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Data analytics as a field is currently at a crucial point in its development, as a

commoditization takes place in the context of increasing amounts of data, more user

diversity, and automated analysis solutions, the latter potentially eliminating the need

for expert analysts. A central hypothesis of the present paper is that data visualizations

should be adapted to both the user and the context. This idea was initially addressed

in Study 1, which demonstrated substantial interindividual variability among a group of

experts when freely choosing an option to visualize data sets. To lay the theoretical

groundwork for a systematic, taxonomic approach, a user model combining user traits,

states, strategies, and actions was proposed and further evaluated empirically in Studies

2 and 3. The results implied that for adapting to user traits, statistical expertise is a

relevant dimension that should be considered. Additionally, for adapting to user states

different user intentions such as monitoring and analysis should be accounted for. These

results were used to develop a taxonomy which adapts visualization recommendations to

these (and other) factors. A preliminary attempt to validate the taxonomy in Study 4 tested

its visualization recommendations with a group of experts. While the corresponding

results were somewhat ambiguous overall, some aspects nevertheless supported the

claim that a user-adaptive data visualization approach based on the principles outlined

in the taxonomy can indeed be useful. While the present approach to user adaptivity is

still in its infancy and should be extended (e.g., by testing more participants), the general

approach appears to be very promising.

Keywords: graph adaptivity, data visualization, user model, analytics, graph ergonomics, recommendation engine

INTRODUCTION

As the recent acquisition of analytics application provider Tableau by software giant Salesforce
shows, the relevance of self-service data visualization software is rapidly increasing. Considering
the associated commoditization, the user group for data analytics applications is not only becoming
larger, but also more diverse, and so are personal backgrounds and levels of experience regarding
data visualizations (Convertino and Echenique, 2017; Lennerholt et al., 2018). Although dealing
with diversification is thus becoming more relevant, current research still focuses either on
data-based recommendations for visualization generation (Viegas et al., 2007; Vartak et al.,
2015; Wongsuphasawat et al., 2016) or on individual factors determining the processing of data
visualizations (e.g., the data literacy concept) (Gal, 2002; Shah and Hoeffner, 2002; Roberts et al.,
2013). However, these two important areas have not yet been sufficiently considered in conjunction,
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although the benefits of improving the accessibility of data
through individualized visualizations may very tangibly
contribute to achieving better business decisions. Hence, in this
paper we explore the potential of the latter idea by enriching
the current user models with specific human characteristics, and
by following an experimental approach we propose a taxonomy
for user adaptivity in data visualization as a foundation for
further research.

In order to derive this taxonomic approach, we outlined
three main research questions for this paper: Is there a need for
a user-adaptive approach to data visualization? How should a
taxonomy be structured in its user-adaptive approach? Can the
usefulness of an adaptive approach be validated? Based on these
research questions we structured the present paper, starting with
an examination of previous works on data visualization. Based on
this, we determined a user model consisting of user traits, states,
and strategies as well as their respective operationalizations.

Following up on the theory, we conducted three studies to
understand the need and the relevant factors for an adaptive
approach to data visualization. Study 1 explored how User
Interface Design experts would visualize different data sets,
thereby addressing the first research question regarding the
need for an individualized approach. We hypothesized that
recommendations by the experts would vary significantly,
therefore supporting the need for an individualized approach.
For the second research question on how a taxonomy should
be structured, we conducted two follow-up studies based on the
proposed user model. Study 2 explored how user traits impact
on the perception of different data visualization encodings,
and hence laid the groundwork for adapting to traits. The
associated hypothesis was that not all visualizations were
suitable for every user. Study 3 focused on understanding
how user states can be operationalized as intents, and how
these can differ from each other. Here the hypothesis was
that different intents are characterized by different associated
cognitive subtasks and should therefore significantly impact
on visualization requirements. Both studies are necessary
preconditions contributing to the design of an adaptive data
visualization taxonomy.

Based on these insights, a general adaptive taxonomy of
diagram choice, layout, and specific visualization design was
derived. An important feature of this taxonomy is that it can
handle multidimensional data and state- or trait-related user
variables. The validation for the usefulness of the taxonomy as
outlined in the third research question was addressed in Study
4, in which User Interface Design experts were asked to perform
different tasks with visualizations suggested by the taxonomy and
rated their experience afterwards. The findings indicated some
potential for such a taxonomy, although there is still some work
to be done before it may be applied in a consumer setting.

BACKGROUND AND PREVIOUS WORK

Data visualizations have been in use to present numerical
information since the early twentieth century (Eells, 1926) and
consequently spawned a research tradition that is still active

(Cleveland and McGill, 1984; Shneiderman, 1992; Heer et al.,
2010). Four larger research streams can be summarized under
this umbrella. While at first the focus was on optimizing single
visualizations (Gillian and Lewis, 1994), the requirement to
display more complex information subsequently led to research
into how multiple charts may be layouted next to each other in
a “multi-view” perspective (Roberts, 2007). The rise of personal
computers then enabled not only static displays, but also the
possibilities to interact with data visualization, supported by the
field of human factors (Stasko et al., 2008). Lastly, the research
on automatic recommendations for data visualizations became
increasingly relevant as more users without an academic degree
in statistics or computer science gained access to self-service
analytics solutions (Mackinlay, 1986; Stolte and Hanrahan,
2000; Wongsuphasawat et al., 2016). All these research streams
combine challenges from various fields, including psychology,
computer science, and human factors.

Before exploring these research streams in more detail, some
terms need to be disambiguated first. A chart refers to a single
visualization of a set of data, for example, a bar chart.Within such
charts, an indicator refers to a graphical element that represents
the value of a single data point associated with a variable, such
as a single bar in a bar chart or a point in a scatterplot. The
type of encoding/indicator refers to the kind of indicator in
use, such as bars, points, or lines (Gillian and Lewis, 1994).
Finally, another important distinction for the present purpose
is that between adaptivity, personalization, and customization.
While adaptivity refers to a system that automatically sets up
functionality and a user interface to fit the user, personalization
requires the user to actively set up the system in a way that
fits him/her. In contrast, customization takes place when a third
party sets up the system to fit the user (Germanakos, 2016). The
following literature review on data visualization will refer to this
basic terminology.

Research on data visualization was first concerned with the
optimization of single chart visualizations, starting with Eells
(1926). Corresponding research on data encoding effectiveness
peaked in the 80s and 90s, when landmark studies like those
by Cleveland and McGill (1984), who invented dot plots, or by
Hollands and Spence (1992), who evaluated line charts vs. bar
charts as the most effective means to communicate change in
data (see also Huestegge and Philipp, 2011; Riechelmann and
Huestegge, 2018), emerged. Scatterplots, on the other hand, were
later considered an optimal choice for visualizing correlations
(Harrison et al., 2014; Kay and Heer, 2016). Over the years,
new visualization techniques such as tree maps were introduced
(Shneiderman, 1992; Heer et al., 2010; Bostock et al., 2011).
Besides encoding types, particular features of visualizations like
color (Lewandowsky and Spence, 1989; Demiralp et al., 2014)
or chart size were studied more closely. Regarding the latter,
several studies emphasized that smaller charts (<17◦ of the
visual field) were considered helpful in avoiding gaze shifts
along with associated inaccuracies (Heer et al., 2009; Heer and
Bostock, 2010; Strasburger et al., 2011; Orlov et al., 2016). Apart
from data point reading accuracy, the size of a chart was also
shown to influence perceptual strategies: While smaller graphs
facilitated quick overall assessments and immediate responses
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to graphs, larger charts led to increased scrutiny during graph
comprehension (Orlov et al., 2016).

As most data sets and real-world contexts are too complex
to be displayed in a single chart, more research on multi-
view visualizations emerged in the early 2000’s. These flexible
data visualization features also became more prominent in data
analytics software. For example, pioneering applications such
as snap-together visualization (North and Shneiderman, 2000)
or Polaris (Stolte and Hanrahan, 2000) emerged. Historically,
such multi-view visualizations originally consisted of dual-views
of data (Roberts, 2007), comprising, for example, Overview +

Detail, Focus+ Context, or Difference Views, the latter involving
two datasets that are laid out next to each other to facilitate
comparison. Another line of research on more complex data
sets focused on so-called “Small Multiples,” which depict the
relationship of several variables relative to each other. This type
of visualization was also combined with a master-slave approach,
so that manipulating data in one view also affected visualizations
in the other view (Roberts, 2007; Scherr, 2009; van den Elzen and
van Wijk, 2013).

The development of these types of data visualization also
stimulated research on interaction with corresponding graphs.
Especially as interactive visualizations became more and more

common at the end of the twentieth century, studies on using
interactive graphs, which quickly became a standard in data

analysis software, were on the rise. This was not surprising, since
interactive visualizations offer many benefits for working with

data, from providing context information to increasing attention
(Stasko et al., 2008). With the onset of touch-based devices, an

entirely new class of interactive data display solutions, with its
own set of challenges, emerged: Especially with dashboards, main
goals for designing applications for mobile devices comprised
maximizing the size of each visualization, minimizing occlusion,
keeping all visualizations in view, and reducing any need for
end-user customization of views (Sadana and Stasko, 2016).

Finally, with increasing commercial interest in data
visualization for large sets of data, automation of data
visualization became an important issue. Self-organizing
dashboards based on recommendation systems were developed
as an answer to the disproportionally large amount of user
time devoted to data handling (compared with the actual
goal of conducting science; Howe and Cole, 2010). Automatic
data visualization recommendations have come a long way
(Mackinlay, 1986; Stolte and Hanrahan, 2000; Viegas et al.,
2007; Vartak et al., 2015; Wongsuphasawat et al., 2016).
Especially due to the commoditization of data analytics, recent
recommendation engines such as Voyager 2 (Wongsuphasawat
et al., 2017) are gaining increasing attention. The underlying
criteria for these recommendation systems are best outlined
along the axes data characteristics, intended task or insight,
semantics and domain knowledge, visual ease of understanding
as well as user preferences and competencies (Vartak et al.,
2017). Taken together, research in this area already points
toward further development of recommendation systems in
the areas context sensitivity and, ultimately, user-adaptive
data visualization.

STRUCTURING INDIVIDUAL PERCEPTION
OF DATA VISUALIZATION WITHIN A USER
MODEL

As mentioned above, adapting the display of data to the
user is the next challenge in the field of data visualization,
especially since information overload appears to become a major
problem in business decisions (Moore, 2017), and therefore
calls for user-specific approaches. However, structuring user-
adaptive data visualization requires a user model in the first place
(Germanakos, 2016). A useful basic distinction in this context
is that between (relatively persistent) user traits and (more
transient) situational states of the user (Kelava and Schermelleh-
Engel, 2008). Based on various possible traits and the states,
several strategies can be applied by users to deal with visualized
data, as displayed in Figure 1.

Research on how individual traits can affect the perception
of data visualization started around the 80’s with the concept
of graphical literacy, loosely defined as “the ability to read
and write (or draw) graphs” (Fry, 1981, p. 383). Later, the
concept was elaborated, and subdivided into the three skill levels
“reading the data,” “reading between the data,” and “reading
beyond the data” (Friel et al., 2001; Okan et al., 2012). Based
on these theoretical considerations, fostering the development
of graphical literacy became a focus of research (Gal, 2002;
Shah and Hoeffner, 2002; Roberts et al., 2013). Furthermore,
determining the cognitive variables underlying graphical literacy
has also been of considerable interest. Commonly, perceptual
speed, visual working memory and—to some extent—verbal
working memory were discussed as potentially relevant factors
in this regard, sometimes joined by locus of control (Velez
et al., 2005; Conati and Maclaren, 2008; Toker et al., 2013;
Lallé et al., 2015). Perceptual speed refers to the “speed in
comparing figures or symbols, scanning to find figures or symbols,
or carrying out other very simple tasks involving visual perception”
(Conati and Maclaren, 2008, p. 202). Both verbal and visual
working memory are part of the working memory architecture
proposed by Baddeley (1992). Specifically, the visuospatial
sketchpad comprises the ability to manipulate visual images,
while the phonological loop stores and rehearses speech-based
information. As perceptual speed and visual working memory
have repeatedly been shown to be relevant traits regarding the
perception of data visualization, we chose to include assessments
of these constructs in our studies.

When outlining user states and user intentions in particular
within the data analytics context, no widely accepted general
model is currently present in the literature. It has been proposed
that, on a higher processing level, one should distinguish
visualization purposes into analysis, monitoring, planning, and
communicating (Few, 2004). However, it should be noted that
specifying the actual intention of a user and providing the
appropriate information is certainly not a trivial challenge (Gotz
and Wen, 2009; Conati et al., 2015; Oscar et al., 2017).

Previous research on strategies for reading data visualizations
primarily focused on visual processing, reasoning with data
points, and integrating context knowledge (Amar et al., 2005;
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FIGURE 1 | Modeling aspects of user-adaptive data visualization.

Ratwani et al., 2008). Interindividual differences in strategies
were assumed to be especially relevant in more unrestricted
settings such as understanding unfamiliar visualizations (Lee
et al., 2016), or in the context of designing visualizations
(Grammel et al., 2010).

EXPLORING THE NEED AND THE
RELEVANT FACTORS FOR THE DESIGN OF
AN ADAPTIVE TAXONOMIC APPROACH

Although previous literature repeatedly recommended to put
more research effort into studying user adaptivity in the context
of data visualization (see above), we reasoned that it is mandatory
to verify the need for an underlying taxonomic approach to user
state/trait-based visualizations first. Therefore, we conducted
Study 1with User Interface Design experts (n= 16) to explore the
need for an adaptive taxonomic approach by letting them freely
design visualizations for several data sets in order to see if the
results would differ, thereby underlining the need for adaptivity.

Based on this, we conducted two follow-up studies to
understand user traits and states in more detail based on a user
model. Study 2 (n= 45) had the goal of evaluating how individual
traits and backgrounds affect the interpretation of different
data visualization types. Therefore, the number of errors in the
interpretation as well as interpretation speed were measured with
20 different visualizations. Study 3 evaluated how different goal-
states affected the decision which cognitive processing steps are
taken in working with data visualization, and how—based on
the taxonomy—visualizations should therefore adapt based on
user goals. Two main goal-states (analysis vs. monitoring) were
identified from theory, and analytics experts regularly working

with numbers (n = 14) were questioned about their typical
real-life tasks involving data. These tasks were split into their
associated (low-level) cognitive processing steps and classified
into one of the two goals. Based on the results of the conducted
studies, a taxonomy was derived (see section Developing a User-
Adaptive Visualization Taxonomy). All data sets from the studies
are available online (link in section Supplementary Materials).

Study 1—Exploring the Need for an
Adaptive Approach
Study 1 explored how User Interface Design experts would
visualize different data sets. As we already anticipated the need
for an adaptive approach based on an underlying taxonomy,
we hypothesized that analytics expert participants would vary
considerably in choosing a type of encoding for various given
data sets.

Participants
Sixteen analytics experts (SAP employees, 7 female, 9 male)
were tested and interviewed. The participants were chosen based
on their experience within the context of data analytics. All
participants had an academic background and were working for
SAP for at least 6 months in the areas of UX or analytics. All
participants also had considerable experience in working with
data visualization (>1 year of professional experience). The age
range was 27–48 years.

Stimuli
There were 16 data sets to be visualized by the participants. These
data sets were of different complexity and constructed based
on the combinations of four dichotomous factors: (a) single or
multiple (three) numerical variables, (b) single ormultiple (three)
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categorical variables, (c) data including or excluding time as a
variable, and (d) data with 1:1 cardinality or a 1:n cardinality. In
six of these data sets, geographical variables were included.

Procedure
After a brief introduction, the data sets were presented to
the participants one after another on single sheets of paper
by the experimenter. The participants were asked to sketch
recommendations for respective visualizations on the same page
as the data set. This was done in order to minimize a potential
influence of software restrictions or software experience. The
encoding recommendations were classified by the experimenter.
The study lasted around 42 minutes (SD= 13).

Design and Data Analysis
The independent variables for designing the data sets were the
number of categorical variables (1 or 3) in the dataset, the number
of numerical variables (1 or 3) in the dataset, the cardinality
of the data (1:1 or 1:n) and if a time variable was presented
(yes or no). There was one data set for each combination of
these independent variables. For each data set, we calculated the
proportion of different (vs. same) visualizations designed across
participants (e.g., a proportion of 100% would indicate that all
participants came up with the same solution), which served as
the dependent variable.

Results
The solutions proposed by the participants varied considerably,
as indicated by a mean proportion of different visualizations
of 51% (SD = 20.4). In some cases, all participants proposed
different types of data visualizations. A one-sample t-test
indicated that the mean significantly differed from 100%,
t(15) = 9.97, p < 0.0001. Therefore, the results generally
support the assumption of substantial variability in individual
visualization preferences. In addition, it was observed that most
participants actively tried to reduce data complexity by plotting
multiple, differently scaled numerical variables on the same
axis (sometimes even stacking these differently scaled variables,
resulting in misleading data representations). Another strategy to
reduce complexity was the use of filters. Finally, we also observed
that intra-individual consistency in chart choice (e.g., always
using a geomap for geodata) tended to be low. As an additional
exploratory analysis, we also conducted a multiple regression
analysis using the independent variables (for designing the data
sets) as predictors. This analysis resulted in a significant overall
regression (R= 0.91, p < 0.001) with significant contributions of
the predictors “number of categorical variables” (β = 0.66, t =
5.276, p < 0.001) and “number of numerical variables” (β = 0.58,
t = 4.620, p= 0.001), while the remaining two predictors had no
significant impact (β < 0.21, t < 1.7, p > 0.12). Specifically, an
increase in the number of variables led to more diverse solutions.

Discussion
The variability present in the results of this exploratory study
generally supports the call for user-adaptive data visualization.
Participants suggested different visualizations for the same data
sets, even though general user characteristics such as their
academic background and field of work were relatively similar.

In the context of the proposed high-level user model, the
results therefore suggest that it may be worthwhile to study
potential effects of more specific user traits and strategies on
visualization selection and design to eventually optimize and
support visualization decisions. In addition, as most participants
had problems with dealing with the inherent complexity of the
data, a taxonomic approach that not only takes user variables but
also (multidimensional) data characteristics into account would
clearly be desirable.

Limitations
There were several shortcomings in this exploratory study that
need to be discussed. First, due to time restrictions eight of
the 16 participants were not able to complete all tasks, and
thus the results of the analyses should only be interpreted with
great care. Second, the approach of this study lacked some
degree of ecological validity, as participants were asked to choose
visualizations without the help of a dedicated software. In a brief
interview at the end of the study protocol, several participants
commented that they would actually click through all available
alternatives in a given software instead of actively developing a
visualization concept. Third, all participants were employees of
SAP and therefore almost certainly affected by the company’s
design language and typical visualization solutions, even though
the heterogeneity of the results implied that this did clearly not
result in similar outcomes among participants. However, one
might suspect that the results might vary even more substantially
if analysts or analytics UI experts from other companies were
added to the sample.

Study 2—Examining the Perception of
Various Visualizations Considering User
Traits
As Study 1 suggested the need for a user-adaptive approach
to data visualization, the next step was to derive more specific
research questions based on the user model outlined above.
Starting with user traits, Study 2 aimed at becoming more
specific about determining which traits may be relevant for the
development of an adaptive taxonomy, especially regarding the
selection of specific types of visual encoding. Based on results
from previous literature (see above), we specifically focused
on prior experience, visual literacy, and cognitive capacities.
These factors were considered relevant for the participants’
ability to understand and work with a wide variety of data
visualizations. More specifically, we hoped that it is possible to
classify individual data visualizations into those more suitable for
experts or novices in order to take this issue into account within
the taxonomy. This was done using a cluster analysis approach.

Consequently, the main hypothesis in this study was that
some visualizations are more appropriate for participants
with substantial prior experience, visual literacy, or cognitive
capacities to adapt quickly to these visualizations. Prior
experience was operationalized in terms of education, working
in a data-driven job, and the degree of statistical knowledge. To
measure graphical literacy, the Subjective Graphical Literacy Scale
(SGL) (Galesic and Garcia-Retamero, 2011; Garcia-Retamero
et al., 2016) was used. Cognitive capacities were tested by
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assessing perceptual speed and visual working memory. To
measure perceptual speed, a Sum to 10 test (Ackerman and
Beier, 2007) was used as it is also based on numerical (and
not only visual) abilities. In this test, participants are presented
with combinations of two numbers, and have to decide quickly
if their sum is equal to 10 or not. To measure visual working
memory, a Visual Patterns Test based on the Visual Patterns
Test by Della Sala et al. (1999) was administered. In this test,
participants are exposed to a black and white pattern grid and
have to recognize this pattern from a selection of similar patterns
after a brief distraction interval. A multiple regression analysis
was used to test which of these several traits significantly predict
graph comprehension abilities.

Participants
All participants (N = 45) were recruited via Social Media. Thirty-
three participants were male (73%), 12 Participants were female
(27%). Thirteen of the participants had a high school degree, 19 a
bachelor’s degree and 12 a master’s degree, and one had finished
an apprenticeship.

Stimuli
The following data visualization types were evaluated:
Scatterplot, Area Chart, Stacked Bar Chart, Stacked Area
Chart, Boxplot, Bullet Chart, Waterfall Chart, Bubble Chart,
Heatmap, Treemap, Sunburst, Sankey Chart, Matrix Scatterplot,
Trellis Bar Chart/Small Multiples, Sparklines andHorizon Charts
(see Heer et al., 2010, for details on these visualization types).

Procedure
The experiment was web-based and therefore completed on
the participants’ own devices. The experiment was designed
and conducted using the platform soscisurvey (www.soscisurvey.
com). After a brief introduction to the study and its parts,
participants were asked to report their highest educational
degree. After that, they were asked if their job involved a
lot of work with numbers and graphs on the scale “No”—
“Sometimes”—“Yes.” Additionally, participants were asked to
rate their familiarity with statistics and data interpretation on
the following scale: “Not familiar at all”—“Somewhat familiar
(e.g., familiar with averaging)”—“Familiar (e.g., familiar with
correlation, variability measures, different types of distributions
including normal distributions)—“Very familiar (e.g., familiar
with factor analysis, cluster analysis, ANOVA).” After this,
participants completed the SGL, the Sum up to 10 test, and the
Visual Patterns Test. In the main part of the study, participants
were provided with 16 data visualization types (see above). For
all diagrams, participants were asked how familiar they were with
this diagram and how good they think they could handle this
diagram on a scale from 1 (“Not at all”) to 5 (“Very good”). After
that, participants were provided with 4 statements about the data,
which they had to judge as either correct or incorrect (including
the option to choose “I don’t know”). The study lasted about 19
(SD= 3,5) min.

Design and Data Analysis
Graphical literacy, performance in the visual working memory
(VWM) test (number of errors and response time), the

performance in the perceptual speed (PS) test (number of errors
and response time), and prior experience (education, working
in a job where charts and numbers are common and statistical
knowledge) served as independent variables in the analyses.
The dependent variables comprised the participants’ general
understanding of the graph (choosing “I don’t know” instead
of answering the questions), the number of errors made on the
tasks with different visualizations, and task solving time. For
analyses, an exploratory cluster analysis was conducted, followed
by multiple linear regressions (see below for details).

Results
First, to gain an understanding of how the tested visualizations
may be related to each other regarding their general susceptibility
to errors as well as the self-ratings with respect to the general
understanding of these visualizations, a hierarchical cluster
analysis was conducted based on the two dependent variables
“general understanding” and “number of errors,” which were
considered most relevant from an applied perspective. The
resulting dendrogram/clusters are shown in Figures 2, 3. Three
clusters were derived in total. The first cluster contained error-
prone visualizations. The second cluster comprised multivariate
and hierarchical visualizations, which were associated with more
errors, and which were partially difficult to understand. The
third cluster combined all sub-optimal visualizations. These
visualizations are common, but do not support error-free
interpretation. Horizon charts represented an outlier among
all visualizations, as it was both difficult to understand and
frequently misinterpreted. Thus, this type of visualization should
therefore be generally avoided. The main hypothesis was
that some visualizations are more appropriate for participants
with substantial prior experience, visual literacy, or cognitive
prerequisites necessary to quickly adapt to these visualizations.
To address this main hypothesis, all visualization types that were
not understood by all participants were grouped into an “expert
cluster” (consisting of bullet charts, boxplots, matrix scatterplots,
sankeys, and bubble charts). For these visualizations, multiple
regression analyses were conducted in order to model the impact
of independent user variables on the general understanding, the
error rates, and the reaction times as stated in the hypothesis.
An overview of results for an initial multiple regression analysis
based on general understanding is shown in Table 1. However,
note that 18 observations had to be excluded due to missing
data on two independent variables (participants who were not
active in a job), and the regression model was only marginally
significant, F(9,17) = 2.48, p = 0.051, adj. R² = 0.339. A second
model only considered the factors statistical knowledge and VPT
errors (which were the only significant predictors within the full
model) and resulted in a significant effect overall, F(2,42) = 6.41,
p < 0.01, adj. R² = 0.197, including all cases. Finally, as visual
working memory is probably difficult to measure in an applied
software setting, a third model focusing on statistical knowledge
only was calculated. This analysis also resulted in a significant
prediction of the general understanding of data visualizations,
F(1,43) = 6.93, p < 0.02, adj. R² = 0.119. A correlation analysis
verified the analysis, as statistical education r(43) = −0.37, p
< 0.02 and visual working memory r(43) = 0.36, p < 0.02
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FIGURE 2 | Study 2: Dendrogram of visualization clusters.

were significantly correlated with each other. Multiple linear
regressions were also run for analyzing error rates, as shown
in Table 2. In an initial analysis using all predictors, the factor
education was significant, but the whole model was not, F(9,17)
= 1.04, p = 0.450, adj. R² = 0.013. This model was based on
the sample with 19 missing cases on two independent variables
(participants who were not active in a job). When excluding the
factors responsible for the missing cases (job experience) in a
second model, no factor was significant anymore and the model
again was not significant, F(7,34) = 0.55, p = 0.790, adj. R² =
−0.083. Finally, only using the factor education as a predictor
also yielded no significant effect, F(1,43) = 1.03, p = 0.315, adj.
R² = −0.001. The self-reported familiarity with the provided
expert data visualization types significantly predicted the number

of errors made in the tasks, F(1,43) = 4.17, p < 0.05, adj. R² =
0.067, although the effect is not particularly strong.

Discussion
This study identified three clusters of visualization types,
namely the “good standard” (Scatterplot, Trellis Chart, Waterfall,
Boxplot and Bullet Chart), the “suboptimal standard” (Sparkline,
Heatmap, Stacked Bar Chart, Area Chart, Stacked Area
Chart), and the “multivariate visualizations” (Sunburst, Treemap,
Matrix Scatterplot, Sankey Chart, Bubble Chart). An additional
(artificially created) cluster combined Boxplot, Bullet chart,
Sankey Chart, Bubble Chart and Matrix Scatterplots into
an “expert visualizations” group. Understanding of these
visualizations was predicted significantly by the users’ statistical
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FIGURE 3 | Study 2: Scatterplot with visual representation of the emerging clusters and the artificial expert cluster.

TABLE 1 | Study 2: multiple regression models to predict the general

understanding of visualizations in the expert cluster.

Factor Variable B SE B β t p

MODEL 1 (18 MISSING)

Graphical literacy SGL 0.01 0.06 0.03 0.19 0.856

Cognitive variables VWM error 0.69 0.28 0.48 2.46 0.025*

VWM time 0.01 0.02 0.07 0.36 0.726

PS errors −0.22 1.37 −0.03 −0.16 0.875

PS time −0.10 1.02 −0.18 −0.01 0.922

Prior experience Education −0.25 0.22 −0.23 −1.16 0.261

Job – Numbers 0.10 0.44 0.05 0.23 0.818

Job – Graphs −0.39 0.40 −0.23 −0.98 0.341

Statistical knowledge −0.83 0.38 −0.50 −2.16 0.045*

MODEL 2

Cognitive variables VWM error 0.52 0.23 0.31 −2.28 0.028*

Prior experience Statistical knowledge −0.65 0.27 0.33 −2.42 0.020*

MODEL 3

Prior experience Statistical knowledge −0.73 0.28 −0.373 −2.632 0.012*

*p < 0.05.

knowledge, and therefore this should be considered a crucial
factor in providing recommendations for a user. Interestingly,
neither the self-reported ability to work with charts nor the
SGL score were good predictors for either the probability of
understanding a chart or the errors made in the tasks. Also,

despite a current debate emphasizing the impact of cognitive
variables on learning to work with data visualizations (Velez
et al., 2005; Conati and Maclaren, 2008; Toker et al., 2013; Lallé
et al., 2015), the effect of perceptual speed on the ability to adapt
to unfamiliar data visualizations (or to work more accurately
with them) could not be replicated in this study. Visual working
memory, on the other hand, was indeed a significant predictor
of the ability to understand unfamiliar visualizations (but not of
error-free reasoning with them).

Limitations
This study also suffered from several limitations. One major
limitation was that participants only had to complete a single
task based on each visualization type. As the difficulty of
the tasks was not controlled independently, the evaluation
of visualization types may be quite vulnerable to task-
based processing disruptions or task difficulty. Additionally,
participants were not a representative sample, as the educational
background was nearly exclusively academic. A more diverse
sample may yield more nuanced results and provide answers
to the question of the extent to which people with lower
educational levels can work with different types of visualizations.
Furthermore, the online setting of the present study is not
a controlled environment and therefore potentially subject to
distraction. This may have also influenced the measurement of
cognitive abilities, although it may also be argued that in a
work setting distractions can actually be considered to occur
quite frequently.
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TABLE 2 | Study 2: multiple regression models to predict the errors in the expert

cluster.

Factor Variable B SE B β t p

MODEL 1 (18 MISSING)

Graphical literacy SGL −0.01 0.02 −0.10 −0.46 0.653

Cognitive variables VWM error 0.03 0.09 0.07 0.31 0.759

VWM time 0.00 0.01 0.17 0.72 0.481

PS errors −0.51 0.42 −0.30 −1.23 0.235

PS time −0.51 0.31 −0.38 −1.64 0.119

Prior experience Education −0.15 0.06 −0.53 −2.23 0.039 *

Job – Numbers 0.00 0.13 −0.00 0.00 0.999

Job – Graphs 0.15 0.12 0.35 1.24 0.233

Statistical knowledge 0.09 0.16 0.21 0.75 0.464

MODEL 2

Graphical literacy SGL −0.02 0.02 −0.16 −0.97 0.339

Cognitive variables VWM error −0.00 0.07 −0.01 −0.07 0.946

VWM time 0.00 0.00 0.01 0.06 0.954

PS errors −0.37 0.33 −0.20 −1.15 0.258

PS time −0.22 0.22 −0.18 −0.99 0.329

Prior experience Education −0.04 0.04 −0.16 −0.93 0.358

Statistical knowledge 0.02 0.07 0.04 −0.227 0.822

MODEL 3

Prior experience Education −0.04 0.04 −0.15 −1.02 0.315

*p < 0.05.

Study 3—Examining the Relationship of
User Intents and Low-Level Actions
After examining a selection of user traits in Study 2, the next
step was to focus on another aspect closely associated with user
traits, namely the more transient user states (e.g., emotions,
intentions etc.). Based on the four dissociable user intents
monitoring, analyzing, planning, and communicating (assumed
to be engaged in a cyclical fashion, see Few, 2004), the two
intents monitoring and analyzing were selected for Study 3. We
reasoned that these two intents were more closely associated with
perceiving and understanding data visualizations, while planning
and communicating were rather related to deriving actions. In
order to distinguish between analyzing and monitoring, we first
focused on low-level task profiles. Specifically, several analysts
and managers were interviewed regarding their regular work
with data visualizations and the associated tasks. For low-
level tasks, we distinguished between the sub-tasks retrieving
values, filtering, computing a derived value, finding extrema,
sorting, determining ranges, characterizing distributions, finding
anomalies, clustering, and correlating (Amar et al., 2005). It was
hypothesized that the user intents “analysis” and “monitoring”
are associated with significantly different patterns of these low-
level sub-tasks. If this holds true, the corresponding visualizations
should therefore be different, too.

Participants
Fourteen experts (4 female, 10 male) were interviewed. They
were recruited via personal network and were questioned via
telephone. The participants were from different departments

in different companies, ranging from sales management in a
small e-commerce startup to controlling in a DAX-30 automotive
corporation. All participants had an academic background, and
the age range was 25–55.

Procedure
After a short introduction and some information regarding the
background of the study, all participants were asked to report
which data-related tasks (involving visualizations) they were
frequently engaged in. One participant could principally report
any number of user tasks. After the interviews, each reported user
task was assigned to either a monitoring or an analysis intent, and
then they were further decomposed into their low-level sub-task
components (see above). The reported user tasks were assigned to
a monitoring intent if they comprised a check against a point or
level of comparison and produced a binary result (e.g., “Control if
work hours in every department indicate overtime”). Otherwise,
they were assigned to the analyzing intent (e.g., “Checking how
much plan and actual were apart in last periods of time”).

Results
The 14 participants reported 45 tasks altogether (average 3.2
tasks per participant). Of these 45 tasks, 19 were analysis tasks
and 26 were monitoring tasks. By calculating a t-test for the
mean number of low-level tasks associated with each intent, a
significant difference could be observed, t(43) = 5.397, p< 0.0001.
Specifically, tasks associated with an analysis (vs. monitoring)
intent involved a significantly greater number of low-level sub-
tasks per reported task. A chi-square test also revealed that the
distribution of the occurrence of the 10 sub-tasks involved in
the two different intent types significantly differed, χ ² (9) =

42.61, p < 0.001. Therefore, our hypothesis was confirmed. The
distribution of basic tasks within the two types of intents is
illustrated in Figure 4.

Discussion
The hypothesis of this study was that the low-level task profiles
of monitoring and analysis user states are significantly different.
Based on the results of the study this hypothesis can be
confirmed, therefore using these intents as a basis for adapting
visualizations to user states appears to be reasonable. Because of
the high level of relevance for all intents, the retrieval of values as
well as computing derived values should in particular be as easy as
possible. A major implication of this study was that highlighting
anomalies in a monitoring setting is an important feature in data
visualizations. Being able to highlight specific aspects, however,
implies reserving one (ideally pre-attentively processed) feature
specification (e.g., color) for callouts. Following up on this
thought, reserving colors for semantic callouts may be considered
advisable for a monitoring setup. This would need visualizations
to be charted without colors by default.

Limitations
This study also had some shortcomings. A major problem was
that both the classification of reported user tasks to intents
and low-level tasks to reported user tasks was essentially
subjective. However, we believe that our criteria were overall
quite reasonable, and it was necessary to start at some point.
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FIGURE 4 | Study 3: Distribution of low-level tasks within the intents.

Nevertheless, a more objective classification would be desirable.
Also, the sample size was relatively small, and once again only
academic participants were assessed. The resulting implications
discussed above therefore may thus not be generalizable to user
groups with lower education levels.

DEVELOPING A USER-ADAPTIVE
VISUALIZATION TAXONOMY

The main aim of this paper was to provide a first approach
for developing systematic user-adaptive visualization
recommendations. While previous related studies (see above)
can be used as clear guidelines for the general design of data
visualizations, the studies described so far represent a reasonable
basis for our decision to include adaptive elements based on the
user trait “expertise” (Study 2) and the user state “intention”
(Study 3). To make the taxonomy applicable for all kinds of
data sets, a central requirement was also to provide a structured
approach for the visualization of both simple and complex
variable settings. The proposed solution, which is mainly
grounded on discussions with experts and own prior experience
with typical options present in modern data visualization
software, is outlined in the following section and summarized in
Figure 5.

Layout and Gridding of Data
If a given data set has more dimensions than can (or should) be
displayed in a single chart, a layout of several charts is needed.
This grid should combine categorical variables on one axis and
numerical dimensions on the other axis (C-N-Matrix). In this
way, n-dimensional data sets can be visualized. If there are only
up to two numerical variables, these can be displayed directly

FIGURE 5 | Adaptive taxonomy calculcation steps to determine layout,

encoding and specifications.

in the chart, and the second grid axis may also be used for
categorical variables (C-Matrix), which is the equivalent of a
pivot table. Both the C-N-Matrix and the C-Matrix are displayed
in Figure 6. While the C-N-Matrix is the most flexible way to
visualize any data set, the C-Matrix may be more space efficient
and should therefore be used preferentially.

Visual Encoding of Queries
Choosing a specific visual encoding type defines which kind of
indicators are used to encode the actual data values. For data sets
with a 1:1 relationship, bar charts are usually recommended as
a visual encoding type in both monitoring and analysis settings
due to consistent reports of their superiority over alternative
encoding types (e.g., Cleveland and McGill, 1984; Heer and
Bostock, 2010; Huestegge and Poetzsch, 2018). However, if one of
the variables represent time, a line chart is usually recommended
as it promotes the mental processing of developments over time.
When a 1:n relationship is present in the data, the default for
the monitoring intent should be to aggregate the data (e.g.,
averaging) and to display it as a bar chart, although there should
be an easily accessible control element for switching back to
the raw data. Given an analysis intent, a boxplot should be the
first choice to display the data distribution in a condensed way,
if possible enriched with a violin to account for distribution
nuances (Matejka and Fitzmaurice, 2017). If the user lacks
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FIGURE 6 | C-N-Matrix and C-Matrix.

sufficient statistical background knowledge or the rendering
engine is not able to display this type of graph, the second-
best option would be a distribution curve. When distribution
visualizations are not available at all, there is no other option
than to display the raw data points. For this, strip plots should
be preferred over normal dot plots, as the former allow for a
much tighter packing of indicators without a substantial risk
of “over-plotting.”

It is principally possible to shift one variable from the
categorical grid axis to the data encoding region itself through
stacking of indicators. The most frequently encountered example
for this option is the stacked bar chart. Stacking comes with the
benefit of offering the possibility to focus on combined values for
comparison purposes (e.g., comparing spending categories across
departments). However, beside this distinct benefit stacking may
also decrease the speed and accuracy at which a user judges trends
within a category, mainly due to the more complicated cognitive
demand of aligning and judging indicators without a common
baseline (Simkin and Hastie, 1987), as also shown in Study 2.
Following the general outline of the monitoring intent, which
mainly focuses on getting a quick overview over a complex data
pattern, a separate display of charts seems to be a reasonable
default, while stacking seems to be useful for an analytic intent
when the variable at hand represents a sum (not an average, as
summing averages is not useful in most contexts).

Deriving Chart Specification
Recommendations
Although the value encoding type is the most prominent feature
of any visualization, specifications such as the size of a chart
and its coloring can also affect the perception and understanding
of charts. Thus, these features should also be considered, in
particular as a function of user intent. The optimal chart size in
the context of amonitoring intent certainly cannot be determined
exactly. However, it should be large enough to allow for an
accurate, readable depiction of the visual indicators, but at the

same time as small as possible to prevent unnecessary shifts
of visual attention (Heer et al., 2009; Heer and Bostock, 2010;
Orlov et al., 2016). Such an optimal size should also entail
that a numerical scale should roughly fit in the foveal area (5◦

of the visual field), or at least the parafoveal area (about 8◦).
Additionally, chart sizing should be flexible enough to account
for multiple devices. A useful unit of measurement in this
context may be the root em (rem), which is usually considered
a standard size in current web design. While desktop setups
and devices with lower resolution convert 1 rem to 16 pixels
(px) during rendering, high-resolution devices usually transform
1 rem to 32 px (Powers, 2012). This is supposed to ensure optimal
readability, as the x-height is above the 0.2◦ threshold (Legge
and Bigelow, 2011). Modeling the optimal rem size for different
device scenarios across the visual field (Kaiser, 1996), a sizing of
10 rem has been considered to represent a good choice. If the
data are separated, the individual charts can be decreased in size
down to around 5 rem, which should still result in accurately
readable charts. In the context of an analysis intent, it may be
beneficial to provide a larger chart, as this presumably facilitates
a more thorough and specific exploration of the data (Orlov
et al., 2016). However, the size of the chart should not exceed
perifoveal vision, as a significant decrease in stimulu detection
occurs beyond 20◦ of the visual field (see section “Related
Previous Works”). The radius of perifoveal vision in the example
described above is equivalent to about 333 px. The largest fitting
rectangle would be a square with a length of 471 px or 29 rem.
Nevertheless, it remains to be considered that the width of
the chart depends on the number of data points/categories at
hand, and therefore the actual width of a chart may well-exceed
the recommended size. For Scatterplots and other encoding
types involving numerical variables on both dimensions, these
size recommendations apply for both dimensions. Regarding
the coloring of charts in a monitoring setting, it may be
considered beneficial to refrain from using colors or to restrict
coloring to a few desaturated indicator colors (Few, 2009).
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FIGURE 7 | Two visualizations displaying the same data set for an analysis setting (left) and a monitoring setting (right).

As a separation of charts is proposed for this type of setting,
the colors are likely not needed immediately and can instead
be reserved for semantic callouts (e.g., warnings) to increase
the visibility of such callouts. For analytic settings, especially
those involving stacked variables, more colors may be needed,
although desaturated colors may reduce mental distraction in
these cases, too.

STUDY 4—VALIDATING THE TAXONOMY
WITH EXPERTS

The taxonomy outlined in the previous section certainly needs
empirical validation to prove its usefulness for data visualization
recommendation systems. As a first step into this direction,
Study 4 therefore evaluated whether data visualization experts
considered the taxonomy-based recommendations for different
settings suitable in the context of tasks that closely resemble
real-world applications. The hypotheses evaluated in this study
were as follows: The visualizations provided by the taxonomy
are generally judged as suitable by the experts. Furthermore, we
tested whether the taxonomy is suited to visualize even complex
data sets without the resulting charts being judged as significantly
less suitable than in simple settings.

Participants
Ten analytics experts from within SAP were interviewed. All
participants were male. Seven of the 10 participants held at least
a master’s degree. The participants reported to frequently work
with data, with an average self-rating of 4.4 on a scale from 1
“never” to 5 “very often” (SD= 0.84). They judged their statistical
education level to be at an average of 3.2 on a scale ranging
from 1 to 4 (see Study 1 for details on this scale). The age range
was 25–51.

Stimuli
The participants worked through 12 trials, each consisting of a
task and an associated visualization. These 12 trials were built
from six data sets, which were each combined with both a

monitoring task and an analysis task (in separate trials). The
specific visualizations varied across task types as suggested by
the taxonomy. The six data sets were characterized by three
different degrees of complexities: The easiest settings consisted of
three dimensions (one categorical, one numerical, and one time
variable), the intermediate settings consisted of five dimensions
(two categorical, two numerical, and one time variable), and
the most complex settings involved seven dimensions (two
categorical, four numerical, and one time variable). Example
stimuli are shown in Figure 7.

Procedure
The experiment was paper-based and completed in presence
of an experimenter. After a brief introduction, demographic
data were gathered, including age, education, and how much
the participants worked with data in their job. Additionally,
participants were asked to report their statistical education.
In the main part of the experiment, the participants were
provided with 12 trials (six monitoring tasks and six analysis
tasks). In the monitoring tasks, participants were asked to
“mark the data point(s) or dimension(s) you found to stick
out and may need deeper analysis.” In the analysis settings,
participants were provided with four statements about the data
set in a multiple-choice format and asked to mark the correct
options. After completing the task in each trial, participants
were asked to judge how suitable the given visualization was for
the task on a scale from 1 (not suitable) to 5 (very suitable).
Each trial ended with an open section for the participants to
provide feedback and optimization ideas. All data sets were
taken from the field of enterprise performance management,
which the participants could relate to. The average study time
was 40min (SD= 7.55).

Design and Data Analysis
Trial setting (analysis/monitoring) and data set complexity
(3/5/7 variables) served as independent variables. The dependent
variables were the suitability rating scores. For hypothesis testing,
a within-subject two-way ANOVA was conducted.
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FIGURE 8 | The ANOVA showed a significant interaction effect between the task and the complexity regarding the rating. Error bars show standard deviations.

Results
Results regarding the first hypothesis, namely whether the
visualizations are generally judged as suitable by the experts, were
rather ambivalent. The average rating amounted to 3.09 (SD =

1.17) on a scale from 1 to 5, suggesting that the visualizations
proposed based on the taxonomy were rated at an intermediate
level of suitability. However, these numbers only reflect one part
of the picture: In the verbal feedback for each visualization, it
became clear that a lot of factors negatively affected the ratings
that were not part of the main study rationale: Unit measures
were reported to be unfitting, variable choices were considered
invalid regarding their contextual validity, and features such as
filtering and aggregating were missed as they were not possible
on paper. After the experiment, all participants were familiarized
with the idea of an adaptive data visualization taxonomy, and all
of them endorsed the idea. Therefore, although the quantitative
data are not finally conclusive in this regard, the verbal feedback
supported the general usefulness of a taxonomic approach. The
second hypothesis proposed that the taxonomy is also useful
in visualizing even complex data sets without being judged as
significantly less suitable than for simple data sets. To answer
this question, a two-way ANOVA was calculated for the experts’
ratings. There was no significant main effect for either data
complexity, F(2,18) = 1.06, p = 0.369, nor for task, F(1,9) =

0.55, p = 0.476. However, we observed a significant interaction,
F(2,18) = 11.47, p < 0.001, ηp² = 0.560. While monitoring
settings with higher complexity were rated better than those with
lower complexity, this effect was reversed for analysis settings,
as shown in Figure 8. It may be argued that in analysis settings,
complex data are usually not processed based on a single view, but
rather experienced sequentially by interacting with the data using
filtering, brushing, aggregating, and drilldown options (which
were not available in the present study).

Discussion
The main aim of this experiment was to provide first evidence
for the usefulness of the developed taxonomy for the adaptive

display of data. Although it could not be concluded that the
specific recommendations derived from the taxonomy were
already sufficiently suitable for an instant implementation into
existing applications, the general principles of the taxonomy were
embraced by our sample of experts. Based on the verbal reports,
it appeared that some aspects were already sufficiently useful,
for example the scalability in the monitoring mode for scenarios
with different complexity. In contrast, the display options for the
analytic mode were less well-suited, therefore more work in this
regard is necessary.

Limitations
A main limitation of this study is that user traits were not
considered here as the study was conducted in a paper-based
manner. Therefore, a fully user-adaptive approach could not
be evaluated here. Also, some side effects of our decision to
use a paper version negatively affected the suitability ratings
(see above). Regarding the stimuli used in this study, it would
have been useful to compare different visualizations for each
intent/task combination. Through this procedure, it may have
become more evident where benefits or disadvantages of specific
visualizations are located, and if the taxonomy actually provided
good recommendations when compared with other possible
solutions. This approach appears to be promising for further
research, which should also involve larger sample sizes.

CONCLUSION AND FUTURE WORK

A central claim of the present paper is that data visualizations
should be adapted to both the user and the context. This idea
was supported by Study 1, which demonstrated substantial inter-
individual variability among a group of experts when freely
choosing an option to visualize data sets. To lay the theoretical
groundwork for the envisioned taxonomic approach, a user
model combining user traits, states, strategies, and actions was
proposed and further evaluated empirically in Studies 2 and 3.
The results implied that for adapting to user traits, statistical
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expertise is a relevant dimension that should be considered.
Additionally, for adapting to user states different user intentions
such as monitoring and analysis should be differentiated and
accounted for. These results were used to develop a taxonomy
which adapts visualization recommendations to these (and
other) factors. For example, a monitoring intention may benefit
from separated data lines without coloring, while an analysis
intention should benefit from combined charts. In addition to
this adaptive approach, the taxonomy also outlined a way to
grid up complex data sets to optimize their visualization. A
preliminary attempt to validate the taxonomy in Study 4 tested
its visualization recommendations with a group of experts. While
the corresponding results were somewhat ambiguous overall,
some aspects of the results nevertheless supported the claim that a
user-adaptive data visualization approach based on the principles
outlined in the taxonomy can be useful. Of course, the present
approach to user adaptivity is still quite rudimentary, especially
due to the relatively low number of participants. To solidify the
results, larger samples should be collected.

In theory, one might want to consider every user to
be an individual based on multiple (potentially quantitative)
dimensions relevant to visualization adaptivity. Here, we
only considered very few of these dimensions, which usually
comprised two binary alternatives (e.g., two task-based intents).
Thus, more research is needed in order to finally come up
with a truly individualized output. Although adaptivity in the
context of data visualization is still in its initial stage, it clearly
has a lot of potential for future development. The full potential
of adaptive visualization will probably be of great relevance
especially in more complex settings of decision support involving
data visualization, where tailoring information width and depth
to the user is mandatory.

One of the areas that need to be worked on more extensively
in order to move forward with adaptive visualizations is the
contextual component, as “to create useful adaptive visualization
tools we must understand the relationship between a users’ context
and the visualization they require” (Oscar et al., 2017, p. 811).
Without knowing more about the context, it is only possible to
provide a sensible default. One possible option to address this
issue could be the use of conversational user interfaces, which
would allow the user to articulate context and intentions in
more detail and subsequently enable the system to provide more
suitable visualizations. Another approach to adaptivity would
be to let the system collect data about usage patterns and then
to suggest these learned patterns to users later. This approach,
also known as collaborative filtering, requires large amounts
of data and is essentially theory-blind: While it does not need
any theoretical assumptions in order to work, it cannot take
into account basic knowledge about which behavioral, user- or
context-related aspects can be meaningfully combined. Due to
this serious problem, it may be concluded that knowledge-based
filtering may represent a reasonable middle way (Vartak et al.,
2017).

Another area crucial to the implementation of such a
taxonomy the issue of standardization. This is relevant for both
the design of charts as well as for how visualizations are coded.
For example, chart rendering engines are usually not compatible

to each other. A single system is not able to control different
engines as their required input format differs, although first steps
toward a standardized encoding format have been taken with
the introduction of CompassQL (Wongsuphasawat et al., 2016).
Nevertheless, the corresponding problems do not only affect
rendering engines: A micro-service-based approach to the whole
data visualization ecosystem could also encompass data query
recommendation or statistical modules. This would provide a
truly flexible system that could not only adapt visualizations,
but also adapt the information that is displayed and how it is
further computed. This would clearly be a desirable development
in the future.

When considering the rising complexity of data and
information in the world, it appears evident that even adapted
data visualization cannot be the sole solution to making this
information truly accessible for users. Adaptivity may ultimately
be understood as providing an individualized information
display and decision support. To enable this, a shared semantics
between users and systems needs to be developed. Only through
teaching the machine how virtual (data) objects relate to each
other, the system may be able to provide useful decision support
that not only follows a comprehensible logic, but also considers
the individual users as cognitive beings that are also prone to
typical judgement (and other cognitive) biases. This next step
toward individually aiding users in their data-driven decisions
can also be considered a step toward artificial intelligence, as we
enable machines to apply human (user-centered) perspectives.
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