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In the Thematic Apperception Test, a picture story exercise (TAT/PSE; Heckhausen,

1963), it is assumed that unconscious motives can be detected in the text someone

is telling about pictures shown in the test. Therefore, this text is classified by trained

experts regarding evaluation rules. We tried to automate this coding and used a recurrent

neuronal network (RNN) because of the sequential input data. There are two different

cell types to improve recurrent neural networks regarding long-term dependencies

in sequential input data: long-short-term-memory cells (LSTMs) and gated-recurrent

units (GRUs). Some results indicate that GRUs can outperform LSTMs; others show

the opposite. So the question remains when to use GRU or LSTM cells. The results

show (N = 18000 data, 10-fold cross-validated) that the GRUs outperform LSTMs

(accuracy = .85 vs. .82) for overall motive coding. Further analysis showed that GRUs

have higher specificity (true negative rate) and learn better less prevalent content. LSTMs

have higher sensitivity (true positive rate) and learn better high prevalent content. A closer

look at a picture x category matrix reveals that LSTMs outperform GRUs only where deep

context understanding is important. As these both techniques do not clearly present a

major advantage over one another in the domain investigated here, an interesting topic

for future work is to develop a method that combines their strengths.

Keywords: GRU, LSTM, RNN, text classification, implicit motive, thematic appeception test

INTRODUCTION

The achievement Thematic Apperception Test, a picture story exercise (TAT/PSE; Heckhausen,
1963), is a very valid instrument for assessing the two components of the implicit achievement
motive: hope of success (HS) and fear of failure (FF) (Schüler et al., 2015). In the test,
people are instructed to invent stories based on six different pictures. The test person should
do this by answering the following four questions: (1) who the persons in the picture are,
(2) what they think and feel, (3) what happened before, and (4) how everything will turn
out. Afterward, a trained psychologist classifies the stories for each picture regarding the
absence or presence of 11 achievement motive categories. These are the need for success or to
avoid failure (NS/NF), the instrumental activities to get success or prevent failure (IS/IF), the
expectations of success or failure (ES/EF), specific positive or negative affect (A+/A–), failure
outcome (F), praise (P), or criticism (C) (Heckhausen, 1963; annotation according to the English
language translation by Schultheiss, 2001). There are also two weighting categories—so-called
themes—that were given, when the story is more about success (ST) or about failure (FT).
ST is scored when there is only NS or ES in the text and no other failure categories but

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2020.00040
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2020.00040&domain=pdf&date_stamp=2020-06-30
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nicole.gruber@ur.de
mailto:alfred.jockisch@ukr.de
https://doi.org/10.3389/frai.2020.00040
https://www.frontiersin.org/articles/10.3389/frai.2020.00040/full
http://loop.frontiersin.org/people/343351/overview


Gruber and Jockisch GRU, LSTM, and Motive Classification in Text

A- or EF. The failure theme is scored when there is no other HS
category but IS and at least NF or F is scored.

For each of the six pictures, these 11 categories are scored;
afterward, they are summed up together with the themes to hope
of success (NS+ IS+ ES+ A++ P+ ST) or fear of failure (NF+

IF + EF + A- + F + C + FT). The individual HS and FF scores
for these six pictures are summed up again to the person’s total
HS and FF score.

As it is very complex to evaluate those picture story exercises,
the need for computer evaluation of this test is given since a
long time (Stone et al., 1966; Seidenstücker and Seidenstücker,
1974; Schultheiss, 2013; Halusic, 2015). Therefore, automatizing
the evaluation of this assessment instrument combines two
benefits: first, having a task that contains real human language
understanding and, second, providing practical use.

Recurrent neuronal networks are commonly used for
language understanding (Geron, 2018) as they are sequential
data. There are different cells to improve neuronal networks
when tracking long-term dependencies for deep sentence
understanding. The first technique is the long-short-term-
memory (LSTM) cell (Hochreiter and Schmidhuber, 1997). It
has its own memory, which stores information outside the
learning flow of the neural network. Thus, problems of long-term
dependencies, i.e., in this case, for example, rarely frequented
word combinations that are far apart, can be better controlled.
The LSTM cell corresponds to a node of a recurrent network and
has, in addition to the input and output, a forget gate that avoids
overfeeding of the vanishing gradient. The second technique
or alternative is the so-called gated recurrent unit (GRU; Cho
et al., 2014); this function is performed via an update gate and
a reset gate. The advantage of GRU cells is that they are just
as powerful as LSTM cells (Chung et al., 2014) for moderately
spaced word combinations, even with small data sets; but they
need less computing power, so with the same equipment larger
networks are feasible. With its three gates, the LSTM is more
complex than the two-gated GRU cell. The LSTM has an input,
output, and forget gate. The main difference is the presence or
absence of an output gate, which tells how much of the content
is presented to the next layer of the network. For LSTM cells, the
whole memory can be limited by the output gate; in the GRU
cell, this is not possible. In the GRU cell, this is handled via an
update gate and a reset gate, where the update gate mostly does
what in the LSTM is done by the input and forget gate. The
reset gate handles the candidate activation in the cell. Therefore,
in the GRU cell, the previous time step is more important. In
the LSTM, there is no control of information flow in the cell as
there is no reset gate. To put all in a nutshell, the GRU cell does
not memorize as much as the LSTM cell, for it needs previous
activation and remains in the network (see Figure 1). The LSTM
cell could memorize more as it has one additional gate to control
the output separately (Rana et al., 2016; Shen, 2017).

Some results indicate that GRUs can outperform LSTMs
(Jozefowicz et al., 2015; Liu and Singh, 2016); some show
opposite results (Amodei et al., 2015). So the question remains
when to use GRU and when to use LSTM cells. We think
that because of the architecture, the GRU cell is more sensitive
for data and the LSTM is more specific. This perhaps could

FIGURE 1 | Gated recurrent unit (GRU; left) r = reset-, z = update gate, h =

activation, h̃ = candidate activation, long short-term memory (LSTM; right)

with input- (i), forget- (f), and output-gate (o), memory cell c, new memory cell

c̃; (Schema cited after Rana et al., 2016, p 3; Chung et al., 2014, p 3).

explain why in some cases GRUs outperform LSTMs and
vice versa. So the aim of this study is to compare GRU and
LSTM cells for automated motive coding, a special kind of text
classification that requires deep text understanding, and look at
sensitivity/specificity rates as well as accuracy rates depending
on prevalence.

Based on the different architecture, we assume that

– The GRU cell outperforms the LSTM cell regarding accuracy
in low prevalent content (<0.50).

– The GRU cell has higher specificity (true negative rate) than
the LSTM cell.

– The LSTM cell should have higher sensitivity (true positive
rate) than the GRU cell.

METHODS

Data
As labeled data set for the study, 18000 stories (3000 tests, each
one consisting of six picture stories A–F) were coded according
to the 11 categories of the two components of the achievement
motive hope for success (HS) and fear of failure (FF; Heckhausen,
1963). In part, they were received from other researchers and
included archival data, where no information about gender and
age is given. Therefore, also no ethical approval was done. The
18000 stories were coded toward the absence or presence of the
11 categories. As resulting labels, which are output by the neural
network, we did not take the all-encompassing overall HS- or
FF-scores but the coding regarding the 11 categories for each
single picture story, because we wanted to get insights into the
classification performance in different categories. We did not
code each sentence separately as this does not comply with the
guidance of Heckhausen (1963), and we wanted to consider the
meaning of the text across the sentences. As we wanted to be
sure that the coding of the data is consistent, seven students,
who were also involved in data preparation, underwent 5 weeks
of intensive training according to the guidelines of Heckhausen
(1963). Their interrater agreement was calculated on a random
data sample (N = 60), using an ICC (Shrout and Fleiss, 1979)
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with a two-way model on absolute agreement. It ranged from
0.70 to 0.73 (p < 0.001), which is an acceptable score (Meyer
et al., 2002). The stories were sorted by person and picture for
the analysis.

The Network
For analysis, a recurrent neural network was created with an
input and an output layer in tensorflow (https://www.tensorflow.
org/, derived 06.04.2020). In the input, the text was inserted as
a.txt file; the text was preprocessed by the natural language toolkit
(www.ntlk.org, derived 06.04.2020).

For analysis, the words of the picture texts were encoded
with the 64 dimensional word-embedding from polyglot, trained
on German Wikipedia (https://sites.google.com/site/rmyeid/
projects/polyglot, downloaded 06.04.2020). The concatenated
word vectors were fed into a recurrent neural network, built with
the tensorflow framework, consisting of an input layer, an inner
layer, and an output layer.

For the comparison of the cell architectures, the vanilla RNN
was replaced on the one hand by (1) the simple LSTM cell and
on the other hand by (2) the GRU cell provided in tensorflow.
The networks were trained in 1000 epochs without dropout,
optimized by an Adam optimizer and a learning rate of 0.005;
1000 epochs were trained on the data with a 90% training set and
a 10% testing set. The hyperparameters were chosen according
to Geron (2018) and set by tensorflow. No individual tuning
was done for both cell types to make sure that this would not
influence the results at this stage. The procedure was as follows.
The data were fed into the network. They were sorted by person
(1–3000) and picture (1–6) as follows: Person 1, Picture 1, scoring
category 1–11, Person 1, Picture 2, scoring category 1–11, Person
1, Picture 3, scoring category 1–11, Person 1, Picture 4, scoring
category 1–11, Person 1, Picture 5, scoring category 1–11, Person
1, Picture 6, scoring category 1–11, Person 2, Picture 1, scoring
category 1–11, . . . ).

The picture text data were fed into the network (X-tensor);
the scoring was set into the Y-tensor. It was sorted by person
(1–3000) and then by picture (1–6). For every picture, the 11
categories were provided as the labels, which have to be learned.
The training epochs were divided into mini-batches such that the
data of a person were always together in the same mini-batch.

Training and testing sets were split according to this counter,
so that in both sets, all six pictures were presented and no
difference in content could influence the result. The classificatory
was then trained to classify the text regarding the absence or
presence of the 11 categories.

Afterward, a simple 10-fold cross-validation was performed.
The resulting values were calculated per category and per picture
as well as category x picture. The scores for testing the hypothesis
that low prevalent content should be much easier to be learned
by GRU and high prevalent content by LSTM, scored had to
be transformed, because the original prevalence was below 0.50.
Therefore, the sum-scores were dichotomized per picture or
per category.

In addition to the accuracies, sensitivities and specifities were
calculated (see Figure 2). As each category can be given a 1

FIGURE 2 | Classification method for the categories.

(content is in category) or a 0 (content is not in category), there
can be different decisions. If the program and the human coder
decide that the specific content hits a specific category, this is
named true positive on; the other hand, if both agree that it is
not, it is true negative. If the program does not code a specific
content, it is false negative. If the program codes the content and
it would not be coded by the human, it is false positive. The
sensitivity is calculated as the true positive rate of all decisions
divided by all positive classifications, so true positive and false
negative. The specificity is the true negative rate divided by all
negative classifications, so false positive and true negative. So a
high sensitivity concludes that the program is more likely to find,
for example, a category that is scored. High specificity means
that the program tends to not make a classification when there
is nothing in the data. The prevalence was computed as the
number of occurrences (cases coded as 1) divided by all cases.
For example, if in 10 stories, there are five time-crossed category
NS, the prevalence rate of NS would be 0.50. Prevalence is often
indicated in %, but we worked with the decimals instead.

RESULTS

First the results show an overall testing accuracy of 0.85 for the
GRU cell and 0.82 for the LSTM cell. But there were differences
across the accuracy depending on the prevalence.

The results show that GRU cells tend to learn content that
is rarely found in the data (low prevalence) better. LSTM cells,
on the other hand, learn content that can be found more
frequently in the data (high prevalence) better. As soon as the
prevalence is balanced (∼0.50), the classification performance
adjusts (see Table 1).

This is also found for categories. In all cases where the
prevalence is >0.50, the LSTM cell outperformed the GRU cell;
in all other cases, the GRU cell outperformed the LSTM cell with
one exception: the EF category.

Table 2 shows that the specificity of the GRU cell is higher
than the specificity of the LSTM cell. This can be found across all
categories calculated for the pictures, regarding theHS-categories
as well as the FF-categories. On the other hand, the sensitivity
of GRU cells is always lower than the sensitivity of LSTM cells
(see Table 2).

Similar results could also be found when separating for
different categories (see Supplementary Table 1). An exception
could be found when specific context information is needed
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TABLE 1 | Comparison of GRUs vs. LSTMs regarding classification accuracy in a recurrent neural network based on 10-fold cross-validation for each picture (A–F; left)

separated for the overall HS and FF score, as well as the HS (NS-A+) and FF categories (NF-F) depending on prevalence (Prev.) of the transformed scores.

Pictures (HS-score) HS-categories

A B C D E F NS IS ES P A+

GRU .606 .674 .545 .668 .515 .523 GRU .487 .830 .716 .738 .492

LSTM .656 .649 .593 .626 .577 .562 LSTM .525 .850 .687 .696 .540

Prev .722 .292 .652 .306 .685 .635 Prev .525 .880 .282 .252 .538

Pictures (FF-score) FF-categories

A B C D E F NF IF EF C A– F

GRU .756 .514 .617 .496 .617 .536 GRU .598 .384 .545 .594 .513 .523

LSTM .694 .534 .587 .560 .591 .554 LSTM .591 .560 .547 .588 .554 .540

Prev .241 .530 .389 .666 .371 .497 Prev .394 .652 .461 .395 .581 .624

The categories were need for success or to avoid failure (NS/NF), the instrumental activities to get success or prevent failure (IS/IF), the expectations of success or failure (ES/EF),

specific positive or negative affect (A+/A–), failure outcome (F), praise (P), and criticism (C).

TABLE 2 | Comparison of GRU vs. LSTM cells in classification sensitivity (true-positive-rate) and specificity (true-negative-rate) in a recurrent neural network based on

10-fold cross-validation (total sample 18000) for categories of Heckhausen (1963) regarding pictures (A–F; overall classification), HS-categories (NS−A+), and

FF-categories (NF-F).

Pictures HS-categories FF-categories

A B C D E F NS IS ES P A+ NF IF EF C A– F

Specificity GRU .965 .965 .961 .951 .964 .952 .971 .721 .999 .997 .967 .992 .978 .990 .988 .946 .924

LSTM .937 .925 .921 .904 .924 .905 .913 .665 .984 .978 .915 .965 .858 .952 .966 .909 .909

Sensitivity GRU .340 .069 .172 .150 .198 .140 .036 .478 .001 .009 .063 .026 .027 .026 .034 .131 .212

LSTM .425 .153 .263 .223 .288 .215 .129 .557 .019 .060 .193 .083 .175 .101 .110 .214 .234

The categories were need for success or to avoid failure (NS/NF), the instrumental activities to get success or prevent failure (IS/IF), the expectations of success or failure (ES/EF),

specific positive or negative affect (A+/A–), failure outcome (F), praise (P), and criticism (C).

to understand the coding. There are differences according to
different categories and different pictures (Heckhausen, 1963).

For example, in picture B (a man in front of the director’s

office) in the category instrumental activity for success (IS)

and negative affect (A–), the LSTM cell has higher scores

for specificity than the GRU cell. This is because long-term
dependencies are necessary to encode correctly. For example, if
the person fears the director, this category will not be coded. If
the person goes to the director with routine tasks, this category
will not be coded.

Also the IS-category at picture D (a teacher and a student at

a blackboard) is often coded false positive without background

knowledge. The category must not be coded when the teacher

writes something on the blackboard and corrects it, but only
when the student does so.

Another category would be the category failure (F) in picture

F (foreman and worker), because this category is only assigned if

the one person who made the mistake cannot correct it himself
or herself.

As a result, the superficial GRU cell codes this category

less specifically but has a higher sensitivity than the GRU cell.

Furthermore, the GRU cell has a higher sensitivity to the category

negative affect (A–) in image C (two men at a workbench) than
the LSTM cell.

The results show that in specific cases where complex
additional information is needed to exclude the encoding, the
LSTM cell encodes more specifically, and in situations where
additional information from the text tends to confuse, the GRU
cell cuts off more sensitively.

In pictures A (a smiling man at the desktop) and D (a man
working at the desk), however, where only one person is depicted
in the picture and only one person can be the protagonist of
the story, the results are according to the assumptions across
all categories.

DISCUSSION

In this paper, it is found that a potential automatedmotive coding
by recurrent neural network technique could be possible. It is
found according to the hypothesis that LSTM cells and GRU
cells differ in the way they classify, and that this depends on the
prevalence of the stimulus.

It is found that the performance of LSTM cells outperform
GRU cells when the content to code is often represented in the

Frontiers in Artificial Intelligence | www.frontiersin.org 4 June 2020 | Volume 3 | Article 40

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Gruber and Jockisch GRU, LSTM, and Motive Classification in Text

data. This shows the difference in how these two memory cells
work. Perhaps this could explain why in some cases GRU cells
outperform LSTM cells and vice versa.

Furthermore, it is found that GRU cells should show higher
specificity as they do not have their own memory and therefore
tend to learn more like an exclusion principle. LSTM cells, on
the other hand, show higher sensitivity as they strongly adopt
onto the data. The only exception is found when the stories
are complex (e.g., more than one protagonist of the story) and
the context is important. This could lie on the fact that the
LSTM, with its memory, could capture more information than
the GRU.

As the LSTM cells are more likely to find the correct
result categories, they are more sensible to overfitting than
GRU cells. This could also explain why researchers found that
GRU cells outperform LSTM cells when the sample size is low
(Chung et al., 2014).

From a practical point of view, this short report
enables new insights in memory cells in the way that the
distribution of the target should be taken into account
when choosing memory cells. So memory cells could
be selected according to specific classification goals. For
example, if GRU cells have higher specificities and lower
sensitivities than LSTM cells, they would tend to overclassify
rather than misclassify appropriate stimuli (alpha error),
whereas LSTM cells would tend to overclassify rather
than omit things (beta error). Thus, both types of cells
offer specific practical advantages. This has to be tested in
other contexts.

As a restriction, it has to be noted that this calculation
is done only with less and specific data sets, so further
research questions could be how the insights gained in this
study about the difference of LSTM and GRU cells still
work with larger data sets, more complex word embeddings,
and more complex frameworks (e.g., deep learning). Further
replications of this study will show how the GRU and

LSTM cells also differ for other problems beyond implicit
motive classification.
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