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Probabilistic models of cognition typically assume that agents make inferences about

current states by combining new sensory information with fixed beliefs about the past,

an approach known as Bayesian filtering. This is computationally parsimonious, but,

in general, leads to suboptimal beliefs about past states, since it ignores the fact that

new observations typically contain information about the past as well as the present.

This is disadvantageous both because knowledge of past states may be intrinsically

valuable, and because it impairs learning about fixed or slowly changing parameters of

the environment. For these reasons, in offline data analysis it is usual to infer on every

set of states using the entire time series of observations, an approach known as (fixed-

interval) Bayesian smoothing. Unfortunately, however, this is impractical for real agents,

since it requires the maintenance and updating of beliefs about an ever-growing set

of states. We propose an intermediate approach, finite retrospective inference (FRI), in

which agents perform update beliefs about a limited number of past states (Formally,

this represents online fixed-lag smoothing with a sliding window). This can be seen as a

form of bounded rationality in which agents seek to optimize the accuracy of their beliefs

subject to computational and other resource costs. We show through simulation that this

approach has the capacity to significantly increase the accuracy of both inference and

learning, using a simple variational scheme applied to both randomly generated Hidden

Markov models (HMMs), and a specific application of the HMM, in the form of the widely

used probabilistic reversal task. Our proposal thus constitutes a theoretical contribution

to normative accounts of bounded rationality, which makes testable empirical predictions

that can be explored in future work.

Keywords: bayesian inference, learning, cognition, retrospective inference, reversal learning, bounded rationality,

hidden markov model

INTRODUCTION

To behave adaptively, agents need to continuously update their beliefs about present states of the
world using both existing knowledge and incoming sensory information, a process that can be
formalized according to the principles of probabilistic inference (von Helmholtz, 1867; Gregory,
1980). This simple insight has generated a large field of inquiry than spans most areas of the mind
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FIGURE 1 | Illustration of the information used by different strategies for

inference when forming beliefs about state x at time i(indicated by the vertical

line). In filtering (Top) beliefs are based solely on observations made up to and

including that time (o1 : i ), as indicated by the yellow block, and are not revised

in the light of subsequent information (If we assume online inference, then the

present time t = i). In fixed-interval smoothing (Middle), observations from the

whole data set (o1:T ) are used to inform each set of beliefs, as indicated by the

green block (Here either t = T or, equivalently, inference is performed offline). In

fixed-lag smoothing (Bottom), beliefs are retrospectively updated up to some

fixed lag n, so o1 : i+n are used (indicated by the blue block) (See Methods for a

more formal description, and explanation of the notation) (In this case

t = i + n). Fixed-lag smoothing allows an agent to perform finite retrospective

inference, which constitutes a principled trade-off between the reduced

inferential accuracy resulting from filtering and the potentially severe

computational costs of retrospection to an indefinite temporal depth.

and brain sciences and seeks to build probabilistic accounts of
cognition (Rao and Ballard, 1999; Friston, 2010; Tenenbaum
et al., 2011; Clark, 2012; Pouget et al., 2013; Aitchison and
Lengyel, 2016).

In this paper, we take this framework for granted, and consider
an important and related problem, that of using new sensory
information to update beliefs about the past. This is important
because, under conditions of uncertainty, new observations can
contain significant information about past states as well as
present ones (Corlett et al., 2004; Shimojo, 2014; FitzGerald et al.,
2017; Moran et al., 2019).

In offline cognition or data analysis (in which agents are
dealing with complete data sets, and are not required to respond
to them in real time), it is possible to make inferences about all
time points simultaneously (Figure 1).

In other words, one uses every observation to inform every
belief about hidden states. This option is unavailable to real,
embodied agents because they need to perceive and act in time
(online) (Throughout this paper, we will denote the present time
with t). They thus need to perform retrospective inference to

increase the accuracy of their beliefs about the past. To perform
retrospective inference optimally (or, equivalently in this context,
to be strictly rational) it is necessary for an agent to update
beliefs about a sequence of states stretching backwards to the
beginning of the current task or context, or perhaps even to the
beginning of its existence. This sequence is both indefinitely long
and constantly growing, and representing and updating these
beliefs will thus, in many situations, place intolerable demands
on any real organism.

We propose an alternative approach, finite retrospective
inference (FRI), in which agents update beliefs about states
falling within a limited temporal window stretching into the past
(FitzGerald et al., 2017). Selecting the size of this window, and
thus the depth of retrospective belief updating constitutes a form
of bounded rationality (Simon, 1972; Gigerenzer and Goldstein,
1996; Ortega et al., 2015), since it trades off inferential accuracy
against resource costs (e.g., the metabolic and neuronal costs
associated with representing beliefs, and the time to perform
the calculations). The depth of updating performed by an agent
in a particular context might be selected using a form of
“metareasoning” in response to environmental demands (Russell
and Wefald, 1991; Lieder and Griffiths, 2017). In particular, it
is likely that where observations are noisier, and/or temporal
dependencies are greater (in other words, where the past remains
significant for longer) such strategies will be more advantageous,
and are likely to be favored, provided that other constraints
allow it. Alternatively, the degree of retrospection might be
phenotypically specified (and thus, presumably, selected for
during species evolution). In either case, a bounded-rational
approach to retrospection has the potential to explain and
quantify how humans and other organisms approach but do not
attain optimal performance on a number of cognitive tasks.

In addition to its appeal on purely computational grounds,
this proposal might help to explain the widespread occurrence
of “postdictive” phenomena in perception (Eagleman and
Sejnowski, 2000; Shimojo, 2014). A number of such phenomena
have been noted, but in all of them perception of an event
is influenced by things that only occur afterwards, suggesting
a purely retrospective inference on perception (Rao et al.,
2001) (Retrospective inference has also been described in the
context of associative learning paradigms; Corlett et al., 2004;
Moran et al., 2019). There thus seems good reason to believe
that a neurobiologically plausible scheme for retrospective
inference like FRI may provide valuable insights into real
cognitive processes.

FRI differs from existing probabilistic accounts of online
cognition (Rao and Ballard, 1999; Ma et al., 2006; Friston and
Kiebel, 2009; Glaze et al., 2015; Aitchison and Lengyel, 2016),
which typically only consider inferences about present states,
an approach known as “Bayesian filtering” (though see Rao
et al., 2001; Baker et al., 2017; Friston et al., 2017; Kaplan
and Friston, 2018). It thus constitutes a novel hypothesis about
cognitive function that extends probabilistic models to subsume
a broader range of problems. Importantly, as we will illustrate in
the simulations described below, FRI makes testable predictions
about behavior and brain activity in real agents that can be tested
in future experimental studies.
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MATERIALS AND METHODS

Approximating Normative Inference
Consider the situation in which an agent seeks to infer on a series
of T time-varying hidden states x1:T = {x1, . . . , xT} given a set
of time-invariant parameters θ that are known with certainty,
a series of observations o1:T = {o1, . . . , oT}, and an initial
distribution on x0 (Both x1:T and o1:T are thus random vectors).
To simplify our discussion, in what follows we will assume
that all the processes under consideration share the following
conditional independence properties:

p (xi|x1 : i−1, o1:T , θ) = p (xi|xi−1, oi :T , θ) , (1)

meaning that states at time i depend only upon the immediately
preceding states, and are otherwise independent or previous
states or observations (this is the Markov property) and that

p (oi|x1:T , o1 : i−1, oi+1:T , θ) = p (oi|xi, θ) , (2)

meaning that observations depend only on the current states,
and not previous states or observations. However, the general
principles presented in this paper apply equally in cases where
many, if not all, of these properties are relaxed, e.g., in
processes with a higher-order temporal structure. We start with
a general discussion of retrospective inference, which makes no
specification about the nature of states and observations, before
discussing a specific instantiation below (the HMM).

By the chain rule of probability, and making use of Equation
1, the joint conditional distribution over all states is given by:

p (x1:T |o1:T , x0, θ) =
∏

i = 1:T

p (xi|oi :T , xi−1, θ). (3)

However, inferring on the joint distribution rapidly becomes
computationally intractable, and is often unnecessary. Thus,
instead of inferring on the joint conditional distribution we
can instead infer on the marginal distributions over states at
each time point. In other words, infer on the sequence of most
likely states rather than the most likely sequence of states. This
approach is known as fixed-interval Bayesian smoothing (Sarkka,
2013). The agent can thus be thought of as approximating the
joint conditional distribution as:

p (x1:T |o1:T , x0, θ) ≈
∏

i = 1:T

p (xi|o1:T , x0, θ). (4)

This provides a powerful approach for analyzing sequential
data, and is widely used in offline data analysis. However, it
presents serious practical difficulties for agents performing online
inference of the kind that is mandatory for real, embodied agents.
That is, where agents have tomake inferences, and very likely take
actions, whilst the process is unfolding. Specifically, it requires
the agent to store and update an ever-growing set of beliefs
about the past, resulting in a set of calculations that will rapidly
overwhelm the cognitive capacities of plausible embodied agents.
This means that “true” rationality, defined here as cognition
that accords precisely with the principles of optimal probabilistic

inference, is impossible for real agents, who must instead seek a
feasible approximation.

In probabilistic models of online cognition, this is typically
achieved by conditioning inference only on past and current
observations, an approach known as Bayesian filtering (Sarkka,
2013). This means that agents make inferences of the form:

∏

i = 1:T

p (xi|o1:T , x0, θ) ≈
∏

i = 1:T

p (xi|o1 : i, x0, θ). (5)

From the perspective of disembodied normative inference, the
approximation implied here represents suboptimality. However,
for a real cognitive agent, it can be thought of as an unavoidable
cost of having to perform inference in time, which necessitates
the use of an alternate strategy.

Filtering can be implemented in a straightforward fashion by
recursive application of:

p (xi|o1 : i, x0, θ)

=

∫

p (oi|xi, θ) p (xi|xi−1, θ)

p (oi|x0, θ)
p (xi−1|o1 : i−1, x0, θ)dxi−1. (6)

It is thus computationally parsimonious, since it requires only a
single set of calculations at each time step and only requires an
agent to store fixed beliefs about the past. In the case of first-order
processes, this is only about the immediately preceding time step.
However, this parsimony comes at a cost, since it reduces the
accuracy of an agent’s beliefs about the past, and consequently,
as will be discussed later, impairs learning.

To remedy this, an agent that is performing Bayesian
filtering, can implement smoothing recursively by performing an
additional “backwards pass” through the data:

p (xi|o1:T , x0, θ)

= p (xi|o1 : i, x0, θ)

∫ [

p (xi+1|xi) p (xi+1|o1:T , x0, θ)

p (xi+1|o1 : i, x0, θ)

]

dxi+1. (7)

(Use of an integral here and in Equations 8, 10 presupposes that
states are continuous-valued. In the case of discrete states, as in
the HMM discussed below, this is replaced with a summation).
Here p (xi|o1 : i, x0, θ) is the state estimate derived from filtering,
p (xi+1|xi) is the dynamic model governing transitions between
states, p (xi+1|o1:T , x0, θ) is the smoothed state estimate at i +
1, and p (xi+1|o1 : i, x0, θ) is the predicted distribution at i + 1
given by:

p (xi+1|o1 : i, x0, θ) =

∫

p (xi+1|xi) p (xi|o1 : i, x0, θ) dxi. (8)

Thus (fixed-interval), smoothing can be carried out in a
straightforward manner, beginning with the current state
estimate derived from filtering, and working iteratively
backwards. Nonetheless, it requires the agent to perform a set of
calculations that grows linearly with the time series, and store
a similarly growing set of beliefs about past states, and thus
introduces significant extra costs for an agent over and above
filtering, which are likely to become unsustainable for real agents
in ecological contexts. We thus propose that agents make use of
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an intermediate strategy, finite retrospective inference, in which
they perform retrospective belief updating to a limited degree, in
a manner that reflects both the desirability of accurate inference
and the need to limit resource (and other) costs.

Finite Retrospective Inference
To implement FRI, we propose that agents perform fixed-lag
smoothing, an approach that is intermediate between full (fixed-
interval) smoothing and filtering. In fixed-lag smoothing, agents
update beliefs about all states within a fixed-length time window
that includes the present time but stretches a set distance into
the past (Figure 1) (FitzGerald et al., 2017). This window moves
forward in time at the same rate that observations are gathered,
meaning that cognition occurs within a sliding window (In
principle the sliding window approach can also be used to infer
on the joint distribution of short sequences of states FitzGerald
et al., 2017, but we focus on smoothing in this paper for the sake
of simplicity).We are unaware of a precedent for this approach in
treatments of cognition, however it has been employed in other
contexts (Moore, 1973; Cohn et al., 1994; Chen and Tugnait,
2001; Sarkka, 2013). This means that, for a window of length
considered at time t, agents approximate the true marginal
distribution as follows:

∏

i = 1:T

p (xi|o1:T , x0, θ) ≈
∏

i = 1:T

p (xi|o1 : i+n−1, x0, θ). (9)

As can be seen by comparing Equations (5, 9), filtering is a special
case of fixed-lag smoothing in which n = 1. Smoothing can thus
be performed by iteratively evaluating.

t
∏

i = t−n+1

p (xi|o1:t , d, θ) =

∫

p (xt−n|o1:t−n, d, θ)

t
∏

i = t−n+1

p (xi|ot−n+1:t , xt−n, d, θ)dxt−n. (10)

This simply requires the agent to track p (xt−n|o1:t−n, d, θ),
the filtered estimate of the states that obtain at the timestep
immediately preceding the current window. Practically, fixed-
lag smoothing can be implemented using Equation (7), with
the proviso that backward recursion is only performed n − 1
times. In other words, rather than propagating new information
right the way back through a time series as is typical in offline
applications, it is only propagated to a fixed depth (n−1), limiting
the computational cost to the agent. This allows agents to adopt
a bounded rational strategy in which they trade off inferential
accuracy and computational (and potentially other) costs to select
an appropriate depth of processing.

Parameter Learning Using Retrospective
Inference
We next consider the more general situation in which there is
uncertainty about both states and parameters, and agents must
therefore perform learning as well as inference. This is often
referred to as a “dual estimation” problem (Wan et al., 1999;
Friston et al., 2008; Radillo et al., 2017), and is characteristic

of many real-world situations. To do so, we make the model
parameters θ random variables, and condition beliefs about
them on a set of fixed hyperparameters λ, such that states
and observations are independent of the hyperparameters when
conditioned on the parameters, meaning that:

p (x1:T , θ|o1:T ,λ) = p (x1:T |o1:T , θ) p (θ|o1:T ,λ) . (11)

Learning and inference are inextricably related to one another,
since beliefs about states depend on beliefs about parameters,
and vice versa. Since parameters are fixed, accurately estimating
them involves accumulating evidence across entire time series,
and thus beliefs about multiple sets of states. This means
that increasing the accuracy of beliefs about the past, through
retrospective belief updating, also increases the accuracy of
parameter estimation. Crucially, improved parameter estimates
will also result in more accurate beliefs about the present
and better predictions about the future. Thus, in the context
of uncertainty about model parameters, retrospective belief
updating is advantageous even for an agent that has no intrinsic
interest in the past. This is a very important point, since it argues
for the wide importance of retrospective belief updating across a
variety of situations and agents.

At a practical level, learning using FRI is very similar to
offline learning. We treat each window as a time series in
its own right, with λ is replaced by λ̃, the sufficient statistics
of p (θ |o1:t−n, λ), which is the posterior distribution over the
parameters conditioned on all observations preceding the current
window, and perform learning and inference as normal. The use
of a sliding window does, however introduce a small additional
complexity, since successive windows overlap and thus share
data points. Thus, if we treated each window as a separate time
series we would count each observation multiple times and, as
a result, overweight them. To avoid this, when updating λ̃ we
only use information about states at the first time-point in the
window (i.e., p (xt−n+1|o1:t , θ)) (A more specific example of this
is provided for the HMM below). This also means that only
the best available estimate of each set of states (in other words,
the estimate that will not be revised in light of future evidence)
contributes to stored beliefs about the parameters of the model.

Retrospective Inference in Hidden Markov
Models
To illustrate the utility of bounded-rational retrospective
inference for an agent, we applied the principles described
above to HiddenMarkov models (Figure 2). In principle though,
they apply equally to a broad range of models with alternative
properties such as continuous state spaces and higher-order
temporal structure. In an HMM, the system moves though a
series of T time-varying hidden states, each of which is drawn
from a discrete state space of dimension K. Hidden states x1:T
are not observed directly, but instead must be inferred from
observed variables. Here we assume that these also discrete, with
dimension M, but this need not be the case. Thus, at time t
(where t ∈ N : t ∈ {1,T}), xt is a binary vector of length K such
that

∑

xt = 1, and similarly ot is a binary vector of length M
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FIGURE 2 | Bayesian graph illustrating the structure of the Hidden Markov

model described in the text (Shaded circles indicate variables with known

values, unshaded circles indicate hidden variables). Transitions between

hidden states x0 to xT are governed by the transition matrix A, and are

first-order Markovian. Observations o1 to oT depend only on the current

hidden state and the emission matrix B. Where the parameters of A and B

need to be learnt, as depicted here we include appropriate sets of Dirichlet

priors, parameterized by the matrices 5a and 5b, respectively. Beliefs about

the initial hidden state x0 are governed by the parameter vector d.

such that
∑

ot = 1 (This can also be described as a multinoulli
random variable).

Initial state probabilities are encoded in a row vector d,
which we will hereafter assume to encode a uniform distribution.
Transitions between states are first-order Markovian, and the
transition probabilities are encoded in a K × K matrix A,
such that:

Ajk ≡ p
(

xi,k = 1|xi−1,j = 1
)

, (12)

where, Ajk ∈ [0, 1] and
∑

k Ajk = 1. This means that each row
Aj• encodes the transition probabilities from state j to the entire
state space. From this it follows (Bishop, 2006) that:

p (xi|xi−1,A) =

K
∏

k = 1

K
∏

j = 1

A
xi−1,jxik
jk

. (13)

Similarly, theM×K matrix B encodes the emission probabilities
such that:

Bjk ≡ p
(

oi,k = 1|xi,j = 1
)

, (14)

where Bjk ∈ [0, 1] and
∑

k Bjk=1. Thus, that each row Bj• encodes
the probability of each observed variable when in state j, and:

p (oi|xi,B) =

M
∏

k = 1

K
∏

j = 1

B
xijoik
jk

. (15)

Pure Inference in HMMs

To calculate the smoothed marginal posterior γ (xi) in an HMM,
we can make use of the forward-backward algorithm (Rabiner,
1989). This involves recursive forward and backward sweeps, that
calculates two quantities α (xi) and β (xi) for each time point
(Bishop, 2006) such that:

γ (xi) = p (xi|o1:T ,A,B) ,

=
α (xi) β (xi)
∑

α (xi) β (xi)
, (16)

α (xi) ≡ p (o1 : i, xi|A,B) ,

β (xi) ≡ p (oi+1:T |xi,A,B) .

α(xi) thus corresponds to the unnormalized filtered posterior,
and is given by:

α (x1) = (Bo1) ◦ d, (17)

for the first state, and:

α (xi) = (Boi) ◦
(

ATα (xi−1)

)

, (18)

for all subsequent states. Here ◦ denotes the Hadamard or
element-wise product. β (xi) is given by:

β (xi) = A (β (xi+1) ◦ (Boi+1)) . (19)

To apply the sliding window approach to this model, at each
timestep we simply evaluate the filtered posterior using and then
perform backward inference a fixed number of steps using. This
is the key step that enables the agent to perform FRI by inferring
over both the present state and a sequence of previous states
stretching a fixed distance into the past.

Dual Estimation in HMMs

To learn the transition probabilities of an HMM we first need to
define an additional quantity, the dual-slice marginal ξ (xi, xi−1),
which corresponds to the joint probability distribution
p (xi, xi−1|o1:T , θ) (Baum et al., 1970; Bishop, 2006). It is
simple to show that:

ξ (xi, xi−1) ∝ A ◦

(

α (xi−1) ((Boi) ◦ β (xi))
T
)

. (20)

(For a more detailed exposition of this see Bishop, 2006).
Introducing learning renders exact inference impossible,

which necessitates the use of an approximation. Broadly
speaking, such approximations fall into two categories: sampling
approaches (Andrieu et al., 2003), which are computationally
expensive but asymptotically exact, and variational approaches
which are more computationally efficient but require the
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introduction of a tractable approximate distribution (Blei et al.,
2017). We focus here on implementing model inversion using
variational Bayes (Beal, 2003), which we believe has some
neurobiological plausibility (Friston et al., 2017). This is not
a strong claim, however, about the actual mechanisms used
by human observers (or indeed any other agent), and similar
results could be derived under any appropriate scheme (see
Appendix for further description of the variational methods
employed here).

In the offline case, this model has been described in Mackay
(1997) and Beal (2003), and the reader is referred to these
sources for more detailed expositions. Briefly, we start by placing
Dirichlet priors over each row of the transition matrix A and the
observation matrix B such that:

p
(

Aj•

)

= Dir
(

5a
j•

)

,

E
[

ajk
]

=
πa
jk

K
∑

k = 1

πa
jk

,

E
[

ln ajk
]

= ψ
(

πa
jk

)

− ψ

(

K
∑

k = 1

πa
jk

)

. (21)

p
(

Bj•

)

= Dir
(

5b
j•

)

,

E
[

bjk
]

=
πb
jk

K
∑

k = 1

πb
jk

,

E
[

ln bjk
]

= ψ
(

πb
jk

)

− ψ

(

K
∑

k = 1

πb
jk

)

.

where 5 a and 5 b are matrices encoding the concentration
parameters of the Dirichlet distributions, and ψ is the digamma
function. Since the Dirichlet distribution is the conjugate prior
for a multinomial likelihood, this enables us to carry out
parameter learning using a set of simple update equations as
described below.

The log joint probability distribution for the model
thus becomes,

ln p
(

o1:T , x1:T ,A,B|d,5
a,5b

)

=

T
∑

i = 1

ln p (oi|xi,B)

+

T
∑

i = 2

ln p (xi|xi−1,A)

+ ln p
(

B|5b
)

+ ln p
(

A|5a
)

+ ln p (x1|d) , (22)

and model inversion can be performed by iteratively evaluating
the following update equations for the states and parameters (see

Appendix for a full derivation).

⌢

Xi ≡ EA,B [γ (xi)]

=

(

(
⌢

Boi) ◦

(

⌢

A

T

α (xi−1)

))

(

⌢

A

(

β (xi+1) ◦

(

⌢

Boi+1

)))

,

⌢

Mi ≡ EA,B [ξ (xi−1, xi)]

∝
⌢

A ◦

(

α (xi−1)

((

⌢

Boi

)

◦ β (xi)

)T
)

,

ln
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a
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)

− ψ

(

K
∑
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⌢

π

a
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)

(23)

⌢

5

a

≡ 5
a +

T
∑

i = 2

⌢

Mi,

ln
⌢

bjk ≡ ψ

(

⌢

π

b

jk

)

− ψ

(

K
∑

k = 1

⌢

π

b

jk

)

,

⌢

π

b
≡ 5

b +

T
∑

i = 1

⌢

π io
T
i .

(Here the “hat” notation denotes expectations of the distributions
over hidden variables generated using the variational inference
scheme). This means that inference about the smoothed γ (xi)
and dual-slice marginals ξ (xi, xi−1) is calculated by applying
the forward-backward algorithm at each iteration, using the

variational estimates
⌢

A and
⌢

B, in place of the non-Bayesian A

and B used in Equations (17–19) (Mackay, 1997). The update
equations for the parameters also have intuitive interpretations.
Updates of the transition matrix A correspond to accumulating
evidence about the number of times each state transition occurs,
whilst those for the observation matrix B correspond to a similar
evidence accumulation process, this time about the number of
times that a particular observation was made whilst occupying a
particular state.

For the variational HMM, the lower bound L can be calculated
in terms of the normalization constants

∑

α (xi) derived during
filtering, and the Kullback-Leibler divergences between prior
and posterior distributions over the parameters (see Beal, 2003;
Bishop, 2006 for derivations). Thus,

L =

I
∑

i = 1

ln
(

∑

α (xi)
)

−

K
∑

k = 1

DKL

(

Dir

(

⌢

5

a

jk

)

||Dir
(

5
a
jk

)

)

−

K
∑

k = 1

DKL

(

Dir

(

⌢

5

b

jk

)

||Dir
(

5
b
jk

)

)

. (24)

In all simulations, iterations were performed until the difference
in the variational lower bound L was <1−6 times the number
of data points (T). To carry out online learning and inference,
we simply apply the sliding window approach described earlier

to this model. This means that we only evaluate
⌢
xj and

⌢

Mj for timepoints that fall within the current window, and
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parameter learning is performed by updating the concentration
parameters using the following equations (where t indicates the
present time):

5̃
a
= 5

a +
⌢

Mt−n+1,

⌢

5
a = 5̃

a
+

t
∑

j = t−n+2

⌢

Mj, (25)

5̃
b
= 5

b +
⌢

xt−n+1
⌢
ot−n+1

T,

⌢

5
b = 5̃b +

t
∑

j = t−n+2

⌢

xj
⌢
oj

T.

Here 5̃a and 5̃b denote the fixed-lag parameters that are
incremented across time steps, 5a and 5b denote the values of
the fixed-lag concentration parameters from the previous time
step (in other words, the evidence that has been accumulated

prior to the current window), and
⌢

5 a and
⌢

5 b denote the full
estimates of the concentration parameters based on timesteps 1
to t.

The Probabilistic Reversal Task as a Special Case of

the HMM

To illustrate the utility of FRI even for relatively straightforward
tasks, we simulated inference and learning on a probabilistic
reversal paradigm (Hampton et al., 2006; Glaze et al., 2015;
Radillo et al., 2017). Briefly, subjects are required to track
an underlying hidden state that occasionally switches between
one of two possible values, based on probabilistic feedback (In
other words, feedback that is only, for example, 85% reliable).
This paradigm is both simple and widely used, and the small
state space makes illustrating results in graphical form relatively
straightforward. In addition, the fact that the paradigm is widely
used makes it an appealing tool for exploring to what extent
human subjects actually employ FRI when solving this sort of
task. The task can be modeled as an HMM, in which there are
only two hidden states, which probabilistically generate one of
two possible observations (Hampton et al., 2006; Schlagenhauf
et al., 2014; Costa et al., 2015; FitzGerald et al., 2017). The
parameter r encodes the probability of a reversal between trials,
and v encodes the reliability of observations. Thus,

A =

[

1− r r
r 1− r

]

,

B =

[

v 1− v
1− v v

]

.

(26)

(Introducing learning requires a slight modification of the
standard HMM parameter update equations to reflect
the symmetry of the A and B matrices, as described in
the Appendix).

Simulations
Probabilistic Reversal Task

To illustrate the effects of retrospective inference on an agent’s
beliefs whilst doing the probabilistic reversal task, we simulated

1,000 instantiations of a 256 trial task session, with parameters set
as r = 0.1 and v = 0.85, plausible values for real versions of the
task (e.g., FitzGerald et al., 2017). For the “pure inference” agent,
we set extremely strong (and accurate) prior beliefs about A and

B by setting initial values of5(a) = 106A and5(b) = 106B. This
has the consequence of effectively fixing these parameters to their
prior values (in other words, essentially rendering them fixed
parameters). For the “dual estimation” agent, we kept the prior
beliefs about B identical, but set weak priors on the transition
matrix of:

5(a) =

[

2 2
2 2

]

. (27)

This has the consequence of allowing agents’ beliefs to be
determined almost completely by the data they encounter.
Window lengths for retrospective inference were set at 1, 2, 4,
8, 16, 32, 64, 128, and 256 trials, and we also simulated an agent
performing offline (fixed interval) smoothing for comparison. To
assess the accuracy of inference and learning, we calculated the
log likelihood assigned to the true sequence of hidden states and
the true value of r, calculated using Equation 36 (see Appendix),
and averaged these across simulations.

The aim of these simulations is to demonstrate the effects,
and potential advantages, of performing FRI for an agent,
even on relatively simple tasks. However, establishing whether
retrospective inference is in fact a feature of human cognition
requires careful experimental validation. This will involve careful
model-based analysis of behavioral (and possibly neuroimaging)
data collected on appropriate behavioral tasks. We intend to
address this in future studies.

Random HMMs

To show that the effects that we illustrate are not due to
some specific feature of the probabilistic reversal paradigms,
we performed similar simulations, this time using HMMs with
three possible hidden states, three possible observations, and
randomly generated transition probabilities. We generated 10
such HMMs, and simulated 100 instantiations of each, whilst
varying the diagonal terms of the emission matrix B at intervals
of 0.05 between 0.65 and 0.95 (and setting the off-diagonal
terms to be equal) (This corresponds to varying the degree of
perceptual uncertainty). Prior beliefs for the pure inference and
dual estimation agents were set as described for the reversal task,
and accuracy was assessed in a similarmanner, using Equation 23.

RESULTS

To explore the properties of fixed-lag retrospection in pure
inference problems (in other words, ones where no learning
is necessary), we simulated behavior on both the probabilistic
reversal task and on random HMMs. As expected, in both
cases, FRI considerably improved the accuracy of agents’ final
(offline) beliefs about past hidden states. (Online estimates of
current states are identical under all approaches). Strikingly, in
both cases, this improvement occurred even when agents only
retrospected over short windows (Figure 3), suggesting that, in
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FIGURE 3 | Retrospective belief updating improves state estimates during pure inference on a probabilistic reversal task. Top panel: illustration of the first 64 trials of a

256 trial session of the reversal task using different strategies. The final (retrospective) posteriors are shown in blue (n = 1, filtering), orange (n = 2), and gold (n = 128).

Black crosses show the true hidden state, and red circles the observations made on each trial. Retrospective belief updating allows agents to infer the true underlying

states more accurately. Bottom panel: relative log accuracy of models of different window lengths, averaged across simulated time series (see main text for details)

(Accuracy is quantified as the log likelihood assigned to the true sequence of states by the agent, averaged across simulations). This illustrates that, in this context at

least, even the use of a very short window leads to significantly more accurate beliefs, but that this benefit saturates relatively rapidly (by about n = 8). Thus, for a

bounded rational agent performing pure inference, the optimal window length may be surprisingly low, depending on the relevant computational costs.

certain problems at least, a limited capacity for retrospection can
yield significantly improves inference.

Simulations of dual estimation problems in which there
was uncertainty about r clearly illustrated that retrospective
inference increases the accuracy of both retrospective and
online state estimation, as a result of increased accuracy in
parameter learning (Figures 4, 5). One important feature to
note is that even when the maximum possible depth of
retrospection is employed (n = 256), the accuracy of online state
estimation always falls significantly short of offline estimation.
This indicates the fact that, however great the representational
and computational sophistication of an agent, there is always a
cost to performing inference online, rather than with a complete
data set. If sufficiently high, this cost provides an incentive
to perform additional (subsequent) offline processing, perhaps
during sleep, and it is conceivable that this might be linked to
the extended process of memory consolidation. Similar patterns
were observed in the random HMM simulations, supporting
the notion that these are general properties of retrospective
inference (Figure 6).

DISCUSSION

In this paper, we consider the problem of accurately updating
beliefs about the past from the perspective of probabilistic
cognition. Specifically, we propose that humans and other agents
use finite retrospective inference, in which beliefs about past
states are modifiable within a certain temporal window, but are
fixed thereafter. We show, using simulations of inference and
learning in the context of a probabilistic reversal task, that even
a fairly limited degree of retrospection results in significantly
improved accuracy of beliefs about both states and parameters.
Importantly, the hypothesis that agents perform retrospective
inference makes clear predictions about behavior on appropriate
tasks that are quantitatively dissociable from those made under
the hypothesis that agents use pure filtering. Implementing
retrospective inference also makes specific predictions about
brain function, since it requires beliefs about past states to be
explicitly represented and updated. Our work thus provides
testable hypotheses that can be explored in future behavioral and
neurobiological studies.
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FIGURE 4 | State and parameter estimation for agents performing dual estimation on the first 64 trials of a 256 trial session of the reversal task using different

strategies. Top panel: the accuracy of retrospective belief estimates p (xi |o1:T ) increases with greater window lengths, but still falls well-short of the performance of an

offline agents, who has access to the entire time series simultaneously. Middle panel: the accuracy of online (filtered) beliefs about the current state p (xi |o1 : i) subtly but

consistently increases with greater window length. Note that this effect is entirely due to the beneficial effects of greater window lengths on parameter learning. Bottom

panel: the effect of window length on parameter learning. Estimates of r are derived from 5a at each timestep (the best estimate available to the agent at that time).

With greater window lengths, parameter estimates converge more rapidly on the true value (Estimates from agents performing retrospective inference with windows of

length 1, 2, and 128 time steps are shown in blue, orange, and gold, respectively. Estimates from an agent performing offline inference is shown in purple. True hidden

states are indicated with black crosses, whilst observations are indicated with red circles. The true value of parameter r is indicated with a dotted black line in 5c).

Perhaps the most significant feature of our simulations
is the demonstration that, where there is uncertainty about
time-invariant model parameters, finite retrospective inference
significantly improves the accuracy of learning. This is important
both because these parameters may be of intrinsic interest, and
because better learning will result in more accurate beliefs about
present and future states. Even if an agent has no intrinsic
interest in past events, it still has a clear incentive to perform
retrospective inference, since this will allow it to act better in
the future. This provides a new twist on the often-advanced
hypothesis that the primary function of memory in general,
and episodic memory in particular, is to improve predictions
about the future (Schacter et al., 2012). Here, in addition
to playing a role in constructing imagined future scenarios
(Hassabis et al., 2007), the explicit representation of events or
episodes in the past may be essential for updating beliefs about

current and future states or learning time-invariant properties
of an agent’s environment (Baker et al., 2017). In this paper
we have not sought to clearly characterize the sorts of problem
for which FRI is likely to be most useful. However, this will
be extremely important for future work aimed at furnishing
empirical evidence for an effect of retrospective inference
on learning.

A similar point may be made about the potential importance
of retrospective inference for the generation and selection of
appropriate cognitive models, a process known as structure
learning (Acuña and Schrater, 2010; Braun et al., 2010; Tervo
et al., 2016). In this paper, we confine ourselves to considering
inference about hidden states and learning about fixed model
parameters, but structure learning is an equally important
process, and one that is likely to be strongly affected by the depth
of retrospective processing employed by an individual. In future
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FIGURE 5 | Accuracy of inference and learning on the reversal task for agents using different window lengths, averaged across 1,000 simulations (see “Simulations”

for more details). Accuracy is quantified as the log likelihood assigned to the true sequence of states or the true parameter value by the agent, averaged across

simulations. Top left panel: accuracy of retrospective state estimation relative to the performance of an offline agent. Accuracy increases with window length,

becoming identical for online and offline agents with the same effective window length (256 trials). Top right panel: accuracy of online (filtered) state estimates relative

to the filtered state estimates of an offline agent. Accuracy increases with window length, but never becomes equivalent to that of an offline agent. This difference

reflects the fact that the parameter estimates of the online agent only use observations made up to the present time, rather than on the entire data set (In other

words, p (θ |o1:t, λ) at trial t rather than p (θ |o1:T , λ)). This can be thought of as a cost of online inference. Bottom left panel: accuracy of final parameter estimates

relative to the performance of an offline agent. Accuracy progressively increases with window length, becoming equivalent for online and offline agents with the same

effective window length. Bottom right panel: average accuracy of parameter estimates across trials. Accuracy of parameter estimation increases with window length,

and these differences progressively appear as the session goes on. (Absolute values of the accuracy measure are difficult to interpret here, but the relative accuracy of

the difference agents is meaningful).

work, we plan to address this explicitly, both through simulations
and experimental work.

The specific retrospective inference model we describe here
differs importantly from previous approaches to modeling
probabilistic reversal tasks (Hampton et al., 2006) and change
point detection more generally (Wilson et al., 2010; Radillo
et al., 2017) in two key ways, first through the fact that we
allow for parameter learning (though see Radillo et al., 2017),
and second, because we simulate agents that are able to update
beliefs about past states. Both these processes are important for
normative behavior, and it will be important to establish how
closely human performance across a number of domains reflects
this. Retrospective inference has also been considered in the
context of reinforcement learning (Moran et al., 2019), and we
will explore how to approach similar reward learning problems
using our probabilistic framework in future. Similar ideas have

also been explored in the context of active inference and planning
(Friston et al., 2017; Kaplan and Friston, 2018), although these
have not explored effects on learning.

Our approach differs importantly from models such as the
hierarchical Gaussian filter (Mathys et al., 2011), which use
higher-level variables operating at longer time scales to provide
an implicit time window, but do not make postdictive inferences
of the sort discussed here [In fact, retrospective inference has
the potential to improve accuracy on tasks involving tracking of
higher order variables like volatility (Behrens et al., 2007; Mathys
et al., 2011), which is a promising area for future study]. A
closer analogy can be drawnwith generalized filtering approaches
(Friston, 2008), which infer both on the current state and its
derivatives (rate of change, acceleration and so on), and require
a finite window of data to perform updates. This similarity is
something we intend to return to in future work.
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FIGURE 6 | Accuracy of inference and learning for random HMMs (see “Simulations” for more details). In general these mirror the results for the reversal task

(Figure 5), but the quantitative differences are smaller, perhaps reflecting the greater number of states and parameters to be estimated (Accuracy is quantified as the

log likelihood assigned to the true sequence of states or the true parameter value by the agent, averaged across simulations). Top left panel: accuracy of state

estimation increases with window length, becoming identical for online and offline agents with the same effective window length (256 trials). Top right panel: accuracy

of online (filtered) state estimates relative to the filtered state estimates of an offline agent. Accuracy increases with window length, but never becomes equivalent to

that of an offline agent. Bottom left panel: accuracy of final parameter estimates relative to the performance of an offline agent. As the window length employed

increases, so does accuracy, becoming equivalent for online, and offline agents with the same effective window length. Bottom right panel: average accuracy of

parameter estimates across trials. Accuracy of parameter estimation increases with window length, and these differences progressively appear as the session goes on.

Retrospective inference provides a natural explanation for
a number of “postdictive” phenomena in perception, in
which perception of an event is influenced by other events
that only occur afterwards (Eagleman and Sejnowski, 2000;
Shimojo, 2014). A classic example of this is the color phi
phenomenon (Kolers and von Grünau, 1976). Here, two
differently colored dots are briefly displayed to the subject
at different spatial locations. If the interval between the
flashes is sufficiently short, subjects report perceiving a single
moving dot, rather than two separate dots. Critically, they
also perceive the color of the dot as changing during motion,
meaning that they perceive the second color as occurring
before it is presented on screen. This means that information
about the color of the second dot has somehow been
propagated backwards in (perceptual) time. That such postdictive
phenomena might be explained by smoothing has previously
been pointed out by Rao et al. (2001), but our proposal
builds on this by suggesting a limited window of updating,

as well as highlighting the importance of such belief updating
for learning.

The existence of postdictive perceptual phenomena (among
other considerations) have led to what is often called the
“multiple drafts” account of consciousness (Dennett and
Kinsbourne, 1992), in which the contents of conscious are
subject to continual revision in the light of new information (at
short timescales, at least), and what subjects report is critically
dependent upon when they are asked. For example, in the color
phi experiment, subjects’ reported perceptual experience would
differ if they were asked to report it before the second dot is
shown, as opposed to when they are asked to report it afterwards.
This accords extremely well with our proposal (at least if we
make the further supposition that the contents of consciousness
can, in some sense, be identified with the outcome of optimal
perceptual inference). Under FRI (unlike filtering), reported
perceptual experience will be critically dependent on when the
report is made, since online retrospective inference makes beliefs
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time-dependent. In other words, my belief about what happened
at time t may be different depending on whether you ask me for
it at time t+1 or time t+10. This means that FRI has the potential
to provide the computational underpinning of a “probabilistic
multiple drafts” model of perceptual experience.

One intriguing possibility raised by FRI is that different
individuals might perform retrospective belief updating to
different extents, either on particular tasks or in general, and
that this might partially explain between-subject differences in
performance on particular tasks (see FitzGerald et al., 2017
for evidence of this). Such differences might even help explain
facets of psychopathology (Montague et al., 2012). For example,
impaired learning due to reduced or absent retrospection might
lead to the tendency to form delusional beliefs (Hemsley and
Garety, 1986; Corlett et al., 2004; Adams et al., 2013). For
example, say someone looked at you in an unusual way—making
you feel they were spying on you—but then subsequently ignored
you: if you could not use the latter information to revise your
initial suspicion, you would be more likely to become paranoid
about that person. This idea is supported by the finding of altered
neuronal responses in subjects with delusions (as compared with
healthy controls) during performance of a retrospective belief
updating task (Corlett et al., 2007), and is something we intend
to return to in future.

Implementing retrospective inference also has important
implications for neurobiology. In particular, since agents need
to be able to dynamically update beliefs about past states, they
are required to store explicit, ordered representations of the past,
and it should be possible to find evidence of this in appropriate
neuronal structures (Pezzulo et al., 2014) (For some evidence
of this, see Corlett et al., 2004). Intriguingly, this fits extremely
well with an extensive literature on hippocampal function (Fortin
et al., 2002; Jensen and Lisman, 2005; Pastalkova et al., 2008;
Lehn et al., 2009; Penny et al., 2013), a finding supported by the
results of our previous study, which found a relation between
depth of retrospective processing and gray matter density in
the hippocampus (FitzGerald et al., 2017). On the further
supposition that retrospective inference is implemented using
filtering and smoothing as described above, this leads to the
hypothesis that forward and backward sweeps through recently
encountered states, as are known to occur in the hippocampus
(Diba and Buzsáki, 2007; Pastalkova et al., 2008; Davidson et al.,
2009; Wikenheiser and Redish, 2013) may play a key role in
retrospective belief updating. What is less clear, at present, is
how to implement retrospective inference within established,
neurobiologically-grounded accounts of probabilistic inference
in the brain (Friston, 2005;Ma et al., 2006; Aitchison and Lengyel,

2016)—though see (Friston et al., 2017) for related suggestions.
This is an extremely important question, and one we intend to
return to in future work.

Probabilistic models of cognition are an enormously exciting
tool for understanding the complex workings of the mind and
brain (Clark, 2012; Friston et al., 2013; Pouget et al., 2013;
Aitchison and Lengyel, 2016). The ideas we propose represent a
development of such approaches to encompass inference about
states in the past, as well as the present. On the further hypothesis
that the depth of processing employed is flexible and tailored
to the demands of a particular problem or environment, such
retrospective processing can also be linked to broader notions
of bounded rationality (Simon, 1972; Gigerenzer and Goldstein,
1996; Ortega et al., 2015). We show, through simulations of
simple environments, that even a limited degree of retrospection
can yield significantly more accurate beliefs about both time-
varying states and time-invariant parameters, and thus has the
potential to support more adaptive, successful behavior to justify
its extra resource costs. This makes it a plausible strategy for
real, biological agents to employ FRI makes both behavioral and
neuronal predictions in a number of contexts and thus naturally
suggests further avenues for exploration in future work.
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