described by the equation:

SST(t) = A · sin  (2p ft + f) + C + noise (5)

where SST(t) represents the seawater temperature at time t; A is

the amplitude of the sinusoidal wave, governing the magnitude of

the seasonal oscillations; f denotes the frequency of the sinusoidal

wave, dictating the number of oscillations within a specified time

period; f signifies the phase shift of the sinusoidal wave,

determining the horizontal displacement along the time axis; and

C is the offset or mean value, indicating the annual mean sea surface

temperature. Noise was added to the sinusoidal functions to

simulate natural variation in SST(t), with the values drawn from a

normal distribution centered at zero and having a standard

deviation equal to the mean standard deviation of MUR-SST

values averaged spatially for every week from 2009 to 2023.

For the initial fitting of the model to the observed data, the

following initial parameter values were chosen: A = 1, f = 1/52

(assuming one cycle per year), phi = pi/4, and C was set to the mean

temperature reported in the dataset. The optimization process

utilized the Levenberg–Marquardt algorithm implemented

through the nlsLM function in R (Elzhov et al., 2023). This

algorithm aimed to minimize the difference between the modeled

and observed temperatures, ensuring convergence for the non-

linear least squares regression.

2.2.4 Odds ratio of sea lice prevalence
As part of the exploratory analysis, odds ratios were computed

to assess the effectiveness of treatment in response to sea lice

outbreaks. The odds ratio estimates the likelihood of recovery

(either partial recovery from H to L or full recovery from H to U)
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in relation to a particular exposure (in this case, to sea lice

treatment) relative to the likelihood of the outcome happening

when that exposure is not present (no sea lice treatment). The

statistical significance of observed variations in odds ratios was

assessed using a chi-squared test that compares observed and

expected values under the assumption of no link between

exposure to treatments and infestation outcomes. The outcome

prevalence, which refers to the proportion of the population that

has the outcome of interest, i.e., recovery from H to L or H to U

state, was also calculated from the 2 × 2 contingency table.

Outcomes were observed up to 8 weeks after the outbreak was

detected, as this was considered a reasonable timeframe to detect

treatment responses to lice outbreaks. All calculations were derived

using the “epi.2by2” function from the “epiR” package (Stevenson

et al., 2013) within R (version 4.2.1). No distinction was made

among treatment types (chemical, thermal, and mechanical

delousing), and all were considered equally effective in the model.
2.3 Numerical model

2.3.1 Model development process
A discrete-time (week), first-order (it only depends on the state at

the previous time t-1, not beyond that), multivariate Markov chain

model was used to model categorical time series of AF sea lice

infestation states at the scale of farming cycles based on Fish-iTrends

data for New Brunswick farm sites. Model parameters were estimated

using the Markov chain Monte Carlo (MCMC) methods to fit the

model to data and obtain posterior distributions of parameters. The

model includes four AF infestation states (boxes in Figure 2) and 12

possible weekly state transitions (arrows in Figure 2). Farms start in F

(free of sea lice), may move to L (low infestation) or H (high
Frontiers in Aquaculture 06
infestation). From L or H, they can recover to U (full recovery),

and from U, they can be reinfected (to L or H). L, H, and U represent

the recurring states, as a return to the F state is not feasible. The

probability equations governing state transitions are shown in section

4.4.1 and Supplementary Table S1 of the Supplementary Section.

Transition probabilities were modeled as a function of the current

infestation state and six time-dependent covariates: production cycle

week, seaway distance-based exposure to neighboring farms, sea

surface temperature, stocking week of the year, seasonal variation

(modeled as a cosine function of week of the year), and treatment

application (lagged by 1 week). Treatment effects, and related model

parameters (aXv and bXv), were estimated conditional on infestation

state (F, L, H, or U). This was required to account for potential

confounding from infestation severity and was modeled as state-

specific modifiers of infection probability (p) and severity (q), with

aXv and bXv estimating the impact of treatment presence (see

parameter definitions in the Supplementary Section). A penalization

term was incorporated into the likelihood function to enforce

biologically plausible constraints on treatment-related coefficients.

Parameters controlling the effect of treatment on the infestation

severity (bXv), specifically the transition to high infestation (H), were

constrained to be negative (ensuring that treatment consistently

reduces the probability of the H state).

Treatment effects and their corresponding model parameters

(aXv and bXv, see Supplementary Tables S1 to 2 of the

Supplementary Section) were estimated conditional on the

infestation state (F, L, H, or U) to account for potential

confounding by infestation probability and severity. A

penalization term was added to the likelihood function to enforce

biologically plausible constraints on treatment-related coefficients.

In particular, parameters governing the effect of treatment on

infestation severity (bXv), especially transitions to high infestation
FIGURE 2

Markov chain model of infestation states. The model includes four infestation states (boxes) and 12 possible weekly state transitions (arrows). pX =
probability to move to an infestation state (L or H) given it is in the X state, and qX = probability to move to the high infestation state given it is in the
X state.
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(H), were constrained to be negative, ensuring that treatment

consistently reduces the likelihood of reaching the H state.

Effects were assumed to manifest 1 week after application,

consistent with the model’s weekly temporal resolution. Model

parameters were estimated by maximizing the likelihood of

reproducing observed data, using a Markov chain approach to

explore plausible stochastic transitions between observation times.

Other potentially important covariates, such as fallow period,

stocking density, stocking weight, and salmonid species, were not

included due to a lack of available data during model development.

2.3.2 Assessment of model performance
The predictive performance of the stochastic, state-based model

was evaluated by calculating the average probability of correctly

predicting observed weekly transitions. The model was trained

using the full dataset, and its predictive skill was assessed based

on the total log-likelihood (LL) associated with the observed

transitions. The average predictive probability was computed

according to the following expression:

exp  (
LL
N

)

where N denotes the total number of weekly transitions, with

values closer to 1 corresponding to better performance.

To examine variation in model skill over time, the dataset was

stratified into eight-time windows based on the number of weeks since

stocking (i.e., 0–10, 10–20,…, 70–104 weeks). For each time window,

the total log-likelihood and the number of transitions were computed,

and the corresponding average predictive probability was estimated.
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3 Results

3.1 Exploratory data analysis

3.1.1 Summary statistics
After data cleaning and preprocessing, the original dataset with

more than 80k observations was reduced to 52,354 records, while

the sea lice treatment dataset contained 25,868 observations (after

aggregation from batch to cage level). Out of 57 farm sites (578 farm

cages) in the sea lice monitoring database, 56 had treatment data

(98.2%). A total of 1,365 fish farm cycles were recorded. By the end

of the available survey records in December 2023, there were several

farming cycles that were still ongoing. Ignoring these cases, the

average length of the farming cycles was 99 weeks (1st quartile: 89

weeks; 3rd quartile: 109 weeks, max. 130 weeks). After imputation

of missing values, the number of records doubled to 111,844.

Of the 111,844 records retained after data cleaning,

preprocessing, and imputation, 59,490 (53.2%) were imputed—

primarily as a low infestation (L, 25,401), followed by high

infestation (H, 21,624). A smaller portion was imputed as free of

adult females (F, 10,256), mostly at the beginning of the farming

cycles (Figures 4A, B), and 2,209 as recovered (U). The remaining

52,354 records (46.8%) were original observations.

Stocking of cages was concentrated in spring and summer, while

harvesting was distributed homogeneously throughout the year

(Figures 3A, B, respectively). Sea lice treatments were concentrated in

summer and fall, with few records during winter (Figure 3C). Sea lice

treatments notably increased the weeks immediately after stocking,

with a peak around week 10 of the farming cycle (Figure 3D).
FIGURE 3

(A, B) Histograms of frequency of cage stocking (A) and cage harvesting (B) by week of the year and colored by season, based on Fish-iTrends data
for New Brunswick farm sites (n = 57). (C, D) Histograms of the frequency of sea lice treatments by week of the farming cycle (C) and month of the
year (D) and colored by season.
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A high variability in the sea lice sampling efforts was evident in

relation to both time of the year and week of the farming cycle. Sea

lice surveys decayed both at the beginning and end of the farming

cycles (Figure 4A), as well as in the wintertime (Figure 4B).
3.1.2 Transition between the lice infestation
states

The observed probabilities derived from empirical (frequency)

data analysis are shown in Figures 4C, D. The observed probability of

the initial free-of-adult-female (F) state, mostly observed in late

spring and summer, remained above 75% until week ∼10 of the

farming cycles. Nonetheless, after week ∼10, L became dominant in

most of the fish farm cycles analyzed (Figure 4C). After week ∼60 of
the farming cycle, the observed probability of H increased to over

50%, reaching values above 80% after week ∼75. Observed recovery

(U) remained consistently low across all farming cycles and was

nearly absent beyond week ∼75 of the farming cycle (Figure 4B).

Some recovery was observed in summer and early fall (weeks ∼20
to ∼40 of the year), which coincided with the increased frequency of

treatments in these seasons (Figure 3C). Equally noteworthy was the

peak in the observed probability of high infestation (H) at week ∼45
of the farming cycle (red line, Figure 4C), which coincided with a

decrease in treatments (Figure 3D). Treatments decrease especially in

winter, as observed in Figure 3C.

As depicted in Figure S1 of the Supplementary Section, the

probability of extremely high infestation events is much smaller

compared to that of low concentration events, which are

consistently observed within the dataset. That said, the objective

of this modeling effort is not to predict extremely high infestation

events but to focus on infestation levels that are known to endanger
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farmed fish, identified earlier as greater than or equal to 3 AF

per fish.

3.1.3 Sea surface temperature
The mean sea surface temperature (MUR-SST) observed in the

study area fluctuated annually between the coldest year in 2019

(7.90°C ± 4.03°C, observed range: 13.5°C, between 0.9°C and

14.4°C) and the warmest year in 2012 (9.61°C ± 3.89°C, observed

range: 13.7°C, between 3.1°C and 16.8°C). The overall average

temperature during this period was 8.60°C ± 3.89°C. Additionally,

the range in year-round SST varied from 12.21°C in 2013 to 15.42°C

in 2017 (Figure 5).

3.1.4 Exposure to waterborne transmission of sea
lice from surrounding farms

Exposure to waterborne transmission of sea lice from

surrounding farms was estimated as a function of both the

number of neighboring farms and their distance from each site.

Farms with the highest potential exposure were primarily located in

Passamaquoddy Bay, which showed elevated potential connectivity

throughout the study area and time frame. On average, in NB, there

were 41.2 fish farms within a 100-km radius, ranging from 11 to

56 farms.

3.1.5 Observed frequency of sea lice outbreaks
and treatments

Between 2012 and 2023, a total of 8,596 sea lice outbreaks were

recorded, defined as transitions to the high infestation state (H)

from a preceding free (F), low (L), or recovered (U) state within

individual farming cycles (see upper plot of Figure 6). Table 1 shows
FIGURE 4

Histograms of sea lice survey counts by week of the farming cycle (A) and week of the year (B), including imputed (I) missing values shown in lighter
colors, based on Fish-iTrends data for New Brunswick farm sites (n = 57). Observed probabilities (proportions) are displayed by week of the farming
cycle (C) and week of the year (D). Colors indicate infestation states: F (free of adult females), H (high infestation), L (low), and U (recovered). The
symbol i denotes imputed values.
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the differences in the proportions of sea lice outbreaks according to

treatment exposure (treated or untreated) and the subsequent

outcomes (recovery to state L or U) within 8 weeks after the

outbreak was detected. The 2 × 2 contingency table presented in
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Table 1 shows that among the 8,596 sea lice outbreaks identified,

72.5% (n = 6,228) received treatment within the 8-week observation

period, while the remaining 27.5% (n = 2,368) received no

treatment during this period (but maybe after). Similarly, out of
FIGURE 5

Time series of mean sea surface temperature (SST) from MUR-SST at 57 fish farm locations in the study area for the period 2009–2022.
FIGURE 6

Number of detected outbreaks classified by recovery time, i.e. the total number of weeks it takes to transition from H to L state (panel B) or H to U
state (panel C) and the outbreak-to-treatment duration, i.e. time elapsed since the outbreak detection to the administration of a sea lice treatment.
The percentage values shown in each cell were computed relative to the total number of outbreaks with matching outbreak-to-treatment time (i.e.
by column). No distinction was made between chemical, thermal or mechanical delousing. The “Other cases” category includes instances where
recovery occurs after the observation period or corresponds to transitions shown in the complementary panel, i.e., recovery events of the other type
(H to L or H to U), depending on the plot being viewed. Panel (A) shows a summary of treatment and recovery outcomes across all cases.
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the total outbreaks, 76.0% (n = 6,531) transitioned from a high (H)

state to either a low (L) or full recovery (U) within the same 8-week

time frame, whereas 24.0% (n = 2,065) stayed in the high state

throughout the entire 8-week observation period.

Focusing on the 6,228 outbreaks that did receive treatment,

88.2% (n = 5,491) transitioned to either L or U states, while the

remaining 11.8% (737 outbreaks) showed no change (Figure 6A).

For the 2,368 untreated outbreaks, 43.9% (n = 1,040) transitioned to

the L or U state within 8 weeks after the outbreak was detected,

which is 44.3 percentage points lower than the treated group. The

remaining 55.7% (1,328 outbreaks) did not recover within the 8-

week observation period. Moreover, 75.2% (n = 4,683) of the

outbreaks that were treated (n = 6,228) received a sea lice

treatment within 2 weeks after recording an event of high

concentration of AF.

The likelihood of recovery (from H to L or H to U) is 2.01 (with

a confidence interval of 95% between 1.91 and 2.10) times higher in

the outbreaks that received treatment (exposed group) compared to

the outbreaks that did not receive treatment (unexposed group). A

total of 89.5% of outcomes (either recovery or not) in the treated
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outbreaks were effectively attributed to sea lice treatments with a

confidence interval of 95% between 88.9% to 90.2%), and the rest,

10.5%, were associated with other non-reported causes of recovery.

The database contains 6,677 records of sea lice concentrations

measured the week before treatment. In 23.5% of the cases (1,567

records), the sea lice concentration was below the threshold of three

lice per fish established in this study. In 73.4% (4,903 cases), the

concentration was above that threshold before the treatment

application. In only 3.1% of the cases, a sea lice concentration of

zero was reported before sea lice treatment application.

The heat maps in Figure 6 display the number of detected

outbreaks classified according to 1) the recovery time in the

independent axis, which specifies the number of weeks elapsed

from the outbreak (high infestation record) to the subsequent

observation of either low (left panel) or complete recovery (right

panel) independent of treatment administration, and 2) the

outbreak-to-treatment time in the dependent axis, which specify

the time elapsed since the outbreak detection to the administration

of a sea lice treatment. The red and blue coloring of cells

differentiates outbreaks where recovery was observed after
FIGURE 7

Simulated time series of multiple infestation states of AF subject to different combinations of covariates (stocking season, exposure to waterborne
transmission of sea lice from surrounding farms and annual temperature regime.
TABLE 1 Contingency table and summary measures of risk and a chi-squared test for differences in the observed proportions from count sea lice
outbreaks by exposure to treatment and outcome (positive or negative).

Exposed to sea lice
treatment

Outcome+ (to L or U
state)

Outcome− (remain in
the H state)

Total Prev risk*

Exposed+ 5,491 (88.2%) 737 (11.8%) 6,228 (72.5%) 88.17 (87.34, 88.96)

Exposed− 1,040 (43.9%) 1,328 (56.1%) 2,368 (27.5%) 43.92 (41.91, 45.95)

Total 6,531 (76.0%) 2,065 (24.0%) 8,596 (100%) 75.98 (75.06, 76.88)
Percentages are calculated row-wise except for the column of total counts.
* = Outcomes per 100 population units.
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(upper-left block of cells, red area) or before treatments (lower-right

block of cells, blue area), respectively. Accordingly, the red-colored

area represents recovery cases attributable to treatments or other

causes, while the blue area indicates recovery not associated with the

treatment. The diagonal cells, colored in yellow to orange, display

the outbreaks in which treatment and recovery were reported the

same week.

Transitions from high infestation to low infestation (Figure 6B)

were notably more frequent than the transition from high infestation to

full recovery (Figure 6C). In 54.4% (n = 4,762) of the outbreaks, the

recovery to low or no infestation occurred within 2 weeks after

detection of the outbreak, either due to treatment administration or

other non-reported causes. In approximately 44% (n = 3,928) of the

outbreak events, sea lice treatment was applied the same week of the

outbreak, with a steady decline in the number of treatments applied in

the weeks after, reaching a very small fraction by the eighth week.

When treatment was applied, the highest recovery was observed

during the same week of application (as indicated by the diagonal

cells in both panels of Figure 6). This immediate response is

consistent with the rapid effect of mechanical or thermal

delousing methods. In contrast, in-feed chemical treatments

typically exhibit a delayed response, which may result in a more

gradual decline in infestation levels over the weeks following

treatment (Elghafghuf et al., 2020, 2018). However, this

exploratory analysis and the model did not differentiate among

treatment types, a limitation noted for future research.

The recovery rate seems to decrease as well when farms delay

treatment in response to high infestations. For example, among the

3,928 outbreaks treated during the same week when a high

concentration of AF lice was detected, 76% (n = 2,933) showed

recovery from high (H) to low (L) or full recovery (U) within the

same week, with an additional 12% (n = 502) recovering in the

following week. In contrast, of the 755 outbreaks treated 1 week after

detection, only 47% (n = 355) recovered during the week of treatment,

and an additional 18% (n = 139) recovered the following week.
3.2 Model performance

As represented in Figure S3 in the Supplementary Section, the

highest predictive accuracy was observed during the first 10 weeks

post-stocking (74%), followed by a decrease and slight rebound later

in the cycle. The overall average predictive accuracy across all

transitions was 58.6% when considering only observed data and

57.5% when imputed data were included. Since data imputation did

not improve model performance, only observed (non-imputed)

records were used for model training and simulations.
3.3 Model simulations

3.3.1 Simulated time series
Figure 7 displays the simulated time series of multiple

infestation states subject to different combinations of covariates

and assuming treatment application the same week of detection of
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high infestation. Specifically, the simulation incorporates the

exposure to waterborne transmission of sea lice among farms and

the timing of fish farm stocking. Exposure to waterborne

transmission of sea lice among farms was classified into four

levels: low, medium–low, medium–high, and high, based on

weekly quantiles (20th, 40th, 60th, and 80th percentiles) of the

index of cumulative exposure to waterborne transmission of AF

(Cexp,AF) calculated using Equation 1. This index was computed for

each farm, year, and week of the year by summing the pairwise

Gaussian distance weights between the focal farm and all

neighboring farms classified as active (with fish on site) based on

preidentified farming cycles. Weekly exposure values were then

aggregated and averaged by farm site and week of the year to reflect

temporal variability in infestation pressure. This method aims to

capture both the spatial connectivity among farms and the

variations of infestation risk due to fluctuating farm activity

across time. Timing of fish farm stocking was input as week of

the year, namely, mid-spring (week 15 of the year), mid-summer

(week 28 of the year), and mid-fall (week 41 of the year). Stocking in

mid-winter (approximately week 2 of the year) was not considered

because they rarely happen based on the data available in this study.

The simulation incorporated year-long time series of sea surface

temperatures fitted to MUR-SST data (according to Equation 5) for

a relatively cold (mean: 7.1°C, amplitude: 9.2°C), a warm (mean:

9.0°C, amplitude: 9.2°C), and an average condition (mean: 8.0°C,

amplitude: 8.9°C).

Across all stocking seasons, farms initially remain in the F state

only briefly, with rapid transitions to L or H occurring within the

first 20 weeks. The timing and magnitude of these transitions vary

with both stocking season and exposure level to sea lice

transmission. For spring stocking, L states dominate much of the

cycle, with H peaking between weeks 40 and 60, followed by a

gradual rise in U, mediated by sea lice treatment. In summer

stocking scenarios, H states rise earlier and more sharply, leading

to earlier and more pronounced recovery (U). Autumn stocking

delays the onset of infestation, but still results in a strong rise in H

and U states around week 60. In all scenarios, higher exposure to sea

lice from nearby farms consistently leads to elevated probabilities of

H and U, underscoring the role of spatial transmission dynamics in

infestation risk.

Exposure to waterborne transmission of sea lice influences both

the speed and intensity of infestation buildup, although differences

across scenarios are relatively modest. This may be due to the

overall homogeneity in exposure levels across farms in the study

area, with no cases of significantly isolated farms in the dataset.

Under low or medium–low exposure, farms tend to remain in the F

and L states for longer, with delayed or infrequent transitions to H

and U. In contrast, under medium–high and high exposure,

infestations escalate more rapidly, leading to earlier and more

sustained occurrences of H and U states across all stocking seasons.

3.3.2 Integrated infestation probabilities across
covariate scenarios

Figure 8 displays the integrated probabilities of the four

infestation states, free (F), low (L), high (H), and fully recovered
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(U), over a 104-week salmon production cycle. These are not

instantaneous or weekly probabilities of transitions or recovery

but reflect the cumulative likelihood of each state across the entire

farming cycle.

Simulations were conducted under varying conditions of

treatment status (no treatment vs. treatment applied in the same

week, high infestation was reported), mean sea surface temperature

(7.1°C, 8.0°C, and 9.0°C), exposure to waterborne transmission

(low, medium–low, medium–high, high), and stocking season

(spring, summer, fall) as explained in the previous section.

The integrated probability of remaining free of adult female sea

lice (F) was consistently low (<2%) across all scenarios. This

indicates that even under favorable conditions, complete

avoidance of infestation is unlikely in this study area, and this

pattern showed minimal sensitivity to treatment, temperature,

exposure level, or stocking season.

The probability of experiencing low infestation (L) over the full

farming cycle varied across scenarios from ∼57% to ∼75%. In
untreated cases, it ranged from approximately 61% (fall stocking,

high exposure, 9.0°C) to 75% (spring stocking, low exposure, 7.1°C–

9.0°C). With treatment, L increased modestly in most conditions,

ranging from ∼57% to ∼73%. This suggests that timely treatment

tends to reduce the likelihood of high infestation, while slightly
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increasing the probability of maintaining low infestation,

particularly under warmer temperatures and higher exposure levels.

The probability of high infestation (H) was typically lower in

treated scenarios. For instance, at 9.0°C and high exposure, fall

stocking showed a decrease in H from 33% (untreated) to 28%

(treated). The highest H probabilities were consistently associated

with fall stocking and medium–high to high exposure levels, often

exceeding 30% in untreated cases.

The combined probability of being in any infested state (L + H)

surpassed 80% in nearly all spring and summer stocking scenarios,

regardless of treatment. For example, at 8.0°C and medium–high

exposure under spring stocking, the untreated groups showed a

combined L + H probability of 95%.

Finally, the integrated probability of full recovery (U), defined as

having zero observed adult female sea lice at any point during the

production cycle, remained low overall across all scenarios. The

probability of full recovery increased with sea lice treatment,

especially under high exposure levels and in fall stocking

scenarios, reaching up to 15%. In contrast, spring stocking

consistently showed the lowest recovery probabilities, typically

below 10%, regardless of treatment or exposure level. Summer

stocking yielded intermediate results, with U ranging from ∼4%
to 11%, depending on temperature and exposure.
FIGURE 8

The integrated probability of various infestation states (F, L, H, and U) over a standard production cycle lasting 104 weeks (2 years), across multiple
combinations of covariates: stocking season, exposure to waterborne transmission of sea lice, annual temperature regime, and sea surface temperature.
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4 Discussion

4.1 Key findings

4.1.1 Exploratory data insights
The exploratory analysis revealed that stocking events were

predominantly concentrated in spring and summer, while

harvesting activities were distributed more uniformly throughout

the year. Farming cycles initiated in spring were significantly

shorter than those starting in fall or summer, likely due to the

accelerated growth rates associated with higher temperatures or

earlier harvesting. For summer stocking, the earlier occurrence of

high concentrations of AF lice may be attributable to elevated

seawater temperatures, which are known to enhance lice

development and survival (Johnson and Albright, 1991; Hamre

et al., 2019), in combination with the increased number of active

farms during this period, potentially elevating the risk of

waterborne transmission of infective stages (Aldrin et al., 2013;

Parent et al., 2021, 2024b) (see Figure S2 of the Supplementary

Section). Future analyses could involve estimating degree-days to

better explain variations in fish growth and the extent of

farming cycles.

Elevated AF concentrations (≥3 lice per fish) were frequently

found during winter months. This pattern is likely explained by the

seasonal reduction in treatment activity due to logistical constraints

imposed by weather (Westcott et al., 2004) and potentially by

seasonal fluctuations in lice abundance (Fisheries and Oceans

Canada, 2020; Rittenhouse et al., 2016). Seasonal cycles of sea lice

abundance are well documented in Western Canada, where they are

associated with wild salmon migrations that return to their

spawning grounds in late summer (Fisheries and Oceans Canada,

2020). In Eastern Canada, in New Brunswick, fluctuations in sea lice

abundance also correlate with changes in environmental conditions

(Chang et al., 2011). Nearby, in Southern Newfoundland, the

reproductive peak was found to be highly dependent on

environmental conditions, particularly annual peaks in salinity

levels (Rittenhouse et al., 2016).

Approximately 70% of outbreaks (i.e., transitions to the H state

from a preceding F, L, or U state), received treatment within 2

months of detection. However, it is important to note that no

mandatory treatment thresholds are established in the study area,

and that due to data limitations, it was not possible to directly link

treatment decisions to specific AF concentrations prior

to treatments.

In most cases, the AF concentration at the time of treatment was

at or above the 3 lice per fish threshold; however, in nearly one-

quarter of the cases, treatments were administered when lice counts

were below this threshold. This observation implies that sea lice

treatments are not applied solely in response to high concentrations

of AF, as defined in this study, but are determined most probably by

a combination of logistic, economic, fish health factors, as well as

treatment strategies within Bay Management Areas, that included

product rotations and synchronized treatment (Atlantic Canada

Fish Farmers Association (ACFFA), 2022).
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Treatments were most often administered immediately

following the detection of high AF concentrations (same week),

with a sharp decline in treatment frequency thereafter. As a result, a

greater proportion of outbreaks transitioned to low concentrations

in the weeks immediately after detection. Treated outbreaks were

notably more likely to transition to low or no infestation compared

to untreated outbreaks, indicating the relative effectiveness of

treatments. This is consistent with the findings from Gautam

et al. (2017), who reported that post-treatment sea lice levels were

lowest when counts were conducted 1 day after treatment,

particularly in summer, suggesting a rapid and pronounced

treatment response. However, they also observed that sea lice

abundance increased again shortly after treatment during warmer

months, indicating the short-lived nature of treatment effects and

the potential for reinfestation. Consistent with this, the data

available to this study show that approximately 33% of treatment

events (by farming cycle, as defined in the Methods) were followed

by a return to high infestation (H state) within 2 weeks, 39% within

3 weeks, and 43% within 4 weeks, indicating that nearly half of all

post-treatment high infestations reoccurred relatively soon after

intervention. Also interesting is the relatively high rate of recovery

from high to low infestation observed in non-treated cases, which

may be explained by natural decl ines or unreported

contributing factors.

It is important to acknowledge the potential biases introduced

by irregular sampling, as highlighted by Gautam et al. (2016) and

Gautam et al. (2017). Infrequent sampling, particularly before and

after treatment events, can affect estimates of infestation levels

and treatment outcomes, thereby impacting epidemiological

inferences. As a result, the findings presented here should be

interpreted as approximations, with the understanding that

unrecorded changes in infestation dynamics may have occurred

between sampling points (e.g., sudden increases or declines in sea

lice populations).

Finally, it is worth noting that extreme lice infestation events

were infrequently represented in the training dataset (see

Supplementary Figure 1). Although the modeling framework

developed here was not specifically designed to predict such rare

but impactful events, the integration of larger, multi-year datasets

spanning additional farms in Atlantic Canada, along with

complementary modeling approaches, may help improve

predict ive capacity for high-magnitude outbreaks in

future research.

4.1.2 Model result insights
The complex dynamics arising from multiple covariates

interacting simultaneously (seawater temperature, waterborne

transmission, and stocking practices) were successfully reflected

in changes in the weekly and integrated probabilities of various

infestation states across a farming cycle.

Model infestation state transitions. High AF concentration,

defined here as parasite loads equal to or exceeding 3 adult

females per fish (AF), was influenced by high temperature, high

exposure to waterborne transmission of sea lice from neighboring
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farms, stocking season (spring and summer), and sea lice treatment.

These model patterns agreed with the studies in Norwegian marine

salmon farms by Aldrin et al. (2013), where it was found that up to

28% of expected sea lice abundances were attributed to infection

from neighboring farms, and the remaining cause was mostly

attributed to infestation within farms. Infestation within farms

was not assessed explicitly in this research, but implicitly because

Markov chain models predict the future infestation state based on

the current state. Alternatively, recovery was favored by sea lice

treatments, particularly under decreased temperatures, as well as

under reduced exposure to waterborne transmission of sea lice, and

cage stocking during fall (and secondly late spring).

Effectiveness of sea lice treatments. The analysis of model

outputs suggests that waterborne transmission of sea lice among

farms may be reducing the effectiveness of treatments by facilitating

persistent reinfection of treated populations. This effect is likely

exacerbated by the high degree of spatial connectivity among farms

in the study area. Exposure to waterborne transmission was

estimated based on the number and proximity of neighboring

farms, with no farms in the dataset classified as truly isolated. On

average, farms in New Brunswick had 41.2 neighboring farms

within a 100-km radius (ranging from 11 to 56). This limited

variability in exposure restricts the model’s ability to explore

treatment outcomes under more favorable conditions, such as

those of spatially isolated farms with lower reinfection pressure.

These findings underscore the importance of coordinated

management within and beyond Bay Management Areas (BMAs)

and highlight the need for advanced modeling tools that support

robust scenario evaluation and improved decision-making

(Guarracino et al., 2018; Stige et al., 2024).
4.2 Model assumptions and limitations

Recent global assessments have identified key limitations in

modeling sea lice infection pressure, particularly related to

transmission pathways, treatment efficacy, and environmental

drivers, and introduced the concept of “knowledge strength” to

emphasize the need for evaluating model reliability under

uncertainty (Murphy et al., 2024; Moriarty et al., 2024; Murray

et al., 2025). These insights highlight the importance of

transparently stating model assumptions, several of which were

required in this study and are outlined below to inform

future research.

Homogeneous infestation-state of fish cohorts. It was assumed

that all fish within a farm shared the same infestation state. While

this simplification facilitates the formulation of the epidemiological

model, it does not capture the internal infestation pressure, i.e., the

potential transmission of sea lice within cage and between-cage.

Furthermore, the internal infestation pressure (i.e., transmission

within farms) is indirectly represented by conditioning a farm’s

infestation state at each time step on its state in the previous week.

Future model iterations should aim to incorporate finer-scale

variability to more accurately reflect transmission dynamics.
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Seaway distance as a proxy for waterborne transmission of sea lice

among farms. In this Markov chain model, exposure to waterborne

transmission from active neighboring farms is estimated using a kernel

density approach based on seaway distances. Similarly, AF lice are used

as a proxy for infestation pressure at source farms; nonetheless, it is

their planktonic offspring, particularly the free-swimming copepodid

stage, that are responsible for interfarm transmission. While seaway

distance has been widely applied as a proxy for interfarm connectivity

(Viljugrein et al., 2009; Stene et al., 2014; Bravo et al., 2020; Parent et al.,

2024b) as it does not require the extensive computing processing power

and time to run a hydrodynamic model, it may inadequately capture

the biological and physical complexity of sea lice dispersal, which

depends on larval behavior and hydrodynamic transport processes. To

improve predictive performance, future efforts should prioritize the use

of hydrodynamic (potential) connectivity rather than relying solely on

seaway distance; however, these data are not available today in the

study area. One step further, and in the context of real-time risk

forecasting, model accuracy could be enhanced even more by

incorporating realized connectivity, that is, hydrodynamic links

filtered by the presence of active infestations at source farms capable

of releasing eggs and motile larvae. Such refinements would provide a

more realistic representation of transmission pathways and enable

more accurate, targeted management interventions (Bravo et al., 2020;

Asplin et al., 2020).

Seawater salinity. Seawater salinity was not available for this study

at the farm level and for the entire period of analysis; therefore, it was

not feasible to incorporate it into the model. Nonetheless, salinity levels

are known to influence the viability of sea lice eggs (Brooker et al., 2018

and citations therein). Copepodids actively avoid salinity below 27

parts per thousand, expending energy for osmoregulation and

maintaining position in seawater. Bricknell et al. (2006) have

suggested that survival of free-swimming copepodids was found to

be severely compromised at salinity levels below 29 parts per thousand

(ppt), impairing their response to host cues. Planktonic stages are more

susceptible to low salinity compared to parasitic stages that gain

protection from close contact with the host and ingested host tissue

(Brooker et al., 2018). Having access to salinity data from observation

(in situ and remote) and modeling systems such as the Global Ocean

Physics Analysis and Forecast system (available since November 2020

onward) could therefore meaningfully improve sea lice modeling.

Seawater temperature. The fluctuations in environmental

conditions throughout the year significantly influence the

dynamics of numerous disease systems as highlighted by Altizer

et al. (2006), and more specifically for sea lice by Rittenhouse et al.

(2016); Fast and Dalvin (2020), and Sandvik et al. (2021). In our

study, MUR-SST time series were incorporated within the

probabilistic model, allowing us to investigate its impact on

probability of infestation and recovery. The probability of high

concentration of AF increased for farms stocked in summer,

coinciding with higher SST, while recovery was not particularly

sensitive to SST. The integrated probabilities of infestation

(combined L and H) does not change meaningfully with seasonal

variations in SST between the coldest (mean: 7.90°C, amplitude:

13.5°C, derived from Equation 5) and warmest simulated condition
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(mean: 9.77°C, amplitude: 13.7°C, derived from Equation 5).

Nonetheless, the effects of a warmer climate on salmon lice

infection should not be disregarded as indicated by Sandvik et al.

(2021). The correlation of SST with other factors such as fish

biomass or host density per farm or farming area needs to be

evaluated to differentiate between both effects. In this context, host

density has been previously identified in the study area as a

fundamental component of disease dynamics in coastal seas

where salmon farming occurs (Frazer et al., 2012).

Fish growth. The lack of data on fish weight and/or size

hindered the application of a growth model to the dataset. Such a

model could have complemented the epidemiological framework by

explicitly accounting for size-dependent differences in infestation

risk and growth rates, including their dependence on temperature.

Other missing covariates. So far, we were able to incorporate as

model covariates the exposure to waterborne transmission of sea lice

from surrounding farms based on seaway distances, sea surface

temperature from NASA PODAAC Multiscale Ultrahigh Resolution

(MUR) Analyses, sea lice treatment, the stocking week of the year, and

the week of the farming cycle. Although there was initial interest in

including additional variables such as fish size at stocking, fish size at

time of sea lice count, fish density (ind m−3, kg m−3, ton. cage−1),

relevant farming practices such as net cleaning, and seawater salinity,

these factors could not be incorporated because the necessary data were

not available for this study or were incomplete. Similar efforts of data

integration for modeling have been done for other salmon diseases

worldwide, demonstrating the potential benefits of such integration

(Bravo et al., 2020; Aldrin et al., 2013; Ohlschuster et al., 2023; Steven

et al., 2019). The imputation of missing values may have introduced

bias into transition probability estimates, particularly for the “free” (F)

state, the most frequently imputed category, specifically at the

beginning of farming cycles. This could reduce the model’s sensitivity

to environmental covariates and potentially mask early infestations that

went undetected due to sparse monitoring.

Spatial gaps in data. Unfortunately, we were unable to include

information from farms situated in the U.S. waters of Passamaquoddy

Bay, as well as from other farms in the study region not owned by the

collaborating company. The absence of these data could potentially

compromise significantly the accuracy of our model, as it overlooks

exposure to waterborne transmission of sea lice originating from those

sites. Additionally, there may be other consequential impacts associated

with the farming practices at these sites that are unknown and worth

considering in future efforts of model development. The need to

incorporate data at relevant spatial scales has also been highlighted

in previous modeling studies within the study area (Elghafghuf et al.,

2020, 2021). Furthermore, and related with sampling frequency, the

data gap during the winter season and at the outset of production cycles

may affect model training and performance. As a result, several

decisions were made to impute missing values and to set the

temporal resolution of the model (weekly).

Untangle the effects of seasonal environmental conditions from

the effects of farming practices. SST varied throughout the year, but
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the number of active farms (which impacts the external infestation

pressure) also varied seasonally, with most farms choosing to stock

in spring, but harvesting more evenly across the year. In addition,

environmental conditions and farming practices are not

independent from each other, as certain environmental

conditions can be an impediment (or an incentive) to certain

practices or interventions, including sea lice surveys, treatment

decisions, and stocking or harvesting (e.g., weather preventing sea

lice counts and treatments during winter). Future work could try to

ascertain if, for example, refining stocking schedules to promote

staggered stocking dates of farms could help decrease external

infestation pressure and support better fish health.
4.3 Implications for salmon farming in
Eastern Canada

The sea lice model presented in this study has implications for the

salmon farming industry in Eastern Canada. By offering a framework

that integrates ecological insights and data-driven dynamics, the model

may contribute to informed decision-making and the advancement of

sustainable practices. Numerical models and applications, such as the

one presented here, encapsulate institutional knowledge and experience

accumulated over time. They offer advantages not just in aiding

informed decision-making but also as a training tool for new

employees or stakeholders within the aquaculture industry and

regulatory agencies.

The model presented in this study, with further development,

has the potential to support at least two types of farm decision-

making in the future. The first are tactical decisions through short-

term predictions of sea lice abundance and risk (days to weeks in

advance) to support preventive measures, e.g., to protect the more

vulnerable juvenile stages of salmon. To facilitate immediate

decision-making, the model would require data transmission in

real time, along with the processing (quality control) of captured

data as it is acquired. The second benefit involves strategic decision-

making pertaining to the stocking and harvesting of upcoming

farming cycles and coordination beyond the farm’s limits, across

BMAs or other management units. These decisions include

anticipating the optimal stocking time, determining whether

synchronized stocking impacts the overall performance of farms

within the same management area or other spatial management

units (e.g., a bay), assessing the significance of fallowing periods,

and evaluating the effectiveness of treatments under varying

environmental conditions and farming practices.
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