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The issue of fairness in machine learning models has recently attracted a lot of attention

as ensuring it will ensure continued confidence of the general public in the deployment

of machine learning systems. We focus on mitigating the harm incurred by a biased

machine learning system that offers better outputs (e.g., loans, job interviews) for certain

groups than for others. We show that bias in the output can naturally be controlled in

probabilistic models by introducing a latent target output. This formulation has several

advantages: first, it is a unified framework for several notions of group fairness such

as Demographic Parity and Equality of Opportunity; second, it is expressed as a

marginalization instead of a constrained problem; and third, it allows the encoding of

our knowledge of what unbiased outputs should be. Practically, the second allows us to

avoid unstable constrained optimization procedures and to reuse off-the-shelf toolboxes.

The latter translates to the ability to control the level of fairness by directly varying fairness

target rates. In contrast, existing approaches rely on intermediate, arguably unintuitive,

control parameters such as covariance thresholds.

Keywords: algorithmic bias, fairness, machine learning, demographic parity, equality of opportunity

1. INTRODUCTION

Algorithmic assessment methods are used for predicting human outcomes in areas such as
financial services, recruitment, crime and justice, and local government. This contributes, in
theory, to a world with decreasing human biases. To achieve this, however, we need fair machine
learning models that take biased datasets, but output non-discriminatory decisions to people
with differing protected attributes such as gender and marital status. Datasets can be biased
because of, for example, sampling bias, subjective bias of individuals, and institutionalized biases
(Olteanu et al., 2019; Tolan, 2019). Uncontrolled bias in the data can translate into bias in machine
learning models.

There is no single accepted definition of algorithmic fairness for automated decision-making but
several have been proposed. One definition is referred to as statistical or demographic parity. Given
a binary protected attribute (e.g., married/unmarried) and a binary decision (e.g., yes/no to getting
a loan), demographic parity requires equal positive rates (PR) across the two sensitive groups
(married and unmarried individuals should be equally likely to receive a loan). Another fairness
criterion, equalized odds (Hardt et al., 2016), takes into account the binary decision, and instead
of equal PR requires equal true positive rates (TPR) and false positive rates (FPR). This criterion
is intended to be more compatible with the goal of building accurate predictors or achieving
high utility (Hardt et al., 2016). We discuss the suitability of the different fairness criteria in the
discussion section at the end of the paper.

There are many existing models for enforcing demographic parity and equalized odds (Calders
et al., 2009; Kamishima et al., 2012; Zafar et al., 2017a,b; Agarwal et al., 2018; Creager et al., 2019).
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However, these existing approaches to balancing accuracy and
fairness rely on intermediate, unintuitive control parameters such
as allowable constraint violation ǫ (e.g., 0.01) in Agarwal et al.
(2018), or a covariance threshold c (e.g., 0 that is controlled by
another parameters τ and µ – 0.005 and 1.2 – to trade off this
threshold and accuracy) in Zafar et al. (2017a). This is related to
the fact that many of these approaches embed fairness criteria
as constraints in the optimization procedure (Quadrianto and
Sharmanska, 2017; Zafar et al., 2017a,b; Donini et al., 2018).

In contrast, we provide a probabilistic classification
framework with bias controlling mechanisms that can be
tuned based on positive rates (PR), an intuitive parameter. Thus,
giving humans the control to set the rate of positive predictions
(e.g., a PR of 0.6). Our framework is based on the concept of
a balanced dataset and introduces latent target labels, which,
instead of the provided labels, are now the training label of
our classifier. We prove bounds on how far the target labels
diverge from the dataset labels. We instantiate our approach with
a parametric logistic regression classifier and a Bayesian non-
parametric Gaussian process classifier (GPC). As our formulation
is not expressed as a constrained problem, we can draw upon
advancements in automated variational inference (Bonilla et al.,
2016; Krauth et al., 2016; Gardner et al., 2018) for learning the
fair model, and for handling large amounts of data.

The method presented in this paper is closely related to
a number of previous works, e.g., Calders and Verwer, 2010;
Kamiran and Calders, 2012. Proper comparison with them
requires knowledge of our approach. We will thus explain
our approach in the subsequent sections, and defer detailed
comparisons to section 4.

2. TARGET LABELS FOR TUNING GROUP
FAIRNESS

We will start by describing several notions of group fairness.
For each individual, we have a vector of non-sensitive attributes
x ∈ X , a class label y ∈ Y , and a sensitive attribute s ∈ S (e.g.,
racial origin or gender). We focus on the case where s and y are
binary. We assume that a positive label y = 1 corresponds to a
positive outcome for an individual—for example, being accepted
for a loan. Group fairness balances a certain condition between
groups of individuals with different sensitive attribute, s vs. s′.
The term ŷ below is the prediction of a machine learning model
that, in most works, uses only non-sensitive attributes x. Several
group fairness criteria have been proposed (e.g., Hardt et al., 2016;
Chouldechova, 2017; Zafar et al., 2017a):

Equality of positive rate (Demographic Parity):

Pr(ŷ = 1|s) = Pr(ŷ = 1|s′) (1)

Equality of accuracy:

Pr(ŷ = y|s) = Pr(ŷ = y|s′) (2)

Equality of true positive rate (Equality of Opportunity):

Pr(ŷ = 1|s, y = 1) = Pr(ŷ = 1|s′, y = 1) . (3)

Equalized odds criterion corresponds to Equality of Opportunity
(3) plus equality of false positive rate.

The Bayes-optimal classifier only satisfies these criteria if the
training data itself satisfies them. That is, in order for the Bayes-
optimal classifier to satisfy demographic parity, the following
must hold: P(y = 1|s) = P(y = 1|s′), where y is the training label.
We call a dataset for which P(y, s) = P(y)P(s) holds, a balanced
dataset. Given a balanced dataset, a Bayes-optimal classifier
learns to satisfy demographic parity and an approximately Bayes-
optimal classifier should learn to satisfy it at least approximately.
Here, we motivated the importance of balanced datasets via the
demographic parity criterion, but it is also important for equality
of opportunity which we discuss in section 2.1.

In general, however, our given dataset is likely to be
imbalanced. There are two common solutions to this problem:
either pre-process or massage the dataset to make it balanced, or
constrain the classifier to give fair predictions despite it having
been trained on an unbalanced dataset. Our approach takes parts
from both solutions.

An imbalanced dataset can be turned into a balanced dataset
by either changing the class labels y or the sensitive attributes s. In
the use cases that we are interested in, s is considered an integral
part of the input, representing trustworthy information and thus
should not be changed. y, conversely, is often not completely
trustworthy; it is not an integral part of the sample but merely
an observed outcome. In a hiring dataset, for instance, y might
represent the hiring decision, which can be biased, and not the
relevant question of whether someone makes a good employee.

Thus, we introduce new target labels ȳ such that the dataset is
balanced: P(ȳ, s) = P(ȳ)P(s). The idea is that these target labels
still contain as much information as possible about the task, while
also forming a balanced dataset. This introduces the concept of
the accuracy-fairness trade-off: in order to be completely accurate
with respect to the original (not completely trustworthy) class
labels y, we would require ȳ = y, but then, the fairness constraints
would not be satisfied.

Let ηs(x) = P(y = 1|x, s) denote the distribution of y in
the data. The target distribution η̄s(x) = P(ȳ = 1|x, s) is then
given by

η̄s(x) = (P(ȳ = 1|y = 1, s)+ P(ȳ = 0|y = 0, s)− 1)ηs(x)

+ 1− P(ȳ = 0|y = 0, s) (4)

due to the marginalization rules of probabilities. The conditional
probability P(ȳ|y, s) indicates with which probability we want
to keep the class label. This probability could in principle
depend on x which would enable the realization of individual
fairness. The dependence on x has to be prior knowledge
as it cannot be learned from the data. This prior knowledge
can encode the semantics that “similar individuals should be
treated similarly” (Dwork et al., 2012), or that “less qualified
individuals should not be preferentially favored over more
qualified individuals” (Joseph et al., 2016). Existing proposals
for guaranteeing individual fairness require strong assumptions,
such as the availability of an agreed-upon similarity metric, or
knowledge of the underlying data generating process. In contrast,
in group fairness, we partition individuals into protected groups
based on some sensitive attribute s and ask that some statistics of
a classifier be approximately equalized across those groups (see
Equations 1–3). In this case, P(ȳ|y, s) does not depend on x.
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Returning to Equation (4), we can simplify it with

ms : = P(ȳ = 1|y = 1, s)+ P(ȳ = 0|y = 0, s)− 1 (5)

bs : = 1− P(ȳ = 0|y = 0, s) , (6)

arriving at η̄s(x) = ms · ηs(x) + bs. ms and bs are chosen such
that P(ȳ, s) = P(ȳ)P(s). This can be interpreted as shifting the
decision boundary depending on s so that the new distribution
is balanced.

As there is some freedom in choosing ms and bs, it is
important to consider what the effect of different values is. The
following theorem provides this (the proof can be found in the
Supplementary Material):

Theorem 1. The probability that y and ȳ disagree (y 6= ȳ) for any
input x in the dataset is given by:

P(y 6= ȳ|s) = P
(
∣

∣η(x, s)− 1
2

∣

∣ < ts
)

(7)

where

ts =

∣

∣

∣

∣

ms + 2bs − 1

2ms

∣

∣

∣

∣

. (8)

Thus, if the threshold ts is small, then only if there are inputs
very close to the decision boundary (ηs(x) close to

1
2 ) would we

have ȳ 6= y. ts determines the accuracy penalty that we have to
accept in order to gain fairness. The value of ts can be taken into
account when choosing ms and bs (see section 3). If ηs satisfies
the Tsybakov condition (Tsybakov et al., 2004), then we can give
an upper bound for the probability.

Definition 1. A distribution η satisfies the Tsybakov condition if
there exist C > 0, λ > 0 and t0 ∈ (0, 12 ] such that for all t ≤ t0,

P
(
∣

∣η(x)− 1
2

∣

∣ < t
)

≤ Ctλ . (9)

This condition bounds the region close to the decision boundary.
It is a property of the dataset.

Corollary 1.1. If η(x, s) = P(y = 1|x, s) satisfies the Tsybakov
condition in x, with constants C and λ, then the probability that y
and ȳ disagree (y 6= ȳ) for any input x in the dataset is bounded by:

P(y 6= ȳ|s) < C

∣

∣

∣

∣

ms + 2bs − 1

2ms

∣

∣

∣

∣

λ

. (10)

Section 3 discusses how to choose the parameters for η̄ in order
to make it balanced.

2.1. Equality of Opportunity
In contrast to demographic parity, equality of opportunity (just as
equality of accuracy) is satisfied by a perfect classifier. Imperfect
classifiers, however, do not by default satisfy it: the true positive
rate (TPR) is different for different subgroups. The reason for this
is that while the classifier is optimized to have a high TPR overall,
it is not optimized to have the same TPR in the subgroups.

The overall TPR is a weighted sum of the TPRs in
the subgroups:

TPR = P(s = 0|y = 1) · TPRs= 0 + P(s = 1|y = 1) · TPRs= 1 .
(11)

In datasets where the positive label y = 1 is heavily skewed
toward one of the groups (say, group s = 1; meaning that
P(s = 1|y = 1) is high and P(s = 0|y = 1) is low), overall
TPR might be maximized by setting the decision boundary such
that nearly all samples in s = 0 are classified as y = 0, while for
s = 1 a high TPR is achieved. The low TPR for s = 0 is in this
case weighted down and only weakly impacts the overall TPR. For
s = 0, the resulting classifier uses s as a shorthand for y, mostly
ignoring the other features. This problem usually persists even
when s is removed from the input features because s is implicit in
the other features.

A balanced dataset helps with this issue because in such
datasets, s is not a useful proxy for the balanced label ȳ (because
we have P(ȳ, s) = P(ȳ)P(s)) and s cannot be used as a shorthand.
Assuming the dataset is balanced in s (P(s = 0) = P(s = 1)), for
such datasets P(s = 0|y = 1) = P(s = 1|y = 1) holds and the
two terms in Equation (11) have equal weight.

Here as well there is an accuracy-fairness trade-off: assuming
the unconstrained model is as accurate as its model complexity
allows, adding additional constraints like equality of opportunity
can only make the accuracy worse.

2.2. Concrete Algorithm
For training, we are only given the unbalanced distribution ηs(x)
and not the target distribution η̄s(x). However, η̄s(x) is needed
in order to train a fair classifier. One approach is to explicitly
change the labels y in the dataset, in order to construct η̄s(x). We
discuss this approach and its drawback in the related work section
(section 4).

We present a novel approach which only implicitly constructs
the balanced dataset. This framework can be used with
any likelihood-based model, such as Logistic Regression and
Gaussian Process models. The relation presented in Equation (4)
allows us to formulate a likelihood that targets η̄s(x) while only
having access to the imbalanced labels y. As we only have access
to y, P(y|x, s, θ) is the likelihood to optimize. It represents the
probability that y is the imbalanced label, given the input x, the
sensitive attribute s that available in the training set and themodel
parameters θ for a model that is targeting ȳ. Thus, we get

P(y = 1|x, s, θ) =
∑

ȳ∈{0,1}

P(y = 1, ȳ|x, s, θ)

=
∑

ȳ∈{0,1}

P(y = 1|ȳ, x, s, θ)P(ȳ|x, s, θ) . (12)

As we are only considering group fairness, we have P(y =
1|ȳ, x, s, θ) = P(y = 1|ȳ, s).

Let fθ (x, y
′) be the likelihood function of a given model, where

f gives the likelihood of the label y′ given the input x and
the model parameters θ . As we do not want to make use of s
at test time, f does not explicitly depend on s. The likelihood
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with respect to ȳ is then given by f : P(ȳ|x, s, θ) = fθ (x, ȳ); and
thus, does not depend on s. The latter is important in order to
avoid direct discrimination (Barocas and Selbst, 2016). With these
simplifications, the expression for the likelihood becomes

P(y = 1|x, s, θ) =
∑

ȳ∈{0,1}

P(y = 1|ȳ, s)P(ȳ|x, θ) . (13)

The conditional probabilities, P(y|ȳ, s), are closely related to the
conditional probabilities in Equation (4) and play a similar role
of “transition probabilities.” Section (1) explains how to choose
these transition probabilities in order to arrive at a balanced
dataset. For a binary sensitive attribute s (and binary label
y), there are 4 transition probabilities (see Algorithm 1 where

d
s=j
ȳ=i : = P(y = 1|ȳ = i, s = j)):

P(y = 1|ȳ = 0, s = 0), P(y = 1|ȳ = 1, s = 0) (14)

P(y = 1|ȳ = 0, s = 1), P(y = 1|ȳ = 1, s = 1) . (15)

A perhaps useful interpretation of Equation (13) is that, even
though we don’t have access to ȳ directly, we can still compute
the expectation value over the possible values of ȳ.

The above derivation applies to binary classification but can
easily be extended to the multi-class case.

Algorithm 1: Fair learning with target labels ȳ

Input: Training set D = {(xi, yi, si)}
N
i=1, transition probabilities

ds= 0
ȳ=0 , d

s= 0
ȳ=1 , d

s= 1
ȳ=0 , d

s= 1
ȳ=1

Output: Fair model parameters θ

1: Initialize θ (randomly)
2: for all xi, yi, si do
3: Pȳ=1 ← η̄(xi, θ) (e.g., logistic(〈x, θ〉))
4: Pȳ=0 ← 1− Pȳ=1

5: if si = 0 then
6: Py=1 ← ds= 0

ȳ=0 · Pȳ=0 + ds= 0
ȳ=1 · Pȳ=1

7: else

8: Py=1 ← ds= 1
ȳ=0 · Pȳ=0 + ds= 1

ȳ=1 · Pȳ=1

9: end if

10: ℓ← yi · Py=1 + (1− yi) · (1− Py=1)
11: update θ to maximize likelihood ℓ

12: end for

3. TRANSITION PROBABILITIES FOR A
BALANCED DATASET

This section focuses on how to set values of the transition
probabilities in order to arrive at balanced datasets.

3.1. Meaning of the Parameters
Before we consider concrete values, we give some intuition for
the transition probabilities. Let s = 0 refer to the protected group.
For this group, we want to make more positive predictions than
the training labels indicate. Variable ȳ is supposed to be our target
proxy label. Thus, in order to make more positive predictions,

some of the y = 0 labels should be associated with ȳ = 1.
However, we do not know which. So, if our model predicts ȳ = 1
(high P(ȳ = 1|x, θ)) while the training label is y = 0, then
we allow for the possibility that this is actually correct. That is,
P(y = 0|ȳ = 1, s = 0) is not 0. If we choose, for example,
P(y = 0|ȳ = 1, s = 0) = 0.3 then that means that 30% of positive
target labels ȳ = 1 may correspond to negative training labels
y = 0. This way we can have more ȳ = 1 than y = 1, overall. On
the other hand, predicting ȳ = 0 when y = 1 holds, will always
be deemed incorrect: P(y = 1|ȳ = 0, s = 0) = 0; this is because
we do not want any additional negative labels.

For the non-protected group s = 1, we have the exact opposite
situation. If anything, we have too many positive labels. So, if our
model predicts ȳ = 0 (high P(ȳ = 0|x, θ)) while the training label
is y = 1, then we should again allow for the possibility that this
is actually correct. That is, P(y = 1|ȳ = 0, s = 1) should not be
0. On the other hand, P(y = 0|ȳ = 1, s = 1) should be 0 because
we do not want additional positive labels for s = 1. It could also
be that the number of positive labels is exactly as it should be, in
which case we can just set y = ȳ for all data points with s = 1.

3.2. Choice of Parameters
A balanced dataset is characterized by an independence of the
label ȳ and the sensitive attribute s. Given that we have complete
control over the transition probabilities, we can ensure this
independence by requiring P(ȳ = 1|s = 0) = P(ȳ = 1|s = 1).
Our constraint is then that both of these probabilities are equal
to the same value, which we will call the target rate PRt (“PR” as
positive rate):

P(ȳ = 1|s = 0)
!
= PRt and P(ȳ = 1|s = 1)

!
= PRt . (16)

This leads us to the following constraints for s′ ∈ {0, 1}:

PRt = P(ȳ = 1|s = s′) =
∑

y

P(ȳ = 1|y, s = s′)P(y|s = s′).

(17)

We call P(y = 1|s = j) the base rate PR
j

b
which we estimate from

the training set:

P(y = 1|s = i) =
number of points with y = 1 in group i

number of points in group i
.

Expanding the sum, we get

PRt = P(ȳ = 1|y = 0, s = s′) · (1− PR1b)

+ P(ȳ = 1|y = 1, s = s′) · PR1b . (18)

This is a system of linear equations consisting of two equations
(one for each value of s′) and four free variables: P(ȳ = 1|y, s)
with y, s ∈ {0, 1}. The two unconstrained degrees of freedom
determine how strongly the accuracy will be affected by the
fairness constraint. If we set P(ȳ = 1|y = 1, s) to 0.5, then this
expresses the fact that a train label y of 1 only implies a target
label ȳ of 1 in 50% of the cases. In order to minimize the effect
on accuracy, we make P(ȳ = 1|y = 1, s) as high as possible
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and P(ȳ = 1|y = 0, s), conversely, as low as possible. However,
the lowest and highest possible values are not always 0 and 1
respectively. To see this, we solve for P(ȳ = 1|y = 0, s = j) in
Equation (18):

P(ȳ = 1|y = 0, s = j)

=
PR

j

b

1− PR
j

b

(

PRt

PR
j

b

− P(ȳ = 1|y = 1, s = j)

)

. (19)

If PRt/PRj
b
were greater than 1, then setting P(ȳ = 1|y = 0, s = j)

to 0 would imply a P(ȳ = 1|y = 1, s = j) value greater
than 1. A visualization that shows why this happens can be
found in the Supplementary Material. We thus arrive at the
following definitions:

P(ȳ = 1|y = 1, s = j) =







1 if PRt > PR
j

b
PRt

PR
j

b

otherwise.
(20)

P(ȳ = 1|y = 0, s = j) =







PRt−PR
j

b

1−PR
j

b

if PRt > PR
j

b

0 otherwise.

(21)

Algorithm 2 shows pseudocode of the procedure, including the
computation of the allowed minimal and maximal value.

Once all these probabilities have been found, the transition
probabilities needed for Equation (13) are fully determined by
applying Bayes’ rule:

P(y = 1|ȳ, s) =
P(ȳ|y = 1, s)P(y = 1|s)

P(ȳ|s)
. (22)

3.2.1. Choosing a Target Rate
As shown, there is a remaining degree of freedom when targeting
a balanced dataset: the target rate PRt := P(ȳ = 1). This is true for
both fairness criteria that we are targeting. The choice of targeting
rate affects how much η and η̄ differ as implied by Theorem 1
(PRt affects ms and bs). η̄ should remain close to η as η̄ only
represents an auxiliary distribution that does not have meaning
on its own. The threshold ts in Theorem 1 (Equation 8) gives an
indication of how close the distributions are. With the definitions
in Equations (20) and (21), we can express ts in terms of the target
rate and the base rate:

ts =

{

1
2

PRs
b
−PRt
PRt

if PRt > PR
j

b
1
2

PRt−PR
s
b

1−PRt
otherwise.

(23)

This shows that ts is smallest when PRs
b
and PRt are closest.

However, as PRs
b
has different values for different s, we cannot

set PRs
b
= PRt for all s. In order to keep both ts= 0 and ts= 1 small,

it follows from Equation (23) that PRt should at least be between
PR0

b
and PR1

b
. A more precise statement can be made when we

explicitly want tominimize the sum ts= 0+ts= 1: assuming PR0
b

<

PRt < PR1
b
and PR1

b
< 1

2 , the optimal choice for PRt is PR
1
b
(see

Supplementary Material for details). We call this choice PRmax
t .

For PR0
b

> 1
2 , analogous statements can be made, but this is of

less interest as this case does not appear in our experiments.

The previous statements about ts do not directly translate into
observable quantities like accuracy if the Tsybakov condition is
not satisfied, and even if it is satisfied, the usefulness depends
on the constants C and λ. Conversely, the following theorem
makes generally applicable statement about the accuracy that can
be achieved. Before we get to the theorem, we introduce some
notation. We are given a dataset D = {(xi, yi)}i, where the xi are
vectors of features and the yi the corresponding labels. We refer
to the tuples (x, y) as the samples of the dataset. The number of
samples is N = |D|.

We assume binary labels (y ∈ {0, 1}) and thus can form the
(disjoint) subsets Y0 and Y1 with

Y
j = {(x, y) ∈ D|y = j} with j ∈ {0, 1} . (24)

Furthermore, we associate each sample with a classification ŷ ∈
{0, 1}. The task of making the classification ŷ = 0 or ŷ = 1 can be
understood as sorting each sample from D into one of two sets:
C0 and C1, such that C0 ∪ C1 = D and C0 ∩ C1 = ∅.

We refer to the set A = (C0 ∩ Y0) ∪ (C1 ∩ Y1) as the set
of correct (or accurate) predictions. The accuracy is given by
acc = N−1 · |A|.

Definition 2.

ra : =

∣

∣Y1
∣

∣

|D|
=

∣

∣Y1
∣

∣

N
(25)

is called the base acceptance rate of the dataset D.

Definition 3.

r̂a =

∣

∣C1
∣

∣

|D|
=

∣

∣C1
∣

∣

N
(26)

is called the predictive acceptance rate of the predictions.

Theorem 2. For a dataset with the base rate ra and corresponding
predictions with a predictive acceptance rate of r̂a, the accuracy is
limited by

acc ≤ 1−
∣

∣r̂a − ra
∣

∣ . (27)

Corollary 2.1. Given a dataset that consists of two subsets S0 and
S1 (D = S0 ∪ S1) where p is the ratio of |S0| to |D| and given
corresponding acceptance rates r0a and r1a and predictions with
target rates r̂0a and r̂

1
a, the accuracy is limited by

acc ≤ 1− p ·
∣

∣r̂0a − r0a
∣

∣− (1− p) ·
∣

∣r̂1a − r1a
∣

∣ . (28)

The proofs are fairly straightforward and can be found in the
Supplementary Material.

Corollary 2.1 implies that in the common case where group
s = 0 is disadvantaged (r0a < r1a) and also underrepresented
(p < 1

2 ), the highest accuracy under demographic parity can be
achieved at PRt = r1a with

acc ≤ 1− p ·
(

r1a − r0a
)

. (29)
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Algorithm 2: Targeting a balanced dataset

Input: Target rate PRt , biased acceptance rate PRi
b

Output: Transition probabilities ds=iȳ=j

1: if PRt > PRi
b
then

2: P(ȳ = 1|y = 1, s = i)← 1
3: else

4: P(ȳ = 1|y = 1, s = i)← PRt
PRi

b

5: end if

6: if j=0 then
7: P(ȳ = 0|y = 1, s = i)← 1− P(ȳ = 1|y = 1, s = i)

8: ds=iȳ=0 ←
P(ȳ=0|y=1,s=i)·PRi

b
1−PRt

9: else if j=1 then

10: ds=iȳ=1 ←
P(ȳ=1|y=1,s=i)·PRi

b
PRt

11: end if

However, this means willingly accepting a lower accuracy in the
(smaller) subset S0 that is compensated by a very good accuracy
in the (larger) subset S1. A decidedly “fairer” approach is to aim
for the same accuracy in both subsets. This is achieved by using
the average of the base acceptance rates for the target rate. As we
balance the test set in our experiments, this kind of sacrificing of
one demographic group does not work there. We compare the
two choices (PRmax

t and PR
avg
t ) in section 5.

3.3. Conditionally Balanced Dataset
There is a fairness definition related to demographic parity
which allows conditioning on “legitimate” risk factors ℓ

when considering how equal the demographic groups are
treated (Corbett-Davies et al., 2017). This cleanly translates into
balanced datasets which are balanced conditioned on ℓ:

P(ȳ = 1|ℓ = ℓ′, s = 0)
!
= P(ȳ = 1|ℓ = ℓ′, s = 1) . (30)

We can interpret this as splitting the data into partitions based
on the value of ℓ, where the goal is to have all these partitions
be balanced. This can easily be achieved by our method by
setting a PRt(ℓ) for each value of ℓ and computing the transition
probabilities for each sample depending on ℓ.

4. RELATED WORK

There are several ways to enforce fairness in machine learning
models: as a pre-processing step (Kamiran and Calders, 2012;
Zemel et al., 2013; Louizos et al., 2016; Lum and Johndrow,
2016; Chiappa, 2019; Quadrianto et al., 2019), as a post-
processing step (Feldman et al., 2015; Hardt et al., 2016),
or as a constraint during the learning phase (Calders et al.,
2009; Zafar et al., 2017a,b; Donini et al., 2018; Dimitrakakis
et al., 2019). Our method enforces fairness during the learning
phase (an in-processing approach) but, unlike other approaches,
we do not cast fair-learning as a constrained optimization
problem. Constrained optimization requires a customized
procedure. In Goh et al. (2016), Zafar et al. (2017a), and

Zafar et al. (2017b), suitable majorization-minimization/convex-
concave procedures (Lanckriet and Sriperumbudur, 2009) were
derived. Furthermore, such constrained optimization approaches
may lead to more unstable training, and often yield classifiers
with both worse accuracy and more unfair (Cotter et al., 2018).

The approaches most closely related to ours were given by
Kamiran and Calders (2012) who present four pre-processing
methods: Suppression, Massaging the dataset, Reweighing, and
Sampling. In our comparison we focus on methods 2, 3, and
4, because the first one simply removes sensitive attributes and
those features that are highly correlated with them. All the
methods given by Kamiran and Calders (2012) aim only at
enforcing demographic parity.

The massaging approach uses a classifier to first rank all
samples according to their probability of having a positive label
(y = 1) and then flips the labels that are closest to the
decision boundary such that the data then satisfies demographic
parity. This pre-processing approach is similar in spirit to our in-
processing method but differs in the execution. In our method
(section 3.2), “ranking” and classification happen in one step
and labels are not explicitly flipped but assigned probabilities of
being flipped.

The reweighting method reweights samples based on whether
they belong to an over-represented or under-represented
demographic group. The sampling approach is based on the
same idea but works by resampling instead of reweighting. Both
reweighting and sampling aim to effectively construct a balanced
dataset, without affecting the labels. This is in contrast to our
method which treats the class labels as potentially untrustworthy
and allows defying them.

One approach in Calders and Verwer (2010) is also worth
mentioning. It is based on a generative Naïve Bayes model in
which a latent variable L is introduced which is reminiscent
to our target label ȳ. We provide a discriminative version of
this approach. In discriminative models, parameters capture
the conditional relationship of an output given an input, while
in generative models, the joint distribution of input-output is
parameterized. With this conditional relationship formulation
(P(y|ȳ, s) = P(ȳ|y,s)P(y|s)/P(ȳ|s)), we can have detailed control in
setting the target rate. Calders and Verwer (2010) focuses only
on the demographic parity fairness metric.

5. EXPERIMENTS

We compare the performance of our target-label model with
other existing models based on two real-world datasets. These
datasets have been previously considered in the fairness-aware
machine learning literature.

5.1. Implementation
The proposed method is compatible with any likelihood-based
algorithm. We consider both a non-parametric and a parametric
model. The non-parametric model is a Gaussian process model,
and logistic regression is the parametric counterpart. Since
our fairness approach is not being framed as a constrained
optimization problem, we can reuse off-the-shelf toolboxes
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including the GPyTorch library by Gardner et al. (2018)
for Gaussian process models. This library incorporates recent
advances in scalable variational inference including variational
inducing inputs and likelihood ratio/REINFORCE estimators.
The variational posterior can be derived from the likelihood and
the prior. We need just need to modify the likelihood to take into
account the target labels (Algorithm 1).

5.2. Data
We run experiments on two real-world datasets. The first
dataset is the Adult Income dataset (Dua and Graff, 2019). It
contains 33,561 data points with census information from US
citizens. The labels indicate whether the individual earns more
(y = 1) or less (y = 0) than $50,000 per year. We use
the dataset with either race or gender as the sensitive attribute.
The input dimension, excluding the sensitive attributes, is 12
in the raw data; the categorical features are then one-hot
encoded. For the experiments, we removed 2,399 instances with
missing data and used only the training data, which we split
randomly for each trial run. The second dataset is the ProPublica
recidivism dataset. It contains data from 6,167 individuals that
were arrested. The data was collected when investigating the
COMPAS risk assessment tool (Angwin et al., 2016). The task
is to predict whether the person was rearrested within two
years (y = 1 if they were rearrested, y = 0 otherwise).
We again use the dataset with either race or gender as the
sensitive attributes.

5.3. Balancing the Test Set
Any fairness method that is targeting demographic parity,
treats the training set as defective in one way: the acceptance
rates are not equal in the training set and this needs to be
corrected. As such, it does not make sense to evaluate these
methods on a dataset that is equally defective. Predicting at equal
acceptance rates is the correct result and the test set should
reflect this.

In order to generate a test set which has the property of
equal acceptance rates, we subsample the given, imbalanced, test
set. For evaluating demographic parity, we discard datapoints
from the imbalanced test set such that the resulting subset
satisfies P(s = j|y = i) = 1

2 for all i and j. This
balances the set in terms of s and ensures P(y, s) = P(y)P(s),
but does not force the acceptance rate to be 1

2 , which in
the case of the Adult dataset would be a severe change as
the acceptance rate is naturally quite low there. Using the
described method ensures that the minimal amount of data is
discarded for the Adult dataset. We have empirically observed
that all fairness algorithms benefit from this balancing of the
test set.

The situation is different for equality of opportunity. A perfect
classifier automatically satisfies equality of opportunity on any
dataset. Thus, an algorithm aiming for this fairness constraint
should not treat the dataset as defective. Consequently, for
evaluating equality of opportunity we perform no balancing of
the test set.

5.4. Method
We evaluate two versions of our target label model1: FairGP,
which is based on Gaussian Process models, and FairLR, which
is based on logistic regression. We also train baseline models that
do not take fairness into account.

In both FairGP and FairLR, our approach is implemented
by modifying the likelihood function. First, the unmodified
likelihood is computed (corresponding to P(ȳ = 1|x, θ)) and
then a linear transformation (dependent on s) is applied as
given by Equation (13). No additional ranking of the samples
is needed, because the unmodified likelihood already supplies
ranking information.

The fair GPmodels and the baseline GPmodel are all based on
variational inference and use the same settings. During training,
each batch is equivalent to the whole dataset. The number of
inducing inputs is 500 on the ProPublica dataset and 2500 on
the Adult dataset which corresponds to approximately 1/8 of the
number of training points for each dataset. We use a squared-
exponential (SE) kernel with automatic relevance determination
(ARD) and the probit function as the likelihood function. We
optimize the hyper-parameters and the variational parameters
using the Adam method (Kingma and Ba, 2015) with the default
parameters. We use the full covariance matrix for the Gaussian
variational distribution.

The logistic regression is trained with RAdam (Liu et al., 2019)
and uses L2 regularization. For the regularization coefficient, we
conducted a hyper-parameter search over 10 folds of the data. For
each fold, we picked the hyper-parameter which achieved the best
fairness among those 5 with the best accuracy scores. We then
averaged over the 10 hyper-parameter values chosen in this way
and then used this average for all runs to obtain our final results.

In addition to the GP and LR baselines, we compare our
proposed model with the following methods: Support Vector
Machine (SVM), Kamiran and Calders, 2012 (“reweighing”
method), Agarwal et al., 2018 (using logistic regression as the
classifier) and several methods given by Zafar et al. (2017a,b),
which include maximizing accuracy under demographic parity
fairness constraints (ZafarFairness), maximizing demographic
parity fairness under accuracy constraints (ZafarAccuracy), and
removing disparate mistreatment by constraining the false
negative rate (ZafarEqOpp). Every method is evaluated over 10
repeats that each have different splits of the training and test set.

5.5. Results for Demographic Parity on
Adult Dataset
Following Zafar et al. (2017b), we evaluate demographic parity
on the Adult dataset. Table 1 shows the accuracy and fairness
for several algorithms. In the table, and in the following, we
use PRs=i to denote the observed rate of positive predictions
per demographic group P(ŷ = 1|s = i). Thus, PRs= 0/PRs= 1

is a measure for demographic parity, where a completely fair
model would attain a value of 1.0. This measure for demographic
parity is also called “disparate impact” (see e.g., Feldman et al.,
2015; Zafar et al., 2017a). As the results in Table 1 show, FairGP

1The code can be found on GitHub: https://github.com/predictive-analytics-lab/

ethicml-models/tree/master/implementations/fairgp.
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TABLE 1 | Accuracy and fairness (with respect to demographic parity) for various methods on the balanced test set of the Adult dataset.

Algorithm Fair→ 1.0← Accuracy ↑ Fair→ 1.0← Accuracy ↑

GP 0.80 ± 0.07 0.888 ± 0.007 0.54 ± 0.05 0.900 ± 0.006

LR 0.83 ± 0.06 0.884 ± 0.007 0.52 ± 0.03 0.898 ± 0.003

SVM 0.89 ± 0.06 0.899 ± 0.004 0.49 ± 0.05 0.913 ± 0.004

FairGP (ours) 0.86 ± 0.07 0.888 ± 0.006 0.87 ± 0.09 0.902 ± 0.007

FairLR (ours) 0.90 ± 0.06 0.874 ± 0.009 0.93 ± 0.04 0.886 ± 0.012

ZafarAccuracy (Zafar et al., 2017b) 0.67 ± 0.17 0.808 ± 0.016 0.77 ± 0.08 0.853 ± 0.017

ZafarFairness (Zafar et al., 2017b) 0.81 ± 0.06 0.879 ± 0.009 0.74 ± 0.11 0.897 ± 0.004

Kamiran and Calders (2012) 0.87 ± 0.07 0.882 ± 0.007 0.96 ± 0.03 0.900 ± 0.004

Agarwal et al. (2018) 0.86 ± 0.08 0.883 ± 0.008 0.65 ± 0.04 0.900 ± 0.004

Fairness is defined as PRs= 0/PRs= 1 (a completely fair model would achieve a value of 1.0). Left: using race as the sensitive attribute. Right: using gender as the sensitive attribute.

The mean and std of 10 repeated experiments.

A B

FIGURE 1 | Accuracy and fairness (demographic parity) for various target choices. (A) Adult dataset using race as the sensitive attribute; (B) Adult dataset using

gender. Center of the cross is the mean; height and width of the box encode half of standard derivation of accuracy and disparate impact.

and FairLR are clearly fairer than the baseline GP and LR.
We use the mean (PR

avg
t ) for the target acceptance rate. The

difference between fair models and unconstrained models is not
as large with race as the sensitive attribute, as the unconstrained
models are already quite fair there. The results of FairGP are
characterized by high fairness and high accuracy. FairLR achieves
similar results to FairGP, but with generally slightly lower
accuracy but better fairness. We used the two step procedure of
Donini et al. (2018) to verify that we cannot achieve the same
fairness result with just parameter search on LR.

In Figure 1, we investigate which choice of target (PR
avg
t ,

PRmin
t or PRmax

t ) gives the best result. We use PR
avg
t for all

following experiments as this is the fairest choice (cf. section 3.2).
The Figure 1A shows results from Adult dataset with race as
sensitive attribute where we have PRmin

t = 0.156, PRmax
t = 0.267

and PR
avg
t = 0.211. PR

avg
t performs best in term of the trade-off.

Figures 2A,B show runs of FairLR where we explicitly set a
target acceptance rate, PRt : = P(ȳ = 1), instead of taking
the mean PR

avg
t . A perfect targeting mechanism would produce

a diagonal. The plot shows that setting the target rate has the
expected effect on the observed acceptance rate. This tuning of
the target rate is the unique aspect of the approach. This would
be very difficult to achieve with existing fairness methods; a new

constraint would have to be added. The achieved positive rate is,
however, usually a bit lower than the targeted rate (e.g., around
0.15 for the target 0.2). This is due to using imperfect classifiers;
if TPR and TNR differ from 1, the overall positive rate is affected
(see e.g., Forman, 2005 for discussion of this).

Figures 3A,B show the same data as Figure 2 but with
different axes. It can be seen from this Figures 3A,B that the
fairness-accuracy trade-off is usually best when the target rate is
close to the average of the positive rates in the dataset (which is
around 0.2 for both sensitive attribute).

5.6. Results for Equality of Opportunity on
ProPublica Dataset
For equality of opportunity, we again follow Zafar et al. (2017a)
and evaluate the algorithm on the ProPublica dataset. As we
did for demographic parity, we define a measure of equality
of opportunity via the ratio of the true positive rates (TPRs)
within the demographic groups. We use TPRs=i to denote the
observed TPR in group i: P(ŷ = 1|y = 1, s = i), and TNRs=i
for the observed true negative rate (TNR) in the same manner.
The measure is then given by TPRs= 0/TPRs= 1. A perfectly fair
algorithm would achieve 1.0 on the measure.
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A B

FIGURE 2 | Predictions with different target acceptance rates (demographic parity) for 10 repeats. (A) PRs=0 vs PRs=1 using race as the sensitive attribute; (B)

PRs=0 vs PRs=1 using gender.

A B

FIGURE 3 | Predictions with different target acceptance rates (demographic parity) for 10 repeats. (A) Disparate impact vs accuracy on Adult dataset using race as

the sensitive attribute; (B) Disparate impact vs accuracy using gender.

A B

FIGURE 4 | Accuracy and fairness (with respect to equality of opportunity) for various methods on ProPublica dataset. (A): using race as the sensitive attribute; (B):

using gender. A completely fair model would achieve a value of 1.0 in the x-axis. See Figures 5A,B on how these choices of PR setting translate to TPRs=0 vs

TPRs=1.
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A B

FIGURE 5 | Fairness measure TPRs=0 vs TPRs=1 (equality of opportunity) for different target PRs (PRt ). (A) On dataset ProPublica recidivism using race as the

sensitive attribute; (B) using gender.

The results of 10 runs are shown in Figures 4, 5. Figures 4A,B
show the accuracy-fairness trade-off; Figures 5A,B show the
achieved TPRs. In the accuracy-fairness plot, varying PRt is
shown to produce an inverted U-shape: Higher PRt still leads to
improved fairness, but at a high cost in terms of accuracy.

The latter two plots make clear that the TPR ratio does not
tell the whole story: the realization of the fairness constraint
can differ substantially. By setting different target PRs for our
method, we can affect TPRs as well, where higher PRt leads
to higher TPR, stemming from the fact that making more
positive predictions increases the chance of making correct
positive predictions.

Figure 5 shows that our method can span a wide range of
possible TPR values. Tuning these hidden aspects of fairness is
the strength of our method.

6. DISCUSSION AND CONCLUSION

Fairness is fundamentally not a challenge of algorithms alone,
but very much a sociological challenge. A lot of proposals have
emerged recently for defining and obtaining fairness in machine
learning-based decision making systems. The vast majority of
academic work has focused on two categories of definitions:
statistical (group) notions of fairness and individual notions of
fairness (see Verma and Rubin, 2018 for at least twenty different
notions of fairness). Statistical notions are easy to verify but
do not provide protections to individuals. Individual notions
do give individual protections but need strong assumptions,
such as the availability of an agreed-upon similarity metric,
which can be difficult in practice. We acknowledge that a proper
solution to algorithmic fairness cannot rely on statistics alone.
Nevertheless, these statistical fairness definitions can be helpful
in understanding the problem and working toward solutions. To
facilitate this, at every step, the trade-offs that are present should
be made very clear and long-term effects have to be considered as
well (Kallus and Zhou, 2018; Liu et al., 2018).

Here, we have developed a machine learning framework
which allows us to learn from an implicit balanced dataset,
thus satisfying the two most popular notions of fairness (Verma
and Rubin, 2018), demographic parity (also known as avoiding
disparate treatment) and equality of opportunity (or avoiding
disparate mistreatment). Additionally, we indicate how to extend
the framework to cover conditional demographic parity as well.
The framework allows us to set a target rate to control how
the fairness constraint is realized. For example, we can set the
target positive rate for demographic parity to be 0.6 for different
groups. Depending on the application, it can be important to
specify whether non-discrimination ought to be achieved by
more positive predictions or more negative predictions. This
capability is unique to our approach and can be used as an
intuitive mechanism to control the realization of fairness. Our
framework is general and will be applicable for sensitive variables
with binary and multi-level values. The current work focuses
on a single binary sensitive variable. Future work could extend
our tuning approach to other fairness concepts like the closely
related predictive parity group fairness (Chouldechova, 2017) or
individual fairness (Dwork et al., 2012).
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