
METHODS
published: 07 August 2020

doi: 10.3389/frai.2020.00050

Frontiers in Artificial Intelligence | www.frontiersin.org 1 August 2020 | Volume 3 | Article 50

Edited by:

Cesar Isaza,

Polytechnic University of

Querétaro, Mexico

Reviewed by:

Vicente García,

Universidad Autónoma de Ciudad

Juárez, Mexico

Jonny Paul Zavala De Paz,

Polytechnic University of Querétaro,

Mexico

*Correspondence:

Yu-Cheng Chang

Yu-Cheng.Chang@student.uts.edu.au

Specialty section:

This article was submitted to

Fuzzy Systems,

a section of the journal

Frontiers in Artificial Intelligence

Received: 04 October 2019

Accepted: 15 June 2020

Published: 07 August 2020

Citation:

Chang Y-C, Dostovalova A, Lin C-T

and Kim J (2020) Intelligent Multirobot

Navigation and Arrival-Time Control

Using a Scalable PSO-Optimized

Hierarchical Controller.

Front. Artif. Intell. 3:50.

doi: 10.3389/frai.2020.00050

Intelligent Multirobot Navigation and
Arrival-Time Control Using a Scalable
PSO-Optimized Hierarchical
Controller
Yu-Cheng Chang 1*, Anna Dostovalova 2, Chin-Teng Lin 1 and Jijoong Kim 2

1Computational Intelligence and Brain Computer Interface (CIBCI) Lab, Centre for Artificial Intelligence (CAI), University of

Technology, Sydney, NSW, Australia, 2Defence Science & Technology Group, Adelaide, SA, Australia

We present a hierarchical fuzzy logic system for precision coordination of multiple mobile

agents such that they achieve simultaneous arrival at their destination positions in a

cluttered urban environment. We assume that each agent is equipped with a 2D scanning

Lidar to make movement decisions based on local distance and bearing information.

Two solution approaches are considered and compared. Both of them are structured

around a hierarchical arrangement of control modules to enable synchronization of the

agents’ arrival times while avoiding collision with obstacles. The proposed control module

controls both moving speeds and directions of the robots to achieve the simultaneous

target-reaching task. The control system consists of two levels: the lower-level individual

navigation control for obstacle avoidance and the higher-level coordination control to

ensure the same time of arrival for all robots at their target. The first approach is based

on cascading fuzzy logic controllers, and the second approach considers the use of

a Long Short-Term Memory recurrent neural network module alongside fuzzy logic

controllers. The parameters of all the controllers are optimized using the particle swarm

optimization algorithm. To increase the scalability of the proposed control modules, an

interpolation method is introduced to determine the velocity scaling factors and the

searching directions of the robots. A physics-based simulator, Webots, is used as a

training and testing environment for the two learning models to facilitate the deployment

of codes to hardware, which will be conducted in the next phase of our research.

Keywords: hierarchical fuzzy system, fuzzy logic control, multi-agent control, navigation, arrival-time control

INTRODUCTION

Mobile robot control has been widely used in automated navigation system. The aim of
the automated navigation is to guide the robot or vehicle moving between obstacles to
reach the target from the start point with collision-free performance (Kashyap and Pandey,
2018; Patle et al., 2019). During the navigation control, observations are made by the
sensors and actuators equipped on a real robot or vehicle; the input signal is noisy and
uncertain. Therefore, fuzzy logic system (FLS) (Zhu and Yang, 2007; Juang and Chang, 2011;
Pothal and Parhi, 2015; Lai et al., 2016; Din et al., 2018; Jhang et al., 2019; Mohanta and
Keshari, 2019; Pradhan et al., 2019) has been used in an automated navigation takes in
order to enhance the robot control quality. Fuzzy logic systems (FLSs) provides a robust
solution with anti-noise ability to defeat the uncertainty. However, the performance of fuzzy

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2020.00050
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2020.00050&domain=pdf&date_stamp=2020-08-07
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://creativecommons.org/licenses/by/4.0/
mailto:Yu-Cheng.Chang@student.uts.edu.au
https://doi.org/10.3389/frai.2020.00050
https://www.frontiersin.org/articles/10.3389/frai.2020.00050/full
http://loop.frontiersin.org/people/821584/overview
http://loop.frontiersin.org/people/75218/overview

Chang et al. Scalable PSO-Optimized Hierarchical Controller

logic system depends on the design of membership function
and efficient rules, which often takes a considerable amount
of time to analyze the experimental input and output data.
Machine learning technology, therefore, has been used for
fuzzy system design. Zhu and Yang (2007) and Pothal and
Parhi (2015), respectively, exploit supervised learning to train
neuro-fuzzy model for single and multiple robots to perform
navigation task. The precise input–output training data should
be collected in advance for supervised learning. To reduce
the training effort, evolutionary algorithms have been used to
design FLS. Two popular optimization algorithms are genetic
algorithms (GAs) (Chia-Feng, 2005; Mansoori et al., 2008;
Nantogma et al., 2019; Pradhan et al., 2019) and particle swarm
optimization (PSO) (Juang and Lo, 2008; Juang and Chang,
2011; Ding et al., 2019). These two methods can be easily
applied to the design of FLS since it can be formulated as
an optimization problem by defining a metric for solution
performance evaluation.

Apart from single-agent navigation, the last few years have
seen an increase in research topic (Pothal and Parhi, 2015;
Misra et al., 2018; Babel, 2019; Chandrasekhar Rao and Kabat,
2019; Yao and Qi, 2019) for multirobot coordination across
multiple disciplines. The multirobot coordination entails time
synchronization among individuals to accomplish a given
task. This study considers time-arrival control during the
multiple robots performing navigation task; the robots not
only need to move toward their targets with collision-free
motion in a timely manner. Yao and Qi (2019) propose a
novel dynamical model to adjust the path length and voyage
speed of each autonomous underwater vehicle (AUV) to achieve
the simultaneous arrival at destination between multi-AUVs.
Misra et al. (2018) combine cooperative localization technique
with proportional navigation (PN) guidance law to manipulate
multiple unmanned vehicles to simultaneously reach a moving
target in GPS-denied environment. Babel (Lin and Lee, 1996;
Chia-Feng and Chin-Teng, 1998) develops a multi-agent path
planning algorithm considering shortest paths between all pairs
of air vehicles and targets, target allocation, and concatenating
feasible and suitable short path, which guarantees that all UAVs
arrive at the targets in a timely manner and without the risk of
mutual collision.

This paper developed a fuzzy-based control system that has
two levels: the lower-level individual navigation control for
obstacle avoidance and the higher-level coordination to ensure
the same time of arrival for all robots at their destination
points. An FLS methodology (Lin and Lee, 1996; Chia-Feng
and Chin-Teng, 1998; Juang and Chang, 2011), combining the
Takagi-Sugeno-Kang (TSK) type of a fuzzy inference system
with a derivative-free global optimization technique, is used to
design the fuzzy “IF–THEN” rules and tune the parameters
of membership functions. The controllers are trained in a
cascading manner. In the first phase of training, we employ the
particle swarm optimization (PSO) algorithm (Shi and Eberhart,
1998) to optimize the fuzzy rules that comprise individual
navigation control. The role of this controller is to generate
the motion direction command that steers the robot away from
obstacles but toward the target location based on the robot’s
sensory inputs (each robot is equipped with a laser ranger)

and information about target location. In the second phase
of training, the same technique is used for multiple robots to
learn how to coordinate with each other to reach their targets
at the same time. The coordination controller controls both
moving speeds and moving direction of each robot to achieve the
simultaneous target reaching task. We developed a fuzzy-logic-
based coordinator and a recurrent-based coordinator. The fuzzy-
logic-based coordinator is implemented by a PSO-optimized FLS.
The recurrent-based coordinator includes a PSO-trained long
short-term memory (LSTM) block (Greff et al., 2017). Webots
software (Webots: Robot simulator) has been used as a physics-
based robot simulation environment for the training and testing
of the proposed solutions.

THE PROPOSED MODELS

This section describes the proposed models for multirobot
navigation and arrival-time control. Figure 1 shows the
configuration. There are two hierarchical levels of control
module. The lower-level controllers are the robot navigation
controllers (RNCs). They enable each robot to perform collision-
free navigation. The higher-level controller is the multiple robot
coordinator (MRC), which coordinates the robots’ speed and
direction so that they reach their targets at the same time.

In the proposed model, each RNC controls a robot, and all
RNCs share an identical structure and a set of parameters. The
RNC receives the adjustment angle, i.e., θadj (t), from the output
of MRC, the distances between the robot and nearby obstacles,
i.e., L

⇀

(t) from a 2D Lidar and the direction angle to the target
from the robot, i.e., θgoal(t). Specifically, a 2D Lidar rangefinder
on the front of the robot scans from 0 to 180◦ and outputs
L
⇀

(t) = (L1, . . . , L8), which are the minimum distances to any
obstacle in each of eight sectors (Figure 2). The output of an
RNC is the motion direction of the robot. To achieve collision-
free navigation, a fuzzy logic controller (FLC) was added to the
RNC. The robot avoids obstacles using boundary-following (BF)
behavior. A behavior supervisor (BS) decides what the robot
should do at each control time step.

The MRC is a centralized controller to determine the speed
and direction of each robot for the next control time step with

five inputs:Drank1
goal

(t−1),Drankn
goal

(t−1), vrank1r (t−1), vranknr (t−1),

and 1D(t − 1). For each control loop, the robots are ranked
in ascending distance from the target. Accordingly, robotrank1
is the closest robot to the target, and robotrankn is the robot

farthest away. Drank1
goal

and D
rankn
goal

are, respectively, the distances

from robotrank1 and robotrankn to the target. vrank1r and v
rankn
r

are, respectively, the speeds of robotrank1 and robotrankn . Finally,

1D(t−1) = D
rankn
goal

(t−1)− Drank1
goal

(t−1). The outputs of MRC to

the RNCs are the speed vr(t) and heading angle θadj(t) for robot,
rank1, . . . , rankn. We developed two types of MRC, one with a
fuzzy-logic-based model and the other with a recurrent-based
model. The fuzzy-logic-based MRC is implemented by an FLC,
while the recurrent-based model uses long short-term memory
(LSTM). Details of the proposed models are introduced in the
following sections.

Frontiers in Artificial Intelligence | www.frontiersin.org 2 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 1 | The block diagram of the control configuration for multirobot navigation and arrival-time control.

FIGURE 2 | Scanning area of the 2D Lidar in the simulation setting.

Fuzzy-Logic-Based Multiple Robot
Coordinator
The proposed fuzzy-logic-based MRC is responsible for speed
regulation and heading angle adjustment. The robot speed is
changed at each control time step. If a robot is much closer to the
target than the other robots, heading angle adjustment is made
so that it moves away from the target; otherwise it would need to
stop and wait for the others.

Speed Regulation
For each control loop, n robots are ranked based on their distance
to the target in ascending order. An FLC called FLCSR is used
for robot speed regulation, which directly controls robotrank1 and
robotrankn . The outputs of FLCSR are speed factors α1 and αn for
these two robots, which are used to increase or decrease their
speeds. For the remaining robots (robotrank2 , . . . , robotrank(n−1)

),
the speed scale factors α2, . . . ,α(n−1) are generated by the
following interpolation process:

αi =
i− 1

n− 1
· (αn − α1)+ α1, (1)

where i = 2, . . . , n − 1, and αi ∈ [0.5, 1.5]. The
speeds have upper and lower bounds, which define a safe
operating region.

The robots are not allowed to stop. The speeds for the robots
at control time step t are given by

vir(t) = αiv
i
r(t − 1), i = 1, . . . , n. (2)

FLCSR uses zero-order Takagi–Sugeno–Kang (TSK) fuzzy IF–
THEN rules with the form

RSRi : If x1 is Ai1 And . . . And x5 is Ai5 Then y is
⇀
a i (3)

where x1, . . . , x5 correspond to the input variables; Drank1
goal

(t − 1),

D
rankn
goal

(t− 1), vrank1r (t− 1), vranknr (t− 1), andD(t− 1); Ai1,. . . , Ai5

are fuzzy sets; and
⇀
a i = (ai1, ai2) is a real vector. Here we use a

Gaussian membership function. Thus, Aij is given by

µij (xi) = exp

{

−

(

xi −mij

σij

)2
}

(4)

where mij and σij represent the center and the width
of the fuzzy set Aij, respectively. The firing strength

of rule RSRi is obtained by implementing the following
algebraic product:

8i =

M
∏

j=1

µij (xi), (5)

where M is the dimension of the input variable,
e.g.,M = 5.

Suppose that FLCSR has r rules. An output
⇀
y =

(

y1, y2
)

= (α1,αn) can be obtained using the weighted average
defuzzification method:

⇀
y =

∑r
i=1 8i

⇀
a i

∑r
i=1 8i

. (6)

Frontiers in Artificial Intelligence | www.frontiersin.org 3 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 3 | Target angle and robot orientation angle.

Heading Angle Adjustment
To make the length of the robot paths roughly equal, the MRC
adjusts each robot’s heading angle as part of its arrival-time
control. An adjusted heading angle for robot i at control time step
t is calculated by

θ iadj(t) = θ igoal(t)+ βi · θmax _adj, (7)

where βi is a scale factor that determines the strength of heading
angle adjustment, θ i

goal
is the search angle for robot i, and θmax _adj

is the maximum angle in changing the direction of robot i, e.g.,
θmax _adj = 90. θ i

goal
= θt − θ i

front
is the deviation between the

target angle θt and the robot orientation angle θ i
front

, as shown in

Figure 3. βi is calculated from D
rankn
goal

, Di
goal

and αi, as follows:

βi =

√

√

√

√

√

1

αi

1−
Di
goal

(t − 1)

D
rankn
goal

(t − 1)

 (8)

As βi increases, robot i will be guided away from the target; on
the other hand, as βi decreases, robot i will be guided toward
the target. This adjustment keeps changing the search behavior
of each robot, except for the furthest robotrankn , until either

(Drankn
goal
− Drank1

goal
) < 0.1 m or each robot is within 10 m of the

target. Algorithm 1 is an overview of the fuzzy-logic-based MRC
for the multirobot navigation and arrival-time control.

Recurrent-Based Multiple Robot
Coordinator
In addition to fuzzy-logic-based MRC, we also consider an
LSTM-based model because these perform well for problems
involving sequential data with long time dependencies. Its
memorymechanism allows the use of historical data, which could
be useful for optimizing trajectory-related problems. The vanilla
version of LSTM is used because it is simple to implement,
and its performance is close to that of other variants. Figure 4

FIGURE 4 | Long short-term memory block.

shows the architecture of the LSTM block. In the recurrent-
based MRC configuration, we use two LSTM blocks, with input
(Wz ,Wi,Wf ,Wo), recurrent (Rz ,Ri,Rf ,Ro), peephole (pi, pf , po),
and bias (bz , bi, bi, bo) weights. The input/output interface of the
LSTM controller matches that of the fuzzy-logic-based MRC.

Given input xk = (Drank1
goal

(t − 1), D
rankn
goal

(t − 1) vrank1r (t −

1), vranknr (t−1), 1D(t−1)), then the LSTM block forward pass is

Block input : zk = h
(

Wzx
k
+ Rzy

k−1
+ bz

)

, (9)

Input gate : ik = σ

(

Wix
k
+ Riy

k−1
+ pi ⊙ ck−1 + bi

)

,(10)

Forget gate : f k = σ

(

Wf x
k
+ Rf y

k−1
+ pf ⊙ ck−1 + bi

)

,

(11)

Cell : ck = zk ⊙ ik + ck−1 ⊙ f k, (12)

Output gate : ok = σ

(

Wox
k
+ Roy

k−1
+ po ⊙ ck + bo

)

, (13)

Block output : yk = h
(

ck
)

⊙ ok, (14)

where σ is the logistic sigmoid function used for gate activation,
and h is the hyperbolic tangent function for the block
input/output activation. During the training process, all bias
weights are set to 0.5.

Robot Behavior Controller
The robot behavior controller (RBC) controls a robot to avoid
obstacles by performing left BF behavior or right BF behavior.
It consists of a behavior supervisor (BS) to determine behavior
according to its current position, target position, and real-time
outputs from the 2D Lidar sensor.

Frontiers in Artificial Intelligence | www.frontiersin.org 4 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 5 | The block diagram of the navigation control.

Behavior Supervisor
In the simulation for robot navigation, the mobile robot is
equipped with a 2D Lidar sensor that scans the area in front
of the robot from right (0±) to left (180±). The coverage area
is divided into eight sectors L1,. . . ,L8, as shown in Figure 2.
The behavior supervisor uses a simple logic proposed in Juang
and Chang (2011) to switch between the target-searching (TS)
behavior and left and right BF behavior. If there are no obstacles
detected within the sensing range of the robot’s Lidar, then the
robot starts moving directly toward the target. Figure 5 shows the
logic of the behavior selection based on the robot-target distance
and time-step counter. When the robot switches behavior from
target searching (TS) to BF, the distance d1 between the robot
and the target is recorded, and the step counter cstep is set to zero.
At the location where the robot decides to switch the behavior
from BF to TS, the distance d2 between the robot and the target is
calculated. If d1 > d2, or if the step counter cstep > 100, the robot
keeps the original BF behavior; otherwise, the robot switches
from BF to TS. This time-step constraint prevents the robot from
immediately switching between the TS and BF behaviors.

The control of a robot performing BF in the navigation task is
implemented by two fuzzy controllers—a left BF controller and a
right BF controller. The left BF controller controls when the robot
is closing an obstacle at the left-hand-side region, whereas the
right BF controller is for the right-hand-side region. The number

of rules in the right BF controller is identical to that in the left
BF controller. The rules for the right BF behavior share the same
antecedent part with those for the left BF behavior except that
the left sensor inputs L5, . . . , L8 are changed to the right sensor
inputs L1, . . . , L4. For the rule consequent part, the steering angle
in each rule for the right BF behavior is simply a reverse of that
for the left BF behavior. For example, suppose that the ith rule in
the left BF controller is represented as follows:

R
left
i : If L5 is Bi1 and L6 is Bi2 . . . and L8 is Bi4 Then θBF is θi.

(15)

Then, the corresponding rule for the right BF controller is

R
right
i : If L1 is Bi1 and L2 is Bi2 . . . and L4 is Bi4

Then θBF is−θ i, (16)

where Bi1, . . . ,Bi4 are a fuzzy sets defined by a Gaussian
membership function and given as Equation (4). The output of
the left BF controller is computed as Equation (6) with a singleton
consequent value ai = θi; and similarly, the output of the right
BF controller is with a consequent value ai = −θ i. During a
navigation task, the robot should decide to carry out either the
left or right BF behavior at each control time step.

Frontiers in Artificial Intelligence | www.frontiersin.org 5 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

Algorithm 1 | Pseudocode for the multirobot navigation and
arrival-time control.

Initialize the robots
for all robots i do
Get initial position
Set the position of the target
Set initial moving speed to 0.5 m/s

end for

Main control loop
while stop conditions have not been met do
for all robots i do

Li1, . . . , L
i
8 ← Lidar output

Get distance to the target Di
goal

end for

Rank all robots according to Di
goal

1D← D
rankn
goal
− Drank1

goal

α1, αn ← FLCSR(vr1, vr2,Dg1,Dgn,1D)
for robot i from robotrank2 to robotrank(n−1)

αi ← equation (1)
end for

for all robots i do
vir ← equation (2)
if (robot i is performing TS behavior and

(1D > 0.1m or D
rankn
goal

> 10m))

βi ← equation (8)
θ i
adj
← equation (7)

else

θ i
adj
← θ i

goal

end if

end for

for all robots i do
Steering angle θ ir ← RBC(Li1, . . . , L

i
8,D

i
goal

, θ i
adj

)

end for

end while

TRAINING STRATEGY AND SIMULATION
CONFIGURATION

In this study, both fuzzy-logic-based MRC and recurrent-based
MRC are trained in a cascading manner. First, we train the BF
controller in RBC to perform collision-free navigation toward
the target. In the second phase of training, fuzzy-logic-based
MRC and recurrent-based MRC learn to coordinate a group
of RBC-equipped robots to arrive at a target at the same time.
The particle swarm optimization (PSO) algorithm (Shi and
Eberhart, 1998) is used to optimize the tunable parameters of
all controllers.

Particle Swarm Optimization
PSO is a swarm intelligence optimization approach in which
each solution is represented as a particle [3]. Each particle
has a position, represented by vector si. The swarm in PSO is
initialized with a population of random solutions. A swarm of
particles moves through the solution space, and the velocity of

FIGURE 6 | The environment for training phase 1.

each particle is represented by vector vi. The performance of a
particle is measured by a fitness function f, which is evaluated
using si. Each particle keeps track of its own best position pi,
which is associated with the best fitness that the particle has
achieved. Also, it is guided toward the best position found by
any member of the swarm (the global best position g). For
particle i at iteration t, each element k of the new velocity can be
calculated as

v
(t)
i (k) = wv

(t−1)
i (k)+ c1r1

(

pi(k)− s
(t−1)
i (k)

)

+c2r2

(

g(k)− s
(t−1)
i (k)

)

, (17)

where w is the inertia weight, c1 and c2 are positive
acceleration coefficients, and r1 and r2 are uniformly distributed
random numbers in the interval [0, 1]. All components of
vi have lower and upper bounds defined by the geometry
of the search space. The new position of each particle is
calculated with

s
(t)
i (k) = s

(t−1)
i (k)+ v

(t)
i (k). (18)

With a careful choice of parameters w, c1, and c2, Equations (17)
and (18) ensure that the particle population clusters around the
best solution.

Training Phase 1: BF Behavior
Figure 6 illustrates the environment for training phase 1. The
main goal of this phase is to control the robot in BF behavior at
a constant speed using the PSO-based fuzzy controller. Without
loss of generality, this value is set as 0.4 m/s in this paper.
The BF behavior enables collision-free movement of the robot
during navigation. Since only the left BF controller is trained,
the distances detected by sectors L5, L6, L7, and L8 are used and
fed as the inputs to the left BF controller. The right BF behavior
is directly available by a slight modification of the learned
consequents for the left BF behavior. The left BF controller output
is the steering angle of the robot boundary-following behavior
θBF , where θBF ∈ [−3.14, 3.14] in radians. A positive value of θBF
means a clockwise rotation.

Frontiers in Artificial Intelligence | www.frontiersin.org 6 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 7 | Environment for training phase 2.

The constraints for successful left BF behavior at each time
step during the learning process are

min (L5, L6, L7, L8) > Dmin, and L5 ≤ Dmax (19)

In this simulation, Dmin and Dmax are set to 0.5 and 1.5,
respectively. The first constraint prevents a collision with the
object, and the second constraint prevents the robot frommoving
too far from the object. In the PSO-optimized training phase 1, a
particle represents a whole fuzzy controller for left BF behavior.
The performance of left BF behavior is evaluated as follows.
The robot moves along the side of an object and stops when
one of the constraints in (19) is violated, which indicates that
the controller has failed. If the robot stops, the total number of
control time steps is recorded as Tcontrol. The fitness function
fphase_1 for training phase 1 is

fphase_1 =
1

Tcontrol
. (20)

A low fphase_1 indicates good left BF behavior. The control process
from when movement starts to when it stops is called a trial. If
left BF behavior fails, the robot moves back to its initial position
for the next trial, and a new fuzzy controller is constructed and
evaluated. The learning process is repeated until a successful
fuzzy controller is found or the maximum number of iterations
is met. A left BF behavior is deemed successful if it successfully
controls the robot for a total of Tsuc time steps. In the training
phase 1, Tsuc is set to 4,000 so that the robot moves along the
object boundary for over two cycles. The maximum number of
iterations is set to 200 for a trial.

Training Phase 2: Multi-Robot Navigation
and Arrival-Time Coordination Learning
In training phase 2, there are three robots moving in a complex
environment, as shown in Figure 7. Each robot is controlled
by the BRC whose BF controller was optimized in training

phase 1. During training, both fuzzy-logic-based MRC and
recurrent-based MRC are applied in the navigation of three
robots so that they reach the target simultaneously. The robots
start from different positions and head toward the same target.
The performance of MRC is evaluated using a fitness function
fphase_ 2:

fphase_2 = 10 · f1 + 0.1 · f2. (21)

The first term of (21), f1, is used to optimize the difference in the
arrival times of robotrank1 and robotrankn :

f1 =
∣

∣Trank1 − Trankn

∣

∣ , (22)

where Trank1 is the time that robotrank1 takes to reach the target,
and Trankn is the time for robotrankn .

The second term of (21), f2, is to get the robot to move as fast
as possible:

f2 =

∣

∣Trank1 − Trankn

∣

∣

2
. (23)

SIMULATION RESULTS

Simulation 1 (BF Behavior Learning)
This example shows the simulation results of training phase 1: left
BF learning result using the PSO-optimized FLC. The number of
fuzzy rules is set to 10. The simulation environment is as shown
in Figure 6. The environment is built using Webots 8.5.3 on a
platform equipped with Intel i5-4200H 3.40 GHz CPU, NVIDIA
GT 745M 2GB graphics card, and 8G 1600 MHz RAM. The
learning objective is to find a successful FLC for left BF behavior
satisfying the constraints in (19) for a total of 4000 time steps.
The control loop stops when the robot violates the constraint of
the left-BF FLC. For this optimization problem, the objective is to
design a successful FLC using as minimum number of iterations
as possible. Figure 8 shows the left-BF behavior-learning results
for all 50 runs. The PSO fails to find a successful left-BF FLC for
one of the 50 runs. The average number of iterations of the PSO
to find a successful FLC is 13.987.

Simulation 2 (Multirobot Navigation and
Arrival-Time Coordination Learning)
The objective of this simulation is to optimize MRC for three
robots to navigate and simultaneously reach the target in the
clutter environment as shown in Figure 7. We set the centre
point of the map as the origin of coordinate (x, z) = (0, 0), and
the target is located at (x, z) = (−11,−23). The initial distance
between robot1 is 30.4m, robot2 is 39.5m, and robot3 is 43.8m.
The performance of both fuzzy-logic-based MRC and recurrent-
based MRC are evaluated by Equation (21). A smaller solution to
Equation (21) means that the MRC can control the three robots
moving toward to the target as fast as possible and coordinate
their arrival time as precise as well. For each evaluation process,
the MRC controls all robots until they all reach the target. Once
all robots have reached the target, the positions of the robots will
be set to their initial positions, which are fixed during the whole
training process. The number of learning iterations is set to 50.

Frontiers in Artificial Intelligence | www.frontiersin.org 7 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 8 | Robot left-BF behavior-learning results for all 50 runs.

FIGURE 9 | Average best-so-far fitness value at each iteration for the MRCs during the training phase 2.

The PSO optimization process for training phase 2 conducts 50
runs for statistical evaluation. Figure 9 demonstrates the average
best-so-far fitness of theMRCs.Table 1 presents the performance
of fuzzy-logic-based MRC and recurrent-based MRC in training
phase 2. The average best-so-far fitness of fuzzy-logic-basedMRC
converges at 57.2 (average value of f1 is 532.0 time steps, average
value of f2 is 0.41 time steps), while the recurrent-based is 54.46
(average value of f1 is 524.62 time steps, average value of f2 is 0.20
time steps).

Simulation 3 (Multirobot Navigation and
Arrival-Time Coordination)
In this simulation, the optimized MRCs and BF controller are
applied to perform navigation and arrival-time task.We deployed
three robots and six robots in a clutter environment with
variant starting position to testify the scalability of the optimized
MRCs. Both fuzzy-logic-based and recurrent-based MRCs are
used in this simulation. To demonstrate the ability of time-
arrival coordination, examples of robots controlled withoutMRC

Frontiers in Artificial Intelligence | www.frontiersin.org 8 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

are included for comparison with those examples applied
with MRCs.

TABLE 1 | Performance of fuzzy-logic-based and recurrent-based MRC in the

training phase 2.

fphase_2 f1 f2

Fuzzy-logic-based MRC Average 57.73 532.0 0.41

STD 2.97 29.85 0.068

Recurrent-based MRC Average 54.46 524.62 0.20

STD 3.31 32.42 0.053

FIGURE 10 | An environment setting for three-robot navigation.

Three-Robot Navigation and Arrival Time Control
To validate the performance of the proposed control systems, we
deployed three robots in a complex environment (see Figure 10),
and the target building is set at (x, z) = (−19.54, 8.78). The
initial distance between the robot1 is 19.34m, robot2 is 32.94m,
and robot3 is 39.05m. Figure 11 illustrates the trajectories of
the three robots, respectively, controlled by fuzzy-logic-based
MRC, recurrent-based MRC, and in the absence of MRC during
the navigation task. Figure 12 shows the remaining distance
between the target and the three robots. The performance of
time arrival coordination with three-robot setting is shown in
Table 2. The time difference is evaluated by measuring the
difference of arrival time of the fastest robot and the slowest
robot in the simulation. The best achieved time difference
controlled by fuzzy-logic-based MRC is five time steps, while
it takes 785 time steps for the slowest robot to complete
the navigation task. The recurrent-based configuration showed
a result with an eight-time-step difference between the first
and last arriving robots, while it takes 778 time steps for the
slowest robot to complete the navigation task. By comparing
Figures 12A,B, the robots controlled by recurrent-based MRC
have faster convergence speed, but fuzzy-logic-based has a better
coordinating ability in this simulation. We further compare
with the case without MRC control; see Figures 11C, 12C.
The three robots directly move toward to the target without
changing their searching direction and the moving speed so
that robot1 arrives at the target much earlier than the other
two robots.

Six-Robot Navigation and Arrival Time Control
The reason for us to use the simple interpolation method
to decide the velocity scaling factors and searching direction
of robots is to increase the scalability of the proposed
methods such that they can deal with a different and changing
number of robots without retraining the neural networks. To
validate the scalability of the proposed methods, we deployed
six robots in this simulation, as shown in Figure 13, and

FIGURE 11 | The moving speeds of four-robot navigation in a complex environment setting. (A) Robots are controlled by the fuzzy-logic-based MRC. (B) Robots are

controlled by the recurrent-based MRC. (C) Robots are controlled by only their own RBC.

Frontiers in Artificial Intelligence | www.frontiersin.org 9 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 12 | The remaining distance between the target and the three robots during the three-robot navigation and arrival time control simulation. (A) Robots are

controlled by the fuzzy-logic-based MRC. (B) Robots are controlled by the recurrent-based MRC. (C) Robots are controlled by only their own RBC.

TABLE 2 | The performance of time arrival coordination with three-robot setting.

Unit: Time step Time difference Time to complete task

Fuzzy-logic-based MRC 5 785

Recurrent-based MRC 8 778

No MRC 504 901

the target building is set at (x, z) = (−17.71,−20.34).
The initial distance between robot1 is 50.11m, robot2 is
15.26m, robot3 is 49.44m, robot4 is 41.69m, robot5 is
24.08m, and robot6 is 34.27m. Each proposed model uses
identical parameters, which are used in the simulation of
section IV-C.

The trajectories of the six-robot setting controlled by
each proposed model are illustrated in Figure 14. Figure 15
shows the remaining distance between the target and the
six robots. Table 3 presents performance of the arrival-time
coordination in the six-robot setting. Fuzzy-logic-based MRC
achieves 68-time-step time difference between the fastest
robot and the slowest robot, while it takes 965 time steps
for the slowest robot to complete the navigation task. The
recurrent-based MRC has a better result with a 34-time-step
difference between the first and last arriving robots, while
it takes 907 time steps for the slowest robot to complete
the navigation task. The robots controlled by recurrent-
based MRC have faster convergence speed, as well as smaller
time difference between the fastest robot and the slowest
robot. In this simulation, recurrent-based MRC shows its
better performance in arrival-time control than fuzzy-logic-
based MRC does. The control results also demonstrated that
the proposed models have the scalability and are both able
to navigate different number of robots without retraining
the model.

CONCLUSION AND FUTURE WORK

We developed a fuzzy-logic-based coordinator and a recurrent-
based coordinator for safely navigating multiple robots
in cluttered environments, where the controller regulates
their speeds and adjusts their searching direction to enable

FIGURE 13 | An environment setting for six-robot navigation.

simultaneous arrival time on targets. The environment for
the test was designed in an imbalanced setting, in which each
robot starts at the positions with totally different distances
to the target. The simulation results demonstrate that the
two proposed models successfully control a different number
of robots to safely navigate and reach the target on time. In
the future, we intend to develop a systematic method for
optimizing the hyper-parameters of this cascaded model,
including the number of rules in FLS. We are currently designing
a technique for automatically tidying up the membership
functions for improved interpretability. We will also consider
scenarios where the robots lose communication when they
are separated by building structures, losing a direct line of
sight. We believe that intermittent sharing of controller policy
will allow the agent to predict the future motions of the other
agents when the communication is blocked and to make correct
motion decisions.

Frontiers in Artificial Intelligence | www.frontiersin.org 10 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

FIGURE 14 | The remaining distance between the target and the three robots during the three-robot navigation and arrival time control simulation. (A) Robots are

controlled by the fuzzy-logic-based MRC. (B) Robots are controlled by the recurrent-based MRC. (C) Robots are controlled by only their own RBC.

FIGURE 15 | The moving speeds of six-robot navigation in complex environment setting. (A) Robots are controlled by the speed coordination controller. (B) Robots

are controlled by the improved controller. (C) Robots are controlled by only their own RBC.

TABLE 3 | The performance of time arrival coordination with six-robot setting.

Unit: Time step Time difference Time to complete task

Fuzzy-logic-based MRC 58 965

Recurrent-based MRC 34 907

No MRC 839 901

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR’S NOTE

We developed a fuzzy-logic-based coordinator and recurrent-
based coordinator for safely navigating multiple robots in
clutter environments, where the controller regulates their speeds
and adjusts their searching direction to enable simultaneous
arrival time on targets. The environment for the test was
designed in an imbalanced setting, in which each robot
starts at the positions with totally different distances between

it and the targets. The simulation results demonstrate that
the two proposed models successfully control a different
number of robots to safely navigate and reach the target
on time.

AUTHOR CONTRIBUTIONS

Y-CC developed the methodology, performed the experiments,
and wrote the manuscript. AD proposed the experiments
and partially contributed to the manuscript. The project was
administered by C-TL and JK.

FUNDING

This research has been supported by the generous funding of
Defence Science & Technology Group, Australia.

ACKNOWLEDGMENTS

We gratefully acknowledge our colleague Dr. Shi Ye for his
assistance in simulations and for his contribution to an earlier
version of this manuscript.

Frontiers in Artificial Intelligence | www.frontiersin.org 11 August 2020 | Volume 3 | Article 50

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Chang et al. Scalable PSO-Optimized Hierarchical Controller

REFERENCES

Babel, L. (2019). Coordinated target assignment and UAV path planning

with timing constraints. J. Intelligent Robot. Syst. 94, 857–869.

doi: 10.1007/s10846-018-0910-9

Chandrasekhar Rao, D., and Kabat, M. R. (2019). “A study on cooperation

and navigation planning for multi-robot using intelligent water

drops algorithm,” in Emerging Research in Computing, Information,

Communication and Applications, eds N. R. Shetty, L. M. Patnaik,

H. C. Nagaraj, P. N. Hamsavath, and N. Nalini (Singapore: Springer).

577–590.

Chia-Feng, J. (2005). Combination of online clustering and Q-value based GA

for reinforcement fuzzy system design. IEEE Trans. Fuzzy Syst. 13, 289–302.

doi: 10.1109/TFUZZ.2004.841726

Chia-Feng, J., and Chin-Teng, L. (1998). An online self-constructing neural fuzzy

inference network and its applications. IEEE Trans. Fuzzy Syst. 6, 12–32.

doi: 10.1109/91.660805

Din, A., Jabeen, M., Zia, K., Khalid, A., and Saini, D. K. (2018). Behavior-based

swarm robotic search and rescue using fuzzy controller. Comput. Elect. Eng. 70,

53–65. doi: 10.1016/j.compeleceng.2018.06.003

Ding, W., Lin, C., and Cao, Z. (2019). Deep neuro-cognitive co-

evolution for fuzzy attribute reduction by quantum leaping PSO with

nearest-neighbor memeplexes. IEEE Trans. Cybern. 49, 2744–2757.

doi: 10.1109/TCYB.2018.2834390

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J.

(2017). LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst.

28, 2222–2232. doi: 10.1109/TNNLS.2016.2582924

Jhang, J.-Y., Lin, C.-J., and Young, K.-Y. (2019). Cooperative carrying control for

multi-evolutionary mobile robots in unknown environments. Electronics 8:298.

doi: 10.3390/electronics8030298

Juang, C., and Chang, Y. (2011). Evolutionary-group-based particle-swarm-

optimized fuzzy controller with application to mobile-robot navigation

in unknown environments. IEEE Trans. Fuzzy Syst. 19, 379–392.

doi: 10.1109/TFUZZ.2011.2104364

Juang, C.-F., and Lo, C. (2008). Zero-order TSK-type fuzzy system learning using

a two-phase swarm intelligence algorithm. Fuzzy Sets Syst. 159, 2910–2926.

doi: 10.1016/j.fss.2008.02.003

Kashyap, A. K., and Pandey, A. (2018). Different nature-inspired techniques

applied for motion planning of wheeled robot: a critical review. Int. J. Adv.

Robot. Autom. 3, 1–10. doi: 10.15226/2473-3032/3/2/00136

Lai, M., Zeng, W., and Juang, C. (2016). “Navigation for two fuzzy

controlled cooperative object-carrying robots in concave maps with

the consideration of dead-cycle problem,” in 2016 IEEE International

Conference on Fuzzy Systems (FUZZ-IEEE) (Vancouver, BC: IEEE), 1905–1909.

doi: 10.1109/FUZZ-IEEE.2016.7737923

Lin, C.-T., and Lee, C. S. G. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy

Synergism to Intelligent Systems (Har/Dskt edition). Upper Saddle River, NJ:

Prentice Hall.

Mansoori, E. G., Zolghadri, M. J., and Katebi, S. D. (2008). SGERD: a steady-state

genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans.

Fuzzy Syst. 16, 1061–1071. doi: 10.1109/TFUZZ.2008.915790

Misra, S., Chakraborty, A., Sharma, R., and Brink, K. (2018). “Cooperative

simultaneous arrival of unmanned vehicles onto a moving target in gps-

denied environment,” in 2018 IEEE Conference on Decision and Control (CDC),

5409–5414. doi: 10.1109/CDC.2018.8619652

Mohanta, J. C., and Keshari, A. (2019). A knowledge based fuzzy-probabilistic

roadmap method for mobile robot navigation. Appl. Soft Comput. 79, 391–409.

doi: 10.1016/j.asoc.2019.03.055

Nantogma, S., Ran, W., Yang, X., and Xiaoqin, H. (2019). “Behavior-based

genetic fuzzy control system for multiple usvs cooperative target protection,”

in 2019 3rd International Symposium on Autonomous Systems (ISAS), 181–186.

doi: 10.1109/ISASS.2019.8757732

Patle, B. K., Babu, L. G., Pandey, A., Parhi, D. R. K., and Jagadeesh, A. (2019).

A review: on path planning strategies for navigation of mobile robot. Defence

Technol. 15, 582–606. doi: 10.1016/j.dt.2019.04.011

Pothal, J. K., and Parhi, D. R. (2015). Navigation of multiple mobile robots in

a highly clutter terrains using adaptive neuro-fuzzy inference system. Robot.

Auton. Syst. 72, 48–58. doi: 10.1016/j.robot.2015.04.007

Pradhan, B., Roy, D. S., and Hui, N. B. (2019). “Multi-agent navigation and

coordination using GA-fuzzy approach,” in Soft Computing for Problem Solving,

eds J. C. Bansal, K. N. Das, A. Nagar, K. Deep, & A. K. Ojha (Singapore:

Springer). 793–805.

Shi, Y., and Eberhart, R. C. (1998). “A modified particle swarm optimizer”.

In Presented at the 1998 IEEE International Conference on Evolutionary

Computation Proceedings. IEEE World Congress on Computational

Intelligence (Cat. No.98TH8360), Anchorage, AK.

Webots: Robot simulator. Available online at: https://cyberbotics.com/ (accessed

September 30, 2019).

Yao, P., and Qi, S. (2019). Obstacle-avoiding path planning for multiple

autonomous underwater vehicles with simultaneous arrival. Sci. China Technol.

Sci. 62, 121–132. doi: 10.1007/s11431-017-9198-6

Zhu, A., and Yang, S. X. (2007). Neurofuzzy-based approach to mobile robot

navigation in unknown environments. IEEE Trans. Syst. Man Cybern. Part C

37, 610–621. doi: 10.1109/TSMCC.2007.897499

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Chang, Dostovalova, Lin and Kim. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 12 August 2020 | Volume 3 | Article 50

https://doi.org/10.1007/s10846-018-0910-9
https://doi.org/10.1109/TFUZZ.2004.841726
https://doi.org/10.1109/91.660805
https://doi.org/10.1016/j.compeleceng.2018.06.003
https://doi.org/10.1109/TCYB.2018.2834390
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.3390/electronics8030298
https://doi.org/10.1109/TFUZZ.2011.2104364
https://doi.org/10.1016/j.fss.2008.02.003
https://doi.org/10.15226/2473-3032/3/2/00136
https://doi.org/10.1109/FUZZ-IEEE.2016.7737923
https://doi.org/10.1109/TFUZZ.2008.915790
https://doi.org/10.1109/CDC.2018.8619652
https://doi.org/10.1016/j.asoc.2019.03.055
https://doi.org/10.1109/ISASS.2019.8757732
https://doi.org/10.1016/j.dt.2019.04.011
https://doi.org/10.1016/j.robot.2015.04.007
https://cyberbotics.com/
https://doi.org/10.1007/s11431-017-9198-6
https://doi.org/10.1109/TSMCC.2007.897499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Intelligent Multirobot Navigation and Arrival-Time Control Using a Scalable PSO-Optimized Hierarchical Controller
	Introduction
	The Proposed Models
	Fuzzy-Logic-Based Multiple Robot Coordinator
	Speed Regulation
	Heading Angle Adjustment

	Recurrent-Based Multiple Robot Coordinator
	Robot Behavior Controller
	Behavior Supervisor

	Training Strategy and Simulation Configuration
	Particle Swarm Optimization
	Training Phase 1: BF Behavior
	Training Phase 2: Multi-Robot Navigation and Arrival-Time Coordination Learning

	Simulation Results
	Simulation 1 (BF Behavior Learning)
	Simulation 2 (Multirobot Navigation and Arrival-Time Coordination Learning)
	Simulation 3 (Multirobot Navigation and Arrival-Time Coordination)
	Three-Robot Navigation and Arrival Time Control
	Six-Robot Navigation and Arrival Time Control

	Conclusion and Future Work
	Data Availability Statement
	Author's Note
	Author Contributions
	Funding
	Acknowledgments
	References

