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Deep artificial neural networks have become the go-to method for many machine

learning tasks. In the field of computer vision, deep convolutional neural networks

achieve state-of-the-art performance for tasks such as classification, object detection, or

instance segmentation. As deep neural networks become more and more complex, their

inner workings become more and more opaque, rendering them a “black box” whose

decision making process is no longer comprehensible. In recent years, various methods

have been presented that attempt to peek inside the black box and to visualize the inner

workings of deep neural networks, with a focus on deep convolutional neural networks

for computer vision. These methods can serve as a toolbox to facilitate the design and

inspection of neural networks for computer vision and the interpretation of the decision

making process of the network. Here, we present the new tool Interactive Feature

Localization in Deep neural networks (IFeaLiD) which provides a novel visualization

approach to convolutional neural network layers. The tool interprets neural network

layers as multivariate feature maps and visualizes the similarity between the feature

vectors of individual pixels of an input image in a heat map display. The similarity display

can reveal how the input image is perceived by different layers of the network and

how the perception of one particular image region compares to the perception of the

remaining image. IFeaLiD runs interactively in a web browser and can process even

high resolution feature maps in real time by using GPU acceleration with WebGL 2. We

present examples from four computer vision datasets with feature maps from different

layers of a pre-trained ResNet101. IFeaLiD is open source and available online at

https://ifealid.cebitec.uni-bielefeld.de.

Keywords: explainable deep learning, deep neural network visualization, visual analytics, interactive visualization,

web application, computer vision, machine learning

1. INTRODUCTION

With the rapid increase in computing power over the past decade, deep artificial neural networks
have become the go-to method for many machine learning tasks and achieve state-of-the-
art performance in areas such as speech recognition, drug discovery, genomics, or computer
vision (LeCun et al., 2015). The field of computer vision, in particular, quickly developed a
wide range of methods based on neural networks for tasks such as image classification, object
detection, or instance segmentation. One popular neural network architecture for computer vision
is the convolutional neural network (CNN), which mimics the human visual pathway and can
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achieve impressive performance (Krizhevsky et al., 2012). One
property that is inherent to all deep neural network architectures,
including CNNs, is their high complexity owing to their very
large number of internal parameters. For this reason, a CNN
is generally regarded as “black box” whose inner working and
decision making process is opaque (Wang et al., 2015; Yosinski
et al., 2015; Rauber et al., 2016; Zintgraf et al., 2016; Samek
et al., 2017; Chang et al., 2020). As CNNs became more and
more popular, numerous techniques have been presented to
facilitate the design and to understand the inner workings of a
network through visualization (Seifert et al., 2017). Visualization
techniques of CNNs can generally be filed into two categories:
feature visualization and attribution (Olah et al., 2017).

Feature visualization attempts to depict how a CNN encodes
different image properties or, in other words, what (part of)
a CNN “is looking for.” One of the methods for feature
visualization is activation maximization (Erhan et al., 2009;
Nguyen et al., 2016) which can be applied at different levels of
a CNN, e.g., to a whole layer of the network, a single channel of
a layer or a single neuron of a channel (see Figure 1). Among the
most important discoveries through feature visualization with
activation maximization is the fact that a CNN tends to build
up its understanding of an image in a hierarchical way over
many layers (Zeiler and Fergus, 2014; Olah et al., 2017). Lower
layers respond to basic visual properties such as edges or textures,
whereas higher layers respond tomore abstract properties such as
patterns, parts, or objects.

Attribution based methods make use of the fact that CNNs
retain the spatial layout of the pixels of the input image
throughout the different layers of the network. This particular
trait is used in visualizations to highlight parts of an input image
that are (most) responsible for the response of the network.
Zeiler and Fergus (2014) used an occlusion approach to identify
the regions of an image that contribute the most to a given
network response. Zintgraf et al. (2016) extended this approach
to visualize both image regions that act in favor and regions
that act against a particular decision of the network. Stylianou
et al. (2019) visualized, which regions of an input image are most
salient for the decision that two images are similar. Most of the
methods for attribution visualize salient image regions with a
pseudo-color heat map which is transparently overlayed over
the input image (Seifert et al., 2017). Such a heat map display
can explain in an intuitive way why a network reaches a certain
decision, e.g., which characteristics of the letter “3” identify it as
such (Samek et al., 2016).

Various visualization techniques have been incorporated into
interactive tools that aim to help in the design process of a
CNN and facilitate the general interpretability of the network.
Yosinski et al. (2015) presented two tools that visualize the
activations of the layers of a CNN as well as feature visualizations
of a selected channel in real time as the network processes an
image or live video. Pezzotti et al. (2017) developed DeepEyes,
a tool that combines many linked visualizations to monitor a
network during training and to show how it changes over time.
Kahng et al. (2017) presented ActiVis, an interactive visualization
system that allows the interpretation and inspection of large-
scale deep learning models and results, down to the level of

individual neuron activations. Olah et al. (2018) developed
interactive visualizations that combine feature visualization and
attribution in an attempt to reduce the representations learned
by an CNN to a human-comprehensible level. Spinner et al.
(2019) presented the framework and interactive tool explAIner
to facilitate the understanding, diagnosis, and refinement of
machine learning models.

In this work, we present the new tool Interactive Feature
Localization in Deep neural networks (IFeaLiD) which provides
a novel visualization of CNN layers that shares characteristics
of both feature visualization and attribution. The tool interprets
CNN layers as multivariate feature maps and visualizes the
similarity between the feature vectors of individual pixels of
an input image in a heat map display. When used to compare
different layers of a CNN, the visualization can highlight the
hierarchically organized visual perception of a CNN with respect
to a particular input image. Used only on a single layer, the
visualization can point out which regions of an input image
are perceived as similar by the network. These applications can
be filed into the two research directions “understanding” and
“debugging” of explainable deep learning as defined by Choo and
Liu (2018). In contrast to many related approaches to visualize
deep neural networks, the visualization of IFeaLiD is not limited
to networks for the classification of images but can be applied
to any CNN for computer vision (e.g., for tasks such as object
detection or segmentation). IFeaLiD is implemented as a web
application and the interactive visualization runs in real time in a
web browser.

To illustrate possible applications, we present use cases for
three different scenarios in which IFeaLiD could be applied:

Use Case 1: A computer vision novice seeks an intuitive
understanding of how a CNN perceives images and how the
perception changes through subsequent network layers. They
work either on their own or as part of a lecture/course on
machine learning for computer vision.
Use Case 2: A computer vision expert collaborates with
other researchers such as biologists or medical experts for
interdisciplinary research. The computer vision expert wishes
to convey a basic understanding of the visual perception
of CNNs to facilitate a productive discussion about the
applications in their field of research.
Use Case 3: A computer vision researcher develops a new
CNN architecture and wishes to investigate certain input
images that cause an unintended network response. They want
to inspect the output of individual layers of the network for the
input images in order to understand the unintended behavior.

The remaining paper is structured as follows: In section 2,
we describe the detailed process to obtain the visualization of
IFeaLiD, using feature maps generated by ResNet101 (He et al.,
2016) as example. We present relevant implementation details
of the web application and show the final application interface.
In section 3, we present example visualizations from the four
computer vision datasets Cityscapes (Cordts et al., 2016), COCO
(Lin et al., 2014), DIV2K (Agustsson and Timofte, 2017), and
DOTA (Xia et al., 2018), obtained with ResNet101. We conclude
the paper in section 4 with a discussion about the relevance and
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FIGURE 1 | Definition of a layer (Li ), channel (Ci,k ), pixel (pi,j ), and neuron (pi,j,k ) of a convolutional neural network that is used in this work. Adapted from Olah et al.

(2017) (CC BY 4.0, https://distill.pub/2017/feature-visualization).

possible applications of IFeaLiD and the novel visualization with
a special focus on the three presented use cases. IFeaLiD is open
source and available online1.

2. METHOD

The IFeaLiD tool provides a visualization of a CNN layer which
runs interactively in a web browser. For the visualization, a CNN
layer is interpreted as multivariate feature map and pixels are
colored according to the similarity of their feature vectors to the
feature vector of a selected reference pixel. As a web application
written in PHP and JavaScript, IFeaLiD can be used on many
platforms and visualizations can be easily shared. In the following
section, we define the interpretation of a CNN layer as feature
map and describe how the data is transformed to allow processing
by JavaScript in a web browser. Next, we show how the similarity
between pixel feature vectors is computed and how real time
processing of even high resolution feature maps is achieved by
leveraging GPU acceleration with WebGL 2. Finally, we present
the user interface of the web application.

2.1. Feature Map Extraction
A typical CNN for computer vision such as ResNet101 (He et al.,
2016) processes an input image L0 with a width ofw0, height of h0
and number of channels d0 (usually with d0 = 3 color channels)
through a chain of n layers with the layer outputs {Li | 1 ≤ i ≤ n}.
Each layer output consists of pixels Li = {pi,j | 1 ≤ j ≤ wi × hi}
and each pixel consists of intensity values pi,j = {pi,j,k | pi,j,k ∈

R, 1 ≤ k ≤ di}. Often, a layer output is also described as a set
of channels Li = {Ci,k | 1 ≤ k ≤ di} where each channel consists
of the pixel intensity values Ci,k = {pi,j,k | 1 ≤ j ≤ wi × hi} (see
Figure 1).

In most cases, the spatial input image resolution w0 × h0
is successively downsampled by convolution operations with
a stride greater than two or pooling operations, resulting in
wi > wq and hi > hq for i < q. A pixel of the input
image L0 can always be mapped to a pixel of a layer output Li
and vice versa, as the spatial layout of the pixels is preserved

1https://ifealid.cebitec.uni-bielefeld.de

FIGURE 2 | Schematic building blocks and their original dimensions

(wi × hi × di ) of the different stages of ResNet101 that were used to extract

feature maps in this work. Original dimensions are as reported by He et al.

(2016). wi and hi vary depending on the dimension of the input image. One

pixel of each layer is highlighted that corresponds to the same location in the

input image.

by downsampling and pooling. At the same time as the spatial
resolution is reduced, the channel resolution is increased so
that di < dq for i < q (cf. Figure 2). As with many other
CNN architectures, ResNet101 was originally applied for the task
of image classification. For this reason, the final layer n was
connected to a fully convolutional layer to produce a vector of
class probabilities for a given input image. However, such a CNN
can also be used as a feature extractor, interpreting the layer
output Li as multivariate feature map and the pixels pi,j as feature
vectors for a given input image L0.

IFeaLiD uses the interpretation of Li as a feature map to
visualize the output of a CNN layer. The visualization is rendered
in real time with JavaScript and WebGL 2 in a web browser. The
transfer of data from the layer output of a CNN to a JavaScript
application and WebGL 2 in a web browser is not straight
forward. Popular machine learning libraries such as TensorFlow
(Abadi et al., 2016) for Python typically return output in the form
of a NumPy array (Walt et al., 2011) of 32 bit floating point
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values. In the case of a feature map Li, the NumPy array has
a shape of (wi, hi, di). WebGL 2 is designed to enable the GPU
accelerated display of three-dimensional graphics such as games
with JavaScript in the browser. To this end, two-dimensional
data such as images can be stored and processed in the form
of “textures,” which are usually two-dimensional arrays of four
8 bit unsigned integers (i.e., three color channels and one alpha
channel). WhileWebGL 2 is also capable of storing 32 bit floating
point textures, the limitation to a maximum of four channels per
texture remains.

In order to efficiently transfer a feature map Li with an
arbitrary number of channels di from a NumPy array to a
WebGL 2 texture, we have developed a method that splits
up a NumPy array of 32 bit floating point values into a set
of PNG images. Just like a WebGL texture, a PNG image is
able to losslessly store a two-dimensional array of four 8 bit
unsigned integers and is natively supported by web browsers and
JavaScript. One PNG image can store the intensity values of one
channel Ci,k, by packing each 32 bit value into four 8 bit unsigned
integers. This way, a feature map Li can be stored in a dataset
of di PNG images (see Figure 3). For reasons of reduced dataset
size and higher processing speed, IFeaLiD also supports datasets
with a reduced numeric precision of 16 bit or 8 bit. A 16 bit value
is packed into two 8 bit unsigned integers and 8 bit values are
used unchanged. A feature map Li with 16 bit precision can be
stored in ⌈0.5 · di⌉ PNG images and a feature map with 8 bit
precision can be stored in ⌈0.25 · di⌉ PNG images (see Figure 3).
In order to process both 32 bit, 16 bit, and 8 bit precision datasets
in the same way, the 32 bit and 16 bit floating point values pi,j,k
are transformed to 32 bit and 16 bit unsigned integers p′

i,j,k
(see

Equation 1), producing the transformed feature map L′i.

p′i,j,k =

⌈

pi,j,k −minj,k pi,j,k

maxj,k pi,j,k −minj,k pi,j,k
· pmax

⌋

(1)

pmax =











255, 8 bit precision

65535, 16 bit precision

4294967295, 32 bit precision

(2)

2.2. Interactive Visualization With WebGL 2
The visualization of IFeaLiD displays the similarity between
individual pixels of a feature map as a heat map. The similarity
value si,j of a pixel at index j is computed based on the angular
similarity, which is the inverse angle distance between the pixel’s
feature vector and the feature vector of a selected reference pixel
at index r (see Equation 3). The computation is performed based
on the pixel intensity values p′′

i,j,k
which are floating point values

that were reconstructed from the unsigned integer representation
p′
i,j,k

(see Equation 4). The angle distance was chosen as it

provides more distinct distances between very high dimensional
feature vectors in this particular application. Other distances
such as the Manhattan distance (L1 norm) or Euclidean distance
(L2 norm) suffer from the “curse of dimensionality” (Bellman,
1956), providing little difference in the distances between high
dimensional feature vectors (see Figure S1). They have been

found unsuitable as distance metrics for data spaces with more
than ten dimensions (Weber et al., 1998; Beyer et al., 1999).
Aggarwal et al. (2001) suggest to use a fractional Lk norm for
high dimensional data but how to choose the fractional k is not
straight forward.

si,j = 1−
2

π

· cos−1
p′i,j • p

′′
i,r

| p′i,j | · | p
′′
i,r |

(3)

p′′i,j,k =
p′
i,j,k

pmax
(4)

In order to compute the visualization for changing reference
pixels pi,r in real time, GPU accelerated processing is essential.
At the time of writing, WebGL is the only way for a JavaScript
web application to perform sophisticated GPU accelerated
computations. WebGL 2 is the newest version of the WebGL
API that is available in most modern web browsers and includes
features such as floating point textures or 32 bit and 16 bit
unsigned integer data types. As WebGL is intended to be used
for rendering three-dimensional scenes such as games, its use is
limited to strictly specified rendering pipelines. To compute the
visualization of IFeaLiD using WebGL, it must be implemented
as such a rendering pipeline. A basic WebGL rendering pipeline
consists of four steps: data input, vertex shader computation,
fragment shader computation, and data output.

In the first step of a WebGL rendering pipeline, data such
as vertex arrays, variables, or images are loaded into GPU
memory. Vertex arrays represent the three-dimensional objects
that should be rendered, variables can be used for any purpose
and images are mostly two-dimensional four-channel arrays of
8 bit unsigned integers which are loaded into the GPU texture
memory. In IFeaLiD, the dataset of a feature map is stored
in texture memory. While WebGL 2 supports a wide range of
texture data types, including the 8, 16, or 32 bit unsigned integers
of a dataset, texture memory is always limited to four channels.
To accommodate a dataset with an arbitrary number of channels,
each four consecutive channels of the transformed feature map
L′i are stacked to a “tile” and the tiles are stored in a grid in texture
memory to approximate a square (see Figure 4A).

After data input, the vertex shader computation is executed.
A vertex shader determines the position and orientation of
objects of a scene in three-dimensional space. In the case of
IFeaLiD, the visualization is only two-dimensional and the vertex
shader renders only a two-dimensional rectangle on which the
visualization is projected in the next step (see Figure 4B).

In the third step, a fragment shader is executed to determine
the color of each pixel of the final image that should be rendered.
At this step, the pixel intensity values p′′

i,j,k
are reconstructed from

the unsigned integer representation p′
i,j,k

in texture memory and

the similarity value si,j is computed for each pixel of the feature
map (see Equation 3). Next, the raw similarity values si,j are
transformed to s′i,j using the adaptive color scale optimization of

Elmqvist et al. (2010), which optimizes the contrast of the heat
map display of a given reference pixel (see Equation 5). Finally, a
color map is applied to the optimized similarity values to produce
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FIGURE 3 | Example of a transformed feature map L′ i with di = 5 channels that is split into multiple PNG files for datasets of 8, 16, and 32 bit numeric precision,

respectively. Each PNG file consists of four channels of 8 bit unsigned integers. 16 bit unsigned integers of the feature map are packed into two and 32 bit unsigned

integers are packed into four 8 bit unsigned integers to be stored in one PNG file.

A

B C

FIGURE 4 | Schematic WebGL rendering pipeline of IFeaLiD. (A) Data input: Each four consecutive channels of the transformed feature map L′ i are stacked into tiles

which are then arranged in a texture to approximate a square. (B) Vertex shader: The vertex shader positions a two-dimensional rectangle in the three-dimensional

space of the WebGL scene. (C) Fragment shader: The fragment shader reconstructs the pixel intensity values p′′i,j,k from their unsigned integer representation L′ i in the

texture and computes the heat map visualization.

the heat map visualization that is returned in the fourth step of
the WebGL rendering pipeline (see Figure 4C).

s′i,j =
si,j −minj si,j

maxj si,j −minj si,j
(5)

2.3. Application Interface
In addition to the heat map visualization, the user interface of
IFeaLiD provides further elements and interactions that enable
the efficient and intuitive exploration of a feature map. The
main display (see Figure 5A) shows the heat map visualization.
The reference pixel pi,r is selected interactively by moving the
mouse over the heat map (see white cursor in Figure 5) and the
visualization is updated in real time. A color scale is shown at the
right of the main display (see Figure 5B) which also visualizes
the current effect of the color scale optimization by stretching
of the color scale. Optionally, the original input image L0 can
be included in a dataset. If present, the input image is displayed
beneath the heat map visualization and the opacity of each pixel
of the heat map is initially set to the current similarity value s′i,j
of the pixel. A slider control is displayed at the left of the main
display (see Figure 5C) which can be used to shift the opacity of
each pixel in the range of [s′i,j, 1]. By default, the input image is

displayed in grayscale so the colors do not interfere with the heat
map visualization. With a click on a button (see Figure 5C), the
input image can be switched between grayscale and color mode.

The sidebar (see Figure 5D) displays a bar chart visualization
of the feature vector of the current reference pixel pi,r .
To visually compare two feature vectors, a reference pixel
can be pinned with a mouse click (see Figure 6A) and the
feature vector of the pinned reference pixel is displayed
continuously in the sidebar (see Figure 6B). If the mouse
is subsequently moved over the heat map visualization, the
bar chart visualizations of the pinned reference pixel and the
current changing reference pixel can be compared. In addition,
the mouse can be moved over the rows of the bar chart
visualization (see Figure 6C) to interactively display the pixel
intensity values of the k-th channel Ci,k of the feature map
instead of the heat map visualization in the main display
(see Figure 6D). This single channel visualization also applies
the adaptive color scale optimization and color map to the
pixel intensity values of the channel, which is described in the
previous section.

The top bar of the user interface displays the dataset name,
additional information such as the dimensions wi, hi, and di of
the dataset, as well as an URL that can be used to share the
visualization with others (see Figure 5E).
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FIGURE 5 | User interface of IFeaLiD with the feature map visualization of an image of the DOTA dataset (Xia et al., 2018). (A) The main display shows the heat map

visualization based on the currently selected reference pixel pi,r (marked with a cursor in a white circle). (B) Color scale which also visualizes the current effect of the

color scale optimization as it does not fill the entire height of the element. (C) Slider control to adjust the opacity of the heat map visualization and button to switch

between grayscale and color mode of the original image. (D) Sidebar with the bar chart visualization of the feature vector of the current reference pixel. (E) Top bar

with dataset information and share URL.

FIGURE 6 | Additional interactions in IFeaLiD with the feature map visualization of an image of the DOTA dataset (Xia et al., 2018). (A) The position of a pinned

reference pixel is marked with an orange dot. (B) In the bar chart visualization, the feature vector of the pinned reference pixel (orange) can be compared to the feature

vector of the current reference pixel (white, position marked with a cursor in a white circle). (C) A channel of the feature map can be selected by hovering the mouse

over the bar chart visualization of the feature vector. (D) The main display shows the pixel intensity values of the selected channel, to which color scale optimization

and the color map was applied.

3. RESULTS

To demonstrate applications for IFeaLiD, we present example

visualizations of images from four different computer vision

datasets. The visualizations are based on feature maps that were
extracted at three different stages of ResNet101. In the following
section we describe the setup that was used to obtain the
visualizations and continue with a description of the examples.
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3.1. Example Setup
The feature maps for the example visualizations were obtained
by using ResNet101 (He et al., 2016) in the implementation of
Abdulla (2017). The network was initialized with weights that
were acquired through training on the COCO dataset (Lin et al.,
2014), which are also provided by Abdulla (2017). The network
was applied to each example image and the layer outputs of the
last layer of each of the conv2_x, conv3_x and conv4_x stages
were extracted as feature maps (cf. Figure 2). Accordingly, we
refer to the feature maps as conv2_x, conv3_x and conv4_x
in the following sections. Each feature map was extracted as
NumPy array and converted to the IFeaLiD dataset format with
8 bit numeric precision as described in section 2.1. The datasets
were uploaded to IFeaLiD and explored in the Firefox browser
using a consumer laptop with an Intel R© i7-7500U CPU (Intel R©

HD-Graphics 620).

3.2. Example Visualizations
The example visualizations are based on one image of each
of the four computer vision datasets Cityscapes (Cordts et al.,
2016), COCO (Lin et al., 2014), DIV2K (Agustsson and Timofte,
2017), and DOTA (Xia et al., 2018). Figures 7–10 show the
original image L0 as well as IFeaLiD visualizations of the
feature maps conv2_x, conv3_x and conv4_x for each example.
For each visualization, a descriptive reference pixel pi,r was
selected to highlight specific properties of the feature maps.
The visualizations are best viewed interactively. Dataset files
and links to the interactive visualizations in IFeaLiD can be
found in Zurowietz (2020). With the exception of the image of
the COCO dataset, all example images have a high resolution,
producing feature maps with 107 to 108 pixel intensity values (see
Table 1). Even without a dedicated GPU on a consumer laptop,
all visualizations were rendered and updated in real time without
noticeable delay.

The IFeaLiD visualizations of the conv2_x stage of ResNet101
reveal similar feature vectors for similar gradients such as
fence posts (see Figure 7B), bars (see Figure 9B), and lines (see
Figure 10B) as well as similar colors (see Figure 8B). The feature
maps of the conv3_x stage show similar feature vectors for
similar textures such as a fence lattice (see Figure 7C), grass
(see Figure 8C), or a checkered shirt (see Figure 9C). Notably,
seemingly dissimilar parts of the image of the Cityscapes dataset
show similar feature vectors (cf. fence lattice and the lower part of
the trailer in Figure 7C). On the other hand, supposedly similar
parts of the image of the DIV2K dataset show dissimilar feature
vectors (cf. the different checkered shirts in Figure 9C). The
visualizations of the conv4_x stage show similar feature vectors
for similar parts such as tree trunks (see Figure 7D) or valves (see
Figure 8D) as well as similar objects such as faces (see Figure 9D)
or planes (see Figure 10D).

4. DISCUSSION

IFeaLiD provides a novel visualization of deep neural network
layer outputs which are interpreted as multivariate feature
maps. To efficiently compute the visualization based on high
dimensional data in a web application, we have developed a

dataset format that allows the transfer of multivariate data to
a browser-based JavaScript application and implemented the
computation with GPU acceleration through WebGL 2. The
dataset format supports different numeric precisions and the
visualization is rendered in real time even for high-resolution
images. In addition, the visualization of IFeaLiD is not limited to
networks for the classification of images but can be applied to any
CNN for computer vision (e.g., for tasks such as object detection
or segmentation).

The presented examples illustrate possible applications of
IFeaLiD and demonstrate what kind of deep neural network
characteristics such a visualization can show. All example
visualizations highlight the hierarchically organized visual
perception of the network (see Figures 7–10). The lower layers
(conv2_x) show similar activations for basic visual properties
such as edges or gradients. The next higher layers (conv3_x) show
similar activations for textures or patterns. The highest layers
of the presented examples (conv4_x) show similar activations
for whole objects or parts of objects. This is consistent with
the hierarchy presented and visualized by Olah et al. (2017).
As the visualization is less abstract than other approaches (e.g.,
feature visualization), it can be more intuitive for non-experts.
This makes it well suited for the application in teaching where
the visualization can be directly transferred back to the basic
building blocks of a CNN (Use Case 1). In addition, it can easily
be explained to non-experts in the context of interdisciplinary
research (Use Case 2). The availability as a web application
is another advantage as it requires no complex installation
and allows easy sharing of visualizations with students or
research collaborators.

Besides the comparison of feature maps of different layers
of a network, the exploration of only a single feature map in
IFeaLiD can reveal interesting insights as well. In the conv3_x
feature map of the Cityscapes example, similar feature vectors
are shown for the fence lattice and the lower part of the trailer
(see Figure 7C). The similar activations are probably caused by
the similar patterns of dark and bright lines that are present at
both locations. This could be a hint of why a network would
incorrectly classify the trailer as fence or the other way around.
On the other hand, the visualization can reveal that image regions
which are perceived as similar by a human observer can be
perceived as highly different by a neural network. In case of the
DIV2K example, the checkered shirt of the third person from the
left that is selected with the reference pixel in Figure 9C shows
highly different feature vectors than the similarly checkered
shirt of the second person from the right. Even the arm of the
person with the selected shirt shows different feature vectors.
In the same vein, the side and front valves of the hydrant in
the COCO example are not perceived as similar by the network
in the conv4_x feature map, contrary to human intuition (see
Figure 8). Insights such as these can facilitate the development
of new CNN architectures as they help developers to understand
unintended behavior of the CNN for certain instances of input
images (Use Case 3).

Another valuable insight that the visualization provides
for the presented examples is how pre-trained weights of a
neural network can be reused and transferred to other datasets
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FIGURE 7 | (A) Image bielefeld_000000_007186_leftImg8bit.png of the Cityscapes dataset (Cordts et al., 2016). (B) Visualization of the conv2_x feature

map which shows edge activations. (C) Visualization of the conv3_x feature map which shows texture activations. (D) Visualization of the conv4_x feature map which

shows object part activations (tree trunks). Each reference pixel pi,r is marked with a cursor. Image reproduced with permission from Daimler AG, MPI Informatics, and

TU Darmstadt (https://www.cityscapes-dataset.com).

FIGURE 8 | (A) Image 000000015746.jpg of the COCO dataset (Lin et al., 2014). (B) Visualization of the conv2_x feature map which shows color activations. (C)

Visualization of the conv3_x feature map which shows texture activations. (D) Visualization of the conv4_x feature map which shows object part activations (side

valve). Each reference pixel pi,r is marked with a cursor. Image ©2009 by Flickr user piddix (CC BY 2.0, https://flic.kr/p/6mScoN).

and visual domains. Although the weights that were used to
initialize ResNet101 in our examples were produced through
training on the COCO dataset only, the network layers produce
plausible activations for the other three datasets as well. Even
the feature maps of the DOTA example, which come from
an entirely different visual domain than the everyday images
of COCO, show plausible activations. This might not always
be the case for all pre-trained weights and target datasets.
IFeaLiD can be a way to quickly assess the reusability of pre-
trained weights and to determine if they can be applied for a
given target dataset. This can be valuable knowledge in cases
where new applications of CNNs are explored (Use Case 2 and
Use Case 3).

While IFeaLiD is well-suited for the use cases described above,
there are some limitations. For one, it cannot be easily used to
get an overview over the learned representation of the network
as a whole, since it only allows the inspection of one network
layer at a time. Other visualization approaches, while being more
abstract, can provide a more global overview. In our examples,
the angular distance metric on which the visualization of IFeaLiD
is based produced a better contrast for high dimensional data
than other well known distance metrics such as the Lk norm
(see Figure S1). However, the angular distance metric does not
take the activation magnitudes of neurons into account, which
could be important in certain cases. Ultimately, IFeaLiD could
offer multiple distance metrics to choose from, which we leave
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FIGURE 9 | (A) Image 0804.png of the DIV2K dataset (Agustsson and Timofte, 2017). (B) Visualization of the conv2_x feature map which shows edge activations.

(C) Visualization of the conv3_x feature map which shows texture activations. (D) Visualization of the conv4_x feature map which shows object activations (faces).

Each reference pixel pi,r is marked with a cursor. Image ©2014 by Flickr user cjuneau (CC BY 2.0, https://flic.kr/p/odGqwg), faces have been pixelated.

FIGURE 10 | (A) Image P0034.png of the DOTA dataset (Xia et al., 2018). (B) Visualization of the conv2_x feature map which shows edge activations. (C)

Visualization of the conv3_x feature map which still shows edge activations. (D) Visualization of the conv4_x feature map which shows object activations (planes).

Each reference pixel pi,r is marked with a cursor. Image ©2019 Google Earth.

as a topic for future work. The implementation of IFeaLiD as
a web application allows easy and platform-independent access
as well as sharing of visualizations with others. Compared with
a classical desktop application, though, the web application may
not be as performant, since a desktop application allows a more

flexible and direct access to GPU acceleration. Still, in our tests,
the implementation with WebGL 2 was always fast enough for a
responsive and interactive visualization.

The presented examples show how the visualization of
IFeaLiD can be a valuable tool to facilitate the understanding
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TABLE 1 | Statistics of the images of the four computer vision datasets that were used as examples in this work, with the dimensions of the original image, the

dimensions of each ResNet101 feature map and the total size of each feature map (wi · hi · di ).

Dataset/Image Feature map wi hi di wi · hi · di

L0 2, 048 1, 024 3 0.6 · 107

Cityscapes (Cordts et al., 2016) / conv2_x 512 256 256 3.4 · 107

bielefeld_000000_007186_leftImg8bit.png conv3_x 256 12 512 1.7 · 107

conv4_x 128 64 1, 024 0.8 · 107

L0 427 640 3 0.1 · 107

COCO (Lin et al., 2014) / conv2_x 106 160 256 0.4 · 107

000000015746.jpg conv3_x 52 80 512 0.2 · 107

conv4_x 26 40 1, 024 0.1 · 107

L0 2, 040 1, 200 3 0.7 · 107

DIV2K (Agustsson and Timofte, 2017) / conv2_x 510 300 256 3.9 · 107

0804.png conv3_x 254 150 512 2.0 · 107

conv4_x 126 74 1, 024 1.0 · 107

L0 3, 626 2, 542 3 2.8 · 107

DOTA (Xia et al., 2018) / conv2_x 906 634 256 14.7 · 107

P0034.png conv3_x 452 316 512 7.3 · 107

conv4_x 226 158 1, 024 3.7 · 107

The feature maps of the DOTA image are an order of magnitude larger than those of the remaining images.

of the inner workings of a deep neural network. Used on
a single feature map, the tool allows the localization of
similar feature vectors for a given input image which could
explain an unintuitive classification or detection output of
the network. Used to compare multiple feature maps of
the same network, the visualization can help to understand
how the visual perception is organized in the network
architecture. Finally, the visualization can be used to assess
whether neural network weights that were obtained by training
on one dataset can be reused for another dataset that
potentially contains images of an entirely different visual domain.
Readily available online as a web application, IFeaLiD is an
easy to use and shareable addition to the toolbox for the
understanding and inspection of deep neural networks for
computer vision.
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