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Machine learning (ML) and artificial intelligence (AI) algorithms are now being used to

automate the discovery of physics principles and governing equations frommeasurement

data alone. However, positing a universal physical law from data is challenging without

simultaneously proposing an accompanying discrepancy model to account for the

inevitable mismatch between theory andmeasurements. By revisiting the classic problem

of modeling falling objects of different size and mass, we highlight a number of nuanced

issues that must be addressed by modern data-driven methods for automated physics

discovery. Specifically, we show that measurement noise and complex secondary

physical mechanisms, like unsteady fluid drag forces, can obscure the underlying law of

gravitation, leading to an erroneous model. We use the sparse identification of non-linear

dynamics (SINDy) method to identify governing equations for real-world measurement

data and simulated trajectories. Incorporating into SINDy the assumption that each

falling object is governed by a similar physical law is shown to improve the robustness

of the learned models, but discrepancies between the predictions and observations

persist due to subtleties in drag dynamics. This work highlights the fact that the naive

application of ML/AI will generally be insufficient to infer universal physical laws without

further modification.

Keywords: dynamical systems, system identification, machine learning, artificial intelligence, sparse regression,

discrepancy modeling

1. INTRODUCTION

The ability to derive governing equations and physical principles has been a hallmark feature
of scientific discovery and technological progress throughout human history. Even before the
scientific revolution, the Ptolemaic doctrine of the perfect circle (Peters and Knobel, 1915; Ptolemy,
2014) provided a principled decomposition of planetary motion into a hierarchy of circles, i.e., a
bona fide theory for planetary motion. The scientific revolution and the resulting development
of calculus provided the mathematical framework and language to precisely describe scientific
principles, including gravitation, fluid dynamics, electromagnetism, quantummechanics, etc. With
advances in data science over the past few decades, principled methods are emerging for such
scientific discovery from time-series measurements alone. Indeed, across the engineering, physical
and biological sciences, significant advances in sensor andmeasurement technologies have afforded
unprecedented new opportunities for scientific exploration. Despite its rapid advancements and
wide-spread deployment, machine learning (ML) and artificial intelligence (AI) algorithms for
scientific discovery face significant challenges and limitations, including noisy and corrupt data,
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latent variables, multiscale physics, and the tendency for
overfitting. In this manuscript, we revisit one of the classic
problems of physics considered by Galileo and Newton, that of
falling objects and gravitation. We demonstrate that a sparse
regression framework is well-suited for physics discovery, while
highlighting both the need for principled methods to extract
parsimonious physics models and the challenges associated with
the naive application of ML/AI techniques. Even this simplest of
physical examples demonstrates critical principles that must be
considered in order to make data-driven discovery viable across
the sciences.

Measurements have long provided the basis for the discovery
of governing equations. Through empirical observations
of planetary motion, the Ptolemaic theory of motion was
developed (Peters and Knobel, 1915; Ptolemy, 2014). This was
followed by Kepler’s laws of planetary motion and the elliptical
courses of planets in a heliocentric coordinate system (Kepler,
2015). By hand calculation, he was able to regress Brahe’s state-of-
the-art data on planetary motion to the minimally parameterized
elliptical orbits which described planetary orbits with a terseness
the Ptolemaic system had nevermanaged to achieve. Suchmodels
led to the development of Newton’s F = ma (Newton, 1999),
which provided a universal, generalizable, interpretable, and
succinct description of physical dynamics. Parsimonious models
are critical in the philosophy of Occam’s razor: the simplest
set of explanatory variables is often the best (Blumer et al.,
1987; Domingos, 1999; Bongard and Lipson, 2007; Schmidt and
Lipson, 2009). It is through such models that many technological
and scientific advancements have been made or envisioned.

What is largely unacknowledged in the scientific discovery
process is the intuitive leap required to formulate physics
principles and governing equations. Consider the example of
falling objects. According to physics folklore, Galileo discovered,
through experimentation, that objects fall with the same constant
acceleration, thus disproving Aristotle’s theory of gravity, which
stated that objects fall at different speeds depending on their
mass. The leaning tower of Pisa is often the setting for this
famous stunt, although there is little evidence such an experiment
actually took place (Cooper, 1936; Adler and Coulter, 1978;
Segre, 1980). Indeed, many historians consider it to have been
a thought experiment rather than an actual physical test. Many
of us have been to the top of the leaning tower and have longed
to drop a bowling ball from the top, perhaps along with a golf
ball and soccer ball, in order to replicate this experiment. If
we were to perform such a test, here is what we would likely
find: Aristotle was correct. Balls of different masses and sizes do
reach the ground at different times. As we will show from our
own data on falling objects, (noisy) experimental measurements
may be insufficient for discovering a constant gravitational
acceleration, especially when the objects experience Reynolds
numbers varying by orders of magnitudes over the course of
their trajectories. But what is beyond dispute is that Galileo did
indeed posit the idea of a fixed acceleration, a conclusion that
would have been exceptionally difficult to come to from such
measurement data alone. Gravitation is only one example of the
intuitive leap required for a paradigm shifting physics discovery.
Maxwell’s equations (Maxwell, 1873) have a similar story arc

revolving around Coulomb’s inverse square law. Maxwell cited
Coulomb’s torsion balance experiment as establishing the inverse
square law while dismissing it only a few pages later as an
approximation (Bartlett et al., 1970; Falconer, 2017). Maxwell
concluded that Faraday’s observation that an electrified body,
touched to the inside of a conducting vessel, transfers all its
electricity to the outside surface as much more direct proof of the
square law. In the end, both would have been approximations,
with Maxwell taking the intuitive leap that exactly a power of
negative two was needed when formulating Maxwell’s equations.
Such examples abound across the sciences, where intuitive leaps
are made and seminal theories result.

One challenge facing ML and AI methods is their inability
to take such leaps. At their core, many ML and AI algorithms
involve regressions based on data, and are statistical in
nature (Breiman, 2001; Bishop, 2006; Wu et al., 2008; Murphy,
2012). Thus by construction, a model based on measurement
data would not produce an exact inverse square law, but rather
a slightly different estimate of the exponent. In the case of
falling objects, ML and AI would yield an Aristotelian theory
of gravitation, whereby the data would suggest that objects
fall at a speed related to their mass. Of course, even Galileo
intuitively understood that air resistance plays a significant role
in the physics of falling objects, which is likely the reason he
conducted controlled experiments on inclined ramps. Although
we understand that air resistance, which is governed by latent
fluid dynamic variables, explains the discrepancy between the
data and a constant gravity model, our algorithms do not.
Without modeling these small disparities (e.g., due to friction,
heat dissipation, air resistance, etc.), it is almost impossible to
uncover universal laws, such as gravitation. Differences between
theory and data have played a foundational role in physics,
with general relativity arising from inconsistencies between
gravitational theory and observations, and quantum mechanics
arising from our inability to explain the photoelectric effect with
Maxwell’s equations.

Our goal in this manuscript is to highlight the many subtle
and nuanced concerns related to data-driven discovery using
modern ML and AI methods. Specifically, we highlight these
issues on the most elementary of problems: modeling the
motion of falling objects. Given our ground-truth knowledge
of the physics, this example provides a convenient testbed for
different physics discovery techniques. It is important that one
clearly understands the potential pitfalls in such methods before
applying them to more sophisticated problems which may arise
in fields like biology, neuroscience, and climate modeling. Our
physics discovery method is rooted in the sparse identification for
non-linear dynamics (SINDy) algorithm, which has been shown
to extract parsimonious governing equations in a broad range of
physical sciences (Brunton et al., 2016). SINDy has been widely
applied to identify models for fluid flows (Loiseau and Brunton,
2018; Loiseau et al., 2018), optical systems (Sorokina et al., 2016),
chemical reaction dynamics (Hoffmann et al., 2019), convection
in a plasma (Dam et al., 2017), structural modeling (Lai and
Nagarajaiah, 2019), and for model predictive control (Kaiser
et al., 2018). There are also a number of theoretical extensions
to the SINDy framework, including for identifying partial
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differential equations (Rudy et al., 2017; Schaeffer, 2017), and
models with rational function non-linearities (Mangan et al.,
2016). It can also incorporate partially known physics and
constraints (Loiseau and Brunton, 2018). The algorithm can be
reformulated to include integral terms for noisy data (Schaeffer
and McCalla, 2017) or handle incomplete or limited data (Tran
and Ward, 2016; Schaeffer et al., 2018). In this manuscript we
show that group sparsity (Rudy et al., 2019) may be used to
enforce that the same model terms explain all of the observed
trajectories, which is essential in identifying the correct model
terms without overfitting.

SINDy is by no means the only attempt that has been made
at using machine learning to infer physical models from data.
Gaussian processes have been employed to learn conservation
laws described by parametric linear equations (Raissi et al.,
2017a). Symbolic regression has been successfully applied to
the problem of inferring dynamics from data (Bongard and
Lipson, 2007; Schmidt and Lipson, 2009). Another closely related
set of approaches are process-based models (Bridewell et al.,
2008; Tanevski et al., 2016, 2017) which, similarly to SINDy,
allow one to specify a library of relationships or functions
between variables based on domain knowledge and produce an
interpretable set of governing equations. The principal difference
between process-basedmodels and SINDy is that SINDy employs
sparse regression techniques to perform function selection which
allows a larger class of library functions to be considered than is
tractable for process-based models. Deep learning methods have
been proposed for accomplishing a variety of related tasks, such
as predicting physical dynamics directly (Mrowca et al., 2018),
building neural networks that respect given physical laws (Raissi
et al., 2017b), discovering parameters in non-linear partial
differential equations with limited measurement data (Raissi
et al., 2017c), and simultaneously approximating the solution
and non-linear dynamics of non-linear partial differential
equations (Raissi, 2018). Graph neural networks (Battaglia et al.,
2018), a specialized class of neural networks that operate on
graphs, have been shown to be effective at learning basic physics
simulators from measurement data (Battaglia et al., 2016; Chang
et al., 2016) and directly from videos (Watters et al., 2017).
It should be noted that the aforementioned neural network
approaches either require detailed prior knowledge of the form
of the underlying differential equations or fail to yield simple sets
of interpretable governing equations.

2. MATERIALS AND METHODS

2.1. Fluid Forces on a Sphere: A Brief
History
It must have been immediately clear to Galileo and Newton that
committing to a gravitational constant created an inconsistency
with experimental data. Specifically, one had to explain why
objects of different sizes and shapes fall at different speeds
(e.g., a feather vs. a cannon ball). Wind resistance was an
immediate candidate to explain the discrepancy between a
universal gravitational constant and measurement data. The fact
that Galileo performed experiments where he rolled balls down

inclines seems to suggest that he was keenly aware of the need
to isolate and disambiguate the effects of gravitational forces
from fluid drag forces. Discrepancies between the Newtonian
theory of gravitation and observational data of Mercury’s orbit
led to Einstein’s development of general relativity. Similarly, the
photoelectric effect was a discrepancy in Maxwell’s equations
which led to the development of quantum mechanics.

Discrepancy modeling is therefore a critical aspect of building
and discovering physical models. Consider the motion of falling
spheres as a prototypical example. In addition to the force of
gravity, a falling sphere encounters a fluid drag force as it passes
through the air. A simple model of the drag force FD is given by:

FD =
1

2
ρv2ACD, (1)

where ρ is the fluid density, v is the velocity of the sphere
with respect to the fluid, A = πD2/4 is the cross-sectional
area of the sphere, D is the diameter of the sphere, and CD

is the dimensionless drag coefficient. As the sphere accelerates
through the fluid, its velocity increases, exciting various unsteady
aerodynamic effects, such as laminar boundary layer separation,
vortex shedding, and eventually a turbulent boundary layer and
wake (Moller, 1938; Magarvey andMacLatchy, 1965; Achenbach,
1972, 1974; Calvert, 1972; Smits and Ogg, 2004). Thus, the
drag coefficient is a function of the sphere’s velocity, and this
coefficient generally decreases for increasing velocity. Figure 1
shows the drag coefficient CD for a sphere as a function of
the Reynolds number Re = ρvD/µ, where µ is the dynamic
viscosity of the fluid; for a constant diameter and viscosity, the
Reynolds number is directly proportional to the velocity. Note
that the drag coefficient of a smooth sphere will differ from that
of a rough sphere. The flow over a rough sphere will become
turbulent at lower velocities, causing less flow separation and a
more streamlined, lower-drag wake; this explains why golf balls
are dimpled, so that they will travel farther (Smits and Ogg,
2004). Thus, (1) states that drag is related to the square of the
velocity, although CD has a weak dependence on velocity. When
Re is small, CD is proportional to 1/v, resulting in a drag force
that is linear in v. For larger values of Re, CD is approximately
constant (away from the steep drop), leading to a quadratic
drag force. Eventually, the drag force will balance the force of
gravity, resulting in the sphere reaching its terminal velocity. In
addition, as the fluid wake becomes unsteady, the drag force will
also vary in time, although these variations are typically fast and
may be time-averaged. Finally, objects accelerating in a fluid will
also accelerate the fluid out of the way, resulting in an effective
mass that includes the mass of the body and an added mass
of accelerated fluid (Newman, 1977); however, this added mass
force will typically be quite small in air.

In addition to the theoretical study of fluid forces on an
idealized sphere, there is a rich history of scientific inquiry into
the aerodynamics of sports balls (Mehta, 1985, 2008; Smits and
Ogg, 2004; Goff, 2013). Apart from gravity and drag, a ball’s
trajectory can be influenced by the spin of the ball via theMagnus
force or lift force which acts in a direction orthogonal to the
drag. Other factors that can affect the forces experienced by a
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FIGURE 1 | The drag coefficient for a sphere as a function of Reynolds

number, Re. The dark curve shows the coefficient for a sphere with a smooth

surface and the light curve a sphere with a rough surface. The numbers

highlight different flow regimes. (1) attached flow and steady separated flow;

(2) separated unsteady flow, with laminar flow boundary layer upstream of

separation, producing a Kármán vortex street; (3) separated unsteady flow

with a chaotic turbulent wake downstream and a laminar boundary layer

upstream; (4) post-critical separated flow with turbulent boundary layer.

falling ball include air temperature, wind, elevation, and ball
surface shape.

2.2. Data Set
The data considered in this manuscript are height measurements
of balls falling through air. These measurements originate
from two sources: physical experiments and simulations. Such
experiments are popular in undergraduate physics classes where
they are used to explore linear vs. quadratic drag (Owen and
Ryu, 2005; Kaewsutthi and Wattanakasiwich, 2011; Christensen
et al., 2014; Cross and Lindsey, 2014) and scaling laws Sznitman
et al. (2017). In June 2013 a collection of balls, pictured in
Figure 2, were dropped, twice each, from the Alex Fraser Bridge
in Vancouver, BC from a height of about 35 meters above the
landing site. In total 11 balls were dropped: a golf ball, a baseball,
two whiffle balls with elongated holes, two whiffle balls with
circular holes, two basketballs, a bowling ball, and a volleyball
(not pictured). More information about the balls is given in
Table 1. The air temperature at the time of the drops was 65◦F
(18◦C). A hand held iPad was used to record video of the drops
at a rate of 15 frames per second. The height of the falling objects
was then estimated by tracking the balls in the resulting videos.
Figure 3 visualizes the second set of ball drops. As one might
expect, the whiffle balls all reach the ground later than the other
balls. This is to be expected since the openings in their faces
increase the drag they experience. Even so, all the balls reach the
ground within a second of each other. We also plot the simulated
trajectories of two spheres falling with constant linear (in v)
drag and the trajectory predicted by constant acceleration. Note
that, based on the log-log plot of displacement, none of the balls
appears to have reached terminal velocity by the time they hit the
ground. This may increase the difficulty of accurately inferring
the balls’ governing equations. Given only measurements from
one regime of falling ball dynamics, it may prove difficult to infer
models that generalize to other regimes.

Drawing inspiration from Aristotle, one might form the
hypothesis that the amount of time taken by spheres to reach the
ground should be a function of the density of the spheres. Density
takes into account both information about the mass of an object
and its volume, whichmight be thought to affect the air resistance
it encounters. We plot the landing time of each ball as a function
of its density for both drops in Figure 4. To be more precise,
because some balls were dropped from slightly different heights,
we measure the amount of time it takes each ball to travel a fixed
distance after being dropped, not the amount of time it takes
the ball to reach the ground. There is a general trend across the
tests for the denser balls to travel faster. However, the basketballs
defy this trend and complete their journeys about as quickly as
the densest ball. This shows there must be more factors at play
than just density. There is also variability in the land time of the
balls across drops. While most of the balls have very consistent
fall times across drops, the blue basketball, golf ball, and orange
whiffle ball reach the finish line faster in the first trial than the
second one. These differences could be due to a variety of factors,
including the balls being released with different initial velocities,
or errors in measuring the balls’ heights.

There are multiple known sources of error in the
measurement data. The relatively low resolution of the videos
means that the inferred ball heights are only approximate. In
the Supplementary Material we attempt to infer the level of
noise introduced by our use of heights derived from imperfect
video data. Furthermore, the camera was held by a person,
not mounted on a tripod, leading to shaky footage. The true
bridge height is uncertain because it was measured with a laser
range finder claiming to be accurate to within 0.5 m. Because
the experiments were executed outside, it is possible for any
given drop to have been affected by wind. Detecting exactly
when each ball was dropped, at what velocity it was dropped,
and when it hit the ground using only videos is certain to
introduce further error. Finally, treating these balls as perfect
spheres is an approximation whose accuracy depends on the
nature of the balls. This idealization seems least appropriate
for the whiffle balls, which are sure to exhibit much more
complicated aerodynamic effects than, say, the baseball. The
bowling ball was excluded from consideration because of
corrupted measurements from its first drop.

The situation we strive to mimic with this experiment is
one in which the researcher is in a position of ignorance about
the system being studied. In order to design an experiment
which eliminates the effects of confounding factors, such as
air resistance one must already have an appreciation for which
factors are worth controlling; one leverages prior knowledge as
Galileo did when he employed ramps in his study of falling
objects to mitigate the effect of air resistance. In the early stages of
investigation of a physical phenomenon, one must often perform
poorly-controlled experiments to help identify these factors. We
view the ball drop trials as this type of experiment.

In addition to the measurement data just described, we
construct a synthetic data set by simulating falling objects
with masses of 1 kg and different (linear) drag coefficients. In
particular, for each digital ball, we simulate two drops of the
same length as the real data and collect height measurements at
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FIGURE 2 | The balls that were dropped from the bridge, with the volleyball omitted. From left to right: Golf Ball, Tennis Ball, Whiffle Ball 1, Whiffle Ball 2, Baseball,

Yellow Whiffle Ball, Orange Whiffle Ball, Green Basketball, and Blue Basketball. The two colored whiffle balls have circular openings and are structurally identical. The

two white whiffle balls have elongated slits and are also identical.

TABLE 1 | Physical measurements, maximum velocities across the two drops, and maximum Reynolds numbers for the dropped balls.

Ball Radius (m) Mass (kg) Density (kg/m) Max vel. (m/s) Max Re

Golf ball 0.021963 0.045359 1022.066427 26.63 1.75× 105

Baseball 0.035412 0.141747 762.037525 26.61 2.83× 105

Tennis ball 0.033025 0.056699 375.813253 21.95 2.18× 105

Volleyball 0.105* NA NA 22.09 6.96× 105

Blue basketball 0.119366 0.510291 71.628378 24.80 8.88× 105

Green basketball 0.116581 0.453592 68.342914 25.06 8.77× 105

Whiffle ball 1 0.036287 0.028349 141.641937 16.91 1.84× 105

Whiffle ball 2 0.036287 0.028349 141.641937 16.35 1.78× 105

Yellow whiffle ball 0.046155 0.042524 103.250857 15.30 2.12× 105

Orange whiffle ball 0.046155 0.042524 103.250857 15.77 2.18× 105

*We do not have measurement data for the volleyball, but obtained an estimate for its radius based on other volleyballs in order to approximate its maximum Reynolds number.

a rate of 15 measurements per second. The balls fall according
to the equation ẍ(t) = −9.8 + Dẋ(t), with each ball having
its own constant drag coefficient, D < 0. We simulate five
balls in total, with respective drag coefficients −0.1, −0.3, −0.3,
−0.5, and −0.7. These coefficients are all within the plausible
range suggested by the simulated trajectories shown in Figure 3.
Each object is “dropped” with an initial velocity of 0. Varying
amounts of Gaussian noise are added to the height data so that
we may better explore the noise tolerance of the proposed model
discovery approaches:

x̃i = xi + ηǫi.

where η ≥ 0 and ǫi ∼ N(0, 1); that is to say ǫi is normally
distributed with unit variance.

2.3. Methods
In this section we describe the model discovery methods we
employ to infer governing equations from noisy data. We
first give the mathematical background necessary for learning
dynamics via sparse regression and provide a brief overview of
the SINDy method in section 2.3.1. In section 2.3.2 we propose
a group sparsity regularization strategy for improving the
robustness and generalizability of SINDy. We briefly discuss the
setup of the model discovery problem we are attempting to solve
in section 2.3.3. Finally, we discuss numerical differentiation, a
subroutine critical to effective model discovery, in section 2.3.4.

2.3.1. Sparse Identification of Non-linear Dynamical

Systems
Consider the non-linear dynamical system for the state vector
x(t) = [x1(t), x2(t), . . . , xn(t)]

⊤ ∈ R
n defined by

ẋ = f(x(t)).

Given a set of noisy measurements of x(t), the sparse
identification of non-linear dynamics (SINDy) method,
introduced in Brunton et al. (2016), seeks to identify f :Rn → R

n.
In this section we give an overview of the steps involved in the
SINDy method and the assumptions upon which it relies.
Throughout this manuscript we refer to this algorithm as
the unregularized SINDy method, not because it involves no
regularization, but because its regularization is not as closely
tailored to the problem at hand as the method proposed in
section 2.3.2.

For many dynamical systems of interest, the function
specifying the dynamics, f, consists of only a few terms. That is
to say, when represented in the appropriate basis, there is a sense
in which it is sparse. The key idea behind the SINDy method
is that if one supplies a rich enough set of candidate functions
for representing f, then the correct terms can be identified using
sparse regression techniques. The explicit steps are as follows.
First we collect a set of (possibly noisy) measurements of the
state x(t) and its derivative ẋ(t) at a sequence of points in
time, t1, t2, . . . , tm. These measurements are concatenated into
two matrices, the columns of which correspond to different

Frontiers in Artificial Intelligence | www.frontiersin.org 5 April 2020 | Volume 3 | Article 25

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


de Silva et al. Discovery of Physics From Data

FIGURE 3 | Visualizations of the ball trajectories for the second drop. (Top) Subsampled raw drop data for each ball. (Bottom left) Height for each ball as a function of

time. We also include the simulated trajectories of idealized balls with differing levels of drag (black and blue) and a ball with constant acceleration (red). (Bottom right)

A log-log plot of the displacement of each ball from its original position atop the bridge. Note that we have shifted the curves vertically and zoomed in on the later

segments of the time series to enable easier comparison. In this plot a ball falling at a constant rate (zero acceleration) will have a trajectory represented by a line with

slope one. A ball falling with constant acceleration will have a trajectory represented by a line with slope two. A ball with drag will have a trajectory which begins with

slope two and asymptotically approaches a line with slope one.

state variables and the rows of which correspond to points
in time.

X =











x(t1)
⊤

x(t2)
⊤

...

x(tm)
⊤











=











x1(t1) x2(t1) . . . xn(t1)
x1(t2) x2(t2) . . . xn(t2)

...
...

. . .
...

x1(tm) x2(tm) . . . xn(tm)











,

Ẋ =











ẋ(t1)
⊤

ẋ(t2)
⊤

...

ẋ(tm)
⊤











=











ẋ1(t1) ẋ2(t1) . . . ẋn(t1)
ẋ1(t2) ẋ2(t2) . . . ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) . . . ẋn(tm)











.

Next we specify a set of candidate functions, {φi(x) : i =
1, 2, . . . , p}, with which to represent f. Examples of candidate
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FIGURE 4 | The amount of time taken by each ball to travel a fixed distance as a function of ball density.

functions include monomials up to some finite degree,
trigonometric functions, and rational functions. In practice the
selection of these functions can be informed by the practitioner’s
prior knowledge about the system beingmeasured. The candidate
functions are evaluated on X to construct a library matrix

8(X) =



φ1(X) φ2(X) . . . φp(X)



 .

Note that each column of8(X) corresponds to a single candidate
function. Here we have overloaded notation and interpret φ(X) as
the column vector obtained by applying φi to each row of X. It is
assumed that each component of f can be represented as a sparse
linear combination of such functions. This allows us to pose a
regression problem to be solved for the coefficients used in these
linear combinations:

Ẋ = 8(X)4. (2)

We adopt MATLAB-style notation and use 4(:,j) to denote the j-
th column of 4. The coefficients specifying the dynamical system
obeyed by xj are stored in 4(:,j):

ẋj = fj(x) = 8
(

x⊤
)

4(:,j),

where 8
(

x⊤
)

is to be interpreted as a (row) vector of symbolic
functions of components of x. The full system of differential
equations is then given by

ẋ = f(x) = 4⊤
(

8
(

x⊤
))⊤

.

For concreteness we supply the following example. With
the candidate functions

{

1, x1, x2, x1x2, x
2
1, x

2
2

}

the Lotka-
Volterra equations

{

ẋ1 = αx1 − βx1x2,

ẋ2 = δx1x2 − γ x2

can be expressed as

ẋ =

[

ẋ1
ẋ2

]

= 4⊤
(

8
(

x⊤
))⊤

=

[

0 α 0 −β 0 0
0 0 −γ δ 0 0

]

















1
x1
x2
x1x2
x21
x22

















Were we to obtain pristine samples of x(t) and ẋ(t) we
could solve (2) exactly for 4. Furthermore, assuming we chose
linearly independent candidate functions and avoided collecting
redundant measurements, 4 would be unique and would exhibit
the correct sparsity pattern. In practice, however, measurements
are contaminated by noise and we actually observe a perturbed
version of x(t).

Inmany cases ẋ(t) is not observed directly andmust instead be
approximated from x(t), establishing another source of error. The
previously exact Equation (2), to be solved for 4 is supplanted by
the approximation problem

Ẋ ≈ 8(X)4.

To find 4 we solve the more concrete optimization problem

min
4

1

2

∥

∥Ẋ−8(X)4
∥

∥

2

F
+�(4), (3)

where �(·) is a regularization term chosen to promote sparse
solutions and ‖ · ‖F is the Frobenius norm. Note that because
any given column of 4 encodes a differential equation for a
single component of x, each column generates a problem that is
decoupled from the problems associated with the other columns.
Thus, solving (3) consists of solving n separate regularized least
squares problems. Row i of 4 contains the coefficients of library
function φi for each governing equation.
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The most direct way to enforce sparsity is to choose � to
be the ℓ0 penalty, defined as ‖M‖0 =

∑

i,j |sign(Mij)|. This

penalty simply counts the number of non-zero entries in a matrix
or vector. However, using the ℓ0 penalty makes (3) difficult to
optimize because ‖·‖0 is non-smooth and non-convex. Another
common choice is the ℓ1 penalty defined by ‖M‖1 =

∑

i,j |Mij|.

This function is the convex relaxation of the ℓ0 penalty. The
LASSO, proposed in Tibshirani (1996), with coordinate descent
is typically employed to solve (3) with �(·) = ‖ · ‖1, but this
method can become computationally expensive for large data sets
and often leads to incorrect sparsity patterns (Su et al., 2017).
Hence we solve (3) using the sequential thresholded least-squares
algorithm proposed in Brunton et al. (2016), and studied in
further detail in Zheng et al. (2018). In essence, the algorithm
alternates between (a) successively solving the unregularized
least-squares problem for each column of 4 and (b) removing
candidate functions from consideration whose corresponding
components in 4 are below some threshold. This threshold or
sparsity parameter, is straightforward to interpret: no governing
equations are allowed to have any terms with coefficients of
magnitude smaller than the threshold. Crucially, it should be
noted that just because a candidate function is discarded for one
column of 4 (i.e., for one component’s governing equation) does
not mean it is removed from contention for the other columns.
A simple Python implementation of sequentially thresholded
least-squares is provided in the Supplementary Material.

We note that if we simulate falling objects with constant
acceleration, ẍ(t) = −9.8, or linear drag, ẍ(t) = −9.8+Dẋ(t), and
add no noise, then there is almost perfect agreement between the
true governing equations and the models learned by SINDy. The
Supplementary Material contains a more thorough discussion
of such numerical experiments and another example application
of SINDy.

SINDy has a number of well-known limitations. The biggest
of these is the effect of noise on the learned equations. If one does
not have direct measurements of derivatives of state variables,
then these derivatives must be computed numerically. Any noise
that is present in the measurement data is amplified when it
is numerically differentiated, leading to noise in both Ẋ and
8(X) in (3). In its original formulation, SINDy often exhibits
erratic performance in the face of such noise, but extensions
have been developed which handle noise more gracefully (Tran
and Ward, 2016; Schaeffer and McCalla, 2017). We discuss
numerical differentiation further in section 2.3.4. As with other
methods, each degree of freedom supplied to the practitioner
presents a potential source of difficulty. To use SINDy one
must select a set of candidate functions, a sparse regularization
function, and a parameter weighing the relative importance of
the sparseness of the solution against accuracy. An improper
choice of any one of these can lead to poor performance. The
set of possible candidate functions is infinite, but SINDy requires
one to specify a finite number of them. If one has any prior
knowledge of the dynamics of the system being modeled, it can
be leveraged here. If not, it is typically recommended to choose a
class of functions general enough to encapsulate a wide variety
of behaviors (e.g., polynomials or trigonometric functions). In
theory, sparse regression techniques should allow one to specify

a sizable library of functions, selecting only the relevant ones.
However, in practice, the underlying regression problem becomes
increasingly ill-conditioned as more functions are added. If
one wishes to explore an especially large space of possible
library functions it may be better to use other approaches, such
as symbolic regression with genetic algorithms (Bongard and
Lipson, 2007; Schmidt and Lipson, 2009). A full discussion of
how to pick a sparsity-promoting regularizer is beyond the scope
of this work. We do note that there have been recent efforts to
explore different methods for obtaining sparse solutions when
using SINDy (Champion et al., 2019). An appropriate value
for the sparsity hyperparameter can be obtained using cross-
validation. We note that the need to perform hyperparameter
tuning is by no means unique to SINDy. Virtually all machine
learning methods require some amount of hyperparameter
tuning. There are two natural options for target metrics during
cross-validation. The derivatives directly predicted by the linear
model can be compared against the measured (or numerically
computed) derivatives. Alternatively, the model can be fed into
a numerical integrator along with initial conditions to obtain
predicted future values for the state variables. These forecasts
can then be judged against the measured values. To achieve
a balance between model sparsity and accuracy, information
theoretic criteria, such as the Akaike information criteria (AIC)
or Bayes information criteria (BIC) can be applied (Mangan et al.,
2017).

2.3.2. Group Sparsity Regularization
The standard, unregularized SINDy approach attempts to learn
the dynamics governing each state variable independently. It
does not take into account prior information one may possess
regarding relationships between state variables. Intuitively
speaking, the balls in our data set (whiffle balls, perhaps,
excluded) are similar enough objects that the equations
governing their trajectories should include similar terms. In this
subsection we propose a group sparsity method which can be
interpreted as enforcing this hypothesis when seeking predictive
models for the balls.

We draw inspiration for our approach from the group LASSO
of Yuan and Lin (2006), which extends the LASSO. The classic
LASSO method solves the ℓ1 regularization problem

β = argmin
β

1

2
‖Xβ − Y‖22 + λ ‖β‖1 . (4)

which penalizes the magnitude of each component of β

individually. The group LASSO approach modifies (4) by
bundling sets of related entries of β together when computing the
penalty term. Let the entries of β be partitioned into G disjoint
blocks {β1,β2, . . . ,βG}, which can be treated as vectors. The
group LASSO then solves the following optimization problem

β = argmin
β

1

2
‖Xβ − Y‖22 + λ

G
∑

i=1

‖βi‖2 . (5)

In the case that the groups each consist of exactly one
entry of β , (5) reduces to (4). When blocks contain multiple
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Algorithm 1: A group sparsity algorithm for the sequential
thresholded least squares method.

Data: Ẋ ∈ R
m×d, 8(X) ∈ R

m×p, and δ > 0
Result: coefficient matrix 4 ∈ R

p×d

while not converged do
// Solve a least squares problem for

each state variable
for j← 1 to d do

4(:,j) ← argminξ
1
2

∥

∥Ẋ−8(X)ξ
∥

∥

2

2
;

end

// Remove library functions with low
salience

for i← 1 to p do
if R(4(i,:)) < δ then

Delete 4(i,:) and 8(X)(:,i);
end

end

end

Replace deleted rows of 4 and deleted columns of 8(X)
with 0’s;

entries, the group LASSO penalty encourages them to be
retained or eliminated as a group. Furthermore, it drives
sets of unimportant variables to truly vanish, unlike the ℓ2
regularization function which merely assigns small but non-zero
values to insignificant variables.

We apply similar ideas in our group sparsity method for
the SINDy framework and force the models learned for each
ball to select the same library functions. Recall that the model
variables are contained in 4. To enforce the condition that each
governing equation should involve the same terms, we identify
rows of 4 as sets of variables to be grouped together. Borrowing
MATLAB notation again, we let 4(i,:) denote row i of 4. To
perform sequential thresholded least squares with the group
sparsity constraint we repeatedly apply the following steps until
convergence: (a) solve the least-squares problem (3) without a
regularization term for each column of 4 (i.e., for each ball), (b)
prune the library, 8(X), of functions which have low relevance
across most or all of the balls. This procedure is summarized in
Algorithm 1.
Here R is a function measuring the importance of a row of
coefficients. Possible choices for R include the ℓ1 or ℓ2 norm of
the input, themean ormedian of the absolute values of the entries
of the input, or another statistical property of the input entries,
such as the lower 25% quantile. In this work we use the ℓ1 norm.
Convergence is attained when no rows of 4 are removed. Note
that while all the models are constrained to be generated by the
same library functions, the coefficients in front of each can differ
from one model to the next. The hyperparameter δ controls the
sparsity of 4, though not as directly as the sparsity parameter for
SINDy. Increasing it will result in models with fewer terms and
decreasing it will have the opposite effect. Since we use the ℓ1
norm and there are 10 balls in our primary data set, rows of 4

whose average magnitude is < δ
10 are removed.

Because the time series are all noisy, it is likely that some
the differential equations returned by the unregularized SINDy
algorithm will acquire spurious terms. Insisting that only terms
which most of the models find useful are kept, as with our group
sparsity method, should help to mitigate this issue. In this way
we are able to leverage the fact that we have multiple trials
involving similar objects to improve the robustness of the learned
models to noise. Even if some of the unregularized models from
a given drop involve erroneous library functions, we might still
hope that, on average, the models will pick the correct terms.
Our approach can also be viewed as a type of ensemble method
wherein a set of models is formed from the time series of a given
drop, they are allowed to vote on which terms are important,
then the models are retrained using the constrained set of library
functions agreed upon in the previous step.

2.3.3. Equations of Motion
Even the simplest model for the height, x(t), of a falling object
involves an acceleration term. Consequently, we impose the
restriction that our model be a second order (autonomous)
differential equation:

ẍ = f (x, ẋ). (6)

The SINDy framework is designed to work with first order
systems of differential equations, so we convert (6) into such
a system:

{

ẋ = v

v̇ = g(x, v).

We then apply SINDy, with x =
[

x v
]⊤

and f (x) =
[

v g(x)
]⊤

,
and attempt to learn the function g. In fact, because we already
know the correct right-hand side function for ẋ, we need only
concern ourselves with finding an expression for ˙v.

Our non-linear library consists of polynomials in x and v up
to degree three, visualized in Figure 5:

8(X) =



1 x(t) v(t) x(t)v(t) x(t)2 v(t)2 . . . v(t)3



 . (7)

Assuming that the motion of the balls is completely determined
by Newton’s second law, F = ma = mẍ, we may interpret the
SINDy algorithm as trying to discover the force (after dividing by
mass) that explains the observed acceleration.

Thoughwe know now that the acceleration of a ball should not
depend on its height, we seek to place ourselves in a position of
ignorance analogous to the position scientists would have found
themselves in centuries ago. We leave it to our algorithm to sort
out which terms are appropriate. In practice onemight selectively
choose which functions to include in the library based on domain
knowledge, or known properties of the system being modeled.

2.3.4. Numerical Differentiation
In order to form the non-linear library (7) and the derivative
matrix, Ẋ, we must approximate the first two derivatives of
the height data from each drop. Applying standard numerical
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FIGURE 5 | Visualizations of non-linear library functions corresponding to the second green basketball drop. If the motion of the balls is described by Newton’s

second law, F = mẍ, then these functions can be interpreted as possible forcing terms constituting F.

differentiation techniques to a signal amplifies any noise that
is present. This poses a serious problem since we aim to fit
a model to the second derivative of the height measurements.
Because the amount of noise in our data set is non-trivial, two
iterations of numerical differentiation will create an intolerable
noise level. To mitigate this issue we apply a Savitzky-Golay
filter from Savitzky and Golay (1964) to smooth the data before
differentiating via second order centered finite differences. Points
in a noisy data set are replaced by points lying on low-degree
polynomials which are fit to localized patches of the original data
with a least-squares method. Other available approaches include
using a total variation regularized derivative as in Brunton et al.
(2016) or working with an integral formulation of the governing
equations as described in Schaeffer and McCalla (2017). We
perform a detailed analysis of the error introduced by smoothing
and numerical differentiation in the Supplementary Material.

3. RESULTS

3.1. Learned Terms
In this section we compare the terms present in the governing
equations identified using the unregularized SINDy approach
with those present when the group sparsity constraint is imposed.
We train separate models on the two drops. The two algorithms
are given one sparsity hyperparameter each to be applied for
all balls in both drops. The group sparsity method used a
value of 1.5 and the other method used a value of 0.04.
These parameters were chosen by hand to balance allowing the
algorithms enough expressiveness to model the data, while being
restrictive enough to prevent widespread overfitting; increasing
them produces models with one or no terms and decreasing
them results in models with large numbers of terms. See the
Supplementary Material for a more detailed discussion of our
choice of sparsity parameter values.

Figure 6 summarizes the results of this experiment. Learning
a separate model for each ball independent of the others allows
many models to fall prey to overfitting. Note how most of
the governing equations incorporate an extraneous height term.
On the other hand, two of the learned models involve only
constant acceleration and fail to identify any effect resembling
air resistance.

The method leveraging group sparsity is more effective at
eliminating extraneous terms and selecting only those which are
useful across most balls. Moreover, only the constant and velocity
terms are active, matching our intuition that the dominant forces
at work are gravity and drag due to air resistance. Interestingly,
the method prefers a linear drag term, one proportional to v,
to model the discrepancy between measured trajectories and
constant acceleration. Even the balls which don’t include a

velocity term in the unregularized model have this term when
group sparsity regularization is employed. This shows that
group penalty can simultaneously help to dismiss distracting
candidate functions and promote correct terms that may have
been overlooked. Is is also reassuring to see that, compared to
the other balls, the whiffle ball models have larger coefficients on
the v terms. Their accelerations slow at a faster rate as a function
of their velocities than do the other balls.

The actual governing equations learned with the group
sparsity method are provided in Table 2. Every equation has
a constant acceleration term within a few meters per second
squared of −9.8, but few are quite as close as one might
expect. Thus even with a stable method of inferring governing
equations, based on this data one would not necessarily conclude
that all balls experience the same (mass-divided) force due
to gravity. Note also that some of the balls mistakenly adopt
positive coefficients multiplying v. The balls for which this
occurs tend to be those whose motion is well-approximated
by constant acceleration. Because the size of the discrepancy
between a constant acceleration model and these balls’ measured
trajectories is not much larger than the amount of error suspected
to be present in the data, SINDy has a difficult time choosing an
appropriate value for the v terms. One would likely need higher
resolution, higher accuracy measurement data in order to obtain
reasonable approximations of the drag coefficients or v2 terms.

At 65◦F, the density of air ρ at sea level is 1.211kg/m3

White and Chul (2011) and its dynamic viscosity µ is 1.82 ×
10−5kg/(m s). The Reynolds number for a ball with diameter D
and velocity v will then be

Re = 0.667Dv× 105.

Table 1 gives the maximum velocities of each ball over the
two drops and the corresponding Reynolds numbers. Note that
these are the maximum Reynolds numbers, not the Reynolds
numbers over the entire trajectories. With velocities under 30m/s
and diameters from 0.04 to 0.22 m we should expect Reynolds
numbers with magnitudes ranging from 104 to 105 over the
course of the balls’ trajectories (apart from the very beginnings
of each drop). The average trajectory consists of about 49
measurements, just over one of which corresponds to a Reynolds
number that is O

(

103
)

. About 13 of these measurements are
associated with Reynolds numbers on the order of 104 and
roughly 33 with Reynolds numbers of magnitude 105. Note that
this means the majority of data points were collected when the
balls were in the quadratic drag regime. Based on Figure 1 we
should expect balls with Reynolds numbers < 105 to have drag
coefficients of magnitude about 0.5. Figure 1 suggests that balls
experiencing higher Reynolds numbers, such as the volleyball and
basketballs should have smaller drag coefficients varying between
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FIGURE 6 | Magnitudes of the coefficients learned for each ball by models trained on one drop either with or without the proposed group sparsity approach. The

unregularized approach used a sparsity parameter of 0.04 and the group sparsity method used a value of 1.5. Increasing this parameter slightly in the unregularized

case serves to push many models to use only a constant function.

0.05 and 0.3 depending on their smoothness. The predicted
(linear) drag coefficients for the volleyball lie in this range
while the basketballs’ learned drag coefficients are erroneously
positive. If the basketballs are treated as being smooth, their drag
coefficients predicted by Figure 1 may be too small for SINDy
to identify given the noisy measurement data. A similar effect
seems to occur for the golf ball. Though it experiences a lower
Reynolds number, its dimples induce a turbulent flow over its

surface, granting it a small drag coefficient at a lower Reynolds
number. Overall, the linear drag coefficients predicted by the
model are at least within a physically reasonable range, with some
outliers having incorrect signs.

Next we turn to the simulated data set. We perform the
same experiment as with the real world data: we apply both
versions of SINDy to a series of simulated ball drops and then
note the models that are inferred. Our findings are shown in
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TABLE 2 | Models learned by applying SINDy with group sparsity regularization

(sparsity parameter δ = 1.5) to each of the two ball drops.

Ball First drop Second drop

Golf ball ẍ = −9.34+ 0.05v ẍ = −9.44− 0.03v

Baseball ẍ = −8.51+ 0.14v ẍ = −7.56+ 0.14v

Tennis ball ẍ = −9.08− 0.13v ẍ = −8.64− 0.12v

Volleyball ẍ = −8.11− 0.08v ẍ = −9.64− 0.23v

Blue basketball ẍ = −6.71+ 0.15v ẍ = −7.50+ 0.07v

Green basketball ẍ = −7.36+ 0.10v ẍ = −8.05+ 0.02v

Whiffle ball 1 ẍ = −8.24− 0.34v ẍ = −9.44− 0.43v

Whiffle ball 2 ẍ = −9.81− 0.56v ẍ = −9.79− 0.48v

Yellow whiffle ball ẍ = −8.50− 0.47v ẍ = −8.45− 0.46v

Orange whiffle ball ẍ = −7.83− 0.35v ẍ = −8.03− 0.42v

Figure 7. We need not say much about the standard approach:
it does a poor job of identifying coherent models for all levels
of noise. The group sparsity regularization is much more robust
to noise, identifying the correct terms and their magnitudes for
noise levels up to half a meter (in standard deviation). For more
significant amounts of noise, even this method is unable to decide
between adopting x or v into its models. Perhaps surprisingly,
if a v2 term with coefficient ∼ 0.1 is added to the simulated
model1, the learned coefficients look nearly identical. Although
this additional term visibly alters the trajectory (before it is
corrupted by noise), none of the learned equations capture it,
even in the absence of noise. One reason for this is because the
coefficient multiplying v2 is too small to be retained during the
sequential thresholding least squares procedure. If we decrease
the sparsity parameter enough to accommodate it, the models
also acquire spurious higher order terms. To infer the v2 term
using the approach outlined here, one would need to design and
carry out additional experiments which better isolate this effect,
perhaps by using a denser fluid or by dropping a ball with a larger
diameter of relatively small mass, thereby increasing the constant
multiplying v2CD in (1). A much more realistic drag force based
on (1) can be used to simulate falling balls. Such a drag force will
shift from being linear to quadratic in v over the course of a ball’s
trajectory. In this scenario neither version of SINDy identifies a v2

term, regardless of how much many measurements are collected,
but both detect linear drag, exhibiting similar performance as
is shown here. A more detailed discussion can be found in the
Supplementary Material.

3.2. Model Error
We now turn to the problem of testing the predictive
performance of models learned from the data. We benchmark
four models of increasing complexity on the drop data. The
model templates are as follows:

1. Constant acceleration: ẍ = α

2. Constant acceleration with linear drag: ẍ = α + βv

1It should be noted that, based on the balls’ approximated velocities, the largest

coefficient multiplying v2 (i.e., 1
2mρACD from (1), wherem is the mass of a ball), is

< 0.08 in magnitude, across all the trials.

3. Constant acceleration with linear and quadratic drag: ẍ =
α + βv+ γ v2

4. Overfit model: Set a low sparsity threshold and allow SINDy
to fit a more complicated model to the data

The model parameters α, β , and γ are learned using the
SINDy algorithm using libraries consisting of just the terms
required by the templates. The testing procedure consists of
constructing a total of 80 models (4 templates × 10 balls × 2
drops) and then using them to predict a quantity of interest.
First a template model is selected then it is trained using one
ball’s trajectory from one drop. Once trained, the model is
given the initial conditions (initial height and velocity) from
the same ball’s other drop and tasked with predicting the ball’s
height after 2.8 s have passed2. Recall from Figure 4 that the
same ball dropped twice from the same height by the same
person on the same day can hit the ground at substantially
different times. In the absence of any confounding factors, the
time it takes a sphere to reach the ground after being released
will vary significantly based on its initial velocity. Since there
is sure to be some error in estimating the initial height and
velocity of the balls, we should expect only modest accuracy
in predicting their landing times. We summarize the outcome
of this experiment in Figure 8. The error tends to decrease
significantly between model one and model two, marking a
large step in explaining the discrepancy between a constant
acceleration model and observation. There does not appear to
be a large difference between the predictive powers of models
two and three as both seem to provide similar levels of accuracy.
Occam’s razor might be invoked here to motivate a preference
for model two over model three since it is simpler and has
the same accuracy. This provides further evidence that the level
of noise and error in the data set is too large to allow one
to accurately infer the dynamics due to v2. Adding additional
terms to the equations seems to weaken their generalizability
somewhat, as indicated by the slight increase in errors for
model four.

Figure 9 visualizes the forecasts of the learned equations
for two of the balls along with their deviation from the true
measurements. The models are first trained on data from drop
2, then they are given initial conditions from the same drop
and made to predict the full trajectories. There are a few
observations to be made. The constant acceleration models
(model one) are clearly inadequate, especially for the whiffle
ball. Their error is much higher than that of the other models
indicating that they are underfitting the data, though constant
acceleration appears to be a reasonable approximation for a
falling golf ball. Models two through four all seem to be
imitating the trajectories to about the level of the measurement
noise, which is about the most we could hope of them. It is
difficult to say which model is best by looking at these plots
alone. To break the tie we can observe what happens if we

2This number corresponds to the shortest set of measurement data across all the

trials. All models are evaluated at 2.8 s to allow for meaningful comparison of error

rates between models.
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FIGURE 7 | A comparison of coefficients of the models inferred from the simulated falling balls. The top row shows the coefficients learned with the standard SINDy

algorithm and the bottom row the coefficients learned with the group sparsity method. η indicates the amount of noise added to the simulated ball drops. The

standard approach used a sparsity parameter of 0.05 and the group sparsity method used a value of 1.5. The balls were simulated using constant acceleration and

the following respective coefficients multiplying v: −0.1, −0.3, −0.3, −0.5, −0.7.

FIGURE 8 | The error in landing time predictions for the four models. The results for the models trained on drops one and two are shown on the left and right,

respectively. We have intentionally jittered the horizontal positions of the data points to facilitate easier comparison.
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FIGURE 9 | Predicted trajectories and error for the Golf Ball (top) and Whiffle Ball 2 (bottom). On the left we compare the predicted trajectories against the true path

and on the right we show the absolute error for the predictions. The “Observed” lines in the error plots show the difference between the original height measurements

and the smoothed versions used for differentiation. They give an idea of the amount of intrinsic measurement noise. All models plotted were trained and evaluated on

drop 2.

evaluate the models in “unfamiliar” circumstances and force
them to extrapolate.

Supplying the same initial conditions as before, with initial
height shifted up to avoid negative heights, we task the models
with predicting the trajectories out to 15 s. The results are
shown in Figure 10. All four models fit the observed data itself
fairly well. However, 6 or 7 s after the balls are released, a
significant degree of separation has started to emerge between
the trajectories. The divergence of the model four instances is
the most abrupt and the most pronounced. The golf ball’s model
grows without bound after 7 s. It is here that the danger of
overfit, high-order models becomes obvious. In contrast, the
other models are better behaved. For the golf ball models one
through three agree relatively well, perhaps showing that it is
easier to predict the path of a falling golf ball than a falling whiffle
ball. That model two is so similar to the constant acceleration
of model one also suggests that the golf ball experiences very
little drag. The v2 term for model three has a coefficient which
is erroneously positive and essentially cancels out the speed
dampening effects of the drag term, leading to an overly rapid
predicted descent. Models two and three agree extremely well
for the whiffle ball as the learned v2 coefficient is very small
in magnitude.

4. DISCUSSION AND CONCLUSIONS

In this work, we have revisited the classic problem of modeling
the motion of falling objects in the context of modern machine

learning, sparse optimization, and model selection. In particular,
we develop data-driven models from experimental position
measurements for several falling spheres of different size,
mass, roughness, and porosity. Based on this data, a hierarchy
of models are selected via sparse regression in a library of
candidate functions that may explain the observed acceleration
behavior. We find that models developed for individual ball-
drop trajectories tend to overfit the data, with all models
including a spurious height-dependent force and lower-density
balls resulting in additional spurious terms. Next, we impose the
assumption that all balls must be governed by the same basic
model terms, perhaps with different coefficients, by considering
all trajectories simultaneously and selecting models via group
sparsity. These models are all parsimonious, with only two
dominant terms, and they tend to generalize without overfitting.

Although we often view the motion of falling spheres as a
solved problem, the observed data is quite rich, exhibiting a
range of behaviors. In fact, a constant gravitational acceleration
is not immediately obvious, as the falling motion is strongly
affected by complex unsteady fluid drag forces; the data alone
would suggest that each ball has its own slightly different gravity
constant. It is interesting to note that our group sparsity models
include a drag force that is proportional to the velocity, as
opposed to the textbookmodel that includes the square of velocity
that is predicted for a constant drag coefficient. However, in
reality the drag coefficient decreases with velocity, as shown in
Figure 1, which may contribute to the force being proportional
to velocity. Even when a higher fidelity drag model is used—
a model containing rational terms missing from and poorly
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FIGURE 10 | Fifteen seconds forecasted trajectories for the Golf Ball (left) and Whiffle Ball 2 (right) based on the second drop. Part of the graph of Model 4 (red) is

omitted in the Golf Ball plot because it diverged to −∞.

approximated by the polynomial library functions—to collect
measurements uncorrupted by noise, SINDy struggles to identify
coherent dynamics. In general SINDy may not exhibit optimal
performance if not equipped with a library of functions in
which dynamics can be represented sparsely. We emphasize that
although the learned models tend to fit the data relatively well,
it would be a mistake to assume that they would retain their
accuracy for Reynolds numbers larger than those present in the
training data. In particular we should expect the models to have
trouble extrapolating beyond the drag crisis where the dynamics
change considerably. This weakness is inherent in virtually all
machine learning models; their performance is best when they
are applied to data similar to what they have already seen and
dubious when applied in novel contexts. That is to say they excel
at interpolation, but are often poor extrapolators.

Collecting a richer set of data should enable the development
of refined models with more accurate drag physics3, and this is
the subject of future work. In particular, it would be interesting
to collect data for spheres falling from greater heights, so that
they reach terminal velocity. It would also be interesting to
systematically vary the radius, mass, surface roughness, and
porosity, for example to determine non-dimensional parameters.
Finally, performing similar tests in other fluids, such as water,
may also enable the discovery of added mass forces, which are
quite small in air. Such a dataset would provide a challenging
motivation for future machine learning techniques.

We were able to draw upon previous fluid dynamics
research to establish a “ground truth” model against which
to compare the models proposed by SINDy. However, in
less mature application areas one may not be fortunate
enough to have a theory-backed set of reference equations,
making it challenging to assess the quality of learned models.
Many methods in numerical analysis come equipped with
a priori or a posteriori error estimators or convergence
results to give one an idea of the size of approximation
errors. Similarly, in statistics goodness of fit estimators exist
to help guide practitioners about what type of performance
they should expect from various models. A comprehensive

3We note that in order to properly resolve these more complex drag dynamics with

SINDy the candidate library would likely need to be enriched.

study into whether similar techniques could be adopted for
application to SINDy would be an interesting topic for future
research efforts.

We believe that it is important to draw a parallel between
great historical scientific breakthroughs, such as the discovery
of a universal gravitational constant, and modern approaches in
machine learning. Although computational learning algorithms
are becoming increasingly powerful, they face many of the same
challenges that human scientists have faced for centuries. These
challenges include trade offs between model fidelity and the
quality and quantity of data, with inaccurate measurements
degrading our ability to disambiguate various physical effects.
With noisy data, one can only expect model identification
techniques to uncover the dominant, leading-order effects,
such as gravity and simple drag; for subtler effects, more
accurate measurement data is required. Modern learning
architectures are often also prone to overfitting without careful
cross-validation and regularization, and models that are both
interpretable and generalizable come at a premium. Typically
the regularization encodes some basic human assumption,
such as sparse regularization, which promotes parsimony in
models. More fundamentally, it is not always clear what
should be measured, what terms should be modeled, and
what parameters should be varied to isolate the effect one
wishes to study. Historically, this type of scientific inquiry
has been driven by human curiosity and intuition, which
will be critical elements if machine intelligence is to advance
scientific discovery.
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