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In-utero progress of fetal development is normally assessed through manual

measurements taken from ultrasound images, requiring relatively expensive equipment

and well-trained personnel. Such monitoring is therefore unavailable in low- and

middle-income countries (LMICs), where most of the perinatal mortality and morbidity

exists. The work presented here attempts to identify a proxy for IUGR, which is a

significant contributor to perinatal death in LMICs, by determining gestational age (GA)

from data derived from simple-to-use, low-cost one-dimensional Doppler ultrasound

(1D-DUS) and blood pressure devices. A total of 114 paired 1D-DUS recordings and

maternal blood pressure recordings were selected, based on previously described signal

quality measures. The average length of 1D-DUS recording was 10.43 ± 1.41 min. The

min/median/max systolic and diastolic maternal blood pressures were 79/102/121 and

50.5/63.5/78.5 mmHg, respectively. GA was estimated using features derived from the

1D-DUS and maternal blood pressure using a support vector regression (SVR) approach

and GA based on the last menstrual period as a reference target. A total of 50 trials of

5-fold cross-validation were performed for feature selection. The final SVR model was

retrained on the training data and then tested on a held-out set comprising 28 normal

weight and 25 low birth weight (LBW) newborns. The mean absolute GA error with

respect to the last menstrual period was found to be 0.72 and 1.01 months for the

normal and LBW newborns, respectively. The mean error in the GA estimate was shown

to be negatively correlated with the birth weight. Thus, if the estimated GA is lower than

the (remembered) GA calculated from last menstruation, then this could be interpreted

as a potential sign of IUGR associated with LBW, and referral and intervention may be

necessary. The assessment system may, therefore, have an immediate impact if coupled

with suitable intervention, such as nutritional supplementation. However, a prospective

clinical trial is required to show the efficacy of such a metric in the detection of IUGR and

the impact of the intervention.
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1. INTRODUCTION

Estimation of fetal gestational age (GA) provides important
information throughout pregnancy, such as delivery scheduling,
growth disorder detection, and preterm newborns management
(Alexander et al., 1995). Thus, GA estimation can assist in
detecting issues leading to perinatal mortality and morbidity
(Rijken et al., 2014; Karl et al., 2015). This detection is particularly
needed in low-and middle-income countries (LMICs), which
account for ∼98% of all reported perinatal deaths worldwide,
largely due to gestational developmental issues (Zupan, 2005).

In high-income countries, clinical teams generally use
ultrasound images to estimate GA, as well as any structural
abnormalities (Malhotra et al., 2014). These GA estimations are
based on a variety of fetal measurements, such as biparietal
diameter, crown-rump length, head circumference, abdominal
circumference, and femur length (Malhotra et al., 2014).
However, in LMICs, the access to ultrasound imaging is limited,
and almost unavailable in rural areas, due to the high cost of
the medical equipment, the expenses for maintenance, and the
requirement of skilled medical staff (World Health Organization,
2014). Hence, low-cost alternative methods for dating gestation
are used in LMICs.

A common low-cost method used for GA estimation is the
last menstrual period (LMP), in which a 28-days menstrual cycle
is assumed. Although previous studies have criticized LMP due
to the inconsistency in the menstrual cycle length (Dietz et al.,
2007), and the difficulty to recall the day of the last menstrual
period (Andersen et al., 1981), the LMP method has shown to
be a somewhat useful method for LMICs, particularly in rural
areas lacking medical equipment. In fact, Neufeld et al. (2006)
compared 171 GA estimations based on LMP collected in rural
Guatemala with GA estimations given by biparietal diameter,
reporting that GA estimations by the LMP were within±14 days
of the biparietal diameter estimations for 94% of the cases.

GA estimations based on LMP can assist in the assessment of
intrauterine growth restriction (IUGR), which has a prevalence
varying between 9 and 11% in LMICs (de Onis et al., 1998; Lee
et al., 2013). Specifically, IUGR is assessed by comparing the
estimate of GA with the symphysis-fundal height measurement
(World Health Organization, 2016). For fetuses growing

Abbreviations: AAC, acceleration average capacity; ADASYN, adaptive synthetic

sampling; ANS, autonomic nervous system; ApEn, approximate entropy; AUROC,

area under the receiver operating characteristic; BPM, beat perminute; CO, cardiac

output; DAC, deceleration average capacity; DBP, diastolic blood pressure; DUS,

Doppler ultrasound signal; FHR, fetal heart rate; fHRV, fetal heart rate variability;

GA, gestational age; GBT, gradient boosting tree; GMI, generalized mutual

information; HF, high frequency (0.5–1 Hz); II, interval index; IUGR, intrauterine

growth restriction; LBW, low birth weight; LF, low frequency (0.03–0.15 Hz);

LMICs, low- and middle-income countries; LMP, last menstrual period; LTV, long

term variability; MAE, mean absolute error; MAP, mean arterial pressure; MF,

medium frequency (0.15–0.5 Hz); mIS, mean of the interbeat sequence; MHR,

maternal heart rate; mRMR, minimum redundancy and maximum relevance

algorithm; MSI, modified shock index; NBW, normal birth weight; PNN5,

percentage of consecutive beats that differ by more than 5 ms; PP, pulse pressure;

rmssdIs, root mean square of successive differences; RPP, rate pressure product;

SBP, systolic blood pressure; SI, shock index; stdIS, standard deviation of the

interbeat sequence; STV, short term variability; SV, stroke volume; SVR, support

vector regression; varIS, variance of the interbeat sequence.

normally, from 24 weeks of gestation, the symphysis-fundal
height measurement (Lsfh) in centimeters should correspond to
the number of weeks of gestation ±2 cm. When Lsfh < N −

2, where N is the number of weeks since the last menstrual
period, the fetus is suspected to be IUGR (Peter et al., 2015).
However, the symphysis-fundal height method lacks significant
evidence to recommend its widely use in LMICs (World Health
Organization, 2016). Moreover, previous studies have noted that
the SHF has exhibited a large error of±6 weeks for estimating GA
(Griffiths et al., 2008). New approaches are, therefore, still needed
to provide reproducible and low-cost assessment for detecting
abnormal growth in settings in which ultrasound images, taken
by trained operators, are not available.

In this work, we propose an alternative approach for GA
estimation to provide a proxy for assessing fetal development
and identifying possible cases of IUGR for a Guatemalan rural
population, in which ultrasound imaging is not affordable and
the symphysis-fundal height is not accurate. Our approach
estimates GA using fetal heart rate variability (fHRV) indexes and
maternal hemodynamics derived from one-dimensional Doppler
ultrasound (1D-DUS) and maternal blood pressure, respectively.
Data were acquired during routine perinatal check-up visits by
traditional birth attendants using a low-cost Doppler transducer
and a self-inflating blood pressure device (Stroux et al., 2016;
Martinez et al., 2017, 2018). These features were used to build
a machine learning algorithm to estimate GA. We hypothesized
that if the estimated GA is lower than the GA calculated from
last menstruation, then this could be interpreted as a potential
sign of IUGR based on low birth weight (LBW), and referral and
intervention may be necessary.

2. BACKGROUND

Fetal heart rate is influenced by the Autonomic Nervous System
(ANS) (Schneider et al., 2009; Wallwitz et al., 2012), which in
turn modifies FHR dynamics over the course of pregnancy. In
particular, FHR variability evolves over the course of pregnancy
and may reflect the maturity of the ANS, and thus may indicate
the fetal GA. Wakai (2004) reported that fHRV, as observed from
traces taken from 61 pregnant women without complications,
increases during gestation. In particular, they noted that short
term variability increased during the last trimester, whereas
long term variability exhibited the largest increases in the early
gestational period. Figure 1 shows an example of how FHR
changes across gestation, as reported in Wakai (2004).

Based on FHR, previous studies have shown a correlation
between GA and markers derived from fHRV. Linear metrics,
such as the mean of R-R interval, the standard deviation and root
mean square of successive differences positively correlated with
GA for both genders (Lange et al., 2005). Non-linear metrics,
such as approximate entropy (ApEn), Lyapunov exponent, tone-
entropy and generalized mutual information, have also been
linked to fetal maturation (Van Leeuwen et al., 1999; Hoyer et al.,
2012; Khandoker et al., 2015). Additionally, Van Leeuwen et al.
(2003) and Signorini et al. (2003) reported that power in the
0.003–1.0 Hz frequency band vary during pregnancy.
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FIGURE 1 | Variation of the FHR from 22 to 38 weeks during pregnancy. Note that the vertical axis has an arbitrary offset. Average FHR does not drop by such a large

amount each week during pregnancy, but rather it drops on average by about 15 BPM from week 25 to 40 (Kapaya et al., 2018). Adapted from Wakai (2004).

Initial works on GA estimation aimed to find a relation
between GA and FHR-based metrics using univariate regression
(Hoyer et al., 2012). More recently, some works have aimed to
improve the characterizing of FHR by incorporating multivariate
and more complex methods. In particular, Tetschke et al.
(2016) extracted features from 359 high resolution fetal
magnetocardiographic recordings, lasting at least 20 min. The
researchers implemented an algorithm to extract non-active
portions of the recording and calculated both linear and
non-linear metrics of fHRV from the these quiet periods.
Results showed that entropy and skewness were more highly
correlated with GA than those obtained by traditional linear
HRV metrics. However, this approach requires high temporal
and spatial resolution data acquired from costly and non-portable
equipment, making its use in LMICs impractical.

In earlier work, Marzbanrad et al. (2016) estimated GA for
57 fetuses using a step-wise regression based on cardiac wall
intervals derived from one-dimension Doppler ultrasound signal
(1D-DUS) and fECG signals recorded in a Japanese hospital.
The estimated GAs were compared to the GA derived from
crown-rump length, achieving a mean square error of 3.8 and 5.1
weeks for cardiac intervals and fHRV parameters, respectively. In
further work, Marzbanrad et al. (2017) improved the estimation
accuracy by incorporating 1D-DUS and fECG quality assessment
algorithms to filter poor quality signals. As a result, the step-
wise regression achieved a mean absolute error (MAE) of 4.7
weeks from fHRV parameters, and 2.7 weeks when including the
cardiac intervals metrics. Although this latter method achieved
comparable results to Doppler imaging based estimations, it
required two sources, 1D-DUS and fECG signals, which increases
costs and complicates implementation, particularly in LMICs
(Stroux et al., 2016).

In addition to FHR indexes, maternal blood pressure is
also a relevant metric for GA estimation. Previous works have
reported that maternal systolic and diastolic blood pressure

increases throughout pregnancy (Steer et al., 2004; Salas et al.,
2006; Kac et al., 2015; Rebelo et al., 2015). However, despite
the correlation between GA and maternal blood pressure, no
research has included maternal blood pressure in regression
models to estimate GA. We note that extreme blood pressures
may be indicative of pre-eclampsia, or other gestational issues. It
is therefore important to treat these separately.

3. METHODS

3.1. Databases
3.1.1. Collection of the Data
Data used in this work were collected as a part of a randomized
control trial conducted in rural highland Guatemala in the
vicinity of Tecpan, Chimaltenango. This program was approved
by the Institutional Review Boards of Emory University, the
Wuqu’ Kawoq | Maya Health Alliance, and Agnes Scott College
(Ref: IRB00076231—“Mobile Health Intervention to Improve
Perinatal Continuum of Care in Guatemala”) and registered
on ClinicalTrials.gov (identifier NCT02348840). In the trial,
traditional birth attendants were trained to use a mobile mHealth
system to record perinatal information during approximately
monthly visits during the second and third trimesters. More
details on the design and implementation of the mobile mHealth
system, and the training of the traditional birth attendants can
be found in Stroux et al. (2016) and Martinez et al. (2017, 2018).
At this time, the dataset is not publicly available; however, a de-
identified dataset can be available upon request and approbation
of the project ethical committee.

The perinatal care program included both prenatal and
post-partum visits. In the prenatal visits, traditional birth
attendants recorded GA in months by counting the number
of whole months since the last menstrual period. The GA was
recorded in months instead of weeks to reduce measurement
errors since usually patients attended in this project forgot
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the specific date of their last menstrual period, and very few
received an early obstetrical ultrasound for more accurate dating
(Martinez et al., 2017). During the visit, the traditional birth
attendants also recorded 1D-DUS signals and blood pressure
from the mother in a supine position using the mobile mHealth
system (Stroux et al., 2016; Martinez et al., 2017, 2018). The
1D-DUS signals were recorded using a Doppler transducer
(AngelSounds Fetal Doppler JPD-100s, JumperMedical Co., Ltd.,
Shenzhen, China) with an ultrasound transmission frequency
of 3.3 MHz and a digitization sampling frequency of 44.1
kHz. The maternal blood pressure was taken from both
arms using a self-inflating blood pressure device calibrated
for pregnancy.

In the post-partum visits, traditional birth attendants recorded
the newborn’s birth date, sex, current weight, length, and head
size. These post-partum visits could occur days or months after
birth since sometimes it was difficult to follow up on the patients.
The birth weight was then estimated using a Reed2 second-order
model (Berkey and Reed, 1987) fitted on 917 observed post-
natal weights using an approach we have previously described in
Valderrama et al. (2020). A weight threshold was used to classify
the estimated birth weights as low or normal. This threshold
was defined by first finding the percentile corresponding to
≤2.5 kg in a Guatemalan national maternal survey for the
region of relevance in our study (MSPAS/Guatemala et al.,
2017). We found that the lowest 14.3% of male newborns
and 16.33% of female newborns satisfied this weight criterion.
These percentiles were then located in our estimated birth
weight distribution to determine the corresponding LBW
threshold. This corresponded to 2.64 kg for males and 2.57 kg
for females.

3.1.2. Assumption of the Study
In this work, a newborn was considered as a possible case of
IUGR if their estimated birth weight was below the threshold
discussed above. This assumption is based on the fact that LBW
could be a consequence of either preterm birth (<37 weeks) or
small-for-gestational-age. However, in LMICs, around 60% of
LBW newborns are small-for-gestational-age (Lee et al., 2013),
and the main reason for small-for-gestational-age in LMICs is
IUGR (de Onis et al., 1998; Lee et al., 2013).

3.1.3. Data Inclusion Criteria
Prenatal visits were included if they contained both blood
pressure pictures and 1D-DUS recordings with some conditions.
For the blood pressure, the numbers had to be readable on the
photograph of the blood pressure device. Also, the difference
between the right and left arm measurements had to be lower
than 15 mmHg, thus discarding any spurious measurements.
Finally, possible preeclampsia patients were discarded when
systolic or diastolic blood pressure was higher than a threshold.
This threshold was defined at 130 and 80 mmHg for SBP and
DBP, as is suggested for measurements taken in spine position
(Netea et al., 2003; Kluttig et al., 2010; Cicolini et al., 2011).

The conditions for including the 1D-DUS recording were
based on length and quality. The minimum length was fixed
at 10 min since earlier work suggests that this is the required

length to extract fHRV indexes, such as baseline, accelerations,
and decelerations (Dobbe et al., 2001).

In addition to the length, the quality of a 1D-DUS recording
was also considered as an inclusion criterion. The 1D-DUS
quality was assessed using a window of 3.75 s and a sliding
window of 250 ms. For each 3.75-s window, 16 features were
extracted, including Wavelet percentage energy in the range
250–2,000 Hz, Mel-frequency cepstral coefficients, and power
spectrum ratios on electrical interference frequency ranges. The
features were fed into a classifier composed of a logistic regression
and a multiclass support vector machine to classify the 3.75-s
window into good quality, interference, silence, talking in the
background, or low signal to noise ratio. More details of the
quality assessment method can be found in Valderrama et al.
(2017, 2018a).

Based on the length and quality criteria, a 1D-DUS recording
was only included in this present work if it lasted more than
10 min, and at least 50% of its 3.75-s windows were labeled as
good quality.

3.1.4. Final Data Set
After applying the inclusion criteria, the final dataset comprised
167 visits from 153 non-preeclampsia women who were pregnant
with singleton fetuses. From these patients, 142 gave birth
to normal weight singletons, whereas 24 gave birth to LBW
newborns, based on our thresholds defined for the study
population (Valderrama et al., 2020) (see subsection 3.1.1).

Table 1 shows demographics of the patients. The male/female
ratio was higher in the LBW group than in the normal birth
weight group. On the other hand, the maternal age and the
number of previous pregnancies (gravidity) were higher in the
normal weight group.

Table 2 shows the distribution of the GA based on the last
menstrual period (LMP) method. Visits ranged from the sixth
to the ninth month of pregnancy, focusing mainly on the
third trimester.

3.2. Approach Overview
Figure 2 shows an overview of the approach used to detect
possible cases of IUGR. First, 37 features were extracted from the
raw 1D-DUS signals and maternal blood pressure readings. The
extracted dataset was split into three subsets: normal birth weight
(NBW) training set, NBW test set, and LBW test set. The training
set was used to select the best regression model and features. The

TABLE 1 | Average demographics for the data used in this study.

Variable Normal birth weight Low birth weight

Patients (count) 129 24

Newborn gender (male/female) 56/73 17/7

Birth weight (kg) 3.1 (SD = 0.3; N = 129) 2.3 (SD = 0.4; N = 24)

Maternal age (years) 27.0 (SD = 6.3; N = 123) 24.5 (SD = 6.7; N = 22)

Gravidity (count) 3.4 (SD = 2.5; N = 96) 2.3 (SD = 3.1; N = 16)

For each metric, the standard deviation and the number of patients available for that

variable are shown in parenthesis.

Frontiers in Artificial Intelligence | www.frontiersin.org 4 August 2020 | Volume 3 | Article 56

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Valderrama et al. IUGR Detection From Doppler Using ML

selected regression model and features were used to estimate GA
from the NBW and LBW held-out test sets. The GA estimate
errors of the NBW and LBW were compared to assess if birth
weight affected the GA estimation. The following subsections
provide details of each component of the approach.

3.3. Deriving the FHR Signal
3.3.1. Extracting Fetal Heart Rate From 1D-DUS
Each 1D-DUS recording was analyzed using a window of 3.75
s and a sliding window of 0.25 s. The window length was set
at 3.75 s since it is the usual length for computerized analysis
of fetal non-stress tests based on the Dawes/Redman criteria
(Dawes et al., 1981; Pardey et al., 2002). The selection of the
sliding window was based on the desired sampling frequency,
namely 4 Hz. This sampling frequency has been shown to be
sufficient for digital cardiotocography (Romagnoli et al., 2019),

TABLE 2 | Number of visits per gestational age (GA) taken with the last menstrual

period (LMP) method.

Gestational age (months) Normal weight Low birth weight

6 9 3

7 38 7

8 37 5

9 58 10

Total 142 25

and corresponded to a Nyquist frequency of 2 Hz, thus allowing
the extraction of spectral metrics in the range 0.03–1 Hz.

For each 3.75-s window, the fetal heart rate (FHR) was
estimated auto-correlation (AC)-based method using an open
source code written in Matlab (MathWorks, Natick, MA, USA),
previously introduced in (Valderrama et al., 2018b, 2019).
Specifically, the method detects the fundamental period of the
envelope of the 3.75-s window by applying auto-correlation,
and then the FHR is estimated by dividing 60 between the
fundamental period in seconds. More details of the FHR
estimator are found in (Valderrama et al., 2019).

In addition to estimate the FHR, the quality of the 3.75-s
window was also assessed and stored for further prepossessing
steps. The quality was assessed using the method presented in
Valderrama et al. (2018a) (see subsection 3.1.3).

3.3.2. Pre-processing of Estimated FHR Signal
Since 1D-DUS recordings are prone to noise, any given 3.75-s
window of Doppler data may lead to an unreliable estimate. Two
steps then assessed the reliability of the extracted FHR. Firstly, as
recommended in Nyboe (2011), we removed FHR estimates that
were not within the 65–175% range of the average of the previous
two estimates. Secondly, we removed 3.75-s windows classified as
something else other than good quality.

Each discarded value was replaced by the linear interpolation
between its previous point and the next stable segment. A stable
segment was defined as a region of five adjacent points for
which the FHR estimate did not vary by more than ten beat per
minute (BPM).

FIGURE 2 | Block diagram of the approach for detecting possible cases of IUGR.
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3.3.3. Calculation of the Baseline, Acceleration, and

Deceleration
The baseline was determined using an algorithm proposed by
Andersson (2011), which is an improvement of those proposed
by Dawes et al. (1982) and Mantel et al. (1990). Specifically, a
filter bank was applied to the 4-Hz FHR time series to attenuate
any accelerations or deceleration.

Following the work of Andersson (2011), accelerations and
decelerations were detected for each valid 1-min segment of the
baseline. A valid segment was determined by computing a FHR
histogram using a bin width of 10 BPM. If the most frequent bin of
the histogram contained more than 40% of the values, the 1-min
baseline segment was considered valid.

When a 1-min baseline segment was determined to be valid,
acceleration and deceleration intervals were identified following
Dawes criteria (Dawes et al., 1982). Namely, an acceleration was
defined to be a section of data for which the FHR was higher than
the baseline for at least 15 s and at least one sample was 15 BPM

or more above the baseline. Similarly, a deceleration was defined
where the FHR remained below the baseline FHR for at least 15
s, and at least one sample was 15 BPM below the baseline. More
details of the algorithm can be found in Andersson (2011).

3.4. Features Used for Gestational Age
Estimation
Based on previous works presented in section 2, a total of 37
features relevant for estimating GA were extracted from the 1D-
DUS and blood pressure device captured at the perinatal visits.

3.4.1. Features Extracted From the 1D-DUS
The features derived from 1D-DUS recording were calculated
using the FHR time series (see section 3.3). Since the RR-interval
sequence is necessary to estimate fHRV metrics, the FHR series
was converted into a interbeat sequence as:

T(i) = 60, 000/S(i), (1)

where S(i) is the FHR at the i− th second.
Table 3 shows the total features extracted from the FHR

time series and the interbeat sequence. The table also provides
the physiological interpretation for each feature and relevant
previous works in which such features have been used to assess
gestational development. The features were grouped into three
categories: linear time-domain, non-linear and complexity, and
frequency-domain features.

3.4.2. Features Generated From Maternal Blood

Pressure Readings
The maternal systolic blood pressure (SBP), diastolic blood
pressure (DBP), and the maternal heart rate (MHR)
measurements from the blood pressure device were used
as features. Since the SBP, DBP, and MHR were taken for
both patient’s arms, these values were averaged. The averaged
SBP, DBP, MHR were used to generate seven additional
hemodynamics formulas, which have been reported to vary
throughout pregnancy (Steer et al., 2004; Salas et al., 2006; Kac
et al., 2015; Rebelo et al., 2015). Table 4 listed all the features
generated from maternal blood pressure readings.

3.5. Assessing Potential of Extracted
Features
To evaluate the potential of fetal cardiac and maternal blood
pressure features to describe the fetal development throughout
pregnancy, the Pearson correlation coefficient, and its p-value,
was calculated for each feature and the gestational age. This
rationale was based on previous research articles that have
reported linear relationships between cardiac physiological
parameters and fetal maturity (Frasch et al., 2007; Hoyer et al.,
2019; Signorini et al., 2020). Thus, the correlation coefficients
help to check that features used in this work are relevant for
GA estimation.

3.6. Estimation of Gestational Age
All of the features were extracted for both the 129 normal
birth weight and 24 LBW newborns at each stage of pregnancy
for which data was available. The GA estimation model was
training only with visits of newborns with normal birth weights
because previous research has reported that LBW fetuses have
discrepancies in their GA estimations from fHRV (Marzbanrad
et al., 2017). However, the features derived from the recordings
of the LBW newborns were used later to test the model’s ability to
estimate GA.

The 129 normal weight patients were split into training and
test sets. The number of patients for the test set was selected to
be proportional to the LBW newborn set. A Wilcoxon rank-sum
hypothesis test (two-sided; α = 0.05) was applied in order to test
whether there were statistically significant differences between
the training and test sets for all the values of the 37 features (if
a statistically significant difference was found, the subjects were
randomized again).

The training set comprised 104 newborns, from which 95 had
one visit, eight had two visits, and one had three visits, giving a
total of 114 visits. For the test set there were a total of 25 normal
birth weight newborns, for which 22 had one visit and three had
two visits, giving a total of 28 visits. Table 5 shows the number of
visits for each GA for the training and test sets.

3.6.1. Training/Validation Methodology
The training and validation procedure was performed using a 5-
fold cross validation with 50 trials (repetitions). At each trial, the
patients were randomly assigned to different folds, ensuring that
visit features corresponding to the same patient were in the same
folder. Thus, at each iteration,∼20% of the training data was used
for validation (held-out fold). By using 50 trials the variability
of the models for estimating the GA could be measured, and
confidence intervals could be estimated.

Since folds were class unbalanced (i.e., different number of
visit for each gestational age), at each iteration of the 5-fold
cross-validation, the number of visits per GA was balanced on
the training folds before constructing a model. To that end,
we used the Adaptive Synthetic Sampling (ADASYN) method,
which has been reported to overcome the class imbalance
problem in support vector machine models (Batuwita and
Paladey, 2013). This method generates synthetic data for the
minority classes by taking the Euclidean distance between two
data points and then adding the difference scaled by a factor,
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TABLE 3 | Features extracted from 1D-DUS signals.

Feature Calculation Interpretation Relevant previous works

LINEAR TIME-DOMAIN FEATURES

Short-term variability

(STV)

STVj =

∑24
i = 2 |Tj (i)− Tj (i − 1)|

23
, where Tj (i) is the i − th

sample of the j − th minute of the interbeat sequence

Variability within 1-min interval due to acceleration

and decelarations

Lunghi et al., 2005; Fanelli

et al., 2013; Signorini et al.,

2014

Interval Index (II) IIj =
std{|dT2|, ..., |dT24|}

STVj
, where std is the standard

deviation of the sequence composed of the absolute

difference of successive samples Tj (i)− Tj (i − 1) (|dTi|)

of the j − th minute of the interbeat sequence

Fluctuation between variability of successive beat

intervals and STV

Lunghi et al., 2005; Fanelli

et al., 2013; Signorini et al.,

2014

Long-term variability

(LTV)

LTVj = max[Tj ]−min[Tj ], where Tj is the j − th minute

of the interbeat sequence

Range of the interbeat sequence due to

accelaration and decelarations (slow oscillations)

Lunghi et al., 2005; Fanelli

et al., 2013

Long-term irregularity

(LTI)

LTI is defined as the interquartile range of the following

distribution: mk =

√

√

√

√

72
∑

i = 2

T2
k (i)+ T2

k (i − 1), where Tk (i) is

the i − th value of the k − th 3-min segment of the

interbeat sequence

Variability over 3 min intervals (Slow oscillations

over longer time scales)

Signorini et al., 2014

STV/LTV Ratio between STV and LTV Fluctuation between short and long variation of

the interbeat sequence

Reddy et al., 2009

Basal fetal heart rate Mode of the FHR trace after discarding accelerations

and decelerations

Maturity of ANS; as pregnancy advances, the

parasympathetic system matures and the FHR is

reduced

Signorini et al., 2005

Number of

accelerations per

minute

Number of accelerations over minutes of the FHR trace Increment of accelerations due to maturity of

vagal functions

Signorini et al., 2005

Acceleration average

capacity (AAC)

Calculated following Huhn et al. (2011) with

parameters M and L set to one (parameters were

optimized for FHR derived from 1D-DUS signals in

Stroux et al., 2016, 2017)

Occurrence or absence of the appearance of

accelerations

Fanelli et al., 2013; Signorini

et al., 2014

Deceleration average

capacity (DAC)

Calculated following Huhn et al. (2011) with

parameters M and L set to one (parameters were

optimized for FHR derived from 1D-DUS signals in

Stroux et al., 2016, 2017)

Occurrence or absence of the appearance of

decelerations

Fanelli et al., 2013; Signorini

et al., 2014

Mean (mIs) Mean of the interbeat-sequence Maturity of the parasympathetic system

Standard deviation

(stdIs)

Standard deviation of the interbeat-sequence Dispersion of the interbeat sequence. Variability

among interbeat sequence increased as

pregnancy progress due to accelerations and

decelerations controlled by vagal function

Van Leeuwen et al., 1999;

Lange et al., 2005

Variance (varIS) Variance of the interbeat-sequence Variability among interbeat sequence Van Leeuwen et al., 1999;

Lange et al., 2005

Root mean square of

successive differences

(rmssdIS)

Root mean square of successive differences of the

interbeat sequence

Variability between successive beat intervals due

to accelerations and decelerations controlled by

vagal function

Van Leeuwen et al., 1999;

Lange et al., 2005

rmssdIS/stdIs Ration between rmssdIS and stdIs Fluctuation between variability of successive beat

intervals and variability of all the beat intervals

Lange et al., 2005; Tetschke

et al., 2016

Skewness

(skewnessIS)

Skewness of the interbeat-sequence Asymmetry on the FHR trace due to accelerations

and decelerations controlled by vagal function

Tetschke et al., 2016;

Marzbanrad et al., 2017

Kurtosis (kurtosisIS) Kurtosis of the interbeat-sequence Occurrence or absence of outliers on the FHR

trace due to accelerations and decelerations

controlled by vagal function

Tetschke et al., 2016;

Marzbanrad et al., 2017

PNN5 The fraction of consecutive beats that differ by more

than 5 ms

Formation of accelerations and decelerations

controlled by vagal function

Tetschke et al., 2016; Hoyer

et al., 2017

NON-LINEAR AND COMPLEXITY FEATURES

Approximate entropy

(ApEn)

Calculated with the cardiovascular toolbox (Vest et al.,

2018), setting the m and r parameters in 2 and 0.1 of

the standard deviation of the input signal

Regularity and complexity on the interbeat

sequence. Complexity increases as gestation

progress due to maturation of the

parasympathetic system

Van Leeuwen et al., 1999

(Continued)
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TABLE 3 | Continued

Feature Calculation Interpretation Relevant previous works

Fractal dimension Calculated using the Higuchi’s algorithm (Higuchi,

1988), setting the interval parameters as 5

Occurrence of recursive patterns on the interbeat

sequence

Kikuchi et al., 2005

Lyapunov exponent Calculated following steps presented in Rosenstein

et al. (1993) setting embedding dimension and lag

parameters as 1 and 2

Dynamics properties (contraction or expansion) of

the interbeat sequence due to vagal function

Van Leeuwen et al., 1999

Tone Average of the percentile difference of successive beat

intervals

Measurement of the sympatho-vagal balance Khandoker et al., 2015

Entropy Calculated by using the Shannon formula (Shannon,

1948) on the percentile difference of successive beat

intervals distribution

Complexity of sympatho-vagal balance Khandoker et al., 2015

Generalized mutual

information (GMI)

Calculated following steps in Hoyer et al. (2012), setting

dimension parameter at 3 and delay parameter at 1

Complexity of sympatho-vagal balance. Hoyer et al., 2012, 2017

FREQUENCY-DOMAIN FEATURES

Low frequency (LF) Power spectral density of the FHR time series on the

band 0.03–0.15 Hz

Associated with the sympathetic control and

vasomotor activity

Signorini et al., 2003, 2014;

Van Leeuwen et al., 2003

Medium frequency

(MF)

Power spectral density of the FHR time series on the

band 0.15–0.50 Hz

Measurement of the fetal activity and mechanical

movement induced by maternal breathing

Signorini et al., 2003, 2014;

Van Leeuwen et al., 2003

High frequency (HF) Power spectral density of the FHR time series on the

band 0.5–1 Hz

Associated with respiration controlled by vagal

activity

Signorini et al., 2003, 2014;

Van Leeuwen et al., 2003

LF/(MF + HF) Ratio between LF and the summation of MF and HF Fluctuation between physiological control

components and fetus activity level

Signorini et al., 2003, 2014;

Van Leeuwen et al., 2003

The third column provides a physiological interpretation of the feature, and the fourth column displays relevant previous works in which themetrics have used for fetal maturity assessment.

TABLE 4 | Detail of maternal hemodynamic formulae calculated using the SBP,

DBP and MHR taken with the self-inflating blood pressure device.

Metric name Formula References

Pulse pressure (PP) SBP− DBP Stouffer, 2008

Mean arterial pressure (MAP) (SBP+ DBP× 2)/3 Stouffer, 2008

Cardiac output (CO) MHR× PP× 0.002 Hill et al., 2011

Rate pressure product (RPP) MHR× SBP Robinson, 1967

Shock index (SI) MHR/SBP Singh et al., 2014

Modified Shock Index (MSI) MHR/MAP Singh et al., 2014

Stroke volume (SV) CO/MHR Stouffer, 2008

TABLE 5 | Number of visits per gestational age (GA) for the 104 normal birth

weight training set, the 25 normal birth weight test set, and the 24 low birth weight

test set.

Gestational Training set Test set Test set

age (months) Normal birth Normal birth Low birth

weight weight weight

6 6 3 3

7 28 10 7

8 32 5 5

9 48 10 10

Total 114 28 25

between 0 and 1, to one of the minority data points. In
this study, the ADASYN was implemented as described in
He et al. (2008).

Before training a model, the balanced training set and
the held-out fold set were standardized by subtracting the
mean of the respective feature vector and dividing it by its
standard deviation computed in the training data only. This
standardization method was selected as it has shown to be
suitable for feature scaling inmachine learningmethods (Tax and
Duin, 2000).

The 50-trial 5-fold cross-validation was assessed using three
different regression approaches: Elastic Net, Support Vector
Regression (SVR), and Gradient Boosting Tree (GBT). At each
iteration of the cross-validation, the training folds were used
to select the most relevant features for the SVR and GBT
models. For the SVR, features were selected using the maximum
relevance and minimum redundancy (mRMR) algorithm (Peng
et al., 2005), which ranks the most relevant features based
on mutual information gain. For the GBT model, the features
were selected by training a GBT with 100 trees and learning
rate of 1 on the training folds, and then identifying the most
relevant features by summing the feature weights over all the
weak learners.

To optimize each model’s hyperparameters, a nested cross-
validation using a grid search on the training folds was used
for each model. The grid search for the three models was
defined as:

• Elastic Net. The linear penalty term, λ was defined as
{0.1, 0.2, ..., 0.8, 0.9}. The quadratic penalty term was given by
1−λ
2 . For each λ value, a set of 100 values of regularization

parameters were tested. The regularization parameter set was
generated by first finding the largest value, θ , that gave a
non-null model (i.e., intercept 6= 0), and then the remaining
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99 values were defined by decreasing θ by 10−5, so that
the ratio of the smallest to the largest value of the set
was 10−4.

• SVR. The grid search for the soft margin (C) and the margin
of tolerance (ǫ) were defined as: C ∈ {2−3, 2−1, ..., 28} and
ǫ ∈ {2−10, 2−9, ..., 2−5}. The Gaussian radial basis function
parameter (γ ) was analytically estimated as reported in Caputo
et al. (2002). Namely, γ was derived by calculating the
distribution of ||x − x′||2 between a subset containing 70% of
the training set, and then taking the inverse of the median of
this distribution.

• GBT. The grid search for the learning rate was defined as
{0.1, 0.25, 0.5, 1} and the number of trees was defined as
{100, 150, 200, ..., 500, 550}. The number of maximum splits
(tree height) was defined as {1, 2, ..., log2(S − 1)}; where S is
the total number of visits of the training folds.

3.6.2. Analyzing the Training/Validation Output
The 50 trial 5-fold cross-validation resulted in 50median absolute
error (MAE) vectors, and 250 selected feature vectors. From
the 50 MAE vectors, the median, interquantile range, and the
lower and upper 95% confidence interval for the median were

TABLE 6 | Pearson correlation between the features and the gestational age in months.

Feature Overall Normal birth weight Low birth weight

Correlation p-value Correlation p-value Correlation p-value

STV −0.03 0.67 −0.08 0.35 0.16 0.45

LTV 0.06 0.45 0.04 0.67 0.14 0.52

AAC 0.11 0.17 0.13 0.11 −0.06 0.78

BHR§ −0.03 0.66 0.03 0.70 −0.42 0.04

DBP*‡ 0.32 < 0.01 0.32 < 0.01 0.35 0.09

SBP*‡ 0.30 < 0.01 0.32 < 0.01 0.16 0.44

MHR‡ 0.09 0.24 0.16 0.05 −0.29 0.16

DAC −0.09 0.24 −0.14 0.11 0.17 0.41

#Accelarations/minute*‡ 0.19 0.01 0.19 0.02 0.20 0.34

II 0.05 0.53 0.07 0.44 −0.06 0.79

LTI*‡ −0.24 < 0.01 −0.26 < 0.01 −0.07 0.73

ApEn −0.13 0.09 −0.12 0.17 −0.24 0.26

LF −0.08 0.33 −0.10 0.23 0.08 0.71

MF‡ 0.14 0.07 0.20 0.02 −0.22 0.29

HF 0.06 0.46 0.08 0.33 −0.09 0.68

LF/(MF + HF) −0.08 0.31 −0.11 0.19 0.10 0.64

varIS 0.12 0.13 0.11 0.19 0.20 0.33

Fractal Dimension −0.04 0.61 −0.11 0.19 0.28 0.18

mIS § 0.02 0.79 −0.04 0.61 0.40 0.05

stdIS*‡ 0.18 0.02 0.18 0.03 0.20 0.34

rmssdIs 0.02 0.84 −0.02 0.80 0.21 0.32

Lyapuno exponent‡ 0.14 0.07 0.17 0.04 −0.08 0.71

skewnessIs −0.10 0.20 −0.09 0.28 −0.35 0.09

kurtosisIs −0.07 0.35 −0.10 0.26 0.11 0.61

GMI 0.09 0.26 0.13 0.14 −0.12 0.58

Tone‡ −0.12 0.14 −0.16 0.05 0.19 0.37

Entropy 0.06 0.42 0.04 0.63 0.15 0.48

stdIS/rmssdIs*‡ 0.20 0.01 0.24 < 0.01 0.01 0.96

PNN5 0.07 0.37 0.03 0.69 0.24 0.25

STV/LTV*‡ −0.21 0.01 −0.24 < 0.01 −0.04 0.85

PP 0.06 0.48 0.08 0.32 −0.11 0.60

MAP*‡ 0.35 < 0.01 0.35 < 0.01 0.31 0.13

CO‡ 0.12 0.11 0.19 0.02 −0.36 0.08

RPP*‡ 0.22 < 0.01 0.30 < 0.01 −0.25 0.22

SI −0.04 0.61 0.01 0.90 −0.30 0.14

MSI −0.06 0.47 0.00 0.98 −0.35 0.09

SV 0.06 0.48 0.08 0.32 −0.11 0.60

A ∗, ‡, and § indicate if the correlation coefficient is statistically significant (p-value< 0.05) for overall newborns, normal birth weight newborns, and low birth weight newborns, respectively.
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determined. The median MAEs were compared to select which
regression model (Elastict Net, SVR, or GBT) to use in the
test stage.

From the 250 selected feature vectors, the top twenty most
relevant features were identified. To that end, the features
were ranked at each feature vectors, and the mean rank was
determined by averaging the ranking of each feature over the 250
feature vectors. This simple aggregation technique was used as it
has shown to be effective to combine different features sets in the
medical application field (Saeys et al., 2007; Wu et al., 2018).

Using the top ten, top fifteen, and top twenty, the same
validation/training procedure was repeated to identify the best
performing feature set for estimating GA.

3.6.3. Testing Methodology
The model selected with the best performing feature set was
then used to train a final model on the training set of normal
birth weight patients. Before training the final model, the training
data were balanced using ADASYN (He et al., 2008), and the
parameters were optimized using grid search as explained in
subsection 3.6.1. The final model was then used to estimate the
GA for both the 25 held-out normal birth weight and the 24
LBW patients.

Since the final model depends on the nature of the synthetic
data added to the training dataset, the testing procedure was
performed 100 times to evaluate the variability of the model’s
performance. Themedian, interquantile range, and the lower and
upper 95% confidence interval for the median were determined
for the two test groups. To determine if there was any difference
in GA estimation distribution of errors between the normal and
LBW newborns, a two-sided Wilcox rank-sum test hypotheses
test was evaluated on the data.

3.7. Detecting Possible Cases of IUGR
Since we are assuming that IUGR cases are those with LBW,
the estimated GA for the test set were compared against birth
weight. To that end, the GA error estimation was defined as the
difference between the GA based on the LMP and the median GA
estimation over the 100 repetition. Then, a robust least square
was fitted using the birth weight as independent variable and the
GA error estimation as the response variable.

Finally, the area under the receiver operating characteristic
(AUROC) was calculated to discriminate between LBW and
NBW newborns. The AUROC was calculated using the
difference between LMP-based GA and the estimated GA. As
we hypothesized that LBW newborns are likely to result in
underestimations (LMP-based GA > estimated GA), a newborn
was considered LBW if the difference between the LMP and SVR
estimates of the GA was greater than the thresholds used in the
AUROC analysis.

4. RESULTS

4.1. Correlation Between Extracted Feature
and Gestational Age
Table 6 shows the Pearson correlation between the features and
the gestational age. Nine out of the 37 extracted features showed

TABLE 7 | Mean absolute errors (MAE) of the 50 trial 5-fold cross validation for

the Elastic Net, SVR, and Gradient boosting tree.

Model Metric Gestational age (months)

6 7 8 9 All

Elastic Net Median 1.54 0.51 0.50 1.40 0.93

IQR 0.10 0.04 0.07 0.14 0.08

LCI 1.52 0.50 0.49 1.36 0.91

UCI 1.58 0.52 0.52 1.42 0.96

SVR Median 1.57 0.51 0.43 1.15 0.80

IQR 0.17 0.09 0.10 0.11 0.06

LCI 1.54 0.48 0.40 1.11 0.79

UCI 1.65 0.54 0.47 1.17 0.83

Gradient boosting tree Median 1.77 0.85 0.65 0.81 0.86

IQR 0.42 0.20 0.14 0.18 0.08

LCI 1.66 0.82 0.61 0.77 0.83

UCI 1.93 0.89 0.70 0.89 0.88

For each model, the median, interquantile range, and the 95% confidence interval for the

median of the MAE are provided.

a statistically significant correlation with gestational age. For
the normal birth weight, 38% of the features showed evidence
of a significant correlation with gestational age, whereas, for
the low birth newborns only two features were correlated. The
correlation of fHRV indexes indicated a variation of such metrics
during pregnancy, thus being relevant to assess fetal maturation
for this project.

4.2. Training/Validation Performance
Table 7 shows the mean absolute error (MAE) for the 50 trial
5-fold cross-validation. For all the three regression models, the
MAE of the seventh and eighth gestational months were lower
than those of the extreme months evaluated. The regression
model with the lowest the overall median MAE over the 50 trials
was the SVR with a value of 0.8 months. Furthermore, the SVR
and Elastic Net were the models with the lowest interquartile
range for the MAE over the 50 trials, thus indicating a lower
variance of these to models in comparison to the GBT.

4.3. Ranking the Features
Table 8 shows the top twenty features for estimating GA based on
the average ranking of the 250 feature vectors for the SVR. Seven
out of the ten top features were derived from the 1D-Doppler
ultrasound, from which fHRV linear indexes were among the
most selected. Maternal blood pressure based features were also
included in the top features, with MAP as the most selected
feature of that group.

Table 9 presents the results obtained by repeating the
training/validation procedure using the top ten, top fifteen, and
top twenty features. The top fifteen feature set achieved the lowest
median MAE over the 50 trials with a value of 0.76 months (95%
CI= 0.75–0.78 months).
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TABLE 8 | Feature ranking obtained after averaging the individual 250 feature

ranking resulted in the 50 trial 5-fold cross-validation.

Ranking Feature Type

Top 10 Tone Non-linear and Complexity

#acc/min Linear

MAP Hemodynamic formula

ApEn Non-linear and Complexity

KurtosisIS Linear

CO Hemodynamic formula

STV/LTV Linear

SkewnessIS Linear

PP Hemodynamic formula

LTI Linear

Top 15 stdIS/rmssdIS Linear

DBP Hemodynamic formula

RPP Hemodynamic formula

varIS Linear

stdIS Linear

Top 20 GMI Non-linear and Complexity

II Linear

DAC Linear

MF Spectral

basal FHR Linear

TABLE 9 | Mean absolute errors (MAE) of the 50 trial 5-fold cross validation for

the SVR using the top10, top15, and top20 features.

Model Metric Gestational age (months)

6 7 8 9 All

SVR Median 1.62 0.48 0.43 1.18 0.82

(top 10 features) IQR 0.18 0.10 0.09 0.12 0.07

LCI 1.57 0.45 0.40 1.13 0.80

UCI 1.67 0.50 0.45 1.21 0.83

SVR Median 1.51 0.47 0.44 1.04 0.76

(top 15 features) IQR 0.17 0.08 0.07 0.15 0.07

LCI 1.44 0.45 0.42 1.01 0.75

UCI 1.54 0.50 0.46 1.08 0.78

SVR Median 1.56 0.45 0.43 1.16 0.81

(top 20 features) IQR 0.15 0.10 0.08 0.09 0.05

LCI 1.52 0.42 0.40 1.14 0.79

UCI 1.60 0.47 0.44 1.20 0.81

For each model, the median, interquantile range, and the 95% confidence interval for the

median of the MAE are provided.

4.4. Testing Performance
Table 10 shows the performance of the 100 repetitions of the SVR
with the top fifteen tested on the held-out 25 normal birth weight
newborns and the 24 LBW newborns. The median MAE for each
gestational month and the overall was statistically significantly

TABLE 10 | Mean absolute errors (MAE) of the 100 trials on the test (held-out)

normal birth weight and LBW newborns.

Newborn type Metric Gestational age (months)

6† 7† 8† 9† All†

Normal birth weight Median 1.06 0.53 0.33 0.99 0.72

IQR 0.25 0.05 0.07 0.07 0.05

LCI 1.03 0.52 0.32 0.98 0.71

UCI 1.08 0.54 0.35 1.00 0.72

Low birth weight Median 1.26 0.73 0.68 1.32 1.01

IQR 0.11 0.05 0.09 0.06 0.03

LCI 1.24 0.72 0.67 1.30 1.01

UCI 1.29 0.74 0.69 1.33 1.02

For each type of newborns, the median, interquantile range, and the 95% confidence

interval for the median of the MAE are provided. A
†
indicates a significant difference

between the median GA estimations of the normal and LBW newborns for the 100

repetitions (two-sided Wilcox rank-sum test; α = 0.05).

higher for the LBW newborns (two-sided Wilcox rank-sum test;
α = 0.05). The difference between the median MAE for the
two groups was increasing throughout the GA, resulting in a
difference of 0.29 month for the overall estimation.

Figure 3 shows the difference (δ) between GA based on the
LMP and the median estimated GA over the 100 repetitions for
each visit. The LBW newborns’ (red crosses) GAs were generally
overestimated (LMP-GA < estimated GA) for the eighth and
ninth gestational months compared to the normal birth weight
newborns (blue circles). For the eighth and ninth gestational
months, on the other hand, the LBW newborns were generally
underestimated (LMP-GA > estimated GA) compared to the
normal birth weight newborns.

For newborns with more than one visit, Figure 3 shows a line
connecting the median error across GA. For both normal and
LBW newborns, the GA estimates trended from overestimation
to underestimations as GA increased. However, the discrepancy
was higher for the LBW newborn with a difference of around 2.5
months between the seventh and the ninth gestational month.
In contrast, the maximum difference for normal birth weight
newborns was∼0.75 month.

Figure 4 shows the median of the estimated GA for each label
of the LMP method. For all the gestational months, the LBW
group resulted in a lowermedianGA estimations than the normal
birth weight group. The median difference between normal and
LBW newborns is greater for the last 2 months of pregnancy,
thus indicating a higher inconsistency in the features for GA
estimation between the type of newborns from the eighth month
of gestation onward.

4.5. GA Estimation Errors as a Function of
Birth Weight
Figure 5 shows the GA estimation errors over estimated birth
weight for the tested newborns. Robust least-square fits were
performed for each type of newborn, as well as for all the
newborns as a whole. All the fits provided negative slopes and
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FIGURE 3 | Median error of the 100 repetitions against GA provided by the LMP method for the normal weight newborns (blue circles) and the LBW newborns (red

crosses). For newborns with more than one visit, a line connects the median error along with the GA.

FIGURE 4 | Median and interquartile range of the estimated GA for each label of the LMP method for the normal weight newborns and the LBW newborns.

negative Pearson correlation values (ρ). The inverse relationship
between GA estimation error and birth weight indicates that
there aremore underestimations for newborns with LBW. In fact,
for the LBW newborns, fifteen visits achieved underestimations,
whereas ten visits obtained overestimations. For the normal
weight newborns, the fitted line was δNBW = 1.85 −

0.60wNBW (ρ = −0.15, P-value = 0.45). For the low weight
newborns, the fitted line was δLBW = 0.82 − 0.23wLBW (ρ =

−0.06, P-value = 0.76). For all the newborns, the fitted line was
δ = 1.12− 0.35w (ρ = −0.13, P-value = 0.37).

The AUROC using the estimation difference between NBW
and LBW resulted in 0.55. However, as in Figure 5 is observable
than there was a more remarkable difference between newborns
with weight lower than 2.3 kg, and those with a weight >3.1

kg, the ROC analysis was repeated for these two groups. This
comparison yielded in an AUROC of 0.63, thus suggesting
acceptable discrimination for these two groups.

5. DISCUSSION

5.1. Interpretations of Findings
The results presented in this work indicate that it is possible
to provide a proxy for screening fetal growth retardation in
a resource-constrained setting by using the difference between
GA estimated by LMP and the GA estimated from features
extracted from an inexpensive Doppler transducer and a blood
pressure device.
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FIGURE 5 | Error in GA from 100 repetitions (δ) as the difference between GA based on the LMP and the estimated GA. The median error of the 100 repetitions for

each recording (or visit) is displayed (triangles for LBW newborns; and circles for normal birth weight newborns). Robust least square fits are also shown.

This proxy fetal assessment relies on the GA estimation
approach introduced in this work, which using a pregnancy

conversion factor of 40 weeks
9 months

resulted in a median MAE
of 3.2 and 4.5 weeks for the normal and LBW newborns,
respectively. Interestingly, these MAE values are comparable to
those presented in Marzbanrad et al. (2016) and Marzbanrad
et al. (2017) of 2.7–5.1 weeks obtained using a step-wise
regression using 1D-DUS and fECG signals recorded by
medical professionals in a high-resource/high-income country.
Moreover, unlike Tetschke et al. (2016), our work did not require
high-resolution input signals, making the implementation of the
approach described here feasible in LMICs. Notably, our GA
estimations were lower than the 6 weeks error associated with
symphysis-fundal height, which is the common dating method
used in LMICs to detect IUGR (Griffiths et al., 2008).

The higher GA estimation errors for the LBW newborns
indicate that this type of patient has different patterns in the 1D-
DUS and maternal blood pressure features than normal birth
weight newborns of the same GA. We note that this difference
is related to the birth weight as the AUROC between very
low birth weight (<2.3 kg) and normal birth weight indicated
acceptable discrimination. Therefore, assuming that LBW is a
consequence of IUGR (Lee et al., 2013), a potential sign of
IUGR can be detected when the estimated GA is lower than
the GA calculated from the LMP. This provides evidence to
indicate that our method is an alternative and low-cost fetal
growth assessment approach for identifying cases that need to
be referred for further medical assessment in LMICs, in which
symphysis-fundal heightmeasurement is not sufficiently accurate
(World Health Organization, 2016), and ultrasound imaging is
not available (World Health Organization, 2014).

The longitudinal changes in the difference between GA
estimations of low and normal birth weight newborns across
gestation suggests that IUGR is progressive and is more evident
for the eighth and ninth gestational months, as is shown in
Figure 4 for patient with more than one visit. Therefore, our

proxy method may be more effective in detecting fetal growth
abnormalities during the last 2 months of gestation, thus helping
to identify fetuses that need assistance during delivery to reduce
adverse perinatal outcomes.

Another interesting finding was the selected features
for estimating GA. The top fifteen features (Table 8) were
consistent with features previous work for assessing gestational
development (Van Leeuwen et al., 1999, 2003; Signorini et al.,
2003; Wakai, 2004; Lange et al., 2005; Khandoker et al., 2009).
Specifically, linear, non-linear and complexity features, such
as tone, the number of accelerations per minute, approximate
entropy, and statistical moments of the interbeat sequence,
were the features which provided the SVR with the highest
performance boost. The feature selection algorithm also
demonstrated the potential of blood-pressure-derived features.
This selection was relevant as little research has used this type of
features for assessing fetal maturity. Finally, the STV/LTV ratio,
which previously has shown to be relevant for detecting IUGR
cases (Stroux et al., 2017), was also relevant for GA estimation.

5.2. Study Limitations
It should be noted that in this work possible cases of IUGR were
defined by newborns birth weight. This assumption could not
be validated as patients did not receive an ultrasound imaging
exam to detect IUGR based on obstetrician standards. Moreover,
LBW also includes small for gestational age and appropriate for
gestational age/premature newborns (<37 weeks). Presumably,
premature and IUGR newborns behave similarly, and there is
overlap between these two groups (Lee et al., 2013). Thus, our
proxy method may be affected because LBW newborns do not
fully capture all the IUGR population since such definitionmisses
infants born small for gestational age above the 2,500 g cutoff
and those who are both preterm and small for gestational age.
Nevertheless, using LBW as a surrogate for IUGR was based on
the fact that in LMICs around 60% of the LBW is caused by IUGR
(Lee et al., 2013).
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The method presented here estimates GA using the LMP
method as a reference. As LMP is not a completely unbiased
method for dating fetuses (Andersen et al., 1981; Dietz et al.,
2007), our results may contain a bias. Moreover, since the errors
in GA estimation provided by our method were larger than
2 weeks [the estimation error recommended in the literature
(MacGregor and Sabbagha, 2008)], our method is not accurate
enough to be used as a primary method for dating GA. However,
for rural areas in LMICS, in which there is a lack of ultrasound
imaging equipment and obstetricians, our method is a proxy
for screening fetuses with possible abnormalities (LBW or
IUGR) that need to be referred for further medical diagnosis
and treatment. Superiority to the symphysis-fundal height
measurement indicates that this method should be preferred.

Another limitation of this work was that the GA was recorded
by the clinical team in months rather than weeks (Martinez et al.,
2017). However, as a month includes a variable number of days,
this introduces a quantization/rounding error—fetuses just a few
days apart that fall into different months will look similar but
will be identified as different. This decreases the accuracy of any
model fitted to the data, resulting in larger absolute errors for the
sixth and ninth gestational months.

This error can be thought of as a higher intra-class variance.
When intra-class variance is high, it is recommended to use a
longitudinal approach rather than cross-sectional one (Diggle
et al., 2002). However, those models need multiple points per
subject, in order to be able to apply mixed models considering
the random effects of each individual. In this study we could not
apply a longitudinal approach because the majority of subjects
contained only one valid visit. Nevertheless, the MAE values
obtained for our approach suggests that features and methods
used here are promising for estimating GA based on the LMP
method, which is a low-cost, feasible method to date pregnancy
in LMICs (Neufeld et al., 2006).

Our study also included visits that were between the sixth
and ninth months of gestation. To fully assess the capacity of
our approach to estimating GA, it should be evaluate on metrics
recorded in the first and second trimesters. Such an evaluation
would allow for the comparison of our GA estimation in a fetal
development period in which genetic and biological variability of
fetal size is low, and in which Doppler images methods estimate
GA more accurately (Reece et al., 1989).

We note that the analysis in this study applies only to singleton
pregnancies. Non-singleton pregnancies were not assessed in this
study and growth rates observed in these fetuses may well be
divergent, or asymmetric.

Finally, we note that the approach presented here did not
consider fetal sex to estimate GA. Although it may influence
fHRV metrics used here for GA estimation, we deliberately avoid
gender because the aim is to avoid the use of imaging Doppler,
and sex determination, which present significant cost and social
problems, respectively.

5.3. Future Directions
Future research should focus on increasing the temporal
resolution of the GA labels (by recording the week of the LMP

through community surveys perhaps), and use a more accurate
dating method, such as expert-driven ultrasound imaging.

Future research should also evaluate the efficacy of the proxy
presented here on confirmed diagnoses of IUGR. This evaluation
would allow a full end-to-end assessment of how 1D-DUS
and maternal blood pressure can contribute to detection fetal
growth abnormalities.

Moreover, future research should ensure the collection of
multiple visits during the course of pregnancy (and extending
this to earlier gestational periods), so that a longitudinal analysis
can be performed that incorporates the individual dynamics into
the model.

6. CONCLUSION

This work introduced a proxy to detect possible cases of IUGR for
constrained-resource environments in which ultrasound imaging
is not available, and current low-cost methods are prone to
error. The potential IUGR cases are detected by comparing GA
based on the last menstrual period with estimates obtained 1D-
DUS and maternal blood pressure recordings collected with
inexpensive devices, usable with little training. The method
is valuable to endow non-medically trained operators with an
objective metric to identify cases that need to be referred
to further medical assistance. The assessment system may,
therefore, have an immediate impact if coupled with suitable
intervention, such as nutritional supplementation. However, a
prospective clinical trial is required to show the efficacy of such
metrics and intervention.
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