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Learning a second language (L2) usually progresses faster if a learner’s L2 is similar

to their first language (L1). Yet global similarity between languages is difficult to quantify,

obscuring its precise effect on learnability. Further, the combinatorial explosion of possible

L1 and L2 language pairs, combined with the difficulty of controlling for idiosyncratic

differences across language pairs and language learners, limits the generalizability of

the experimental approach. In this study, we present a different approach, employing

artificial languages, and artificial learners. We built a set of five artificial languages whose

underlying grammars and vocabulary were manipulated to ensure a known degree of

similarity between each pair of languages. We next built a series of neural network models

for each language, and sequentially trained them on pairs of languages. These models

thus represented L1 speakers learning L2s. By observing the change in activity of the

cells between the L1-speaker model and the L2-learner model, we estimated how much

change was needed for the model to learn the new language. We then compared the

change for each L1/L2 bilingual model to the underlying similarity across each language

pair. The results showed that this approach can not only recover the facilitative effect

of similarity on L2 acquisition, but can also offer new insights into the differential effects

across different domains of similarity. These findings serve as a proof of concept for a

generalizable approach that can be applied to natural languages.

Keywords: second-language acquisition, deep learning, language similarity, computational modeling, artificial

languages

1. INTRODUCTION

Learning a second language (L2) can be difficult for a variety of reasons. Pedagogical context
(Tagarelli et al., 2016), cognitive processing differences across learners (Ellis, 1996; Yalçın and
Spada, 2016), L2 structural complexity (Pallotti, 2015; Yalçın and Spada, 2016; Housen et al., 2019),
or similarity between the target L2 and the learner’s first language (L1) can all conspire to affect
the speed and success of L2 acquisition (Hyltenstam, 1977; Lowie and Verspoor, 2004; Foucart
and Frenck-Mestre, 2011; Málek, 2013; Schepens et al., 2013; Türker, 2016; Carrasco-Ortíz et al.,
2017). Similarity, in particular, is a difficult variable to examine, because it is so hard to pin down.
Although individual structures (e.g., relative clauses, cognate inventory) can be compared fairly
straightforwardly across languages, it is much harder to combine these structures appropriately
to determine a global similarity metric across languages, which limits our ability to predict how
difficult an arbitrary L2 will be to acquire for different L1 speakers. The goal of this paper is to
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propose a new method for evaluating the effect of similarity on
the learnability of L2 structures, using deep learning.

Current approaches to determining similarity effects on
L2 acquisition typically take an experimental angle, usually
proceeding in one of two ways. The first is to take one group
of L2 learners, with the same L1, and compare their acquisition
of different structures in the L2, such that one structure is
similar to L1 and the other is different. For example, Lowie
and Verspoor (2004) observed that Dutch learners of English
acquire prepositions that are similar in form and meaning
across the two languages (e.g., by/bij) more easily than ones that
are dissimilar (e.g., among/tussen). Foucart and Frenck-Mestre
(2011) found tentative evidence German learners of French show
more electrophysiological sensitivity to gender errors when the
French nouns have the same gender as German than when they
have a different gender. This observation was later supported by
Carrasco-Ortíz et al. (2017), who observed a similar pattern with
Spanish learners of French. Díaz et al. (2016) examined Spanish
learners of Basque, and found stronger electrophysiological
responses to syntactic violations in structures that are common
between Spanish and Basque compared to violations in structures
unique to Basque. Türker (2016) found that English learners of
Korean performed better at comprehending figurative language
when the expressions shared lexical and conceptual structure
across the two languages than when they diverged. Overall,
then, it seems that at the lexical, morphosyntactic, syntactic,
and conceptual levels, learners have an easier time acquiring L2
structures that are similar to the L1 equivalents than structures
that are different.

The second type of experimental approach holds constant
the target structures to be learned, and instead compares the
acquisition of those structures across learners with different
L1s. Málek (2013), for example, found that Afrikaans-speaking
learners of English acquired prepositions, which divide up the
conceptual space in very similar ways in the two languages, better
than Northern Sotho speakers, which treats those samemeanings
quite differently. Kaltsa et al. (2019) found that German-Greek
bilingual children, whose L1s have a gender system similar
to Greek’s, performed better on gender agreement tasks than
English-Greek bilingual children, whose L1 has no such gender
system. In a very large-scale study, Schepens et al. (2013)
found that Dutch learners had more difficulty acquiring Dutch
when their native languages’ morphological systems were less
similar to Dutch—especially if that dissimilarity lay in a reduced
complexity. This approach, too, shows that similarity between L1
and L2 seems to aid learning.

Although these findings all agree that L1/L2 similarity is
important, they nevertheless all rely on binary same/different
evaluations at a feature by feature level. Yet even if language
grammars could be neatly decomposed into binary feature
bundles, it’s not at all clear whether those features are equally
strong in determining similarity. Are two languages more similar
if they share relative clause construction, for example, or subject-
verb agreement patterns? And even if we can arrive at a hierarchy
of feature strength within a domain, it’s not at all clear how
similarity can be compared across domains. Is a language pair
more similar if both employ a particular conceptual organization

of spatial relations, or if both rely on suffixing concatenative
morphology? And if a pair of languages share similar syntactic
patterns but utterly distinct morphology, are they more or
less similar than a pair of languages that share morphological
structure, but are utterly dissimilar in syntax? Even if we assume
that all linguists work from the same theoretical underpinnings
when characterizing grammatical structures, these questions
make it clear that using feature-by-feature comparisons to
characterize linguistic similarity has severe limitations.

To avoid these problems, our approach employs deep
learning, using changes in neural network activity before and
after learning a second language as a proxy for the learnability of
that language. In the work presented here, we restrict ourselves
to carefully controlled artificial languages, as a proof of concept,
but the approach is scalable to natural languages. Our process,
illustrated in Figure 1, starts with a set of five artificial languages,
whose similarity across pairs was systematically controlled
(Step 1). Next, we trained Long Short Term Memory (LSTM)
neural networks on each of these five languages, producing
five models representing monolingual L1 speakers for each of
the five languages (Step 2). After characterizing the state of
these monolingual networks (Step 3) we then retrained them
on a second language (Step 4), crossing each possible L1 with
each possible L2, to create a set of 20 “bilingual” networks.
Twenty such networks are possible because there are 10 possible
combinations of the five languages, and each combination counts
twice—once for a network with an L1 of language A learning
an L2 of language B, and then again for the reverse. We
then characterized the state of each bilingual network (Step
5), and quantified the change of state that had to take place
during the L2-acquisition process (Step 6). This change of
state represents the “learnability” of each L2 for a speaker of
each L1. Finally, we compared these learnability metrics to the
built-in degree of similarity across different artificial language
pairs (Step 7).

If our approach can capture the findings from experimental
research in a scalable manner, then networks should show
less change when learning L2s that are similar to the
known L1. Further, by controlling the domains of similarity
between the languages (e.g., morphology vs. syntax), we can
examine which types of similarity are most effective in aiding
L2 acquisition.

2. METHODS

2.1. Artificial Languages
We built five artificial languages—Alpha, Bravo, Charlie,
Delta, and Echo—which could vary across three dimensions:
vocabulary, morphology, and syntax. We built multiple versions
of each linguistic subsystem: two vocabularies, labeled A and
B; three morphologies, labeled C, D, and E, and two syntactic
systems, labeled F and G. By distributing the different linguistic
subsystems across the five languages, we were able to manipulate
language similarity systematically.

Table 1 illustrates this manipulation. For example, Alpha
has vocabulary A, morphology C, and syntax F. Charlie
has vocabulary B, morphology E, and syntax G. It therefore

Frontiers in Artificial Intelligence | www.frontiersin.org 2 June 2020 | Volume 3 | Article 43

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Cohen et al. Deep Learnability

FIGURE 1 | Summary of the process for generating learnability metrics across artificial language pairs.

TABLE 1 | Summary of the degree of overlap (zero/one/two dimensions), and

domains of similarity (vocabulary/morphology/syntax) across the ten possible

language pairs.

No overlap One dimension Two dimensions

alpha/charlie

(ACF/BEG)

Vocabulary Vocabulary/Morphology

alpha/bravo (ACF/ADG) delta/echo (AEF/AEG)

alpha/echo (ACF/AEG) Vocabulary/Syntax

bravo/delta (ADG/AEF) alpha/delta (ACF/AEF)

Morphology bravo/echo (ADG/AEG)

charlie/delta (BEG/AEF) Morphology/Syntax

Syntax charlie/echo (BEG/AEG)

bravo/charlie (ADG/BEG)

shares none of these properties with Alpha, which makes
the two languages maximally dissimilar. Alpha and Charlie
therefore appear in the left-most column of Table 2, under the
heading “No overlap.” By contrast Bravo has vocabulary A,
morphology D, and syntax G, which means it overlaps with
Alpha in exactly one dimension—vocabulary—while differing
in morphological and syntactic systems. Alpha and Bravo
therefore appear in the middle column, under the heading
“One dimension > Morphology.” Alpha and Delta overlap
in two dimensions—sharing vocabulary A and Syntax F—
and so that language pair appears in the rightmost column,
under the heading “Two dimensions > Vocabulary/Syntax.”
This distribution of features ensured that every combination of

domain and degree of similarity was represented: One language
pair was maximally dissimilar, sharing neither vocabulary,
morphology, nor syntax; five language pairs overlapped in one
of those three features; and four language pairs overlapped in
two features.

For each vocabulary, we constructed a set of 330 word
roots, divided into six different lexical categories: nouns, verbs,
adjectives, determiners, prepositions, and conjunctions. In each
vocabulary, there were 100 of each of the three different classes
of content words (nouns, verbs, adjectives) and 10 of each
of the three different classes of function words (prepositions,
determiners, conjunctions). For the sake of simplicity, we used
the same set of phonotactic rules to generate the words in each
vocabulary, but we ensured that there was no overlap between
the two lexicons. This ensured identical phonotactic systems
across all languages. Nevertheless, since the neural networks
used here did not look below the level of the morpheme when
learning each language, the similarity in phonotactics across the
two vocabularies was not able to affect the learning process in
this work.

The three morphological systems are all concatenative, but
the features that appear and the types of morphosyntactic
processes varied across each language. For example, morphology
C had suffixing number concord in NPs, such that a plural
suffix appeared on determiners, nouns, and adjectives, while
singular NPs were unmarked. Plural subject NPs conditioned
plural agreement suffixes on the verb, while tense markers
for past, present or future appeared on verbs as prefixes. By
contrast, morphology D had prefixing number on nouns and
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TABLE 2 | Layers of the model employed here.

Layer Description Output

activations

Learnable

weights

Sequence input Input one word at a

time

1 N/A

Word embedding Each input word in the

training data

vocabulary is mapped

to 100 features

100 100 word

embedding

activations × NV

LSTM Each input of 100 word

embedding features is

mapped to 100

features in output. This

layer contains several

input, recurrent, and

bias gates which learn

to retain or forget input

features.

100 There are twelve

types of weights [4

input (100 × 100),

4 recurrent (100 ×

100) and 4 bias

(100 × 1)].

Dropout To prevent overfitting,

20% of the input to this

layer is masked, and

hence dropped

100 N/A

Fully connected The input (100

activations) are each

mapped to the training

data vocabulary

NV NV × 100 + NV

bias

SoftMax Transforms the input

distribution of weighted

training data

vocabulary into a

probability distribution,

aka wordscore

NV

Classification The wordscore is

sampled to determine

the identity of the next

word

1 word

NV refers to the number of words in the training data vocabulary–here, 330. Note that the

out from each layer serves as the input to the following layer.

adjectives, but determiners had no number marking. Rather,
determiners conditioned definiteness agreement on nouns, such
that a lexically specified set of definite determiners conditioned
a definite suffix on nouns, while the indefinite determiner
conditioned an indefinite suffix. Verbs showed no agreement,
but prepositions assigned either accusative or dative case on
NP complements.

The two syntactic systems varied primarily in whether they
were head-initial (Syntax F) or head-final (Syntax G). Sentences
could be one clause or two clauses; clauses could contain subjects
and verb phrases; and verb phrases could contain direct objects
and prepositional phrases. However, for the sake of simplicity
we did not allow any recursion: Sentences could not extend
beyond two clauses, and noun phrases could not be modified by
prepositional phrases.

Examples (1–2) below illustrate the type of sentence generated
in Alpha and Charlie, respectively, the maximally different
languages. The “translation” below each example provides an
English sentence with similar syntactic structure to the two

sentences1. Note that the meanings of the individual words in the
English glosses are arbitrary, as we did not build any semantic
content into these languages.

(1) Alpha:
piaux-s
those-PL

toutsheosh-s
dog-PL

dishkeof
large

will-piaufsizh-s
FUT-run-PL

kagh
in

kiaug
the.SG

diaushziauv
garden-SG

gatdux
empty

“Those large dogs will run in the empty garden.”

(2) Charlie:
us-biaus
ACC-the

koutbux
empty

pakpuz-himherthem
garden-ACC

dud-one
in-SG

doutghouf
run

heshethey-dag
NOM-this

teopbous
large

buxxouf
dog

“This large dog will run in the empty garden.”

2.2. Model Building
2.2.1. Training Data
For each language, we generated 200,000 sentences by randomly
selecting phrase structure rules in a top-down walk through the
language’s grammar. For example, if the language could contain
single-clause or dual-clause sentences, we would randomly select
a single clause sentence. A single clause sentences required a
noun phrase subject, so the walk moved down to the noun
phrase structure rule. Given the option of a singular or plural
subject noun phrase, we would randomly select a plural noun
phrase, and given the option of an adjective modifier or not, we
would randomly select no adjective. This process was repeated
for all syntactic structures in the sentence, right down to the
vocabulary selection. The process was repeated to generate
200,000 sentences, which were filtered to remove any repetitions.

2.2.2. Training the Monolingual Model
A wide variety of neural network model structures have been
developed for use with linguistic data (for an excellent overview
of their use with both natural and artificial language, see Baroni,
2019). We trained a long short-term memory (LSTM) model on
our generated sentences. During training, this model learns the
parameters which define layers in the network model through
optimization of a loss function. These layers are essentially maps
that take input features and map them to output features. Thus,
across the different layers these features or activations represent
language at different levels of abstraction. After training, the
models are able to generate new text word-by-word for each
language they had been trained on.

As Table 2 shows, there are many different layers included in
the full model. However, the key layers for our purposes were
the word embedding layer and especially the LSTM layer. The
word-embedding layer has learnable weights and maps input

1Of course, the morphological systems are quite different from English, and cannot

be translated “accurately.” In 2, for example, the verb is translated as future tense

for comparability with the explicit future tense in 1, but since Charlie has no tense

marking on verbs, this could just as easily have been past tense.
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to 100 output features. At the end of training, each word in
the vocabulary was associated with a unique vector of word
embedding feature weights, which allows the model to uncover
internal regularities in the vocabulary, such as part of speech,
or grammatical definiteness. We refer to these features simply
as “word embeddings,” and conceptualize them, roughly, as the
ability of the model to learn the lexicon of a new language.

The LSTM layer also has learnable weights associated with
memory gates and 100 hidden cells; it takes output from previous
layers as its own input, and maps it to 100 features. Each hidden
cell is associated with a set of 12 learnable parameters, which
control how much information about the input is retained or
forgotten during training and generation. Once these weights
are learned, the features are inputed into the final layers to
create probability distributions for the next possible word, given
a preceding word sequence. The next word actually generated
by the model is the result of sampling from that probability
distribution. These hidden cells can be roughly conceptualized as
the ability of the model to learn the grammar of a new language,
including the dependencies within and across sentences2.

During training, the model learns the parameters which
define the layers through optimization of a loss function, using
stochastic gradient descent (Hochreiter and Schmidhuber, 1997).
Each language model saw the training data five times, and the
amount of data for each language was kept constant at 200,000
sentences across all the models. The execution platform used was
the Deep Learning Toolbox fromMATLAB (MATLAB, 2019).

The entire training process took about fifteen minutes on
a GPU, or about two hours on a CPU. All training data, code,
and output models are available on our OSF archive: https://
osf.io/6dv7p/?view_only=4575499b2daf473fbd6a04ca49213218.
Readme files are included to allow the reader to run the code on
their own machine, but we also provide trained nets for the users
to download and analyse to complement our own analysis below.

2.2.3. Evaluating the Monolingual Model
After training was completed, we evaluated the success of
language learning by having the model generate 100 sentences,
and then running those sentences through the Lark automatic
parser (https://github.com/lark-parser/lark) to see whether they
could be parsed according to the grammar that was used to
generate the original training data. On average our monolingual
models were able to produce fully parsable sentences about 90%
of the time. The lowest accuracy rate was 81% (Echo), and the
highest was 95% (Bravo and Charlie. See Figure 2 for the full set
of accuracy rates. Monolingual models are those points for which
L1 and L2 are the same language).

2.2.4. Training the Bilingual Model
To create our “bilingual” models, we took our monolingual
models, and retrained them on data from each of the other
four languages. Thus, our monolingual model trained on

2We did not include cross-sentence or cross-clausal dependencies in our

grammars. However, natural languages have many of them, ranging from switch-

reference conjunctions in Quechua subordinate clauses (Cohen, 2013), to long-

distance cross-clausal agreement in Tsez (Polinsky and Potsdam, 2001) to basic

pronoun co-reference in English.

FIGURE 2 | Summary of parsing accuracy for monolingual and bilingual

models. Lines connect the results for outputs produced in the same target

language. Datapoints where L1 and L2 are the same represent the

monolingual models; datapoints where L1 and L2 are not the same represent

bilingual models.

Alpha was retrained on data from Bravo, Charlie, Delta, and
Echo, producing four bilingual models, each with the same
L1 but a different L2. This process was repeated for each
monolingual model, resulting in five monolingual models, and
twenty bilingual models representing each possible combination
of L1 and L2. The parsing accuracy of bilingual models was on
average 91%, ranging from a low of 86% (L1-Bravo, L2-Alpha)
to a high of 96% (L1-Alpha, L2-Delta; and L1-Charlie, L2-Echo).
These accuracy rates are given in Figure 2.

With our trained monolingual and bilingual models in hand,
we are now prepared to address the key research question: How
does similarity between L1 and L2 across different domains of
linguistic structure affect learnability in neural network models?

2.3. Characterizing Learnability Using
Neural Networks
2.3.1. Output-Oriented Approaches
There are three ways we see for determining how learnable
a second language is for our models. The first is to examine
the output of the trained models, to determine the percentage
of sentences that are grammatically correct. Although we did
examine the accuracy of our model outputs using the Lark
parser (see above), we do not consider it a useful measure
beyond a rough check that learning has occurred. First, this
approach scores each sentence as a binary parsing success or
failure. In other words, the parser would treat word salad—or
indeed, alphabet soup—as exactly the same sort of failure that
would result from a misplaced agreement suffix in an otherwise
flawless sentence. Yet if we were to try to determine some
degree of “partial credit” parsing, to reward correct phrases in
ungrammatical sentences, we would need tomake certain theory-
dependent decisions. A complete verb phrase, for example, can
be as simple as a single verb, but it can also include direct
object noun phrases and prepositional phrase adjuncts. What
should be done in the case of a well-constructed verb phrase that
nevertheless contains an ungrammatical direct object embedded
within it—and is an ungrammatical noun phrase argument a
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worse violation than an ungrammatical prepositional phrase
adjunct? If so, what about an ungrammatical noun phrase that
is the argument of a preposition, but the prepositional phrase
is itself merely an adjunct to the verb phrase? These decisions
will need to be informed by theoretical assumptions of syntactic
and morphological structure, and to the extent that they are
theory-dependent, they are not objective measures of learning.

A second approach to assessing learnability is to look at the
training time required to learn the second language. The model’s
progress could be monitored during training, and the learnability
could be measured in terms of the amount of time needed to
reach a particular success criterion. Yet what should count as
the success criterion? The default learning curve in our models
tracks the accuracy with which the model predicts the next word
in the training data as a function of what it has already seen,
but the ability to predict the next word in a training sentence is
very different from the ability to generate novel sentences that
respect the underlying structural patterns in the training data. In
principle the model could be asked to generate sample sentences
after each training epoch to track its progress learning those
patterns, but then those sentences would need to be scored for
accuracy, which brings us back to the problem of partial credit
vs. binary parsing as described above.

In principle, these problems are not insurmountable. Yet
even if we had well-motivated, theory-independent ways to
score the model output for accuracy, these approaches neglect
a fundamental strength of using neural networks to study
second-language learnability—a strength that goes well beyond
the scalability and generalizability of computer simulations.
This strength is the ability to examine the internal structure
of a model. We cannot open up the heads of bilingual
learners and examine the behavior of their specific language-
learning neurons as they produce each individual word or
sentence in their second language. But with neural networks,
we can.

2.3.2. Network-Structure Approach
Our network-structure approach essentially asks how much the
underlying structures of the network models themselves must
change in order to learn a new language. Further, by asking
whether the amount of change varies depending on the types
of words or sentences being produced, we can also pinpoint the
domain in which a language is more or less learnable. The less a
network must change in order to learn a new language, or the less
it must change to produce a structure in that new language, the
more learnable that language or structure is.

To characterize the network structures, we made each model
generate 100 sentences, and recorded the activation of each
of the 100 network cells for each word in each sentence. We
then calculated each cell’s mean activation for each part of
speech by averaging across all 100 sentences. Because not all
languages shared the same inventory of morphological prefixes
and suffixes, we extracted only the root parts of speech that were
constant across all languages—namely, adjectives, conjunctions,
determiners, nouns, prepositions, verbs, and End Of Sentence,
which we treated as a word type of its own. Finally, for each cell
in each part of speech, we subtracted its mean activation in L2

from its mean activation in L1, and took the absolute value of
that difference. If a cell’s mean activation changed greatly in the
process of learning L2, then the absolute difference will be high;
by contrast, if it retained roughly the same activation pattern in
L1 and L2, then the absolute difference in mean activation across
the 100 sentences will be minimal.

3. RESULTS

We predicted that the model would need to change less to learn
L2s that were similar to L1, than L2s that were different from L1.
For each language pair, we coded the amount of overlap as 0, 1,
or 2. Thus, our L1-Alpha, L2-Charlie model had an overlap of 0,
as did our L1-Charlie, L2-Alpha model. The two models pairing
Alpha and Bravo had an overlap of 1, and Alpha and Delta had
an overlap of 2 (see Table 1).

In addition to coding language pairs by degrees of overlap,
we also coded each them for the domain of overlap, to explore
whether that affected the amount of cell activity change produced
by learning a second language. For example, the language pairs
Alpha and Bravo, along with Charlie and Delta, both have an
overlap degree of 1, but Alpha and Bravo overlap in vocabulary,
while Charlie and Delta overlap in morphology (see Table 1).

We analyzed degree and domain of overlap separately,
because domain of overlap perfectly predicts degree of overlap.

3.1. Degree of Overlap
Degree of overlap refers to the number of linguistic domains
(vocabulary, morphology, syntax) that are shared between two
languages (see Table 1). We analyzed the effect of degree of
overlap on mean activity change with mixed effects linear
regression, using the R programming environment (version
3.6.1), with the package lme4 (version 1.1–21). We set the
absolute mean activity difference between L1 and L2 as the
dependent variable, and for independent variables we included
L1, L2, part of speech, and overlap degree. Random effects
included random intercepts for each cell3.

The model estimates supported our initial predictions. Cell
activity differences were lower for languages with one degree
of overlap than for languages with no overlap [β = −0.023,
SE (β) = 0.012, t = −1.91], and also for languages that
overlapped by two degrees [β = −0.031, SE (β) = 0.014,
t = −2.28].

Not every language participated in pairings for all three
degrees of overlap, because Bravo, Delta, and Echo did not have
any partners in which there was no overlap. As a result, L1 and
L2 would have produced a rank-deficient contrast matrix if we
attempted to put an interaction between these terms and overlap

3Cells were coded according to both their identifier number (1–100) and also for

the L1. The L1-coding was necessary because a given cell is only equivalent for

every bilingual network whose L1 was the same: Each of those bilingual networks

had the same set of L1-trained cells before they learned their distinct L2s. However,

if the L1s were not the same, then the cells with matching identifier numbers share

no more than a coincidental label, because Cell 1 in a network trained on Alpha as

an L1 is utterly distinct from Cell 1 in a network trained on Bravo.
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FIGURE 3 | Absolute cell activity change for models learning L2 after L1, averaged across all 100 hidden cells. The top panel shows the activity change grouped by

the L1; the middle panel shows the activity change grouped by the L2; and the bottom panel shows the activity change when grouped by part of speech.

degree in the model. Nevertheless, we can see apparent language-
specific variation in the effects of overlap in the top two panels of
Figure 3.

Figure 3 shows the absolute mean activity change between
L1 and L2, averaged across all cells for the twenty possible
L1/L2 language pairings. The x-axis indicates the degree of

overlap between the two languages, which can range from 0 (no
overlap; maximally dissimilar) to 2 (two domains of overlap;
maximally similar). In the top panel, the twenty languages
are grouped according to the starting point—the L1 that the
model learned before it was retrained on an L2. In the middle
panel, they are grouped according to the L2; and in the
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FIGURE 4 | Absolute cell activity change for models learning L2 after L1, averaged across all 100 hidden cells, organized by the domain in which language pairs

overlapped.

bottom panel they are grouped according to the particular part
of speech.

In both of the top two panels, we can see that Bravo is the
one language that bucks the pattern of reduced activity change
with higher degrees of overlap. Learners with an L1 of Bravo
(top panel) increase their activity change when learning L2s of
two degrees of similarity compared to L2s with one degree of
similarity; and when learners are learning Bravo as an L2, they
show no difference in activity change regardless of whether Bravo
overlaps with their L1 by one or two degrees. Nevertheless, all the
other languages show a decrease in cell activity change as L1/L2
similarity increases.

The lowest panel in Figure 3 collapses across L1s and
L2s, and instead shows the changes in cell activity that are
necessary to produce each part of speech in the L2. Interestingly,
these grammatical distinctions show distinct clusters. Nouns
and adjectives do not require much change in cell activity,
while verbs condition a bit more. The function words—
conjunctions, determiners, and prepositions—on the other hand,
cluster together, appreciably above the content words. The
largest change in cell activity that is necessary is associated
with the end of the sentence: cells must learn distinctly
different activation patterns in order to know when to stop
an utterance than they must learn to produce words within
that utterance.

All of these observations emerged in the regression model.
Compared to adjectives, nouns were not significantly different
[β = −0.007, SE (β) = 0.01, t = −0.746], while all other
parts of speech showed significantly greater changes in cell
activity (all ts> 5). Relevelling our factors revealed that function
words showed significantly more activation change than verbs
[conjunctions β = 0.091, SE (β) = 0.01, t = 9.26; determiners
β = −0.058, SE (β) = 0.01, t = 5.87; prepositions β =

−0.076, SE (β) = 0.01, t = 7.69]; and among function words,
conjunctions showed significantly more activation change than
determiners [β = 0.033, SE (β) = 0.01, t = 3.38], although not
prepositions [β = .015, SE (β) = 0.01, t = 1.57]. Determiners
did not differ significantly from prepositions [β = −0.018,
SE (β) = 0.01, t = −1.82].

3.2. Domain of Overlap
To analyse the effects of domains of overlap (e.g., syntax
vs. morphology for language pairs with one degree of overlap,
or syntax/morphology vs. vocab/morphology for language pairs
with two degrees of overlap), we built a mixed effects linear
regression model, with the same software as in our degree
analysis. Again we set the absolute mean activity change as the
dependent variable, and used part of speech and overlap domain
as independent variables, and cell identifier as random intercepts.

Two key patterns that emerged in the model are visible in
Figure 4. First, shared syntax does little to reduce cell activity
differences between L1 and L2. Language pairs which overlap
only in syntax showed no significant difference in cell activation
change from language pairs which do not overlap at all [β =

−0.004, SE (β) = 0.013, t = −0.36]. Further, language pairs
which overlap in vocabulary and syntax show similar reductions
in cell activity as language pairs which overlap in vocabulary
alone [vocabulary alone: β = −0.021, SE (β) = 0.010, t = −2.06;
vocabulary and syntax: β = −0.025, SE (β) = 0.011, t = −2.31].
Second, shared morphology seems to be the most helpful in
reducing changes in cell activity between L1 and L2—especially
when it is combined with a second degree of overlap. Languages
which overlap inmorphology alone show lower differences in cell
activity than languages with no overlap [β = −0.031, SE (β) =
0.013, t = −2.44], or which overlap only in syntax; and languages
which overlap in morphology and some other domain have the
lowest differences in cell activation [morphology and vocabulary:
β = −0.058, SE (β) = 0.013, t = −4.64; morphology and syntax:
β = −0.050, SE (β) = 0.013, t = −3.97].

4. DISCUSSION

This project used artificial language learners and artificial
languages to test a method of investigating L2 acquisition that
has considerable potential for expansion. By building artificial
languages, we were able to sidestep the problem of defining how
similar two languages are, because we could hard-code into the
artificial languages a known degree of overlap. By measuring
the changes in neural networks that had been trained on these
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languages, we were able to estimate the learnability of a language
by focusing not on output, but on changes within the generative
machine itself. Our results supported our predictions: More
degrees of overlap between an L1 and L2 led to less change in
network activity. In other words, more similar languages were
easier to learn.

4.1. Key Domains and Structures for
Learning
Our results are particularly intriguing because they offer
insights into which components of linguistic similarity, and
which linguistic structures, seem to require the most learning
during second language acquisition. We observed that a shared
morphological system between L1 and L2 in particular seemed
to result in easier learning; while shared syntactic structures
seemed to make very little difference. Further, function words
(conjunctions, determiners, and prepositions) seemed to be
harder to learn compared to content words (adjectives, and
nouns, although to a lesser extent verbs).

Both of these patterns may reflect the way in which linguistic
dependencies are encoded in these artificial languages. Because
our syntactic grammars were fairly simple, dependencies
such as subject-verb agreement, or number concord in
noun phrases, were largely expressed through morphological
affixes. Syntactic structures were actually quite similar: all
sentences needed subjects and verbs; all verb phrases could
be transitive or intransitive, with optional prepositional
phrase adjuncts; and all sentences could have one or two
clauses, with the latter combining the clauses through the
use of a conjunction. Although the linear order in which
these structures were combined varied, the nature of the
dependencies was quite similar. By contrast, the morphological
systems could vary widely: with different features—tense,
number, definiteness—expressed or ignored depending on
which morphology a language had. This fundamental similarity
across syntactic systems, compared to a wider degree of
variability in morphological systems, may explain why shared
morphology proved more useful in learning a new language than
shared syntax.

To the extent that the syntax of these languages did
encode dependencies, however, it largely was encoded in
the function words. Determiners were obligatory in noun
phrases; conjunctions were required in two-clause sentences;
and prepositions required noun phrase objects. Adjectives, by
contrast, were entirely optional; and nouns were often optional
in verb phrases, because verbs could be either transitive or
intransitive. This could explain why somuchmore of the network
activity changes emerged in the production of content words than
on function words, as shown in the bottom panel of Figure 3.

If this account is accurate, it can explain why, among
content words, verbs were harder to learn than nouns and
adjectives. Verbs were often the locus of agreement morphology,
as well as tense inflection; and unlike adjectives and nouns,
verbs’ appearance was most restricted: in each clause they were
obligatory, and also limited to exactly one appearance per clause.
Yet this limitation was also shared across all the languages. As a
result, verbs required more learning than nouns and adjectives,
but less than the more structurally complex content words.

4.2. Potential for Generalization
Because deep learning packages are sophisticated enough to learn
natural languages as well as artificial languages (Sutskever et al.,
2011; Graves, 2013, for an excellent recent overview, see Baroni,
2019), we believe that this approach can be generalized to natural
languages, and allow researchers in language acquisition to
make testable predictions about how learnable second languages
might be for speakers of different first languages. Although
there is a robust pedagogical tradition for certain language
pairs (e.g., Spanish for English speakers, or French for German
speakers), these resources are limited to dominant language
groups which provide a large population of L1 learners, or
which are popular L2 target languages. For such learners,
existing pedagogical approaches are nuanced and mature. Yet for
speakers of Finnish, who wish to learn Malayalam or Quechua,
there may be very few resources that are targeted to their
existing knowledge.

Naturally, it will be necessary to apply these methods to
natural languages to see whether the patterns that we found in a
sterile simulation generalize in any meaningful way. Our current
analysis, for example, did not consider the role of phonological
similarity, although research in bilingualism has shown that the
phonological structures of L1 and L2 can interact in complex
ways. For example, substantial similarity between L1 and L2
phonologies may actually interfere with the development of
distinct L2 phoneme categories (Flege, 1995, 2007). This pattern
which may well pose a challenge for our results, which show
generally facilitative effects of similarity. On the other hand,
we did not ask our models to learn the phonology of the
languages we constructed, and so we cannot know whether they
would replicate natural language findings of inhibitory effects of
phonological similarity, or mis-predict facilitatory effects.

We also did not consider the role of semantics in our
artificial languages, which rendered it impossible to explore
or model the effects of cognates (words with similar forms
and meanings in two languages) or false friends (words with
similar forms and dissimilar meanings) as a domain of language
similarity. Yet these types of lexico-semantic relationships have
been shown to affect both language learning (Otwinowska-
Kasztelanic, 2009; Otwinowska and Szewczyk, 2019), as well
as bilingual processing (van Hell and Dijkstra, 2002; Duyck
et al., 2007; Brenders et al., 2011). Further, these effects interact
in complex ways not only with properties of the broader
linguistic context, but also individual cognitive properties of
the speaker (Schwartz and Kroll, 2006; van Hell and Tanner,
2012; Dijkstra et al., 2015). Our models could in principle
be adjusted to reflect different speaker properties—e.g., more
or fewer hidden cells or word embeddings could perhaps
model differences in working memory capacity—but we did
not manipulate those properties here. All models had identical
internal structures, and effectively modeled the identical person
in multiple learning situations.

Our findings should not be overstated, but we do believe
they serve as a persuasive proof of concept of our methods:
Given a known set of underlying relationships between L1
and L2, our modeling procedure can uncover them in ways
that are linguistically meaningful. Yet interpreting the output
of this approach when it is applied to natural languages
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will not be straightforward, and will need to be guided
by the already robust psycholinguistic literature on bilingual
language processing and acquisition. Nevertheless, we are
optimistic. Our approach, while still in its early stages, has the
potential to democratize language learning, by predicting not
only which languages are easier to learn for which speakers,
but also of identifying which domains of grammar may be
most challenging.
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Yalçın, Ş., and Spada, N. (2016). Language aptitude and

grammatical difficulty: an EFL classroom-based study. Stud.

Second Lang. Acquis. 38, 239–263. doi: 10.1017/S02722631150

00509

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Cohen, Higham and Nabi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 June 2020 | Volume 3 | Article 43

https://doi.org/10.3758/BF03196335
https://doi.org/10.1111/j.1467-9922.2012.00710.x
https://doi.org/10.1017/S0272263115000509
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
	1. Introduction
	2. Methods
	2.1. Artificial Languages
	2.2. Model Building
	2.2.1. Training Data
	2.2.2. Training the Monolingual Model
	2.2.3. Evaluating the Monolingual Model
	2.2.4. Training the Bilingual Model

	2.3. Characterizing Learnability Using Neural Networks
	2.3.1. Output-Oriented Approaches
	2.3.2. Network-Structure Approach


	3. Results
	3.1. Degree of Overlap
	3.2. Domain of Overlap

	4. Discussion
	4.1. Key Domains and Structures for Learning
	4.2. Potential for Generalization

	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


