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The paper proposes an explainable Al model that can be used in fintech risk management
and, in particular, in measuring the risks that arise when credit is borrowed employing
peer to peer lending platforms. The model employs Shapley values, so that Al predictions
are interpreted according to the underlying explanatory variables. The empirical analysis
of 15,000 small and medium companies asking for peer to peer lending credit reveals
that both risky and not risky borrowers can be grouped according to a set of similar
financial characteristics, which can be employed to explain and understand their credit
score and, therefore, to predict their future behavior.
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1. INTRODUCTION

Black box Artificial Intelligence (AI) is not suitable in regulated financial services. To overcome this
problem, Explainable AI models, which provide details or reasons to make the functioning of Al
clear or easy to understand, are necessary.

To develop such models, we first need to understand what “Explainable” means. During this
year, some important benchmark definitions have been provided, at the institutional level. We
report some of them, in the context of the European Union.

For example, the Bank of England (Joseph, 2019) states that “Explainability means that an
interested stakeholder can comprehend the main drivers of a model-driven decision.” The Financial
Stability Board (FSB, 2017) suggests that “lack of interpretability and auditability of AI and ML
methods could become a macro-level risk.” Finally, the UK Financial Conduct Authority (Croxson
etal., 2019) establishes that “In some cases, the law itself may dictate a degree of explainability.”

The European GDPR (EU, 2016) regulation states that “the existence of automated
decision-making, should carry meaningful information about the logic involved, as well as the
significance and the envisaged consequences of such processing for the data subject.” Under the
GDPR regulation, the data subject is therefore, under certain circumstances, entitled to receive
meaningful information about the logic of automated decision-making.

Finally, the European Commission High-Level Expert Group on Al presented the Ethics
Guidelines for Trustworthy Artificial Intelligence in April 2019. Such guidelines put forward a set
of seven key requirements that AI systems should meet in order to be deemed trustworthy. Among
them three related to XAl and are the following.

e Human agency and oversight: decisions must be informed, and there must be a
human-in-the-loop oversight.

e Transparency: Al systems and their decisions should be explained in a manner adapted to the
concerned stakeholder. Humans need to be aware that they are interacting with an Al system.

e Accountability: Al systems should develop mechanisms for responsibility and accountability,
auditability, assessment of algorithms, data and design processes.
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Following the need to explain AI models, stated by legislators
and regulators of different countries, many established and
startup companies have started to embrace Explainable AI
(XAI) models.

From a mathematical viewpoint, it is well-known that,
while “simpler” statistical learning models, such as linear
and logistic regression models, provide a high interpretability
but, possibly, a limited predictive accuracy, “more complex”
machine learning models, such as neural networks and tree
models provide a high predictive accuracy at the expense of a
limited interpretability.

To solve this trade-off, we propose to boost machine learning
models, that are highly accurate, with a novel methodology, that
can explain their predictive output. Our proposed methodology
acts in the post-processing phase of the analysis, rather than in
the preprocessing part. It is agnostic (technologically neutral) as
it is applied to the predictive output, regardless of which model
generated it: a linear regression, a classification tree or a neural
network model.

More precisely, our proposed methodology is based on
Shapley values (see Lundberg and Lee, 2017 and references
therein). We consider a relevant application of Al in financial
technology: peer to peer lending.

We employ Shapley values to predict the credit risk of a
large sample of small and medium enterprises which apply for
credit to a peer to peer lending platform. The obtained empirical
evidence shows that, while improving the predictive accuracy
with respect to a standard logistic regression model, we maintain
and, possibly, improve, the interpretability (explainability) of
the results.

In other words, our results confirm the validity of this
approach in discriminating between defaulted and sound
institutions, and it shows the power of explainable AI in both
prediction accuracy and in the interpretation of the results.

The rest of the paper is organized as follows: section
2 introduces the proposed methodology. Section 3 shows
the results of the analysis in the credit risk context.
Section 4 concludes.

2. METHODOLOGY
2.1. Credit Risk in Peer to Peer Lending

Credit risk models are useful tools for modeling and predicting
individual firm default. Such models are usually grounded on
regression techniques or machine learning approaches often
employed for financial analysis and decision-making tasks.

Consider N firms having observation regarding T different
variables (usually balance-sheet measures or financial ratios). For
each institution n define a variable y, to indicate whether such
institution has defaulted on its loans or not, i.e., y, = 1 if
company defaults, y, = 0 otherwise. Credit risk models develop
relationships between the explanatory variables embedded in T
and the dependent variable y .

The logistic regression model is one of the most widely used
method for credit scoring. The model aims at classifying the
dependent variable into two groups, characterized by different

status (defaulted vs. active) by the following model:

T
ln(1 fnpn) =o+ ;ﬂtxnt (1)

where p, is the probability of default for institution
n, X; = (Xi1,...x;r) is the T-dimensional vector of borrower
specific explanatory variables, the parameter « is the model
intercept while f; is the t-th regression coefficient. It follows that
the probability of default can be found as:

T
pn=(1+exple+ Y Brxu) ™" )

t=1

2.2. Machine Learning of Credit Risk

Credit risk can be measured with very different Machine
Learning (ML) models, able to extract non-linear relations
among the financial information in the balance sheets.
In a standard data science life cycle, models are chosen
to optimize the predictive accuracy. In highly regulated
sectors, like finance or medicine, models should be chosen
balancing accuracy with explainability (Murdoch et al,
2019). We improve the choice selecting models based on
their predictive accuracy, and employing a posteriori an
explanations algorithm. This does not limit the choice of the best
performing models.

To exemplify our approach we consider, without loss of
generality, the XGBoost model, one of the most popular and fast
algorithm (Chen and Guestrin, 2016), that implements gradient
tree boosting learning models.

2.3. Learning Model Comparison

For evaluating the performance of each learning model, we
employ, as a reference measure, the indicator y € {0,1}, a
binary variable which takes value one whenever the institutions
has defaulted and value zero otherwise. For detecting default
events represented in y, we need a continuous measurement
p € [0,1] to be turned into a binary prediction B assuming value
one if p exceeds a specified threshold t € [0, 1] and value zero
otherwise. The correspondence between the prediction B and the
ideal leading indicator y can then be summarized in a so-called
confusion matrix.

From the confusion matrix we can easy illustrate the
performance capabilities of a binary classifier system. To this aim,
we compute the receiver operating characteristic (ROC) curve
and the corresponding area under the curve (AUC). The ROC
curve plots the false positive rate (FPR) against the true positive
rate (TPR), as follows:

FP

FPR = —— (3)
FP+ TN
TP
TPR = —— 4)
TP + FN
The overall accuracy of each model can be computed as:
TP+ TN
ACC = * (5)

TP + TN + FP 4+ FN
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and it characterizes the proportion of true results (both
true positives and true negatives) among the total number
of cases.

2.4. Explaining Model Predictions

We now explain how to exploit the information contained
in the explanatory variables to localize and cluster the
position of each individual (company) in the sample. This
information, coupled with the predicted default probabilities,
allows a very insightful explanation of the determinant of each
individual’s creditworthiness. In our specific context, information
on the explanatory variables is derived from the financial
statements of borrowing companies, collected in a vector x,
representing the financial composition of the balance sheet of
institution n.

We propose calculate the Shapley value associated with
each company. In this way we provide an agnostic tool
that can interpret in a technologically neutral way the
output from a highly accurate machine learning model.
As suggested in Joseph (2019), the Shapley values of
a model can be used as a tool to transfer predictive
inferences into a linear space, opening a wide possibility of
using the toolbox of econometrics, hypothesis testing, and
network analysis.

We develop our Shapley approach using the SHAP (Lundberg
and Lee, 2017) computational framework, which allows to
express each single prediction as a sum of the contributions of
the different explanatory variables.

More formally, the Shapley explanation model for each
prediction qb(j‘ (x;)) is obtained by an additive feature attribution
method, which decomposes them as:

M
SFx) = o+ Y prlx). (6)

k=1

where M is the number of available explanatory variables,
¢ € RM ¢, e R. The local functions ¢y(x;) are called
Shapley values.

Indeed, Lundberg and Lee (2017) prove that the only additive
feature attribution method that satisfies the properties of local
accuracy, missingness, and consistency is obtained attributing to
each feature x,k = 1,..., M, a SHapley Additive exPlanation
(SHAP) defined by

(M — |x] = 1)!
Z lx"|1( MI!xI )[foxk)

X' CC(x)\xk

Pr(xi) = —f&)),

where C(x) \ xi is the set of all the possible models excluding
variable x; (with m = 1,...,M), |x'| denotes the number of
variables included in model x', M is the number of the available
variables, f (x" U xx) and f («') are the predictions associated with
all the possible model configurations including variable x; and
excluding variable xj, respectively.

The quantity f(x/ U xg) — f(x’ ) defines the contribution of
variable x; to each individual prediction.

3. APPLICATION
3.1. Data

We test our proposed model to data supplied by European
External Credit Assessment Institution (ECAI) that specializes
in credit scoring for P2P platforms focused on SME commercial
lending. The data is described by Giudici et al. (2019a) to which
we refer for further details. In summary, the analysis relies on a
dataset composed of official financial information (balance-sheet
variables) on 15,045 SMEs, mostly based in Southern Europe,
for the year 2015. The information about the status (0 = active,

= defaulted) of each company 1 year later (2016) is also
provided. Using this data, Giudici (2018), Ahelegbey et al. (2019),
and Giudici et al. (2019a,b) have constructed logistic regression
scoring models that aim at estimating the probability of default
of each company, using the available financial data from the
balance sheets and, in addition, network centrality measures that
are obtained from similarity networks.

Here we aim to improve the predictive performance of the
model and, for this purpose, we run an XGBoost tree algorithm
(see e.g., Chen and Guestrin, 2016). To explain the results from
the model, typically highly predictive, we employ Shapley values.

The proportion of defaulted companies within this dataset
is 10.9%.

3.2. Results
We first split the data in a training set (80%) and a test set (20%).

We then estimate the XGBoost model on the training set,
apply the obtained model to the test set and compare it with the
optimal logistic regression model. The ROC curves of the two
models are contained in Figure 1 below.

From Figurel note that the XGBoost clearly improves
predictive accuracy. Indeed the calculation of the AUROC of the
two curves indicate an increase from 0.81 (best logistic regression
model) to 0.93 (best XGBoost model).

We then calculate the Shapley values for the companies in the
test set.

To exemplify our results, Figure2 we provide the
interpretation of the estimated credit scoring of four companies:
two that default and two that do not default.

Figure 2 clearly shows the advantage of our explainable
model. It can indicate which variables contribute more to
the prediction. Not only in general, as is typically done by
feature selection models, but differently and specifically for
each company in the test set. Note how the explanations
are rather different (“personalized”) for each of the four
considered companies.

4. CONCLUSIONS

The need to leverage the high predictive accuracy brought
by sophisticated machine learning models, making them
interpretable, has motivated us to introduce an agnostic, post-
processing methodology, based on Shapley values. This allows
to explain any single prediction in terms of the potential
contribution of each explanatory variable.

Future research should include a better understanding of the
predictions through clustering of the Shapley values. This can
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FIGURE 1 | Receiver Operating Characteristic (ROC) curves for the logistic credit risk model and for the XGBoost model. In blue, we show the results related to the

Company 1 - non-defaulted

trade.roconablos. dvidod.oy 0pOraling 1evonuos -

race payables. Svided by 0peraling revenues

total.r

enue
total Assots 10 total Li:

06 -
101a1.355615.0Md24.b/.SNareN0IdTUNS. MINUS.1 =

Shareholders Funds plus Non current liabilites then divided by Fixed assets
sales.divided oy total.assets -
PrOMLOF.I0S S AMEr12X AMO20.07 Shareolder unds =

[E======——————————]
|
I
|
|
|
EEE——
idea ty otal assets - I
| |
]
]
]
|
]

profit befora taxes plus interest paid

operating revenue divided by total assets
longerm debt plus loans then. dvided.by sharehoider funds -
1NVaNtOIRs. AVITE0.0/.0parang fevenuas -

interest paid divided by profil before tax plus interest paid

EBTDAto.
EBITDA0.0peratng favenue ratio -
EBITDAL Interest Coverage Raio -

EBIT.{o.interest paid
Curront Ratio =

cument assets wihout stocks dMded by curent fzbilies )
0015 -0.010 -0.00% 0.000
Variable Impartance

Company 2 - non-defaulted

rado.roconatlos. dvided.0y.0poraing fevonuos - [ ]
ke o yopiingiwenois: ]
totalrevenue .
totaAcsotetototal Liztiios - [
L8506k OM A Dy ST aAENG 11 |
Sharsholdae Funda s Non renL b e ety P e |
sales. divided.oytotalassets - 1
PIOMLOF. 0SS, 3Mer 2 AM380.0/ Sharenoider funds - =]
i i i s s Ay I
operaling revenue divided by olal assets [ |
longlerm debt plus loans then dwided.by shareholder funds - )]
In/ONLOTIeS. 3VI06C.0y.0peraNg r6venuss - ==
]
—
I —
=)
|
|

interest paid divided by profit before tax plus interest paid

EBTDAt0.2ales -

EBITDAI0.0peI3tNg ravanus ratio -

EBITDA Interest Coverage Ralio -

EBIT fo.intersst paid

Curront Ratio

current assets without stocks dMded by curent iabiliies -

-0020 -0.01% 0.0 -0.005 0.000
Variable Importance

Company 3 - defaulted
rado roceivasies civdod by.oparatngrovorves - [
Uade parabies chided by operating fevenues -
total revenue
tolal Assats to total.Laibos -
035515, G160 by.SnraNCIder Tans.minus. 1 -
Shareholders Funds plus Non currentliabilities then divided by Fized assels
sales divided byotal assets -
PIOTLO1053. aTortax AvCea by sarahelderunds =
profitbefare taxes plus interest paic men dMded by total assels = =
operafing revenue divided by total assets
fong term. debt plus Joans then divide d by.sharsholder funds - [ |
eNtones CIded by.OEratng.fovanues - |
interest paid divided by proft before tax plus interest paid
EBIMDAb.sales - [ ]
1

EBITDAL.0paraling. (evenue. a0 =

EBTDA 0 Inerest Coverage Rallo= =
EBTlointerest paid 1
CurrontRatio= B=
curtent assets winout siocks divided by current ianites - ]
05 000 005 o1 08 020
Variable Importance
Company 4 - defaulted

tr3d0 rocoivadlos ividod by.0perating.rovonuos =

trade payables divided by Operating ravenues -
total revenue

total ASSots to total Liadilbos -

10131,388915.0M0G .0y, SNArANOIEr NGS MINUS. 1 =

Shareholders Funds plus Non curenLliabiliies fhen divided by Fired assels
sales diided by totel assets - ]
R —— | -

profitbefore tases plus Interast paid hen dide s by lofal assels =

operaling revenue divided by lolal assets -

longlerm.debt plus Joans then.civided by shershclder unds -
nventones aidea byoperatngraverves - [
interest paidt dhided by proft before fax plus interest paid [ ]
EBITDAt s0les - |
EBITDA.0paralNg.fevenue.1aio = |
EaTDAonerest Coverage Rato~ [
EBT1o interest paid |

CurrentRatio= 1

cuttnta3sets ihout stoks cvosd by cuentaites . 1|
>

0.10 0158
Variable mportance

FIGURE 2 | Contribution of each explanatory variable to the Shapley’s decomposition of four predicted default probabilities, for two defaulted and two non-defaulted
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be achieved, for example, using correlation network models. A
second direction would be to extend the approach developing
model selection procedures based on Shapley values, which
would require appropriate statistical testing. A last extension
would be to develop a Shapley like measure that applies also to
ordinal response variables.

Our research has important policy implications for policy
makers and regulators who are in their attempt to protect
the consumers of artificial intelligence services. While artificial
intelligence effectively improve the convenience and accessibility
of financial services, they also trigger new risks, and among
them is the lack of model interpretability. Our empirical findings
suggest that explainable AI models can effectively advance our
understanding and interpretation of credit risks in peer to
peer lending.

Future research may involve further experimentation and the
application to other case studies.
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