
ORIGINAL RESEARCH
published: 09 April 2020

doi: 10.3389/frai.2020.00019

Frontiers in Artificial Intelligence | www.frontiersin.org 1 April 2020 | Volume 3 | Article 19

Edited by:

Balaraman Ravindran,

Indian Institute of Technology Madras,

India

Reviewed by:

German I. Parisi,

University of Hamburg, Germany

Srinivasa Chakravarthy,

Indian Institute of Technology Madras,

India

*Correspondence:

Rolando Estrada

restrada1@gsu.edu

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 02 October 2019

Accepted: 17 March 2020

Published: 09 April 2020

Citation:

Mandivarapu JK, Camp B and

Estrada R (2020) Self-Net: Lifelong

Learning via Continual Self-Modeling.

Front. Artif. Intell. 3:19.

doi: 10.3389/frai.2020.00019

Self-Net: Lifelong Learning via
Continual Self-Modeling

Jaya Krishna Mandivarapu †, Blake Camp † and Rolando Estrada*

Department of Computer Science, Georgia State University, Atlanta, GA, United States

Learning a set of tasks over time, also known as continual learning (CL), is one of the

most challenging problems in artificial intelligence. While recent approaches achieve

some degree of CL in deep neural networks, they either (1) store a new network (or

an equivalent number of parameters) for each new task, (2) store training data from

previous tasks, or (3) restrict the network’s ability to learn new tasks. To address these

issues, we propose a novel framework, Self-Net, that uses an autoencoder to learn

a set of low-dimensional representations of the weights learned for different tasks.

We demonstrate that these low-dimensional vectors can then be used to generate

high-fidelity recollections of the original weights. Self-Net can incorporate new tasks

over time with little retraining, minimal loss in performance for older tasks, and without

storing prior training data. We show that our technique achieves over 10X storage

compression in a continual fashion, and that it outperforms state-of-the-art approaches

on numerous datasets, including continual versions of MNIST, CIFAR10, CIFAR100,

Atari, and task-incremental CORe50. To the best of our knowledge, we are the

first to use autoencoders to sequentially encode sets of network weights to enable

continual learning.

Keywords: deep learning, continual learning, autoencoders, manifold learning, catastrophic forgetting

1. INTRODUCTION

Lifelong or continual learning (CL) is one of the most challenging problems in machine learning,
and it remains a significant hurdle in the quest for artificial general intelligence (AGI) (Goodfellow
et al., 2013; Kemker et al., 2018). In this paradigm, a single system must learn to solve new tasks
without forgetting previously learned information. Different tasksmight require different data (e.g.,
images vs. text) or they might process the same data in different ways (e.g., classifying an object in
an image vs. segmenting it). Crucially, in CL there is no point at which a system stops learning; it
must always be able to update its representation of its problem domain(s).

CL is particularly challenging for deep neural networks because they are trained end-to-end.
In standard deep learning we tune all of the network’s parameters based on training data, usually
via backpropagation (Rumelhart et al., 1986). While this paradigm has proven highly successful
for individual tasks, it is not suitable for continual learning because it overwrites existing weights
(a phenomenon evocatively dubbed catastrophic forgetting; Robins, 1995). For example, if we first
train a network on task A and then on task B, the latter training will modify the weights learned for
A, thus likely reducing the network’s performance on the first task.

In this paper, we propose a novel approach, Self-Net, that achieves continual learning by
decoupling how it learns a new task from how it stores it. Specifically, we learn compressed
representations of previously learned parameters in a continual fashion; these old parameters can
then be recalled as needed to solve previously learned tasks. Figure 1 provides an overview of

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2020.00019
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2020.00019&domain=pdf&date_stamp=2020-04-09
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:restrada1@gsu.edu
https://doi.org/10.3389/frai.2020.00019
https://www.frontiersin.org/articles/10.3389/frai.2020.00019/full
http://loop.frontiersin.org/people/893992/overview
http://loop.frontiersin.org/people/894234/overview
http://loop.frontiersin.org/people/514686/overview

Mandivarapu et al. Self-Net

FIGURE 1 | Framework overview. Our proposed system has a set of reusable task-specific networks (TN), a Buffer for storing the latest m tasks, and a lifelong,

auto-encoder (AE) for long-term storage. Given new tasks {tk+1, . . . ,tk+m}, where k is the number of tasks previously encountered, we first train m task-networks

independently to learn {θk+1, ..., θk+m} optimal parameters for these tasks. These networks are temporarily stored in the Buffer. When the Buffer fills up, we incorporate

the new networks into our long-term representation by retraining the AE on both its approximations of previously learned networks and the new batch of networks.

When an old network is needed (e.g., when a task is revisited), we reconstruct its weights and load them onto the corresponding TN (solid arrow). Even when the

latent representation ei is asymptotically smaller than θi , the reconstructed network closely approximates the performance of the original.

our proposed framework. Our system uses a fraction of the
space needed for storing individual networks, while retaining
excellent performance across all learned tasks. Our method is
loosely inspired by the role that the hippocampus is purported
to play in memory consolation (Teyler and DiScenna, 1986). As
noted in Preston and Eichenbaum (2013), during learning the
brain forms an initial neural representation in cortical regions.
The hippocampus then consolidates this representation into a
form that is optimized for storage and retrieval. Specifically,
there is evidence that the hippocampus uses experience replay
(ER) to perform this knowledge consolidation (Carr et al., 2011;
Kumaran et al., 2016). Traditionally, this observed phenomenon
of repeated neural activity on compressed time-scales has been
interpreted, and in some cases empirically validated, as the
brain replaying past experiences. Our approach uses a similar
scheme, but instead of replaying environmental observations
and experiences, we continually recall and reconstruct the
learned synaptic weights themselves. In more detail, we propose
a system that consists of three components: (1) a set of reusable
task-networks (TNs), (2) a Buffer in which we store the latest m
learned weights exactly, and (3) a lifelong autoencoder (AE) with
which we can encode a very large number of older networks.
The AE learns a low-dimensional representation for each of the
high-dimensional parameter vectors that define the weights of
the TNs. Thus, our system self-models its own behavior, allowing
it to approximate previously learned parameters instead of
storing them directly. After the compact latent representations

have been learned, the original networks may be discarded.
If our system needs to solve a previously learned task, it can
generate an approximation of the original weights by feeding
the corresponding latent vector through the AE and then
loading the reconstructed weights onto a TN. Consequently,
our approach leverages the flexibility of conventional
neural networks while avoiding their inability to remember
old tasks.

2. PRIOR WORK

Several methods have recently emerged for continual learning in
deep networks (Parisi et al., 2018a). However, existing approaches
either (1) restrict new learning, (2) store a new network (or
equivalent number of parameters) for each task, or (3) require
old training data. Some methods combine two or more of the
above strategies. Notable examples of the first type include
Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017),
Synaptic Intelligence (Zenke et al., 2017), Variational Continual
Learning (Nguyen et al., 2018) (which also reuses old data),
Progress and Compress (Schwarz et al., 2018), and Learning
without Forgetting (Li and Hoiem, 2016). These approaches
reuse the same (or most of the same) network for each new
task but apply a regularization method to restrict changes
in weights over time. Since they maintain a single network,

Frontiers in Artificial Intelligence | www.frontiersin.org 2 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

these methods typically use constant space1. However, weight
regularization is very likely to hamper a network’s ability to
acquire new knowledge because it prevents the network from
updating its weights based on the exact gradient derived from the
current loss.

The second category includes Progressive Networks (Rusu
et al., 2016), Dynamically Expandable Networks (Yoon et al.,
2018), and Context-Dependent Gating (Masse et al., 2018). These
methods often achieve excellent performance, but they must
store a new network’s worth of parameters for each new task.
In addition, methods in this category usually also utilize either
regularization or retraining on old data. This is because standard
neural networks use all their parameters to compute an output. In
other words, every parameter in every task must either (1) help
estimate the correct output or (2) minimally interfere with the
correct output. Thus, to prevent old and new parameter values
from interfering with each other, these networks must either keep
some old training data or restrict the old parameter values from
changing. Theirmain advantage is in facilitating transfer learning,
i.e., using previous learning to speed up new learning.

Third, some methods store a fraction of the old training data
and use it to retrain the network on previously learned tasks. Key
approaches include Experience Replay (Mnih et al., 2013; van
de Ven and Tolias, 2018) iCarl (Rebuffi et al., 2016), Variational
Continual Learning (Nguyen et al., 2018), and (Lopez-Paz and
Ranzato, 2017). Unfortunately, this paradigm combines the
drawbacks of the previous two. First, most of these methods
use a single network, so they cannot continually learn a large
number of tasks well. Second, their storage requirements grow
very quickly with the number of tasks because they have to
store old training data. Moreover, data usually takes up orders
of magnitude more space than the network itself because a
trained network is effectively a compressed representation of the
training set (Doersch, 2016). A few methods reduce this storage
requirement by storing a compressed representation of the data,
including Lifelong Generative Modeling (Ramapuram et al.,
2017), FearNet (Kemker and Kanan, 2018), Deep Generative
Replay (Shin et al., 2017), and Expert Gates (Aljundi et al., 2017).
Some methods specifically use autoencoders for this task (Zhou
et al., 2012; Riemer et al., 2017; Parisi et al., 2018b). However, even
when compressed, data requires significantly more parameters
to store than parametric networks. Neural networks themselves
can be considered compressed representations of the datasets
upon which they have been trained, as long as the number
of parameters in the network is smaller than the number of
data points in the training set. Therefore, we believe that it
makes more sense to continually compress the trained networks
themselves, as opposed to compressing the data.

Very recently, there has been a flurry of interest in the
potential benefits of storing many separate models, as opposed to
a single model optimized over all tasks. These techniques include
Continual Learning with HyperNetworks (von Oswald et al.,
2019), Task Agnostic Continual Learning via Meta-Learning (He

1Although, as noted in Huszár (2018), standard EWC stores an O(n) set of Fisher

weights for each task. The modified version proposed in Huszár (2018) does use

constant space.

et al., 2019), Online Meta-Learning (Finn et al., 2019), and Deep
Online Meta-Learning (Nagabandi et al., 2018). Although our
idea bears some similarity to these approaches (e.g., storing
different weights for different tasks), they share the common trait
of requiring access to old data in order to facilitate continual
learning, whereas our approach does not.

3. PROBLEM FORMULATION

Continual learning is not a single problem, but a family of related
problems, each of which imposes a different set of constraints on
the learning process (e.g., fixed architecture, no access to prior
training data, etc.). Here, we consider the setting in which (1) the
system learns one new task at a time, (2) each task can be solved
independently of other tasks, (3) tasks have labels (i.e., the system
knows which task to solve at any point), and (4) the system has no
access to old training data. In particular, our problem differs from
settings in which a single task growsmore difficult over time [e.g.,
class-incremental learning (CIL)].

More concretely, each task Ti is specified by a training set,
Di = {Xi,Yi}, consisting of ni different {x, y} training pairs. The
system is sequentially trained on each Di dataset, using either
a supervised or reinforcement learning paradigm, as applicable.
That is, the system is first exposed to D1 (and thus must learn
T1), then D2, D3, up to Dk, where k is the total number of
tasks encountered during its lifetime. Note that, in this paradigm,
datasets are not required to be disjoint, i.e., any two datasets Di

and Dj many contain some common {x, y} pairs.
Critically, the system is trained on eachDi only once during its

lifetime. The system is not allowed to store any exemplars from
previous tasks or revisit old data when training on new tasks.
We do, however, allow multiple passes over the data when first
learning the task, as is standard in machine learning. We also
assume that task labels are known; inferring the desired task from
the input data is important but is outside the scope of this paper.

As noted in section 2, there are two common types of solutions
for this CL problem. Regularization methods estimate a single
set of parameters θ∗ for all tasks, while growth-based approaches
learn (and store) a new set of weights θi for each new task. The
former uses constant storage (w.r.t to the number of tasks) but
has bad performance, while the latter achieves good performance
but is asymptotically equivalent to storing independent networks.
Below, we detail our proposed approach, which has nearly
the same performance as growth-based methods, but uses
significantly less storage.

4. METHODOLOGY

Figure 1 provides a high-level overview of our proposed
approach. Our Self-Net system uses a set of c reusable task-
networks (TNs), an m-dimensional Buffer for storing newly
learned tasks, and an O(n) lifelong autoencoder (AE) for storing
older tasks. In addition, we store an s-dimensional latent vector
for each task, where s << n. Assuming that c and m are
constants, our space complexity is O(n + ks), where k is the
number of learned tasks. In particular, our approach achieves

Frontiers in Artificial Intelligence | www.frontiersin.org 3 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

asymptotic space savings compared to storing kn independent
networks if s is sub-linear w.r.t. n, [i.e., s = ω(n) in
asymptotic notation].

Each TN is just a standard neural network, which can learn
regression, classification, or reinforcement learning tasks (or
some combination of the three). For ease of discussion, we will
focus on the case where there is a single TN and the Buffer
can hold only one network; the extension to multiple networks
and larger Buffers is trivial. The AE is made up of an encoder
that compresses an input vector into a lower-dimensional, latent
vector e and a decoder that maps e back to the higher-dimensional
space. Our system can produce high-fidelity recollections of the
learned weights, despite this intermediate compression. In our
experiments, we used a contractive autoencoder (CAE) (Rifai
et al., 2011) due to its ability to quickly incorporate new values
into its latent space.

In CL, we must learn k different tasks sequentially. To learn
these tasks independently, one would need to train and save k
networks, with O(n) parameters each, for a total of O(kn) space.
In contrast, we propose using our AE to encode each of these
k networks as an s-dimensional latent vector, with s << n.
Thus, our method uses only O(n + ks) space, where the O(n)
term accounts for the TNs and the fixed-size Buffer. Despite
this compression, our experiments show that we can obtain a
high-quality approximation of previously learned weights, even
when the number of tasks exceeds the number of parameters
in the AE. Below, we first describe how to encode a single
task-network before discussing how to encode multiple tasks in
continual fashion.

4.1. Single-Network Encoding
Let t be a task (e.g., recognizing faces) and let θ be the O(n)-
dimensional vector of parameters of a network trained to solve t.
That is, using a task-network with parameters θ , we can achieve
performance p on t (e.g., a classification accuracy of 95%). Now,
let θ̂ be the approximate reconstruction of θ by our autoencoder
and let p̂ be the performance that we obtain by using these
reconstructed weights for task t. Our goal is to minimize any
performance loss w.r.t. the original weights. If the performance of
the reconstructed weights is acceptable, then we can simply store
the O(s) latent vector e, instead of the O(n) original vector θ .

If we had access to the test data for t, we could assess this
difference in performance directly and train our AE until we
achieved an acceptable margin ǫ:

p− p̂ ≤ ǫ. (1)

For example, for a classification task we could stop training our
AE if the drop in accuracy is less than 1%.

In a continual learning setting, though, the above scheme
requires storing validation data for each old task. Instead, we
measure a distance between the original and reconstructed
weights and stop training when we achieve a suitably close
approximation. Empirically, we determined that the cosine

similarity,

cos (θ , θ̂) =
θ · θ̂

‖θ‖‖θ̂‖
=

∑n
i=1 θiθ̂i

√

∑n
i=1 θ2i

√

∑n
i=1 θ̂2i

, (2)

is an excellent proxy for a network’s performance. Unlike the
mean-squared error, this distancemetric is scale-invariant, so it is
equally suitable for weights of different scales, which may be the
case for separate networks trained on distinct tasks. As detailed
in section 5, cosine similarity close to 0.99 yielded excellent
performance for a wide variety of tasks and architectures.

4.2. Continual Encoding
We will now detail now to use our Self-Net to encode a sequence
of trained networks in a continual fashion. Let m be the size of
the Buffer, and let k be the number of tasks which have been
previously encountered. As noted above, we train each of thesem
task-networks using conventional backpropagation, one per task.
Now, assume that our AE has already learned to encode the first k
task-networks. We will now show how to encode the most recent
batch ofm task-networks corresponding to tasks {tk+1, . . . ,tk+m}

into compressed representations {ek+1, . . . ,ek+m} while still
remembering all previously trained networks.

Let E be the set of latent vectors for the first k networks.
In order to integrate m new networks {θk+1, . . . , θk+m} into the
latent space, we first recollect all previously trained networks
by feeding each e ∈ E as input to the decoder of the AE. We
thus generate a set R of recollections, or approximations, of the
original networks (see Figure 1). We then append each θi in the
Buffer to R and retrain the AE on all k + m networks until it
can reconstruct them, i.e., until the average of their respective
cosine similarities is above the predefined threshold. Algorithm 1
summarizes our CL strategy.
As our experiments show, our compressed representations
achieve excellent performance compared to the original
parameters. Since each θ̂ ∈ R is simply a vector of network
parameters, it can easily be loaded back onto a task-network
with the correct architecture. We can thus discard the original
networks and store k networks using only O(n + ks) space. In
addition, our framework can encode many different types and
sizes of networks in a continual fashion. In particular, we can
encode a network of arbitrary size q using a constant-size AE
(that takes inputs of size n) by splitting the input network into
r subvectors2, such that (n = q/r). As we verify in section 5, we
can effectively reconstruct a large network from its subvectors
and still achieve a suitable performance threshold.

As Figure 2 illustrates, we empirically found a strong
correlation between a reconstructed network’s performance and
its cosine similarity w.r.t. to the original network. Intuitively, this
implies that vectors of network parameters that have a cosine
similarity approaching 1 will exhibit near-identical performance
on the underlying task. Thus, the cosine similarity can be used
as a terminating condition during retraining of the AE. In
practice, we found a threshold of 0.997 to be sufficient for
most experiments.

2We pad with zeros whenever q and n are not multiples of each other.

Frontiers in Artificial Intelligence | www.frontiersin.org 4 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

FIGURE 2 | Robustness analysis of network performance as a function of cosine similarity. Each dot represents the accuracy of a reconstructed network and the

dotted lines are the baseline performances of the original networks. The above values for three datasets Permuted MNIST (in pink), MNIST (in cyan), and CIFAR-10 (in

blue), show that cosine similarity values above 0.997 guarantee nearly optimal performance for these datasets.

4.2.1. Autoencoder Details
Our proposed framework is agnostic to the choice of
autoencoder. However, in our experiments we used contractive
autoencoders (CAE) (Rifai et al., 2011) because we empirically
found them to be more robust than other types of AEs, including
variational autoencoders (Doersch, 2016). CAEs are identical to
standard AEs, except that their loss function penalizes changes
to the latent vector’s values:

CAEloss(θ) = cos (θ , θ̂)+ λ‖Jf (θ)‖
2
F . (3)

The first term is the cosine similarity discussed above (see
Equation 2), while the regularization term is given by the
Frobenius norm of the Jacobian w.r.t to each training input xi:

‖Jf (x)‖
2
F =

∑

ij

(

∂hj(θ)

∂xi

)2

. (4)

where hj(θ) are the parameters for the j-th hidden unit. In our
experiments, we used a value of 0.0001 for lambda.

4.2.2. Task Network Fine-Tuning
As an additional optimization, one can improve the speed with
which the AE learns a new task by encouraging the parameters of
new task-networks to be are as similar as possible to previously
learned ones. This can be accomplished by fine-tuning all
networks from a common source and penalizing large deviations
from this initial configuration with a regularization term. Note
that training new task networks in this manner differs from
standard regularization methods (e.g., EWC; Kirkpatrick et al.,

2017) because the weights learned for older tasks are notmodified
(and hence their performance does not degrade).

Formally, let θ∗ be the source parameters, ideally optimized
for some highly-related task. Without loss of generality, we can
define the loss function of task-network θi for task ti as:

TaskNetLossi = TaskLoss+ λMSE(θ∗, θi) (5)

where λ is a regularization coefficient that determines the
importance of remaining close to the source parameters vs.
optimizing for the current task. By encouraging the parameters
for all task-networks to remain close to one another, we make it
easier for the AE to learn a low-dimensional representation of
the original space. We employ this scheme for the experiments in
section 5.2, with λ = 0.001.

5. EXPERIMENTAL RESULTS

We carried out a range of CL experiments on a variety of datasets,
in both supervised and reinforcement-learning (RL) settings.
First, we performed two robustness analyses: (1) we empirically
established how precise an approximation of a network must
be in order to retain comparable performance on a task, and
(2) we verified that our approach can reconstruct multiple
networks trained on the same task. Then, we analyzed our
system’s ability to encode a very large number of tasks, thus
validating that the AE does simply memorize the TNs. We then
evaluated the performance of our approach on the following
CL datasets: Permuted MNIST (Kirkpatrick et al., 2017), Split
MNIST (Nguyen et al., 2018), Split CIFAR-10 (Zenke et al., 2017),
Split CIFAR-100 (Zenke et al., 2017), and successive Atari games

Frontiers in Artificial Intelligence | www.frontiersin.org 5 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

Algorithm 1: Lifelong learning via continual self-modeling

Let T be the set of all Tasks encountered during the lifetime of the
system
Letm be the size of the Buffer
Set E = []
Initialize AE
Set cosine_threshold
for idx,curr_task in enumerate(T) do

if Buffer is not full then
Initialize the Task Network (TN)
Train the TN for curr_task until optimized
Buffer.append(TN)
if Buffer is full then

R = []
for encoded-network in E do

r = AE.Decoder(encoded-network)
R.append(r)

end

for network in Buffer do
flat_network = extract and flatten parameters from
network
R.append(flat_network)

end

average_cosine_similarity = 0.0
E = []
while average_cosine_similarity < cosine_threshold do

for r_idx, r ∈ enumerate(R) do
calculate AE_loss using Equation 4
back-propagate AE
update average_cosine_similarity using
cos(r, AE(r))
E[r_idx] = AE.Encoder(r)

end

end

empty Buffer
end

end

end

(Mnih et al., 2013) (we describe each dataset below). Finally, we
also analyzed our system’s performance when using (2) different
sizes of AEs, and (3) different TN architectures.

5.1. Robustness Analysis
5.1.1. Parameter Noise Tolerance
Since the reconstructions performed by our autoencoder are
approximate, our technique requires the trained weights of a
neural network to be robust to certain levels of noise. In other
words, the task network must retain its ability to properly map
inputs to outputs, even if those weights are slightly perturbed
(Blundell et al., 2015). To empirically validate how robust our
task network’s weights need to be, we added different levels
of i.i.d, zero-mean Gaussian noise to the weights of a trained
network. Our goal was two-fold: (1) to verify that approximate

weights can differ from their original values while still retaining
good performance and (2) to establish a threshold at which
to stop training our AE. Since we assume no access to data
from previously learned tasks, we need a way to estimate the
performance of a reconstructed network without testing on a
validation set.

Figure 2 shows performance as a function of deviations from
the original parameters as measured by cosine similarity, for
three datasets (described below). Under this metric, there is a
clear correlation between the amount of parameter dissimilarity
and the probability of a decrease in performance. The red line
indicates a cosine similarity of 0.997. Weights above this value
had nearly identical performance to the original values. Thus,
unless otherwise noted, we used this threshold as a terminating
condition in our subsequent experiments.

5.1.2. Same-Task Reconstruction
In general, there are many possible weight configurations which
yield identical input/output mappings. Therefore, in our second
set of experiments, we verified that our approach can reconstruct
different networks trained on the same task. First, we trained
ten tasks networks on the MNIST dataset (LeCun et al., 1998),
all initialized with the same initial values. Each network had
two convolution layers (kernels of size 5 × 5, and stride 1 ×

1), 1 hidden layer (320 × 50), and 1 output layer (50 × 10).
Our corresponding AE had two, fully connected layers with
21,840 and 5 nodes, respectively. Second, we performed the same
experiment on the CIFAR-10 dataset (Krizhevsky, 2009). Here,
our task networks had two convolutional layers, followed by three
fully connected hidden layers, and a final layer having 2 output
units (60 K parameters in total). Our CIFAR-10 AE had 62,006 in
the input and output layers and 5 nodes in the hidden layer.

As Figure 3 shows, our approach was able to reconstruct
multiple, distinct networks trained on the same task. The AE
accurately encoded the various parameter vectors, enabling the
reconstructed networks to retain comparable performance to that
of the original parameters for both MNIST and CIFAR-10.

5.2. Performance and Storage Scalability
In the next set of experiments, we verified that our method
retains excellent performance even when the number of TN
parameters exceeds the number of parameters in the AE. In
other words, here we confirmed that our AE is compressing
previously learned weights, not simply memorizing them. More
generally, there is a trade-off in CL between storage and
performance. Using different networks for k tasks yields
optimal performance but uses O(kn) space, while regularized
methods such as Online EWC (Huszár, 2018) only require
O(n) space but suffer a steep drop in performance as the
number of tasks grows. For any method, we can quantify
performance as a compression factor, i.e., the number of
additional parameters it stores per task; in our case, our
compression factor is k/s because we store an s-dimensional
vector per task.

Here, our experimental paradigm was as described in
section 4.2: we first trained the TN on m tasks independently,
storing each set of learned weights in the Buffer. Once the Buffer

Frontiers in Artificial Intelligence | www.frontiersin.org 6 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

FIGURE 3 | Reconstructing multiple networks for the same task. We trained 10 different networks independently to solve the same task and quantified our method’s

ability to reconstruct each task network. The top plot shows results for MNIST, the bottom plot for CIFAR-10. Each bar shows the cumulative average accuracy of all

the tasks learned up to that point. Red bars indicate the accuracy of the original task networks, while blue show the accuracy of the reconstructed networks. For both

datasets, the reconstructed networks achieve comparable accuracy to the original networks. (A) MNIST, (B) CIFAR-10.

became full, we trained the AE to encode these weights into its
latent space, only storing the latent vectors after training.We then
continued to train the TN on new batches of m tasks (saving the
new weights to the Buffer). Every time the Buffer became full, we
trained the AE on all tasks, using the stored latent vectors and the
newm weights. After the initial batch, we fine-tuned all networks
from the mean of the initial set of m networks and penalized
deviations from this source vector (using λ = 0.001), as described
in section 4.

For these experiments, we used the Split MNIST dataset
(Nguyen et al., 2018), which consists of different binary
subsets of the MNIST dataset (LeCun et al., 1998), drawn
randomly. In other words, tasks were defined by tuples comprised
of the positive and negative digit class(es), e.g., ([pos={1},
neg={6,7,8,9}], [pos={6}, neg={1,2,3,4}], etc.). Here, the training
and test sets consisted of approximately 40% positive examples
and 60% negative examples. For this experiment, we trained a
deep convolutional task network with two convolution layers

Frontiers in Artificial Intelligence | www.frontiersin.org 7 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

FIGURE 4 | 10X Compression for Split-MNIST. Orange lines denote the average accuracy achieved by individual networks, one per task. Green lines denote the

average accuracy when training the AE to encode all networks as a single batch. Blue lines indicate the average accuracy obtained by Self-Net at each CL Stage.

(Top) Fifty tasks with latent vectors of size 5 and a Buffer of size 5. (Middle) One hundred tasks with latent vectors of size 10 and Buffer of size 10. The x-axis (top

and middle) denotes the compression factor achieved at each learning stage. (Bottom) The training epochs required by the five-dimensional AE to incorporate new

networks decreases rapidly over time.

(kernels of size 5× 5 and stride 1× 1), 1 hidden layer (320× 50),
and 1 output layer (50 × 10)—21,840 parameters in total. Our
task network used ReLU activation units. Our AE, on the other
hand, had one fully connected hidden layer with either 5 or 10
units. We used a Buffer of the same size as the latent vector, i.e.,
either 5 or 10. These values were chosen so that each new batch
of networks yielded an integer compression factor, e.g., encoding
15 networks with a latent vector of size 5 gives 3X compression

(k/s = 3). We used decreasing thresholds to stop training our
AE: 0.9996 for the initial batch, 0.987 for the second batch, and
0.986 for subsequent batches.

The top two plots of Figure 4 show the mean performance
for up to 50 and 100 Split-MNIST tasks, given latent vectors of
size 5 and 10, respectively. All figures show the average accuracy
across all tasks learned up to that point. For comparison, we also
plotted the original networks’ performance and the performance

Frontiers in Artificial Intelligence | www.frontiersin.org 8 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

FIGURE 5 | CL performance comparisons with average test set accuracy on all observed tasks at each stage for (top) Permuted MNIST, (middle) Split MNIST, and

(bottom) Split CIFAR-10.

Frontiers in Artificial Intelligence | www.frontiersin.org 9 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

of the reconstructions when the AE learned all the tasks in
a single batch (green and orange lines, respectively). The line
with dots represents the CL system; each dot indicates the point
where the AE had to encode a new set of m networks. For 10X
compression, the Self-Net with a latent vector of size 5 retained
∼95.7% average performance across 50 Split-MNIST tasks, while
the Self-Net with 10-dimensional latent vectors retained∼95.2%
across 100 tasks. This represents a relative change of only ∼3.3%
compared to the original performance of ∼99%. In other words,
our approach is able to compress 21,840 parameters into 5 or
10 values with little performance loss, even when trained in
a continual fashion. In contrast, existing methods dropped to
∼50% performance after learning only 10 tasks on this dataset
(see Figure 5 below). Finally, we note that by initializing each
new network from the mean of the initial batch, our AE was able
to incorporate subsequent networks with very little additional
training (see stages 4–10 in bottom image of Figure 4).

5.3. Permuted MNIST
In the next set of experiments, we compared our approach
to state-of-the-art methods across multiple datasets. First,
we trained convolutional feed-forward neural networks with
21,840 parameters on successive tasks, each defined by distinct
permutations of the MNIST dataset (LeCun et al., 1998), for
10-digit classification. We used networks with two convolution
layers (kernels of size 5 × 5, and stride 1 × 1), 1 hidden layer
(320 × 50), and 1 output layer (50 × 10). Our AE had three,
fully connected layers with 21,840, 2,000, and 20 parameters,
respectively. Thus, our latent vectors were of size 20. For this
experiment, we used a Buffer of size 1. Each task network was
encoded by our AE in sequential fashion, and the accuracies of
all reconstructed networks were examined at the end of each
learning stage (i.e., after learning a new task). Figure 5 (top)

shows the mean performance after each stage for all tasks learned
up to that point. Our technique almost perfectly matched the
performances achieved by independently trained networks, and
it dramatically outperformed other state-of-the-art approaches
including EWC (Kirkpatrick et al., 2017), Online EWC (the
correction to EWC proposed in Huszár, 2018), and Progress and
Compress (Schwarz et al., 2018). As a baseline, we also show
the results for SGD (no regularization), L2-based regularization
in which we compare new weights to all the previous weights,
and Online L2, which only measures deviations from the weights
learned in the previous iteration. Our technique remember old
tasks without inhibiting new learning.

5.4. Split MNIST
We then compared our method to the same set of prior
approaches on the Split MNIST (described above). Our task-
networks, CAE, and Buffer size were the same as for Permuted
MNIST (except that the outputs of the task-networks were
binary, instead of 10 classes). In this domain, too, our technique
dramatically outperformed competing approaches, as seen in
Figure 5 (middle)].

5.5. Split CIFAR-10
We then verified that our proposed approach could reconstruct
larger, more sophisticated networks. Similar to the Split
MNIST experiments above, we divided the CIFAR-10 dataset
(Krizhevsky, 2009) into multiple training and test sets, yielding
10 binary classification tasks (one per class). We then trained a
task-specific network on each class. Here, we used TNs having
an architecture which consisted of two convolutional layers,
followed by three fully connected hidden layers, and a final layer
having two output units. In all, these task networks consisted
of more than 60 K parameters. Again, for this experiment we

FIGURE 6 | CL performance comparisons with average test set accuracy on all observed tasks at each stage for CIFAR-100.

Frontiers in Artificial Intelligence | www.frontiersin.org 10 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

used a Buffer of size 1. Our AE had three, fully connected
layers with 20,442, 1,000, and 50 parameters, respectively.
As described in section 4, we split the 60 K networks into
three subvectors to encode them with our autoencoder; by
splitting a larger input vector into smaller subvectors, we can
encode networks of arbitrary sizes. The individual task-networks
achieved accuracies ranging from 78 to 84%, and amean accuracy
of approximately 81%. Importantly, we encoded these larger
networks using almost the same AE architecture as the one
used in the MNIST experiments. As seen in Figure 5 (bottom),
the accuracies of the reconstructed CIFAR networks also nearly
matched the performances of their original counterparts, while
also outperforming all other techniques.

5.6. Split CIFAR-100
We applied a similar approach for the CIFAR-100 dataset
(Krizhevsky, 2009). That is, we split the dataset into 10 distinct
batches comprised of 10 classes of images each. We used the
same task-network architecture and Buffer size as in our CIFAR-
10 experiments, modified slightly to accommodate a 10-class
classification objective. The trained networks achieved accuracies
ranging from 46 to 49%. We then encoded these networks using
the same AE architecture described in the previous experiments,

again accounting for the input size discrepancy by splitting the
task-networks into smaller subvectors. As seen in Figure 6, our
technique almost perfectly matched the performances achieved
by independently trained networks.

5.7. Incremental Atari
To evaluate the CL performance of Self-Net in the challenging
context of reinforcement learning, we used the code available
at Greydanus (2017) to implement a modified Async Advantage
Actor-Critic (A3C) framework; this architecture, originally
introduced inMnih et al. (2016), can learn successive Atari games
while retaining good performance across all games. The model
we used had four convolutional layers (kernals of size 3 × 3,
and strides of size 2 × 2), a GRU layer (800 × 256), and two
ouput layers: an Actor (256 × Num_Actions), and Critic (256
× 1), resulting in a complex model architecture and over 800
K parameters. Critically, this entire model can be flattened and
encoded by the single AE in our Self-Net framework having three,
fully connected layers with 76,863, 2,000, and 200 parameters,
respectively. For these experiments we also used a Buffer
of size 1.

Similar to previous experiments, we trained our system on
successive tasks, specifically the following Atari games: Boxing,

FIGURE 7 | CL on five Atari games with Self-Net. To evaluate the reconstruction score at each stage, we ran the reconstructed networks for 80 full game episodes.

The colored lines and bands represent the running mean and standard deviation in game score per episode. The cumulative mean score is nearly identical to the

original TN at each stage.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

Star Gunner, Kangaroo, Pong, and Space Invaders. Figure 7
shows the near-perfect retention of performance on each of the
five games over the lifetime of the system. This was accomplished
by training on each game only once, never revisiting the game
for training purposes. The dashed, vertical lines demarcate the
different stages of continual learning. That is, each stage indicates
that a new network was trained for a new game, over 40M
frames. Afterwards, the mean (dashed, horizontal black lines)
and standard-deviation (solid, horizontal black lines) of the
network’s performance were computed by allowing it to play
the game, unrestricted, for 80 episodes. After each stage, the
performances of all reconstructed networks were examined by re-
playing each game with the appropriate reconstructed network.
As Figure 7 shows, the cumulative means and SD’s of the
reconstructed networks closely mimic those achieved by their
original counterparts.

5.8. Task-Incremental CORe50
To further validate that our idea scales to more challenging
scenarios, we evaluated Self-Net on incremental tasks drawn
from the CORe50 dataset (Lomonaco and Maltoni, 2017), which
is comprised of 50 classes of objects, evenly divided between 10
categories (five classes per category). This dataset has 164,866,
128× 128 color images in total, and it was originally constructed
to measure the performance of deep learning systems on the

difficult problem of class-incremental learning (CIL), a specific
type of continual learning in which either new instances (NI),
new classes (NC), or both (NIC) have to be learned over time.
In this work, we consider learning new tasks (NT) over time,
instead. This variant of CL (defined in section 3) is different from
CIL, but it is still possible to use CORe50 tomeasure NT learning.
Specifically, we trained Self-Net to sequentially learn five classes
(a category) from the CORe50 dataset (10 tasks total). Given the
larger image size of this dataset, the task network had over 140 K
parameters. Our AE had three, fully connected layers with 48,813,
500, and 30 nodes, respectively. As described in section 4, we split
the 140 K networks into three subvectors to encode them with
our autoencoder. As Figure 8 shows, regularization methods
such as EWC had comparable performance to standard SGD on
this dataset, confirming that it is more challenging than MNIST
or CIFAR-10. However, our proposed method almost perfectly
matched the classification accuracies achieved by the original task
networks (which ranged from 91 to 99), thus confirming that our
approach is viable even in more difficult scenarios.

5.9. Split Networks and Multiple
Architectures
Finally, we verified that (1) a smaller AE can encode multiple
network splits in substantially less time than a larger one can
learn the entire network and (2) that the same AE can be used

FIGURE 8 | CL performance comparisons with average test set accuracy on all observed tasks at each stage for CORe50. Each observed task consisted of learning

one new category (five classes).

Frontiers in Artificial Intelligence | www.frontiersin.org 12 April 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

FIGURE 9 | Additional analyses. (Left) The AE training efficiency is improved when large networks are split into smaller subvectors. (Right) A single AE can encode

networks of different architectures and sizes.

to encode trained networks of different sizes and architectures.
Figure 9 (left) shows the respective training rates of an AE with
20,000 input units (blue line)—trained to reconstruct 3 sub-
vectors of length 20,000—compared to that of a larger one, with
61,000 input units (yellow line), trained on a single 60 K CIFAR-
10 network. Clearly, using more inputs for a smaller AE enables
us to more quickly encode larger networks. Finally, Figure 9
(right) shows that the same AE can simultaneously reconstruct
5 MNIST networks and 1 CIFAR network so that all networks
approach their original accuracies.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a scalable approach formulti-context
continual learning that decouples how to learn a set of parameters
from how to store them for future use. Our proposed framework
uses state-of-the-art autoencoders to facilitate lifelong learning
via continual self-modeling. Our empirical results confirm that
our method can efficiently acquire and retain large numbers of
tasks in continual fashion. In future work, we plan to further
improve our autoencoder’s capacity and explore how to use the
latent space to extrapolate to new tasks using little or no training
data. We also intend to compress the latent space even further
(e.g., using only log (k) latent vectors for k tasks). Promising

approaches include clustering the latent vectors into sets of
related tasks or using sparse latent representations. Finally, we
will also investigate how to infer the current task automatically.

DATA AVAILABILITY STATEMENT

The source code and datasets analyzed for this study
can be found in the following Github repository: https://
github.com/jmandivarapu1/SelfNet-Lifelong-Learning-via-
Continual-Self-Modeling.

AUTHOR CONTRIBUTIONS

RE conceived of the presented idea. JM and BC carried out the
experiments. JM, BC, and RE wrote the manuscript.

FUNDING

This research was funded in part by NSF award 1849946.

ACKNOWLEDGMENTS

We thank Jonathan Ji for his insightful comments on an earlier
version of this paper.

REFERENCES

Aljundi, R., Chakravarty, P., and Tuytelaars, T. (2017). “Expert gate: lifelong

learning with a network of experts,” in The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (Las Vegas, NV).

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). “Weight

uncertainty in neural networks,” in Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Vol. 37 (Lille),

1613–1622.

Carr, M. F., Jadhav, S. P., and Frank, L. M. (2011). Hippocampal replay in the

awake state: a potential substrate for memory consolidation and retrieval. Nat.

Neurosci. 14, 147–153. doi: 10.1038/nn.2732

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv [Preprint].

arXiv:1606.05908.

Finn, C., Rajeswaran, A., Kakade, S., and Levine, S. (2019). Online meta-learning.

arXiv [Preprint]. arXiv:1902.08438.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2013).

An empirical investigation of catastrophic forgetting in gradient-based neural

networks. arXiv [Preprint]. arXiv:1312.6211.

Greydanus, S. (2017). baby-a3c.Available online at: https://github.com/greydanus/

baby-a3c

He, X., Sygnowski, J., Galashov, A., Rusu, A. A., Whye Teh, Y., and Pascanu, R.

(2019). Task agnostic continual learning via meta learning. arXiv [Preprint].

arXiv:1906.05201.

Frontiers in Artificial Intelligence | www.frontiersin.org 13 April 2020 | Volume 3 | Article 19

https://github.com/jmandivarapu1/SelfNet-Lifelong-Learning-via-Continual-Self-Modeling
https://github.com/jmandivarapu1/SelfNet-Lifelong-Learning-via-Continual-Self-Modeling
https://github.com/jmandivarapu1/SelfNet-Lifelong-Learning-via-Continual-Self-Modeling
https://doi.org/10.1038/nn.2732
https://github.com/greydanus/baby-a3c
https://github.com/greydanus/baby-a3c
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Mandivarapu et al. Self-Net

Huszár, F. (2018). Note on the quadratic penalties in elastic weight consolidation.

Proc. Natl. Acad. Sci. U.S.A. 115, E2496–E2497. doi: 10.1073/pnas.1717042115

Kemker, R., Abitino, A., McClure, M., and Kanan, C. (2018). Measuring

catastrophic forgetting in neural networks. arXiv [Preprint]. arXiv:1708.02072.

Kemker, R., and Kanan, C. (2018). “Fearnet: brain-inspired model for

incremental learning,” in International Conference on Learning Representations

(Vancouver, BC).

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A.,

et al. (2017). Overcoming catastrophic forgetting in neural networks. Proc. Natl.

Acad. Sci. U.S.A. 114, 3521–3526. doi: 10.1073/pnas.1611835114

Krizhevsky, A. (2009). Learning Multiple Layers of Features From Tiny Images.

Technical Report, University of Toronto.

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What learning systems

do intelligent agents need? Complementary learning systems theory updated.

Trends Cogn. Sci. 20, 512–534. doi: 10.1016/j.tics.2016.05.004

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Li, Z., and Hoiem, D. (2016). “Learning without forgetting,” in ECCV

(Amsterdam).

Lomonaco, V., and Maltoni, D. (2017). Core50: a new dataset and benchmark for

continuous object recognition. arXiv [Preprint]. arXiv:1705.03550.

Lopez-Paz, D., and Ranzato, M. (2017). Gradient episodic memory for continuum

learning. arXiv [Preprint]. arXiv:1706.08840.

Masse, N. Y., Grant, G. D., and Freedman, D. J. (2018). Alleviating catastrophic

forgetting using context-dependent gating and synaptic stabilization. Proc.

Natl. Acad. Sci. 115, E10467–E10475. doi: 10.1073/pnas.1803839115

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T.,

et al. (2016). Asynchronous methods for deep reinforcement learning. arXiv

[Preprint]. arXiv:1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

et al. (2013). Playing atari with deep reinforcement learning. arXiv [Preprint].

arXiv:1312.5602.

Nagabandi, A., Finn, C., and Levine, S. (2018). Deep online learning via

meta-learning: continual adaptation for model-based RL. arXiv [Preprint].

arXiv:1812.07671.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). “Variational

continual learning,” in International Conference on Learning Representations

(Vancouver, BC).

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2018a).

Continual lifelong learning with neural networks: a review. arXiv:1802.07569.

doi: 10.1016/j.neunet.2019.01.012

Parisi, G. I., Tani, J., Weber, C., and Wermter, S. (2018b). Lifelong learning of

spatiotemporal representations with dual-memory recurrent self-organization.

Front. Neurorobot. 12:78. doi: 10.3389/fnbot.2018.00078

Preston, A., and Eichenbaum, H. (2013). Interplay of hippocampus and prefrontal

cortex in memory. Curr. Biol. 23, R764–R773. doi: 10.1016/j.cub.2013.05.041

Ramapuram, J., Gregorova, M., and Kalousis, A. (2017). Lifelong generative

modeling. arXiv [Preprint]. arXiv:1705.09847.

Rebuffi, S., Kolesnikov, A., and Lampert, C. H. (2016). iCaRL: incremental classifier

and representation learning. arXiv:1611.07725. doi: 10.1109/CVPR.2017.587

Riemer, M., Klinger, T., Bouneffouf, D., and Franceschini, M. (2017). Scalable

recollections for continual lifelong learning. arXiv [Preprint]. arXiv:1711.

06761.

Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011).

“Contractive auto-encoders: explicit invariance during feature

extraction,” in Proceedings of the 28th International Conference on

International Conference on Machine Learning, ICML’11 (Bellevue, WA:

Omnipress), 833–840.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal.

Connect. Sci. 7, 123–146. doi: 10.1080/09540099550039318

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J.,

Kavukcuoglu, K., et al. (2016). Progressive neural networks. arXiv [Preprint].

arXiv:1606.04671.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-Barwinska, A.,

Whye Teh, Y., Pascanu, R., et al. (2018). Progress & compress: a

scalable framework for continual learning. arXiv [Preprint]. arXiv:1805.

06370.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep

generative replay. arXiv [Preprint]. arXiv:1705.08690.

Teyler, T. J., and DiScenna, P. (1986). The hippocampal memory indexing theory.

Behav. Neurosci. 100, 147–154. doi: 10.1037/0735-7044.100.2.147

van de Ven, G. M., and Tolias, A. S. (2018). Generative replay with feedback

connections as a general strategy for continual learning. arXiv [Preprint].

arXiv:1809.10635.

von Oswald, J., Henning, C., Sacramento, J., and Grewe, B. F. (2019). Continual

learning with hypernetworks. arXiv [Preprint]. arXiv:1906.00695.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2018). “Lifelong learning with

dynamically expandable networks,” in International Conference on Learning

Representations (Vancouver, BC).

Zenke, F., Poole, B., and Ganguli, S. (2017). Improved multitask learning through

synaptic intelligence. arXiv [Preprint]. arXiv:1703.04200.

Zhou, G., Sohn, K., and Lee, H. (2012). “Online incremental feature learning

with denoising autoencoders,” in Proceedings of the Fifteenth International

Conference on Artificial Intelligence and Statistics, Vol. 22 of Proceedings of

Machine Learning Research, eds N. D. Lawrence and M. Girolami (La Palma;

Canary Islands), 1453–1461.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Mandivarapu, Camp and Estrada. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 14 April 2020 | Volume 3 | Article 19

https://doi.org/10.1073/pnas.1717042115
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1016/j.tics.2016.05.004
https://doi.org/10.1109/5.726791
https://doi.org/10.1073/pnas.1803839115
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.3389/fnbot.2018.00078
https://doi.org/10.1016/j.cub.2013.05.041
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1038/323533a0
https://doi.org/10.1037/0735-7044.100.2.147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Self-Net: Lifelong Learning via Continual Self-Modeling
	1. Introduction
	2. Prior Work
	3. Problem Formulation
	4. Methodology
	4.1. Single-Network Encoding
	4.2. Continual Encoding
	4.2.1. Autoencoder Details
	4.2.2. Task Network Fine-Tuning

	5. Experimental Results
	5.1. Robustness Analysis
	5.1.1. Parameter Noise Tolerance
	5.1.2. Same-Task Reconstruction

	5.2. Performance and Storage Scalability
	5.3. Permuted MNIST
	5.4. Split MNIST
	5.5. Split CIFAR-10
	5.6. Split CIFAR-100
	5.7. Incremental Atari
	5.8. Task-Incremental CORe50
	5.9. Split Networks and Multiple Architectures

	6. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

