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Introduction: Sea lice are parasitic copepods that harm salmon health, reduce
farm productivity, and create ecological and economic challenges
for aquaculture.

Methods: A stochastic, state-based, time-dependent epidemiological model was
developed to characterize the dynamics of adult female sea lice (Lepeophtheirus
salmonis) infestation in Atlantic salmon farms in New Brunswick, Canada. The
model integrated covariates associated with farming practices and
environmental conditions (stocking week, farming cycle week as proxy of fish
age, sea lice treatments, seaway distance to neighboring farms as a proxy for
waterborne transmission, and sea surface temperature). Data from 57 farming
sites were used for model training and validation. An initial exploratory analysis
assessed the relationship between treatment timing and recovery from
infestation. Treatment effects were incorporated into weekly transitions
between infestation states, accounting for severity and time-varying
environmental factors.

Results: Results suggest that spring and summer stocking increases exposure to
external infestation pressure and raises the probability of high lice
concentrations. Further, reduced winter treatments are associated with
elevated infestation levels. Treatment effectiveness appeared to be
compromised by continued waterborne transmission from nearby farms.
Discussion: The model achieved an overall likelihood of 59%, reaching up to 74%
during the first 10 weeks following stocking. Limitations included the use of proxy
connectivity measures, i.e. seaway distance, rather than hydrodynamic
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connectivity, and the absence of data on fish size, salinity, and other farming
practices such as fish density. Additionally, we were unable to include information
from all farms in the study area, potentially underestimating transmission risk.
Addressing these gaps and integrating hydrodynamic connectivity and fish
growth models could improve predictive performance.

KEYWORDS

Lepeophtheirus salmonis, stochastic modeling, infestation dynamics, treatment
effectiveness, Eastern Canada, salmon aquaculture

1 Introduction

Sea lice (Lepeophtheirus salmonis and Caligus sp.) are
ectoparasitic copepods that negatively impact the welfare and
health of salmon and may lead to reduced productivity and
economic losses in farms (Costello, 2009; Abolofia et al., 2017).
Lepeophtheirus salmonis is present in areas such as the southeastern
coast of New Brunswick, Canada, where Atlantic salmon farming
contributes to the regional economy with an estimated production
of 9,593 tons of salmon and 73.7 CAD million dollars in 2022
(Government of Canada, 2023).

Managing L. salmonis can be challenging due to its complex life
cycle, which involves 10 life stages, including two nauplii and eight
copepodid stages: the infective copepodid, four chalimus stages, two
pre-adults, and the adult stage (Hamre et al., 2013; Stien et al., 2005;
Brooker et al., 2018). Each stage has different characteristics and
environmental requirements, making it necessary to understand the
various life stages to effectively control and manage the population.
The growth of L. salmonis and its developmental stages rely heavily
on environmental conditions, where water temperature and salinity
are particularly important (reviewed by Fast and Dalvin, 2020).
Stien et al. (2005) demonstrated a positive relationship between
water temperature and growth rate of each life stage, while specific
optimal temperatures vary across stages (Brooker et al., 2018).
According to Brooker et al. (2018) and citations therein, a 100%
hatching and development success has been observed at 20°C and
15°C, decreasing to 28% = 4% success at 3°C. Outside the
temperature range of 6°C to 21°C, development, egg production,
and host infestation capability are reduced.

Given their central role in parasite reproduction and
transmission dynamics, adult female (AF) lice are widely used as
a proxy for infestation pressure in farm-level monitoring programs
and serve as the primary target of regulatory limits and operational
decision-making in many jurisdictions (Ministry of Fisheries and
Coastal Affairs (Norway); Fisheries and Oceans Canada, 2023a;
Mowi ASA, 2025; SERNAPESCA, 2014, 2022).

In Chile, a new strategy was introduced in 2014 to control sea
lice (Caligus rogercresseyi) infestation in salmon farms, using the
concentration of ovigerous females (OF) as the primary indicator
for classifying high dissemination farms (SERNAPESCA, 2014,
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2022). Previously, farms with an average weekly load of at least
nine total adult Caligus were classified as high dissemination, which
favored individual rather than coordinated control. To address this,
the National Fisheries Service recommended redefining high-
dissemination farms based on post-treatment monitoring of OF
loads. OF were chosen because they are easier to identify due to
their larger size and represent the parasite’s main reproductive
stage. A farm is classified as high dissemination if it presents at least
three OF during this monitoring. This threshold, part of the
national health program, complements the broader treatment
trigger of six total adult lice per fish. The revised definition
encourages coordinated treatments and accounts for efficacy, as
treatments with less than 80% effectiveness can leave significant OF
reservoirs. Importantly, the 3-OF threshold does not necessarily
indicate biological stress, which depends on the total lice load.

In Norway, L. salmonis is widely recognized as the primary
parasitic threat to both farmed and wild salmonids, with Caligus
elongatus being more prevalent in the northern region (Guttu et al.,
2024). Lice counts are conducted every 7 days when seawater
temperature is 4°C or higher or every 14 days when the
temperature is below 4°C. Action is triggered by counts exceeding
an average of 0.2 AF lice per fish between weeks 16 and 21 of the
year in southern Norway or between weeks 21 and 26 in the
northern parts of the country, and above 0.5 AF lice per fish for
the rest of the year (Jevne, 2020).

In Eastern Canada, the decision-making process regarding the
treatment of lice infestations on farms lacks a singular trigger point or
strict protocol. Rather, it is determined by farm managers and
veterinarians, both company and government, who assess factors
such as actual lice numbers and trends, seasonal variations, weather
conditions, neighboring farm lice activity, proximity to treatment
resources, and the anticipated harvest timeline. Historical data on
infestation patterns also inform their decisions, as some sites exhibit
consistent trends over time. Treatment options are costly, prompting a
cautious approach, wherein veterinarians and operators closely
monitor lice numbers and may conduct additional surveys to
validate observed increases before administering treatment (A.
Swanson, personal communication, 28 March 2024).

The West Coast of Canada has regulations set by the
Department of Fisheries and Oceans (DFO) regarding sea lice
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thresholds. From March to June, when juvenile wild salmon migrate
from their native lakes and streams, if the average sea lice count on
farmed fish exceeds 3 motile L. salmonis (including pre-adult to
adult free-living copepodid stage) per fish, farm operators must
promptly report to the authority and take measures to decrease lice
levels (Fisheries and Oceans Canada, 2023b). Measures include
intensification of monitoring and establishment of a sea lice
management plan, although treatment is not compulsory to
minimize fish stress (Fisheries and Oceans Canada, 2020).

Several modeling approaches have been developed to
characterize sea lice dynamics at farm and regional scales. In
Eastern Canada, Rittenhouse et al. (2016) developed a
deterministic model of the sea lice life cycle, showcasing
differences in reproduction timing and abundance between British
Columbia and southern Newfoundland, primarily driven by
variations in water temperature and salinity, and secondarily by
life history parameters. Parent et al. (2021) implemented a
multilevel mixed-effects linear regression model to estimate the
impact of the internal (within sites) and external (among sites)
infestation pressures of sea lice, among other factors, on the
abundance of L. salmonis in New Brunswick. Parent et al. (2024a)
developed a multivariable autoregressive linear mixed-effects model
to predict the abundance of adult female Lepeophtheirus salmonis
(sea lice) in the Bay of Fundy, New Brunswick. They found that
external infestation pressure significantly influenced sea lice
abundance and highlighted the need for coordinated mitigation
strategies across aquaculture sites. Finally, Elghafghuf et al. (2020,
2021) evaluated sea lice abundance and infestation pressure on
salmon farms using multivariate state-space modeling, emphasizing
the need to integrate data at relevant spatial scales to generate a
more comprehensive assessment of sea lice abundance and
transmission dynamics among and beyond single farms.

Recent global gap analyses have systematically highlighted
major limitations in modeling sea lice infection pressure,
including uncertainties in transmission pathways, treatment
effectiveness, and environmental conditions (Murphy et al., 2024;
Moriarty et al., 2024). Additionally, Murray et al. (2025) have
introduced the concept of “knowledge strength” to assess the
reliability of environmental model outputs in the face of
uncertainty. These studies underscore the importance of
transparently identifying model limitations to strengthen
predictive capabilities in sea lice management.

In this study, we develop a stochastic, state-based, time-dependent
epidemiological model to characterize adult female sea lice infestation
dynamics in Atlantic salmon farms in New Brunswick, Canada. The
model integrates farming practices (stocking week and treatment
application), environmental covariates (sea surface temperature,
seasonality, and seaway distances among farms), to predict weekly
transitions among infestation states. By explicitly modeling treatment
effects, incorporating environmental drivers, and addressing model
uncertainty, the present study contributes to a more realistic and
actionable understanding of sea lice dynamics in aquaculture systems.
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2 Materials and methods

2.1 Study area

In this study, we analyzed a subset of the Fish-iTrends database,
focusing on farming sites located in Passamaquoddy Bay (New
Brunswick, Canada) and adjacent Canadian waters from 2010 to
December 2023 (see study area in Figure 1). This subset comprises
57 of the 140 farms registered in the system, which covers all
Maritime provinces of Eastern Canada. The dataset does not
include farms located in the U.S. portion of Passamaquoddy Bay,
whose exact number is unknown but is estimated to include about
12 active sites according to the Maine Department of Marine
Resources (DMR, 2025).

2.2 Data and exploratory analysis

2.2.1 The Fish-iTrends database

The Fish-iTrends system, developed by the Atlantic Veterinary
College-Centre for Aquatic Health Sciences (AVC-CAHS) at the
University of Prince Edward Island in collaboration with the
Atlantic Canada Fish Farmers Association (ACFFA), underpins
the epidemiological model of sea lice dynamics in this study. The
database contains abundance records of the parasitic sea lice, L.
salmonis, including the life stages: chalimus (CHAL), adult female
(AF), and pre-adult/adult male (PAAM). Although the system relies
on submissions using multiple counters, which can contribute to
counting and misclassification errors, the New Brunswick
provincial government performs audits to compare site counters
to independent official counters, and previous comparisons showed
a general agreement with experienced counters, particularly for the
adult female stages (Elmoslemany et al., 2013). It also includes
geographic coordinates of the sampled farming sites, stocking and
harvesting dates of farms, and sea lice treatment records. The
treatment data include treatment start and end dates and
treatment type (chemical, thermal, or mechanical delousing).
Prior published research that used this database includes Parent
et al. (2024b); Parent et al. (2021); Parent et al. (2024a); Elghafghuf
et al. (2020), and Elghafghuf et al. (2021).

2.2.2 Data preparation and cleaning

The raw data obtained from the sea lice monitoring database
underwent cleaning procedures to ensure accuracy and consistency.
The main procedures, applied in the following order, included:

1. Outlier filtering: Obvious errors and extreme values in sea
lice concentration were removed based on the 99.9th
percentile thresholds.

. Reconciliation of multiple weekly surveys: While weekly
sampling was the norm (99.6% of 70,320 original
records), some farming cycles had two surveys in the
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FIGURE 1

Leaflet | Tiles © Esri — National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, iPC

Area where salmon farms are located in New Brunswick (NB), Canada (57 farms). For detailed site locations, readers may consult the public Map
Viewer of the Department of Aquaculture of the Government of New Brunswick (Marine Aquaculture Site Mapping Program, MASMP): https://
wwwz2.gnb.ca/content/gnb/en/departments/10/aquaculture/content/masmp.html.

same week, often related to treatment events. To retain one
record per week and farming cycle, a prioritization scheme was
applied: post-treatment surveys were preferred, followed by
regular weekly surveys, and then pretreatment surveys.

3. Imputation of missing observations: Missing weeks within a
farming cycle were imputed using the most recent preceding
observation (classified as free [F], low [L], high [H], or recovered
[U]). For weeks immediately after stocking, infestation-free
values and zero lice counts were assigned. The model was
trained both with observed data only and with the inclusion
of imputed values, and performance was evaluated under
both scenarios.

4. Treatment data aggregation: Treatment information was
aggregated from batch level (groups of fish treated
simultaneously) to cage level to enable integration with sea
lice monitoring data and facilitate analysis by farming cycle.

5. Outbreak identification: Sea lice outbreaks were defined as
transitions to a high concentration of adult females (H)
following a previous state of free (F), low (L), or recovered (U)
within individual farming cycles. Consequently, for the purpose
of analysis, if a widespread outbreak affects, for example, 20
neighboring farms, it is recorded as 20 distinct outbreak events,
one per farm.

Frontiers in Aquaculture

6. Exclusion of incomplete farming cycles: Farming cycles that
lacked initial data, i.e., those that began before the first
available observations, were excluded from further analysis.

2.2.3 Additional independent and derived
variables

In addition to the variables reported within the Fish-iTrends
database, a series of supplementary derived variables were
calculated to ensure that the model considered as many possible
pertinent factors to maximize applicability across diverse farming
conditions. These derived variables include:

Average parasite load or concentration per fish: Computed by
dividing the abundance of the different parasite life stages by the
number of sampled fish, this variable indicates the average parasite
load or concentration per individual fish by life stage of sea lice.

Farming cycle length: Farming cycles were identified using farm
and cage identifiers, along with associated stocking and harvesting
dates. To ensure temporal consistency, these dates were
systematically reviewed. Among the 87,620 records in the original
dataset, 17.7% contained stocking dates recorded as January Ist,
and 5.4% had harvest dates as December 31st—likely reflecting
default system values or placeholder entries in the absence of
specific dates. These were changed to missing values for analysis.
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Chronological inconsistencies were also addressed: 0.4% of records
listed stocking dates after the corresponding survey, and 2.9% listed
harvest dates before it; in both cases, the date was adjusted to match
the survey date to maintain internal coherence. The cleaned and
corrected dates were then used to define farming cycles by site
and cage.

Temporal information: The season, week of the year, and
corresponding week of the initiation of the farming cycle were
calculated for each sea lice survey record (after imputing missing
values as explained later).

Distinct farm states: We classified the infestation status of fish
into four categories based on the number of adult female (AF) sea
lice per fish: free-of-adult-females (F), low concentration (L), high
concentration (H), and fully recovered (U). The F state denotes the
absence of AF since stocking, while U signifies that although no AF
has been reported in the current week, infestation had taken place
earlier in the production cycle. A threshold (above or equal) of 3 AF
per fish was selected to differentiate low and high concentration
levels. Adult females were selected as the focal life stage for
modeling due to their relatively easier identification during
monitoring (Gautam et al., 2016), which improves data reliability,
and the key role of ovigerous females in parasite transmission. The
chosen threshold is consistent with regulatory practices in regions
such as Norway, Canada, and Chile (see review in the
Introduction section).

Exposure to waterborne transmission of sea lice among farms:
The cumulative exposure to waterborne transmission of AF (C,.,
ar) from surrounding (source) farms j (Equation 1) was calculated
following Equations 1 and 2 by summing up the Gaussian kernel
weights (G;;) computed from the seaway distances (Dj) to each
active farm (AF;) within a kernel’s bandwidth (o) of 100 km to each
(sink) farm i.

Coxpar = 2,GyAF; 1)
j
0 non — active farm
AF; = (2)
1 active farm
The Gaussian kernel function, Gj;, is given by Equation 3:
1
Gj=—r—=e™ (3)

ij o \/2_77:

The kernel incorporates a distance decay function (w,), which
allocates more weight to farms located closer than farms further
away and was the distribution of choice for the transformation of
seaway distance in multiple studies (e.g., Kristoffersen et al., 2013).
The Gaussian weight (w;) is given by Equation 4:

D2
Ul

wy =e 207 (4)

According to Brewer-Dalton et al. (2014) and Wu et al. (2014),
current speed in the Bay of Fundy varied from almost zero to over
100 cm s~ ', driven mainly by tidal forces. Brewer-Dalton et al.
(2014) stated that sea lice dispersal stages last 1 to 10 days, with pre-
infective stages traveling 10-100 km. Concordantly, a 100-km
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dispersal distance of sea lice was chosen, which coincides with the
maximum observed seaway distances among farms in the study
area. As a result, only farms within a seaway distance of 100 km
were considered in the kernel density estimation. This distance
allows the recognition of the potential influence of the more distant
farms given the considerable water exchange in the study area, as
well as the higher probability of significant influence from closer
farms as evaluated in the study area by Parent et al. (2021) and
Parent et al. (2024a).

Sea surface temperature (SST): SST was retrieved from the
NOAA Multi-scale Ultra-high Resolution (MUR)-SST Analysis
from 2009 to 2023. MUR-SST was preferred over in situ
measurements from farm sites to avoid issues related to missing
data and inconsistencies in measurement techniques. The MUR-
SST is created using a combination of level-2 satellite observations
and numerical models and provides daily global coverage with a
spatial resolution of 1/25th of a degree (approximately 4 km).
MUR-SST time series were used to train the model with realistic
weekly variability. No comparison with other remote products was
performed in this study.

Once the model was trained with MUR-SST data, a sinusoidal
function was used to represent SST inputs in model simulations.
This simplification replaced the full weekly time series with just two
parameters: the mean SST and the annual amplitude, capturing
seasonal variation while reducing input complexity in model
simulations. This mathematical model is described by the equation:

SST(t) = A-sin (2zft + ¢) + C + noise (5)

where SST(t) represents the seawater temperature at time ; A is
the amplitude of the sinusoidal wave, governing the magnitude of
the seasonal oscillations; f denotes the frequency of the sinusoidal
wave, dictating the number of oscillations within a specified time
period; ¢ signifies the phase shift of the sinusoidal wave,
determining the horizontal displacement along the time axis; and
C s the offset or mean value, indicating the annual mean sea surface
temperature. Noise was added to the sinusoidal functions to
simulate natural variation in SST(t), with the values drawn from a
normal distribution centered at zero and having a standard
deviation equal to the mean standard deviation of MUR-SST
values averaged spatially for every week from 2009 to 2023.

For the initial fitting of the model to the observed data, the
following initial parameter values were chosen: A = 1, f = 1/52
(assuming one cycle per year), phi = pi/4, and C was set to the mean
temperature reported in the dataset. The optimization process
utilized the Levenberg-Marquardt algorithm implemented
through the nIsLM function in R (Elzhov et al., 2023). This
algorithm aimed to minimize the difference between the modeled
and observed temperatures, ensuring convergence for the non-
linear least squares regression.

2.2.4 Odds ratio of sea lice prevalence

As part of the exploratory analysis, odds ratios were computed
to assess the effectiveness of treatment in response to sea lice
outbreaks. The odds ratio estimates the likelihood of recovery
(either partial recovery from H to L or full recovery from H to U)
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in relation to a particular exposure (in this case, to sea lice
treatment) relative to the likelihood of the outcome happening
when that exposure is not present (no sea lice treatment). The
statistical significance of observed variations in odds ratios was
assessed using a chi-squared test that compares observed and
expected values under the assumption of no link between
exposure to treatments and infestation outcomes. The outcome
prevalence, which refers to the proportion of the population that
has the outcome of interest, i.e., recovery from H to L or H to U
state, was also calculated from the 2 x 2 contingency table.
Outcomes were observed up to 8 weeks after the outbreak was
detected, as this was considered a reasonable timeframe to detect
treatment responses to lice outbreaks. All calculations were derived
using the “epi.2by2” function from the “epiR” package (Stevenson
et al,, 2013) within R (version 4.2.1). No distinction was made
among treatment types (chemical, thermal, and mechanical
delousing), and all were considered equally effective in the model.

2.3 Numerical model

2.3.1 Model development process

A discrete-time (week), first-order (it only depends on the state at
the previous time t-1, not beyond that), multivariate Markov chain
model was used to model categorical time series of AF sea lice
infestation states at the scale of farming cycles based on Fish-iTrends
data for New Brunswick farm sites. Model parameters were estimated
using the Markov chain Monte Carlo (MCMC) methods to fit the
model to data and obtain posterior distributions of parameters. The
model includes four AF infestation states (boxes in Figure 2) and 12
possible weekly state transitions (arrows in Figure 2). Farms start in F
(free of sea lice), may move to L (low infestation) or H (high

10.3389/faquc.2025.1647026

infestation). From L or H, they can recover to U (full recovery),
and from U, they can be reinfected (to L or H). L, H, and U represent
the recurring states, as a return to the F state is not feasible. The
probability equations governing state transitions are shown in section
4.4.1 and Supplementary Table S1 of the Supplementary Section.

Transition probabilities were modeled as a function of the current
infestation state and six time-dependent covariates: production cycle
week, seaway distance-based exposure to neighboring farms, sea
surface temperature, stocking week of the year, seasonal variation
(modeled as a cosine function of week of the year), and treatment
application (lagged by 1 week). Treatment effects, and related model
parameters (aXv and bXv), were estimated conditional on infestation
state (F, L, H, or U). This was required to account for potential
confounding from infestation severity and was modeled as state-
specific modifiers of infection probability (p) and severity (q), with
aXv and bXv estimating the impact of treatment presence (see
parameter definitions in the Supplementary Section). A penalization
term was incorporated into the likelihood function to enforce
biologically plausible constraints on treatment-related coefficients.
Parameters controlling the effect of treatment on the infestation
severity (bXv), specifically the transition to high infestation (H), were
constrained to be negative (ensuring that treatment consistently
reduces the probability of the H state).

Treatment effects and their corresponding model parameters
(aXv and bXv, see Supplementary Tables SI to 2 of the
Supplementary Section) were estimated conditional on the
infestation state (F, L, H, or U) to account for potential
confounding by infestation probability and severity. A
penalization term was added to the likelihood function to enforce
biologically plausible constraints on treatment-related coefficients.
In particular, parameters governing the effect of treatment on
infestation severity (bXv), especially transitions to high infestation

pL(1—qy)

Low
concentration
of AF (L)

pr(1—qr

Initial free of
AF (F)

pu(1—4qn)

|

pu(1—qy)

Recovered

1 —_
from AF (U) bu

High

concentration
of AF (H)

PuYH

FIGURE 2

Markov chain model of infestation states. The model includes four infestation states (boxes) and 12 possible weekly state transitions (arrows). py =
probability to move to an infestation state (L or H) given it is in the X state, and gx = probability to move to the high infestation state given it is in the

X state.
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(H), were constrained to be negative, ensuring that treatment
consistently reduces the likelihood of reaching the H state.

Effects were assumed to manifest 1 week after application,
consistent with the model’s weekly temporal resolution. Model
parameters were estimated by maximizing the likelihood of
reproducing observed data, using a Markov chain approach to
explore plausible stochastic transitions between observation times.
Other potentially important covariates, such as fallow period,
stocking density, stocking weight, and salmonid species, were not
included due to a lack of available data during model development.

2.3.2 Assessment of model performance

The predictive performance of the stochastic, state-based model
was evaluated by calculating the average probability of correctly
predicting observed weekly transitions. The model was trained
using the full dataset, and its predictive skill was assessed based
on the total log-likelihood (LL) associated with the observed
transitions. The average predictive probability was computed
according to the following expression:

LL
exp ( F)

where N denotes the total number of weekly transitions, with
values closer to 1 corresponding to better performance.

To examine variation in model skill over time, the dataset was
stratified into eight-time windows based on the number of weeks since
stocking (i.e., 0-10, 10-20,..., 70-104 weeks). For each time window,
the total log-likelihood and the number of transitions were computed,
and the corresponding average predictive probability was estimated.

10.3389/faquc.2025.1647026

3 Results
3.1 Exploratory data analysis

3.1.1 Summary statistics

After data cleaning and preprocessing, the original dataset with
more than 80k observations was reduced to 52,354 records, while
the sea lice treatment dataset contained 25,868 observations (after
aggregation from batch to cage level). Out of 57 farm sites (578 farm
cages) in the sea lice monitoring database, 56 had treatment data
(98.2%). A total of 1,365 fish farm cycles were recorded. By the end
of the available survey records in December 2023, there were several
farming cycles that were still ongoing. Ignoring these cases, the
average length of the farming cycles was 99 weeks (1st quartile: 89
weeks; 3rd quartile: 109 weeks, max. 130 weeks). After imputation
of missing values, the number of records doubled to 111,844.

Of the 111,844 records retained after data cleaning,
preprocessing, and imputation, 59,490 (53.2%) were imputed—
primarily as a low infestation (L, 25,401), followed by high
infestation (H, 21,624). A smaller portion was imputed as free of
adult females (F, 10,256), mostly at the beginning of the farming
cycles (Figures 4A, B), and 2,209 as recovered (U). The remaining
52,354 records (46.8%) were original observations.

Stocking of cages was concentrated in spring and summer, while
harvesting was distributed homogeneously throughout the year
(Figures 3A, B, respectively). Sea lice treatments were concentrated in
summer and fall, with few records during winter (Figure 3C). Sea lice
treatments notably increased the weeks immediately after stocking,
with a peak around week 10 of the farming cycle (Figure 3D).
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A high variability in the sea lice sampling efforts was evident in
relation to both time of the year and week of the farming cycle. Sea
lice surveys decayed both at the beginning and end of the farming
cycles (Figure 4A), as well as in the wintertime (Figure 4B).

3.1.2 Transition between the lice infestation
states

The observed probabilities derived from empirical (frequency)
data analysis are shown in Figures 4C, D. The observed probability of
the initial free-of-adult-female (F) state, mostly observed in late
spring and summer, remained above 75% until week ~10 of the
farming cycles. Nonetheless, after week ~10, L became dominant in
most of the fish farm cycles analyzed (Figure 4C). After week ~60 of
the farming cycle, the observed probability of H increased to over
50%, reaching values above 80% after week ~75. Observed recovery
(U) remained consistently low across all farming cycles and was
nearly absent beyond week ~75 of the farming cycle (Figure 4B).
Some recovery was observed in summer and early fall (weeks ~20
to ~40 of the year), which coincided with the increased frequency of
treatments in these seasons (Figure 3C). Equally noteworthy was the
peak in the observed probability of high infestation (H) at week ~45
of the farming cycle (red line, Figure 4C), which coincided with a
decrease in treatments (Figure 3D). Treatments decrease especially in
winter, as observed in Figure 3C.

As depicted in Figure S1 of the Supplementary Section, the
probability of extremely high infestation events is much smaller
compared to that of low concentration events, which are
consistently observed within the dataset. That said, the objective
of this modeling effort is not to predict extremely high infestation
events but to focus on infestation levels that are known to endanger

10.3389/faquc.2025.1647026

farmed fish, identified earlier as greater than or equal to 3 AF
per fish.

3.1.3 Sea surface temperature

The mean sea surface temperature (MUR-SST) observed in the
study area fluctuated annually between the coldest year in 2019
(7.90°C + 4.03°C, observed range: 13.5°C, between 0.9°C and
14.4°C) and the warmest year in 2012 (9.61°C + 3.89°C, observed
range: 13.7°C, between 3.1°C and 16.8°C). The overall average
temperature during this period was 8.60°C + 3.89°C. Additionally,
the range in year-round SST varied from 12.21°C in 2013 to 15.42°C
in 2017 (Figure 5).

3.1.4 Exposure to waterborne transmission of sea
lice from surrounding farms

Exposure to waterborne transmission of sea lice from
surrounding farms was estimated as a function of both the
number of neighboring farms and their distance from each site.
Farms with the highest potential exposure were primarily located in
Passamaquoddy Bay, which showed elevated potential connectivity
throughout the study area and time frame. On average, in NB, there
were 41.2 fish farms within a 100-km radius, ranging from 11 to
56 farms.

3.1.5 Observed frequency of sea lice outbreaks
and treatments

Between 2012 and 2023, a total of 8,596 sea lice outbreaks were
recorded, defined as transitions to the high infestation state (H)
from a preceding free (F), low (L), or recovered (U) state within
individual farming cycles (see upper plot of Figure 6). Table 1 shows
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the differences in the proportions of sea lice outbreaks according to
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treatment during this period (but maybe after). Similarly, out of
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TABLE 1 Contingency table and summary measures of risk and a chi-squared test for differences in the observed proportions from count sea lice

outbreaks by exposure to treatment and outcome (positive or negative).

Outcome+ (to L or U
state)

Exposed to sea lice

treatment

Outcome™ (remain in
the H state)

Prev risk*

Exposed+ 5,491 (88.2%)
Exposed— ‘ 1,040 (43.9%)
Total 6,531 (76.0%)

Percentages are calculated row-wise except for the column of total counts.
* = Outcomes per 100 population units.

the total outbreaks, 76.0% (1 = 6,531) transitioned from a high (H)
state to either a low (L) or full recovery (U) within the same 8-week
time frame, whereas 24.0% (n = 2,065) stayed in the high state
throughout the entire 8-week observation period.

Focusing on the 6,228 outbreaks that did receive treatment,
88.2% (n = 5,491) transitioned to either L or U states, while the
remaining 11.8% (737 outbreaks) showed no change (Figure 6A).
For the 2,368 untreated outbreaks, 43.9% (n = 1,040) transitioned to
the L or U state within 8 weeks after the outbreak was detected,
which is 44.3 percentage points lower than the treated group. The
remaining 55.7% (1,328 outbreaks) did not recover within the 8-
week observation period. Moreover, 75.2% (n = 4,683) of the
outbreaks that were treated (n = 6,228) received a sea lice
treatment within 2 weeks after recording an event of high
concentration of AF.

The likelihood of recovery (from H to L or H to U) is 2.01 (with
a confidence interval of 95% between 1.91 and 2.10) times higher in
the outbreaks that received treatment (exposed group) compared to
the outbreaks that did not receive treatment (unexposed group). A
total of 89.5% of outcomes (either recovery or not) in the treated

Free of sealice (F) Low infestation (L)

737 (11.8%)
‘ 1,328 (56.1%)

‘ 2,065 (24.0%)

High infestation (H)

6,228 (72.5%) 88.17 (87.34, 88.96)

2,368 (27.5%) 43.92 (4191, 45.95)

8,596 (100%) 75.98 (75.06, 76.88)

outbreaks were effectively attributed to sea lice treatments with a
confidence interval of 95% between 88.9% to 90.2%), and the rest,
10.5%, were associated with other non-reported causes of recovery.

The database contains 6,677 records of sea lice concentrations
measured the week before treatment. In 23.5% of the cases (1,567
records), the sea lice concentration was below the threshold of three
lice per fish established in this study. In 73.4% (4,903 cases), the
concentration was above that threshold before the treatment
application. In only 3.1% of the cases, a sea lice concentration of
zero was reported before sea lice treatment application.

The heat maps in Figure 6 display the number of detected
outbreaks classified according to 1) the recovery time in the
independent axis, which specifies the number of weeks elapsed
from the outbreak (high infestation record) to the subsequent
observation of either low (left panel) or complete recovery (right
panel) independent of treatment administration, and 2) the
outbreak-to-treatment time in the dependent axis, which specify
the time elapsed since the outbreak detection to the administration
of a sea lice treatment. The red and blue coloring of cells
differentiates outbreaks where recovery was observed after
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Simulated time series of multiple infestation states of AF subject to different combinations of covariates (stocking season, exposure to waterborne
transmission of sea lice from surrounding farms and annual temperature regime.
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(upper-left block of cells, red area) or before treatments (lower-right
block of cells, blue area), respectively. Accordingly, the red-colored
area represents recovery cases attributable to treatments or other
causes, while the blue area indicates recovery not associated with the
treatment. The diagonal cells, colored in yellow to orange, display
the outbreaks in which treatment and recovery were reported the
same week.

Transitions from high infestation to low infestation (Figure 6B)
were notably more frequent than the transition from high infestation to
full recovery (Figure 6C). In 54.4% (n = 4,762) of the outbreaks, the
recovery to low or no infestation occurred within 2 weeks after
detection of the outbreak, either due to treatment administration or
other non-reported causes. In approximately 44% (n = 3,928) of the
outbreak events, sea lice treatment was applied the same week of the
outbreak, with a steady decline in the number of treatments applied in
the weeks after, reaching a very small fraction by the eighth week.

When treatment was applied, the highest recovery was observed
during the same week of application (as indicated by the diagonal
cells in both panels of Figure 6). This immediate response is
consistent with the rapid effect of mechanical or thermal
delousing methods. In contrast, in-feed chemical treatments
typically exhibit a delayed response, which may result in a more
gradual decline in infestation levels over the weeks following
treatment (Elghafghuf et al., 2020, 2018). However, this
exploratory analysis and the model did not differentiate among
treatment types, a limitation noted for future research.

The recovery rate seems to decrease as well when farms delay
treatment in response to high infestations. For example, among the
3,928 outbreaks treated during the same week when a high
concentration of AF lice was detected, 76% (n = 2,933) showed
recovery from high (H) to low (L) or full recovery (U) within the
same week, with an additional 12% (n = 502) recovering in the
following week. In contrast, of the 755 outbreaks treated 1 week after
detection, only 47% (n = 355) recovered during the week of treatment,
and an additional 18% (n = 139) recovered the following week.

3.2 Model performance

As represented in Figure S3 in the Supplementary Section, the
highest predictive accuracy was observed during the first 10 weeks
post-stocking (74%), followed by a decrease and slight rebound later
in the cycle. The overall average predictive accuracy across all
transitions was 58.6% when considering only observed data and
57.5% when imputed data were included. Since data imputation did
not improve model performance, only observed (non-imputed)

records were used for model training and simulations.

3.3 Model simulations

3.3.1 Simulated time series

Figure 7 displays the simulated time series of multiple
infestation states subject to different combinations of covariates
and assuming treatment application the same week of detection of
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high infestation. Specifically, the simulation incorporates the
exposure to waterborne transmission of sea lice among farms and
the timing of fish farm stocking. Exposure to waterborne
transmission of sea lice among farms was classified into four
levels: low, medium-low, medium-high, and high, based on
weekly quantiles (20th, 40th, 60th, and 80th percentiles) of the
index of cumulative exposure to waterborne transmission of AF
(Cexp,ar) calculated using Equation 1. This index was computed for
each farm, year, and week of the year by summing the pairwise
Gaussian distance weights between the focal farm and all
neighboring farms classified as active (with fish on site) based on
preidentified farming cycles. Weekly exposure values were then
aggregated and averaged by farm site and week of the year to reflect
temporal variability in infestation pressure. This method aims to
capture both the spatial connectivity among farms and the
variations of infestation risk due to fluctuating farm activity
across time. Timing of fish farm stocking was input as week of
the year, namely, mid-spring (week 15 of the year), mid-summer
(week 28 of the year), and mid-fall (week 41 of the year). Stocking in
mid-winter (approximately week 2 of the year) was not considered
because they rarely happen based on the data available in this study.
The simulation incorporated year-long time series of sea surface
temperatures fitted to MUR-SST data (according to Equation 5) for
a relatively cold (mean: 7.1°C, amplitude: 9.2°C), a warm (mean:
9.0°C, amplitude: 9.2°C), and an average condition (mean: 8.0°C,
amplitude: 8.9°C).

Across all stocking seasons, farms initially remain in the F state
only briefly, with rapid transitions to L or H occurring within the
first 20 weeks. The timing and magnitude of these transitions vary
with both stocking season and exposure level to sea lice
transmission. For spring stocking, L states dominate much of the
cycle, with H peaking between weeks 40 and 60, followed by a
gradual rise in U, mediated by sea lice treatment. In summer
stocking scenarios, H states rise earlier and more sharply, leading
to earlier and more pronounced recovery (U). Autumn stocking
delays the onset of infestation, but still results in a strong rise in H
and U states around week 60. In all scenarios, higher exposure to sea
lice from nearby farms consistently leads to elevated probabilities of
H and U, underscoring the role of spatial transmission dynamics in
infestation risk.

Exposure to waterborne transmission of sea lice influences both
the speed and intensity of infestation buildup, although differences
across scenarios are relatively modest. This may be due to the
overall homogeneity in exposure levels across farms in the study
area, with no cases of significantly isolated farms in the dataset.
Under low or medium-low exposure, farms tend to remain in the F
and L states for longer, with delayed or infrequent transitions to H
and U. In contrast, under medium-high and high exposure,
infestations escalate more rapidly, leading to earlier and more
sustained occurrences of H and U states across all stocking seasons.

3.3.2 Integrated infestation probabilities across
covariate scenarios

Figure 8 displays the integrated probabilities of the four
infestation states, free (F), low (L), high (H), and fully recovered
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(U), over a 104-week salmon production cycle. These are not
instantaneous or weekly probabilities of transitions or recovery
but reflect the cumulative likelihood of each state across the entire
farming cycle.

Simulations were conducted under varying conditions of
treatment status (no treatment vs. treatment applied in the same
week, high infestation was reported), mean sea surface temperature
(7.1°C, 8.0°C, and 9.0°C), exposure to waterborne transmission
(low, medium-low, medium-high, high), and stocking season
(spring, summer, fall) as explained in the previous section.

The integrated probability of remaining free of adult female sea
lice (F) was consistently low (<2%) across all scenarios. This
indicates that even under favorable conditions, complete
avoidance of infestation is unlikely in this study area, and this
pattern showed minimal sensitivity to treatment, temperature,
exposure level, or stocking season.

The probability of experiencing low infestation (L) over the full
farming cycle varied across scenarios from ~57% to ~75%. In
untreated cases, it ranged from approximately 61% (fall stocking,
high exposure, 9.0°C) to 75% (spring stocking, low exposure, 7.1°C-
9.0°C). With treatment, L increased modestly in most conditions,
ranging from ~57% to ~73%. This suggests that timely treatment
tends to reduce the likelihood of high infestation, while slightly
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increasing the probability of maintaining low infestation,
particularly under warmer temperatures and higher exposure levels.

The probability of high infestation (H) was typically lower in
treated scenarios. For instance, at 9.0°C and high exposure, fall
stocking showed a decrease in H from 33% (untreated) to 28%
(treated). The highest H probabilities were consistently associated
with fall stocking and medium-high to high exposure levels, often
exceeding 30% in untreated cases.

The combined probability of being in any infested state (L + H)
surpassed 80% in nearly all spring and summer stocking scenarios,
regardless of treatment. For example, at 8.0°C and medium-high
exposure under spring stocking, the untreated groups showed a
combined L + H probability of 95%.

Finally, the integrated probability of full recovery (U), defined as
having zero observed adult female sea lice at any point during the
production cycle, remained low overall across all scenarios. The
probability of full recovery increased with sea lice treatment,
especially under high exposure levels and in fall stocking
scenarios, reaching up to 15%. In contrast, spring stocking
consistently showed the lowest recovery probabilities, typically
below 10%, regardless of treatment or exposure level. Summer
stocking yielded intermediate results, with U ranging from ~4%
to 11%, depending on temperature and exposure.

frontiersin.org


https://doi.org/10.3389/faquc.2025.1647026
https://www.frontiersin.org/journals/aquaculture
https://www.frontiersin.org

Bravo et al.

4 Discussion
4.1 Key findings

4.1.1 Exploratory data insights

The exploratory analysis revealed that stocking events were
predominantly concentrated in spring and summer, while
harvesting activities were distributed more uniformly throughout
the year. Farming cycles initiated in spring were significantly
shorter than those starting in fall or summer, likely due to the
accelerated growth rates associated with higher temperatures or
earlier harvesting. For summer stocking, the earlier occurrence of
high concentrations of AF lice may be attributable to elevated
seawater temperatures, which are known to enhance lice
development and survival (Johnson and Albright, 1991; Hamre
et al.,, 2019), in combination with the increased number of active
farms during this period, potentially elevating the risk of
waterborne transmission of infective stages (Aldrin et al., 2013;
Parent et al., 2021, 2024b) (see Figure S2 of the Supplementary
Section). Future analyses could involve estimating degree-days to
better explain variations in fish growth and the extent of
farming cycles.

Elevated AF concentrations (23 lice per fish) were frequently
found during winter months. This pattern is likely explained by the
seasonal reduction in treatment activity due to logistical constraints
imposed by weather (Westcott et al., 2004) and potentially by
seasonal fluctuations in lice abundance (Fisheries and Oceans
Canada, 2020; Rittenhouse et al., 2016). Seasonal cycles of sea lice
abundance are well documented in Western Canada, where they are
associated with wild salmon migrations that return to their
spawning grounds in late summer (Fisheries and Oceans Canada,
2020). In Eastern Canada, in New Brunswick, fluctuations in sea lice
abundance also correlate with changes in environmental conditions
(Chang et al, 2011). Nearby, in Southern Newfoundland, the
reproductive peak was found to be highly dependent on
environmental conditions, particularly annual peaks in salinity
levels (Rittenhouse et al., 2016).

Approximately 70% of outbreaks (i.e., transitions to the H state
from a preceding F, L, or U state), received treatment within 2
months of detection. However, it is important to note that no
mandatory treatment thresholds are established in the study area,
and that due to data limitations, it was not possible to directly link
treatment decisions to specific AF concentrations prior
to treatments.

In most cases, the AF concentration at the time of treatment was
at or above the 3 lice per fish threshold; however, in nearly one-
quarter of the cases, treatments were administered when lice counts
were below this threshold. This observation implies that sea lice
treatments are not applied solely in response to high concentrations
of AF, as defined in this study, but are determined most probably by
a combination of logistic, economic, fish health factors, as well as
treatment strategies within Bay Management Areas, that included
product rotations and synchronized treatment (Atlantic Canada
Fish Farmers Association (ACFFA), 2022).
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Treatments were most often administered immediately
following the detection of high AF concentrations (same week),
with a sharp decline in treatment frequency thereafter. As a result, a
greater proportion of outbreaks transitioned to low concentrations
in the weeks immediately after detection. Treated outbreaks were
notably more likely to transition to low or no infestation compared
to untreated outbreaks, indicating the relative effectiveness of
treatments. This is consistent with the findings from Gautam
et al. (2017), who reported that post-treatment sea lice levels were
lowest when counts were conducted 1 day after treatment,
particularly in summer, suggesting a rapid and pronounced
treatment response. However, they also observed that sea lice
abundance increased again shortly after treatment during warmer
months, indicating the short-lived nature of treatment effects and
the potential for reinfestation. Consistent with this, the data
available to this study show that approximately 33% of treatment
events (by farming cycle, as defined in the Methods) were followed
by a return to high infestation (H state) within 2 weeks, 39% within
3 weeks, and 43% within 4 weeks, indicating that nearly half of all
post-treatment high infestations reoccurred relatively soon after
intervention. Also interesting is the relatively high rate of recovery
from high to low infestation observed in non-treated cases, which
may be explained by natural declines or unreported
contributing factors.

It is important to acknowledge the potential biases introduced
by irregular sampling, as highlighted by Gautam et al. (2016) and
Gautam et al. (2017). Infrequent sampling, particularly before and
after treatment events, can affect estimates of infestation levels
and treatment outcomes, thereby impacting epidemiological
inferences. As a result, the findings presented here should be
interpreted as approximations, with the understanding that
unrecorded changes in infestation dynamics may have occurred
between sampling points (e.g., sudden increases or declines in sea
lice populations).

Finally, it is worth noting that extreme lice infestation events
were infrequently represented in the training dataset (see
Supplementary Figure 1). Although the modeling framework
developed here was not specifically designed to predict such rare
but impactful events, the integration of larger, multi-year datasets
spanning additional farms in Atlantic Canada, along with
complementary modeling approaches, may help improve
predictive capacity for high-magnitude outbreaks in
future research.

4.1.2 Model result insights

The complex dynamics arising from multiple covariates
interacting simultaneously (seawater temperature, waterborne
transmission, and stocking practices) were successfully reflected
in changes in the weekly and integrated probabilities of various
infestation states across a farming cycle.

Model infestation state transitions. High AF concentration,
defined here as parasite loads equal to or exceeding 3 adult
females per fish (AF), was influenced by high temperature, high

exposure to waterborne transmission of sea lice from neighboring
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farms, stocking season (spring and summer), and sea lice treatment.
These model patterns agreed with the studies in Norwegian marine
salmon farms by Aldrin et al. (2013), where it was found that up to
28% of expected sea lice abundances were attributed to infection
from neighboring farms, and the remaining cause was mostly
attributed to infestation within farms. Infestation within farms
was not assessed explicitly in this research, but implicitly because
Markov chain models predict the future infestation state based on
the current state. Alternatively, recovery was favored by sea lice
treatments, particularly under decreased temperatures, as well as
under reduced exposure to waterborne transmission of sea lice, and
cage stocking during fall (and secondly late spring).

Effectiveness of sea lice treatments. The analysis of model
outputs suggests that waterborne transmission of sea lice among
farms may be reducing the effectiveness of treatments by facilitating
persistent reinfection of treated populations. This effect is likely
exacerbated by the high degree of spatial connectivity among farms
in the study area. Exposure to waterborne transmission was
estimated based on the number and proximity of neighboring
farms, with no farms in the dataset classified as truly isolated. On
average, farms in New Brunswick had 41.2 neighboring farms
within a 100-km radius (ranging from 11 to 56). This limited
variability in exposure restricts the model’s ability to explore
treatment outcomes under more favorable conditions, such as
those of spatially isolated farms with lower reinfection pressure.
These findings underscore the importance of coordinated
management within and beyond Bay Management Areas (BMAs)
and highlight the need for advanced modeling tools that support
robust scenario evaluation and improved decision-making
(Guarracino et al., 2018; Stige et al., 2024).

4.2 Model assumptions and limitations

Recent global assessments have identified key limitations in
modeling sea lice infection pressure, particularly related to
transmission pathways, treatment efficacy, and environmental
drivers, and introduced the concept of “knowledge strength” to
emphasize the need for evaluating model reliability under
uncertainty (Murphy et al., 2024; Moriarty et al., 2024; Murray
et al., 2025). These insights highlight the importance of
transparently stating model assumptions, several of which were
required in this study and are outlined below to inform
future research.

Homogeneous infestation-state of fish cohorts. It was assumed
that all fish within a farm shared the same infestation state. While
this simplification facilitates the formulation of the epidemiological
model, it does not capture the internal infestation pressure, i.e., the
potential transmission of sea lice within cage and between-cage.
Furthermore, the internal infestation pressure (i.e., transmission
within farms) is indirectly represented by conditioning a farm’s
infestation state at each time step on its state in the previous week.
Future model iterations should aim to incorporate finer-scale
variability to more accurately reflect transmission dynamics.
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Seaway distance as a proxy for waterborne transmission of sea lice
among farms. In this Markov chain model, exposure to waterborne
transmission from active neighboring farms is estimated using a kernel
density approach based on seaway distances. Similarly, AF lice are used
as a proxy for infestation pressure at source farms; nonetheless, it is
their planktonic offspring, particularly the free-swimming copepodid
stage, that are responsible for interfarm transmission. While seaway
distance has been widely applied as a proxy for interfarm connectivity
(Viljugrein et al., 2009; Stene et al., 2014; Bravo et al., 2020; Parent et al.,
2024Db) as it does not require the extensive computing processing power
and time to run a hydrodynamic model, it may inadequately capture
the biological and physical complexity of sea lice dispersal, which
depends on larval behavior and hydrodynamic transport processes. To
improve predictive performance, future efforts should prioritize the use
of hydrodynamic (potential) connectivity rather than relying solely on
seaway distance; however, these data are not available today in the
study area. One step further, and in the context of real-time risk
forecasting, model accuracy could be enhanced even more by
incorporating realized connectivity, that is, hydrodynamic links
filtered by the presence of active infestations at source farms capable
of releasing eggs and motile larvae. Such refinements would provide a
more realistic representation of transmission pathways and enable
more accurate, targeted management interventions (Bravo et al., 2020;
Asplin et al., 2020).

Seawater salinity. Seawater salinity was not available for this study
at the farm level and for the entire period of analysis; therefore, it was
not feasible to incorporate it into the model. Nonetheless, salinity levels
are known to influence the viability of sea lice eggs (Brooker et al., 2018
and citations therein). Copepodids actively avoid salinity below 27
parts per thousand, expending energy for osmoregulation and
maintaining position in seawater. Bricknell et al. (2006) have
suggested that survival of free-swimming copepodids was found to
be severely compromised at salinity levels below 29 parts per thousand
(ppt), impairing their response to host cues. Planktonic stages are more
susceptible to low salinity compared to parasitic stages that gain
protection from close contact with the host and ingested host tissue
(Brooker et al., 2018). Having access to salinity data from observation
(in situ and remote) and modeling systems such as the Global Ocean
Physics Analysis and Forecast system (available since November 2020
onward) could therefore meaningfully improve sea lice modeling.

Seawater temperature. The fluctuations in environmental
conditions throughout the year significantly influence the
dynamics of numerous disease systems as highlighted by Altizer
et al. (2006), and more specifically for sea lice by Rittenhouse et al.
(2016); Fast and Dalvin (2020), and Sandvik et al. (2021). In our
study, MUR-SST time series were incorporated within the
probabilistic model, allowing us to investigate its impact on
probability of infestation and recovery. The probability of high
concentration of AF increased for farms stocked in summer,
coinciding with higher SST, while recovery was not particularly
sensitive to SST. The integrated probabilities of infestation
(combined L and H) does not change meaningfully with seasonal
variations in SST between the coldest (mean: 7.90°C, amplitude:
13.5°C, derived from Equation 5) and warmest simulated condition
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(mean: 9.77°C, amplitude: 13.7°C, derived from Equation 5).
Nonetheless, the effects of a warmer climate on salmon lice
infection should not be disregarded as indicated by Sandvik et al.
(2021). The correlation of SST with other factors such as fish
biomass or host density per farm or farming area needs to be
evaluated to differentiate between both effects. In this context, host
density has been previously identified in the study area as a
fundamental component of disease dynamics in coastal seas
where salmon farming occurs (Frazer et al., 2012).

Fish growth. The lack of data on fish weight and/or size
hindered the application of a growth model to the dataset. Such a
model could have complemented the epidemiological framework by
explicitly accounting for size-dependent differences in infestation
risk and growth rates, including their dependence on temperature.

Other missing covariates. So far, we were able to incorporate as
model covariates the exposure to waterborne transmission of sea lice
from surrounding farms based on seaway distances, sea surface
temperature from NASA PODAAC Multiscale Ultrahigh Resolution
(MUR) Analyses, sea lice treatment, the stocking week of the year, and
the week of the farming cycle. Although there was initial interest in
including additional variables such as fish size at stocking, fish size at
time of sea lice count, fish density (ind m—, kg m™>, ton. cage™),
relevant farming practices such as net cleaning, and seawater salinity,
these factors could not be incorporated because the necessary data were
not available for this study or were incomplete. Similar efforts of data
integration for modeling have been done for other salmon diseases
worldwide, demonstrating the potential benefits of such integration
(Bravo et al., 2020; Aldrin et al., 2013; Ohlschuster et al., 2023; Steven
et al,, 2019). The imputation of missing values may have introduced
bias into transition probability estimates, particularly for the “free” (F)
state, the most frequently imputed category, specifically at the
beginning of farming cycles. This could reduce the model’s sensitivity
to environmental covariates and potentially mask early infestations that
went undetected due to sparse monitoring.

Spatial gaps in data. Unfortunately, we were unable to include
information from farms situated in the U.S. waters of Passamaquoddy
Bay, as well as from other farms in the study region not owned by the
collaborating company. The absence of these data could potentially
compromise significantly the accuracy of our model, as it overlooks
exposure to waterborne transmission of sea lice originating from those
sites. Additionally, there may be other consequential impacts associated
with the farming practices at these sites that are unknown and worth
considering in future efforts of model development. The need to
incorporate data at relevant spatial scales has also been highlighted
in previous modeling studies within the study area (Elghafghuf et al,
2020, 2021). Furthermore, and related with sampling frequency, the
data gap during the winter season and at the outset of production cycles
may affect model training and performance. As a result, several
decisions were made to impute missing values and to set the
temporal resolution of the model (weekly).

Untangle the effects of seasonal environmental conditions from
the effects of farming practices. SST varied throughout the year, but
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the number of active farms (which impacts the external infestation
pressure) also varied seasonally, with most farms choosing to stock
in spring, but harvesting more evenly across the year. In addition,
environmental conditions and farming practices are not
independent from each other, as certain environmental
conditions can be an impediment (or an incentive) to certain
practices or interventions, including sea lice surveys, treatment
decisions, and stocking or harvesting (e.g., weather preventing sea
lice counts and treatments during winter). Future work could try to
ascertain if, for example, refining stocking schedules to promote
staggered stocking dates of farms could help decrease external
infestation pressure and support better fish health.

4.3 Implications for salmon farming in
Eastern Canada

The sea lice model presented in this study has implications for the
salmon farming industry in Eastern Canada. By offering a framework
that integrates ecological insights and data-driven dynamics, the model
may contribute to informed decision-making and the advancement of
sustainable practices. Numerical models and applications, such as the
one presented here, encapsulate institutional knowledge and experience
accumulated over time. They offer advantages not just in aiding
informed decision-making but also as a training tool for new
employees or stakeholders within the aquaculture industry and
regulatory agencies.

The model presented in this study, with further development,
has the potential to support at least two types of farm decision-
making in the future. The first are tactical decisions through short-
term predictions of sea lice abundance and risk (days to weeks in
advance) to support preventive measures, e.g., to protect the more
vulnerable juvenile stages of salmon. To facilitate immediate
decision-making, the model would require data transmission in
real time, along with the processing (quality control) of captured
data as it is acquired. The second benefit involves strategic decision-
making pertaining to the stocking and harvesting of upcoming
farming cycles and coordination beyond the farm’s limits, across
BMAs or other management units. These decisions include
anticipating the optimal stocking time, determining whether
synchronized stocking impacts the overall performance of farms
within the same management area or other spatial management
units (e.g., a bay), assessing the significance of fallowing periods,
and evaluating the effectiveness of treatments under varying
environmental conditions and farming practices.
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