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Automated Page Turner for
Musicians
André Tabone, Alexandra Bonnici* and Stefania Cristina

Department of Systems and Control Engineering, University of Malta, Msida, Malta

An increasing number of musicians are opting to use tablet devices instead of traditional

print media for their music sheets since the digital medium offers the benefit of storing a

lot of music in a compact space. The limited screen size of the tablet devices makes the

music difficult to read and musicians often opt to display part of the music page at a time.

With fewer music lines on display, the musician will then have to resort to scrolling through

the music to read the entire score. This scrolling is annoying since the musicians will need

to remove their hands from the instrument to interact with the tablet, causing a break in

the music if this is not done quickly enough, or if the tablet is not sufficiently responsive.

In this paper, we describe an alternative page turning system which automates the page

turning event of the musician. By actively monitoring the musician’s on-screen point

of regard, the system retains the musician in the loop and thus, the page turns are

attuned to the musician’s position on the score. By analysing the way the musician’s

gaze changes between attention to the score and the instrument as well as the way

musicians fixate on different parts of the score, we note that musicians often look away

from the score and toward their hands, or elsewhere, when playing the instrument. As a

result, the eye regions fall outside the field-of-view of the eye-gaze tracker, giving rise to

erratic page-turns. To counteract this problem, we create a gaze prediction model that

uses Kalman filtering to predict where the musician would be looking on the score. We

evaluate our hands-free page turning system using 15 different piano songs containing

different levels of difficulty, various repeats, and which also required playing in different

registers on the piano, thus, evaluating the applicability of the page-turner under different

conditions. Performance of the page-turner was quantified through the number of correct

page turns, the number of delayed page turns, and the number of mistaken page turns.

Of the 289 page turns involved in the experiment, 98.3% were successfully executed,

1.7% were delayed, while no mistaken page turns were observed.

Keywords: page-turning, eye-gaze tracking, Kalman filter, eye-hand span, half-page turns

1. INTRODUCTION

In this rapidly evolving world, digital media is taking precedence over the physical, printed form for
information storage and presentation. Rather than printing books, these are instead being laid out
on screens, and whole libraries can now be accessed from one’s home or stored within a handheld
device. These convenient changes have made it to the world of music. Musical scores are readily
available as free, digital documents through digital libraries such as the IMSLP1 or as purchasable

1https://imslp.org/
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PDF files from online stores. Digital sheet music offers musicians
the advantages of availability and portability, compacting large
volumes of works into a single, portable device (Laundry,
2011). Digital sheet music, however, introduces the problem of
readability. Traditional, printed music uses the standard A4-
size paper, where music players can expect sheet music to have
stave heights of 7.5–8.5 mm (Nieweg and Vaught, 2011). The
screen-size of regular digital tablets, however, does not permit
the display of the entire page while retaining the same stave
dimensions. Thus, musicians will either downscale the sheet such
that it fits within the space available, or keep the desired size
while panning/scrolling to see the entire score (Bell et al., 2005).
The latter will require the musician to either pan the score or
incur more frequent page turns in comparison to when using a
printed score.

Page turns are annoying, requiring the player to momentarily
release one hand from the instrument to make the turn. In high-
quality music books, editors typeset the music such that the page
turn coincides with a natural pause in the music, be it in the
form of rests or notes of a longer duration (Laundry, 2011).
However, this is not always possible, and musicians develop their
particular method to overcome the annoyance of page-turning.
Although there are various options to interact with the page on
a tablet device, for example, through scrolling or tapping, these
actions are not easily controllable when executed at speed. Thus,
page-turning on a tablet device is no more comfortable than on
print material.

Commercial software and hardware that address this problem
exist. These solutions may fall under two categories, namely,
manual or fully automated page-turners. Manual page-turning
solutions require voluntary user input to trigger a page-turning
event. For example, AirTurn2 provides a foot pedal system which
allows the music player to activate page turns through the use
of an external foot-pedal device. While such an approach may
be suitable in some cases, some instrumentalists require the use
of their feet for their instrument foot pedals (Laundry, 2011).
Thus, automated page-turning would be more desirable. Tablet
applications such as MobileSheets3, SheetMusic4, PhonicScore5,
and ClassicScore6 provide such a facility by employing a scrolling
score, where the rate of the scroll is determined from the
tempo of a pre-recording playback of the music in ClassicScore,
which could be adjusted according to some preferred speed
in MobileSheets and SheetMusic. Both these options are not
ideal since the performer is required to adhere strictly to some
specific tempo for the duration of the piece, which, often,
results in a performance which is not stylistic. Applications such
as PhonicScore allow the scrolling to adjust according to the
musician’s playing by taking into account real-time audio data.
However, these methods are susceptible to background noise, the
timbre of the instrument as well as note errors by the performer
and are, therefore, not very reliable.

2http://www.airturn.com/
3http://www.zubersoft.com/mobilesheets
4http://www.musicnotes.com/apps/
5http://phonicscore.com/
6http://blog.naver.com/earthcores

An ideal page-turning system would, therefore, be one which
can operate without the use of additional gestures, that is,
a system that functions on the already existing interactions
between the musician and the score. In this manner, the musician
can remain in control over when the page turn occurs while
shifting the burden of the actual page turn onto the system
controlling the music. Moreover, the page-turning system needs
to be robust to errors that may potentially be introduced by
the musician.

In our earlier work (Bonnici et al., 2017), we show how
eye-gaze tracking can be used to monitor the musician’s
interaction with the score and thereby create a hands-free page
turning system. This system was, however, limited to rigid
head and eye movements due to the inherent noise that exists
within eye-gaze tracking. In this paper, we extend this work
by using a Kalman filter approach to model the musician’s
gaze interaction and hence provide a robust prediction of the
musician’s gaze location. We use this information together with
a half-page turning system to ensure that the musician will
have the current and the subsequent stave present on screen at
all times.

2. RELATED WORK

Page-turning systems can be broadly categorized into two groups,
namely applications for physical, printed books and applications
for digital media, as shown in Figure 1. Systems that operate on
physical books need to first engage with the top-most printed
page. The device needs to lift this page from the remaining
pages using mechanisms such as suction tubes, friction wheels,
adhesive, or magnetic clips (Wolberg and Schipper, 2012). The
page-turner then elevates the single page and transports it, face
down, on the other stack of pages. Once turned, the device
secures the sheet in place through some restrainingmechanism to
ensure that the loose sheet does not infringe on any further page-
turning actions. Thus, mechanical systems need to balance the
speed of turning the page with the relative fragility of the paper
so as not to tear the paper (Wolberg and Schipper, 2012). Such
mechanisms, therefore, tend to be relatively slow and are most
often used in the context of page-turners for people with physical
disabilities where the need outweighs speed and efficiency.

Page-turners based on digital media are more common in
music applications. The reason for this stems from the increasing
availability of tablet devices as well as digital sheet music.
As shown in Figure 1, page-turners for digital media can be
subdivided into two further categories, namely, those that are
fully autonomous and those that depend on some form of
user input. Fully autonomous systems rely on preset timing,
scrolling through the music sheets at a fixed tempo (Bell et al.,
2005). While these systems may allow for manual adjustments
of the performing speed at the start of the performance,
real-time adaptations to changes in speed are not possible.
Thus, these systems are not adequate for musicians. Systems
which depend on some user input can, once again, be divided
into two categories, those that rely on active user input
and those which utilize a passive user-input. Systems which
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FIGURE 1 | Page turners described in the literature.

require active user input require some action from the user
to activate a page turn. This action can be in the form of
tapping a foot pedal (Dannenberg, 2012) or an area on the
tablet device (Graefe et al., 1996), bite-switches (Bell, 2012), or
voice command triggers (Gibbs, 2014). While some of these
techniques may be more effective than others, they still depend
on the quick response of the device to the user response. The
alternative approach of using passive user-input is, therefore,
more attractive for the musician. These approaches involve
tracking the musician’s progress on the score and use this
implicit user-input to determine when to activate a page turn.
The tracking can be carried out through audio recordings,
through MIDI information obtained from the instrument or by
monitoring the users eye-gaze.

2.1. Score-Following Systems
When pianists perform a musical piece from a written score,
they read the music notation and translate this information into
the motor action needed to press the piano keys. The keying-
action, in turn, activates the mechanisms that produce an audio
signal. Page-turning may, therefore, utilize score-following based
on eye-gaze tracking, the keying-action or the audio signal. Eye-
gaze trackers typically provide the on-screen (x, y) coordinates
corresponding to the pianists point-of-regard, and hence, the
position on the score from which the pianist is currently playing.
The keying action and the audio signal, on the other hand,
provide information on the notes played. The data stream
obtained from both keying-action and audio signal has a different
format to the musical score and, therefore, requires alignment of
the data to the score.

In Dorfer et al. (2016), this is carried out by training an end-to-
end multimodal convolutional neural network (CNN). The score
image Si, consisting of one stave of sheet music, is quantized
into overlapping buckets Bj. Likewise, the spectrogram of the
corresponding audio signal is also divided into snippets Ei,j of a
fixed length of 12 s. The CNN is trained to match the rightmost
onset in the spectrogram Ei,j to the bucket Bj containing the
corresponding note j. The resulting CNN model is then used to
predict the expected location x̂j of an audio snippet with a target
note j in the corresponding sheet music image.

This approach matches the spectrogram within ±1 image
bucket in 84% of the test cases. However, the method does not
take into account that the music may have repeated patterns
which would result inmultiple matches between the audio extract
and the score. Moreover, the approach also does not take into
account the possibility that the performance may deviate from
the written score. Such deviations can be intentional, for example,
when the musician adds ornaments or chord embellishments
not notated in the score. The musician can also introduce
temporal changes within the music as a means of expression.
These tempo changes would typically affect the estimation of
the note onsets (Chen and Jang, 2019). Unintended changes to
the performance are also possible, depending on the skill level
of the performer. These errors may include incorrect keying of
notes, repetitions to correct note errors or note ommissions,
resulting in jumps in the performed note sequences (Noto et al.,
2019). As a result, the audio extracts may not necessarily have a
direct match with the score image.

To correct for the possibility of repeated patterns, Dorfer
et al. (2017) introduce temporal information through the use of
Dynamic Time Warping (DTW). DTW computes the optimal

non-linear alignment between two sequences, using a local cost

measure that relates points from the two sequences to each
other. In Dorfer et al. (2017), the two sequences comprise of the
sheet music and the audio excerpts. A neural network is used to
compute a local cost measure between the score sequence and
the audio excerpts. The resulting cost matrix is then used by the
DTW to align the sheet music and audio excerpts. However, the
score-audio alignment is carried out offline. Thus, this approach
is not suitable for page-turning applications, which requires
real-time alignment of the two.

Chen and Jang (2019) propose an audio-score alignment
process based on a similar approach. Note onsets are detected
from the audio signal, extracting a feature vector to describe the
signal around each onset. Finally, the feature vector is compared
to the score using a dynamic programming approach, using
a modified constant-Q transform as a measure of similarity.
This measure allows for invariance to instrument timbre and
overtone interference. To allow for the online score-following,
Chen and Jang (2019) then modify the algorithm to reduce the
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computational time required to align the audio to the score. To
achieve this, they assume performance stability and performance
continuity. That is, the musician adheres to the tempo marking
on the score, and does not introduce sudden tempo changes.
The musician is also expected to play the score sequentially
and avoid skips or jumps to other sections of the score. These
assumptions allow the onset matching algorithm to predict the
location of onsets based on the tempo. They also limit the
computation of concurrencies to onsets around the previously
matched concurrencies. Chen and Jang (2019) achieve a mean
latency of 19.2 ms obtained from 10 pre-recorded, human-
played, four-part chorales composed by Bach.

While the results obtained in Chen and Jang (2019) do allow
for real-time score following, they are based on assumptions of
continuity and stability in the performance. These assumptions
are valid for performances played when the musical piece has
been mastered but do not necessarily hold during practice time
when jumps and repetitions can be expected. While jumps and
repetitions are difficult to predict through monitoring the audio
signal alone, the eye-gaze information can provide invaluable
insights on the point-of-regard of the pianist. It is, therefore,
possible to deduce the position on the score from which
the music is being played. Reading music has commonalities
with the reading of linguistic texts, and thus, techniques for
gaze tracking in linguistic texts may also apply to musical
scores. Unlike linguistic texts, however, music does not have
groupings based on fixed words. Instead, groupings are based
on pitch structure, temporal structure, articulation, phrasing
and orthographic conventions. The visual complexity of the
musical score is, therefore, based on the decisions taken on
all these levels (Huovinen et al., 2018). When reading, the
grouping structures have an essential role in determining the eye
movement, defining the duration of the fixations and the landing
position of the next fixation.

Fixation points do not necessarily correspond to specific note
symbols as long as they lie close enough to the symbol for this
to be within the area of vision. This tolerance allows grouped
structures, for example, quaver pairs or harmonic chords, to
be treated with one single fixation (Puurtinen, 2018). In music
reading, fixating on symbols ahead of the current playing position
allow the musician to allocate sufficient time to process the
symbols while keeping the general rhythmic characteristics of the
music. In music reading, this is referred to as reading ahead and
results in an eye-hand span. That is, the difference between the
notes being played and the fixation point (Rosemann et al., 2016).
Any salient difficulties spotted in the score will affect the timing
of the saccades launched ahead. Upcoming symbols which appear
to be less regular or non-typical will attract first fixations earlier in
themusical performance. As a result, the eye-hand spanmay have
local increases due to the musico-visually complex features of
the notated score (Huovinen et al., 2018). Moreover, unexpected
rhythmic or harmonic changes can locally decrease the eye-hand
span (Penttinen et al., 2015; Rosemann et al., 2016).

It is also important to note that although pianists need to
look at the score to read the music, they do not do so at all
times. In a solo setting, glances to the keyboard are commonplace
and help the pianist verify the correct hand position on the
keys. Such glances to the keyboard are more common with

lower skill level, or when the music leaps through the keyboard
registers (Cara, 2018). In ensemble playing, glances at partners
are an essential way of communication between the ensemble
members (Vandemoortele et al., 2018).

Noto et al. (2019) use Bayesian inference to estimate the
pianist’s position on the score using both eye-gaze and keying
information, integrating the two sources into a single Bayesian
inference by using a Gaussian mixture model. The keying and
gaze data are modeled by Normal distributions whose parameters
are adapted to each subject. The subjects are instructed to
play a set extract without stopping or correcting any misplayed
notes such that the keying and eye-gaze information can be
easily aligned with the ground-truth. An exhaustive dynamic
programming search is performed to find the best matching
keying pattern from which the average and variance in the most
likely matching position is obtained. Likewise, the eye-hand span
is assumed to follow a normal distribution with mean (µgx ,µgy )
and variance (σgx , σgy ) which are obtained by aligning the gaze
data with the expected score position. By learning the eye-hand
span distribution, the current gaze point (gx, gy) can be estimated.
This estimate is then used in the Bayesian inference model to
determine the most likely position for a match between the score
and the keying data.

Similarly, Terasaki et al. (2017) also adopt a combined keying
and eye-gaze tracking approach. However, Terasaki et al. (2017)
use a Hidden Markov Model (HMM) to create a gaze model. The
output probability of the HMM follows a normal distribution
with the center coordinates of each note as the mean value.
The model determines the initial transition probability and
the state transition probability by learning the gaze position
coordinates (gx, gy) of the gaze when performers are practizing
while looking at the musical score. The output probability of the
gaze model expresses the gaze likelihood, that is, the probability
that the subject is looking at a particular place on the score.
This probability score is reflected in the score following by
multiplying the cost of the dynamic programming match with
the gaze likelihood.

Both these approaches have been evaluated with single-line
stave systems, and while Chen and Jang (2019) do take into
account the possibility of loss in eye-gaze data, their approach
simply waits for the eye-gaze data to become available once more.
The two methods also make the general assumption that the
eye-gaze will always move ahead. However, in the presence of
two stave lines, as typical in piano music, the eye-gaze may also
oscillate in the vertical direction. The eye-gaze may also shift
backwards when the subject glances at the clef, key-signature
and time-signature, particularly if these change within the piece,
while at the same time, keying information remains moving
forward. Moreover, the eye-hand spanmay require different local
distributions, depending on the characteristics of the piece. Thus,
more robust treatment of the eye-gaze information is required.

2.2. Displaying the Score
An automated page turning system must also take into account
the way the music is displayed on screen and how the page turn
is executed. Such a system must take into account the player’s
experience, allowing the pianist to, not only read the music with
ease (Bell et al., 2005; Nieweg and Vaught, 2011) but also to
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remain well aware of the context of the music they are playing.
These considerations will restrict the amount of information
that can be presented on the screen while exclude instantaneous
jumps between sections of the music (Laundry, 2011). Several
options for digital score visualizations have been proposed in
the literature. The simplest method offers the presentation of
sheet music as a continuous stream, either horizontally with
the score scrolling across the width of the screen, or vertically
with the score scrolling across the length of the screen. Such
digital layouts, however, are not popular with music players since
it is easier to lose track of the current position on the score
(Bell et al., 2005). Alternative representations, where the score
is kept static until a page turn activates overwriting old material
with new have been proposed. Here, several visualizations are
possible; for example, a two page system may be used with
the page turn shifting the whole page to the left, such that
the left hand page always displays the current score page to be
played while the right hand page displays the next one (Graefe
et al., 1996; Blinov, 2007). The screen size of a typical, portable
digital tablet, however, does not allow for the display of two
pages simultaneously without reducing the page size beyond
what can be comfortably read by the music player. Alternative
digital music systems which involve displaying a single pagemake
use of the fact that the digital screen may be divided into two
parts, allowing for split-page turning whereby, after some time
delay, the top part of the page can display new content while
the bottom part of the page retains the current content, before
this too is updated. In order to indicate the change in content,
visualizations such as page peeling, or highlight lines have been
used (Bell et al., 2005; Blinov, 2007; Laundry, 2011).

Digital page turning systems must also take into account the
display of music with repeated sections, particularly when these
sections are long. Since digital displays divide the printed scores
into sub-pages for a comfortable fit on the device display space,
any such repeat instructions may require going back several
pages, aggravating what is already an annoying problem. To
resolve the problem, automated page turning can be combined
with a system of bookmark annotations to allow the player
to go back and forth in the document with greater ease (Jin,
2013). However, instantaneous jumps from page to page in the
music are considered distracting to music players (Laundry,
2011). This supports the concept of a flattened score in which
all repeats of the musical score are expanded (Jin, 2013). Such a
flattened score may be obtained by representing the sheet music
using a formal language representation through optical music
recognition algorithms, allowing the flattened score to be checked
for errors in the interpretation of the repeat instructions (Jin,
2013; Dannenberg et al., 2014; Ringwalt et al., 2015).

3. A KALMAN FILTER MODEL FOR
EYE-GAZE PAGE TURNING

In this paper, we adopt a Kalman filter approach to create a
robust eye-gaze tracking model that can smoothen the noisy eye-
gaze data recorded from the eye-gaze tracker while compensating
for loss of input due to glances away from the score as well as
local variations in the eye-hand span. To model the eye-gaze

pattern across the screen, we assume that the score image has
been pre-processed using the score processing steps described
in Bonnici et al. (2017), that is, the page is sub-divided into sub-
pages comprising of two systems, repeats have been flattened and
a half-page turn is adopted. We also assume that each system is
comprised of two staves as typical of piano music.

3.1. Reading Model
Music, like text, is read from left to right (Huovinen et al., 2018),
such that the current position on the score may be expressed by
the linear equation:

xk+1 = xk + 1xk (1)

where xk = (xk, yk)
′ denotes the current location on the

score from which the subject is reading at the instance k while
1xk = (δxk, δyk)

′ denotes the displacement in the reading
position. The horizontal component δxk of the displacement
vector depends on the reading velocity, that is, the local velocity
with which the piece is being read which depends on the tempo of
the piece as well as the local complexity of the score. Toward the
end of the system, however, the horizontal reading position will
revert to the start of the next system and is, therefore, a function
of the width of the system. Thus, the horizontal displacementmay
be expressed as:

δxk =

{

f (v) within the same system

f (w) at the end of the system
(2)

where v is the reading velocity and w the width of the system, as
illustrated in Figure 2.

Since each system consists of two staves, let us, without loss of
generality, assign the vertical component of the reading position
to be at the middle of the system as illustrated in Figure 2. While
the reading position remains within the same system, this vertical
component is expected to remain unchanged. In the transition
from one system to the next, this vertical component is expected
to shift vertically as a function of the separation between the two
systems. Thus, the vertical displacement component δyk can be
expressed as:

δyk =

{

0 within the same system

f (s) at the end of the system
(3)

where s is the separation between two systems as illustrated
in Figure 2.

An eye-gaze tracker will provide information on the point
of regard g = (gx, gy) of the subject on the screen. This point
of regard corresponds to the subject’s current reading position
such that the point of regard g may be used to adjust and
update the reading position predicted through Equation (1).
In particular, the point of regard may be used to estimate the
local changes in the reading velocity, allowing for updates to
both the reading position and the horizontal displacement δxk.
However, from literature on eye-gaze movement during music
reading, we know that the eye movement may have variations
in the vertical directions corresponding to the subject scanning
both staves in the system. The eye-gaze movement will also have
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FIGURE 2 | Illustrating a simple reading model. (1) When reading notes within the system, the point-of-regard moves with a horizontal displacement which is a

function of the velocity v with which the piece is being played. (2) At the end of the system, the point-of-regard moves not only in the horizontal direction, but also in

the vertical direction. Here the horizontal displacement is a function of the width w of the system, while the vertical displacement is a function of the separation s

between the two systems.

horizontal variations around the note being read as the reader
shifts their gaze to read upcoming notes. Moreover, glances at
keyboards, or partners results in eye-gazes that do not always
correspond to the reading location on the score. Thus, the eye-
gaze must be considered as a noisy measurement and a method
that compensates for noisy data must be adopted.

3.2. The Kalman Filter
The discrete time Kalman filter provides such a tool. The Kalman
filter assumes that a system is governed by a process modeled
by the linear stochastic model given by Equation (4) for which
a measurement z may be related to the state vector x using
Equation (5) (Maybeck, 1979)

xk = Axk−1 + Bu+ wk−1 (4)

zk = Hxk + vk (5)

where w and v are random variables representing the process
and measurement noise, respectively. These are assumed to be
white Gaussian noise processes with zero mean and covariance
matrices Q and R, respectively. Matrix A relates the state at the
previous time instant k− 1 to the state at the current time instant
k, matrix B relates the optional control input u to the state and
matrix H relates the state to the measurement z.

The Kalman filter estimates the state inputs in two steps
referred to as the prediction step and a correction step, such
that feedback from the measurement z is used to obtain better
estimates of the state vector x. The prediction step is is used by the
filter tomake a priori predictions of the state and error covariance
using the knowledge gained about the process up to the current

time instant. These are denoted as xk|k−1 and Pk|k−1, respectively,
and are given by:

xk|k−1 = Axk−1|k−1 + Buk−1|k−1 (6)

Pk|k−1 = APk−1|k−1A
′ + Q (7)

The a priori state and error covariance estimates are then updated
in the correction step which takes into account the most recent
measurements obtained at the current time instant. The updated
a posteriori estimates, denoted by xk|k and Pk|k are obtained
through the correction update step:

Kk = Pk|k−1H
′(HPk|k−1H

′ + R)−1 (8)

xk|k = xk|k−1 + Kk(zk −Hxk|k−1) (9)

Pk|k = (I − KkH)Pk|k−1 (10)

where K is a gain matrix which is estimated by the Kalman
filter to minimize the a posteriori error covariance and weighs
the difference between the predicted and actual measurements to
update the a priori state estiamte xk|k−1 to obtain the a posteriori
state estimate xk|k (Maybeck, 1979).

3.3. Application of the Kalman Filter Model
for Page Turning Applications
Let us consider the pianist reading music from a single system. If
we assume a reading model in which the reading velocity remains
constant, then, the process model may be expressed as:

xk+1 = xk + δxk (11)

yk+1 = yk (12)

δxk+1 = δxk (13)
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Comparing this model to the process model defined by
Equation (4), the reading position within the system may be
modeled by a process model with a state vector x = (x, y, δx)′

such that the matrix A is given by:

A =





1 0 1
0 1 0
0 0 1





with a zero control input. By considering the eye-gaze position
g = (gx, gy)

′ as the noisy measurement z we can define the
matrix H as:

H =

[

1 0 0
0 1 0

]

We hypothesize that within the single system the Kalman filter
correction step will provide the necessary correction to the state
vector x to allow for local adjustments in the reading velocity.

Let us now consider the instance when the pianist is
transitioning from one system to the next. In section 3.1, we
note that this transition requires an additional displacement in
the reading position to initialize the reading position to the
start of the subsequent system. There are various possibilities
to take into account the transition between two systems. For
example, if we assume that the transition between the systems
is instantaneous, then the additional displacement required can
be introduced through the control input u. Alternatively, a
switching Kalman filter (Murphy, 1998) may be employed to
create two reading models, one to model reading within the
system and another to model the transition between systems,
switching between readingmodels. However, we hypothesize that
for page turning applications, the Kalman filter model will be
sufficiently quick in correcting for the reading position when
the subject transitions between systems such that no additional
inputs or readingmodels are required. In this manner, we balance
accuracy of the reading model with speed and efficiency in
the tracking.

3.4. Determining the Kalman Filter
Parameters
To apply the Kalman filter model, we need to determine the
covariance Q of the process noise, the covariance R of the
measurement noise as well as the initial error covariance P.
To determine estimates for these values, four volunteers were
invited to read and play eight set pieces while recording both
eye-gaze and keying information. The subjects were asked to
play the extracts first as a sight-reading task and then, after
allowing a 2-min practice session. Moreover, the extracts were
selected such that they contained examples of irregular time
and key signatures, varying rhythmic and pitch complexities,
and tempo changes. The keying information obtained directly
from the MIDI output of the digital piano was synchronized
with the score through dynamic time warping. The note
onset from the MIDI data was then used to align the eye-
gaze information with the keying information and the score.
In this manner, we could observe the eye-gaze data under
different conditions, allowing for monitoring of variations in

the eye-hand span, glances at keyboard and variations on the
reading advancements.

From the registration of the MIDI data with the score,
we observe that, in general, the pianists position on the
score follows the process model described by Equation (13).
Variations from this model in the vertical direction exist
when the pianist’s position on the score shifts from the top
to the bottom line of the system. While variations in the
horizontal directions are observed mainly due to deviations
from the constant tempo model. Using these observations, we
empirically determine the initial values for Pk|k−1 = 0.1I
where I is the identity matrix, and set the process noise
covariance to

Qk =





0.2 0 0.6
0 0.85 0
0.6 0 0.2





choosing these values as they best describe the observed
variances in the MIDI note onsets. Moreover, from the
registration of the point-of-regard and the MIDI data, we
observe larger deviations between the point-of-regard and the
position on the score. These deviations are due to forward
and backward glances as well as vertical oscillations as the
pianist reads from both staves of the system. Since these
deviations represent the variance that we can expect in
the measurement, we empirically set the measurement noise
covariance to

R =

[

5× 1010 0
0 5× 105

]

as this best describes the observed variances between
the measured point-of-regard and the position on
the score.

3.5. Loss in the Eye-Gaze Measurement
The discussion thus far assumes that the eye-gaze tracker
in use can locate the pianist’s eyes at all times. However,
from our preliminary study, we note that there are instances
when pianists shift their position at the piano, for example,
by leaning toward the higher or lower registers of the
piano. In doing so, the eyes shift out of the field of
view of the eye-gaze tracker, resulting in a loss of eye-
gaze measurements. This loss results in measurement data of
z = 0. While the Kalman filter tolerates noisy data, long
instances of erroneous measurements will cause the Kalman
filter to diverge, particularly since such losses in the eye-
gaze measurements tend to occur over long, consecutive time
intervals. Such divergence may lead to accidental page turns
which is undesirable.

To compensate for loss in measurement data, we monitor
the eye-gaze measurements and in the case of consecutive
losses, we interpolate the missing eye-gaze measurements. The
interpolation uses the assumed process model such that:

z1,k = x1,k−1|k−1 + x3,k−1|k−1 (14)

z2,k = x2,k−1|k−1 (15)
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When the pianist’s eye are once again within the field of view of
the tracker, the measurement data will revert to those obtained
through the eye-gaze tracker, allowing the Kalman filter to
update the state vectors with the new, actual measurement input.
Although this approach may introduce some drift, the error due
to this drift will not be as large as the divergence caused due to
loss in the measurement data.

This approach allows us to use a hybrid model to
determine the pianist’s location on the score. At instances
when measurement data is available, the pianist’s position is
determined through the Kalman filter eye-tracking model. In the
absence of anymeasurement data, we follow the constant velocity
model until sensible measurements are once more obtained
from the eye-gaze tracking device. Relying only the interpolation
models of Equations (14) and (15) would make the estimation of
the pianist’s reading position susceptible to the inherent noise of
the eye-gaze tracking device as well as variations in the eye-gaze
movements as discussed above.

3.6. Using the Reading Position to Effect a
Page Turn
Page turning is effective if, when the pianist approaches the end
of the system on the page, the new system of the subsequent page
is already within the pianist’s field of view. In this paper, we adopt
the half-page turning described in Bonnici et al. (2017), with the
score having already been pre-processed to identify the systems,
bar-lines and with all repeats flattened. Since the viewing device
is intended to be a regular-sized tablet, for readability, each page
consists of only two systems displayed at any one time. With two
systems per page, half-page turns involve updating one system
at a time. Thus, a system Sn will be updated with system Sn+2

when the pianist reads from the system Sn+1. However, we note
that due to looking-ahead habits, toward the end of a system, the
pianist may have both systems in focus. Updating a system the
instance the gaze is averted to the next system may, therefore,
be too distracting for the pianist. For this reason, it is desirable
to allow the gaze to settle in the new system before effecting the
half-page turn.

To achieve this, we create a rectangular area of interest on
each new system displayed. This rectangular area of interest spans
from the second detected bar-line to the last bar-line of the system
as shown in Figure 3. We use this region of interest to accumulate
the number of times the pianists gaze falls within the region
of interest. By requiring a minimum number of gaze instances
within the region of interest, we may ensure that the pianists
gaze would have settled on the new system such that effecting the
page turn would not be distracting. Empirically, we determine
that for pieces played at an average tempo of 120 bmp, we may
set the minimum threshold to a fifth of the width of the region
of interest. We normalize this threshold with the user-defined
average speed of execution of the piece to take into account
that faster (slower) average tempo will reduce (increase) the time
spent within the region of interest.

4. EVALUATION METHODOLOGY

To evaluate the performance of the proposed Kalman filter model
and subsequently, the eye-gaze based page-turning, we adopt
a two-step evaluation process, using the model first with a set
of simulated data, followed by an evaluation with real eye-gaze
data. The simulated tests allow us to observe the Kalman filter
model with respect to ground truth data and hence, determine the

FIGURE 3 | Illustrating the region of interest on the second system. When the eye-gaze position exceeds a set threshold of 1/5 of the region of interest, the page turn

can be effected without distracting the pianist.
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residual error of the Kalman filter model. The simulated ground-
truth data was created using the process model described by
Equation (1) using a steady tempo of 120 bpm to simulate the
reading velocity, a system width of 1,200 pixels, a system height
of 200 pixels and a separation of 300 pixels between systems,
resulting in an effective page size of 1, 200 × 700 pixels. For
simulation purposes, we create a page consisting of five systems
as shown in Figure 4. We then introduce perturbations to the
ground-truth data to simulate expected characteristics in the
real data. We first simulate short-time losses of the eye-gaze
measurement data which can be brought about by glances at the
keyboard. These are modeled as impulses in both the horizontal
and vertical components of the eye-gaze measurements. We then
model the noise in the measurement of the point of regard
due to micro-saccades in the eye movements as well as noise
introduced by the eye-gaze sensor itself. This noise is modeled
as additive Gaussian noise, changing the signal-to-noise ratio
by varying the variance of the noise distribution. The final
simulation attempts to emulate longer losses in the eye-gaze
measurements by introducing longer zero-pulses to the ground
truth measurement data. This evaluation allows us to compare
the effect of the measurement data interpolation on the resulting
Kalman filter outcome.

In all these tests, the Kalman filter outputs were
expected to follow the ideal input in an over-damped

manner due to a tendency of the Kalman filter model to
withstand changes in each direction as set in the noise
co-variance matrices.

To evaluate the Kalman filter model with real eye-gaze
data, we use the SMI RED500 eye-gaze tracker7. This eye-
gaze tracker uses infrared illumination alongside computer-
based image processing to detect the gaze location of the
user on a designated area of interest. For optimal conditions
of operation, the subject is to sit 60 − 80 cm away from
a 22-inch monitor, where an allowable head box of roughly
40 × 20 cm is formed. Under these conditions, the system
offers a binocular tracking with a maximum sampling rate
of 500 Hz, contact-free measurement, small automatic head-
movement compensation for head movement velocities of up
to 50 cm/s by using the corneal reflexes and a typical gaze
position accuracy of around 0.4 °. The eye-gaze tracker is
connected to a workstation running the iView XTM software.
This software facilitates the capturing of eye movements
by controlling all the camera equipment and processing all
eye and scene video signals captured. This workstation is
connected, via Ethernet, to a personal device which hosts
our page-turning application. Our application is Matlab-based
and communicates to the workstation by using an application

7https://imotions.com/hardware/smi-red500/

A

B

FIGURE 4 | Simulation of eye-gaze measurements while reading five systems and the Kalman filtered result. (A) The horizontal component of the eye-gaze movement

and (B) the vertical component of the eye-gaze movement.
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programming interface (API) provided by the iView XTM

software development kit (SDK). The API allows our page-
turning application to control the SMI Red500 and retrieve
eye-tracking data.

Using this setup, two tests were carried out. In the first
instance, the subject was asked to read and perform 15
piano scores normally, allowing changes in speed within the

performance. For this test, 15 different musical pieces were
selected such that the pieces exhibited different levels of difficulty

and changes in tempo. For these pieces, the performance of

the Kalman filter model for page turning applications was
evaluated by counting the number of successful page turns,

delayed page turns, and advanced page turns. For the purpose
of this work, we define successful page turns as those page turns
that do not interrupt the flow of music. Delayed page turns
are defined as those instances when the pianist has completed
the system but the next system is not displayed, introducing
a delay in the flow of the music. Likewise, advanced page
turns are page turns triggered before the pianist has finished
reading the system. These page turns are more disruptive
than delayed page turns since they introduce jumps in the
music. In the second part of the reading test, we deliberately
introduced re-starts and skips in the flow of music to determine
whether the Kalman filter model was equally able to retain the
successful page turns under large disturbances from the assumed
reading model.

5. RESULTS

Figure 4 shows the performance of the proposed Kalman filter
model under clean, idealized eye-gaze measurements. These
measurements will be used as ground-truth when evaluating
the performance of the Kalman filter model. From Figure 4,
we can observe that, as expected, the Kalman filter acts as
an over-damped filter, allowing the system states to reach the
desired output. The results shown here demonstrate that the
proposed model can follow through changes in reading direction
corresponding to shifts in the eye-gaze between different systems.
A root-mean-square (RMS) error of 106.0 pixels was observed
with this input and this corresponds to a lag between the ideal
and predicted states. This lag can be broken down into a lag of
103 pixels in the horizontal direction, equivalent to 8.5% of the
page width, and 25 pixels in the vertical direction, equivalent to
3.6% of the page height.

In Figure 5, we simulate brief losses in the measurement
data with impulses inserted at equally spaced intervals along
the measurement. We note that the Kalman model filters out
these impulses such that the predicted gaze positions lie close
to the expected ground truth. An RMS error of 109.9 pixels
was observed, which indicates that the difference between the
Kalman filter results and the ground truth is mostly due to the
lag observed in Figure 4 and that the impulses introduced have
little effect on the Kalman filter performance.

A

B

FIGURE 5 | Simulating the loss of eye-gaze data, typical of brief instances when the pianist makes quick glances at the keyboard. (A) The horizontal component of

the eye-gaze movement and (B) the vertical component of the eye-gaze movement.
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Figure 6 shows the performance of the Kalman filter model
under the presence of normally distributed noise having zero
mean and a standard deviation of 50 pixels. This graph
demonstrates how the Kalman filter model adopted compensates
for noisy signals and is, therefore, robust to noise in eye-
gaze movements due to micro-saccades as well as noise in
the sensor itself. For a noise with a standard deviation of
50 pixels, an RMS error of 107.2 pixels was observed. This
error is comparable to the error due to the lag introduced
by the model. In Figure 7, we show the change in the RMS
error with increasing noise up to a standard deviation of
500 pixels. From this graph, we may note that, although
the RMS error of the Kalman filter increases, the remaining
noise in the filtered data is greatly reduced in comparison
with the noise in the measurements. The performance of the
Kalman filter model was further observed under combined
impulse and normally distributed noise, mimicking instances
of noisy sensor and short data losses. The results of this
simulation are shown in Figure 8 and, in this case, an
RMS error of 111.5 pixels showing that the Kalman filter
has the same level of performance under the combined
noise models.

In Figure 9, we observe the effect of longer periods of
measurement data loss, comparable to instances when the

subject’s eyes fall outside the field-of-view of the eye-gaze tracker.
Here, we compare the performance of the Kalman filter (red)
with the same filter model but after performing measurement
data interpolation (green). From this result, we may note that
loss in the measurement causes the Kalman filter to drift toward
the zero level, recovering toward the ground-truth once the
measurement data is regained. By applying the measurement
data interpolation, the Kalman filter output is being effectively
clamped to the constant reading model which not only reduces
the drift from the ground truth, but also allows the Kalman
filter model to recover from the loss of measurement data
more quickly.

Figure 10 shows the eye-gaze measurements sensed by the
eye-gaze tracker while the subject performed the extract. The
state-vector from the Kalman filter model is superimposed on
this sensed data. Similar to the simulated tests, we can observe
that the Kalman filter model reduces the noise in the eye-gaze
position estimation, resulting in smoother eye-gaze movements
on the score. In Figure 11, we show the Kalman filtered gaze
locations and the instances when page turns occur for the entire
piece. We superimpose on the graph the region of interest within
which, we expect the page turn to occur. Page turns within
these regions will ensure that the pianist has the next system in
place before reaching the end of the current system. Page turns

A

B

FIGURE 6 | Simulating the performance of the Kalman filter model under noisy measurement data, typical of deviations in eye-gaze due to micro-saccades and noisy

sensors. The noise added has a normal distribution with zero mean and a standard deviation of 50 pixels. (A) The horizontal component of the eye-gaze movement

and (B) the vertical component of the eye-gaze movement.
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FIGURE 7 | Comparing the performance of the Kalman filter under increasingly noisy data.

A

B

FIGURE 8 | Simulating the performance of the Kalman filter model under combined sensor noise and short instances of measurement data loss. (A) The horizontal

component of the eye-gaze movement and (B) the vertical component of the eye-gaze movement.

that occur before the region of interest are likely to disturb the
subject by occurring too soon, when the subject is transitioning
between systems. On the other hand, page turns that occur too
late within the region of interest will delay the page turn, causing

the subject to wait for the page turn to occur. In Figure 11,
we can observe that of the 21 page turns required to perform
Columbine Dances, two of these page turns occurred just at the
end of the region of interest, introducing an undesired pause

Frontiers in Artificial Intelligence | www.frontiersin.org 12 August 2020 | Volume 3 | Article 57

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Tabone et al. Automated Page Turner

A

B

FIGURE 9 | Simulating longer losses in eye-gaze measurements which are typical when the user moves away from the field-of-view of the eye-gaze tracker. The

performance of the Kalman filter model (red) can be compared with proposed interpolation of the measurement values to adjust for measurement losses (green). (A)

The horizontal component of the eye-gaze movement and (B) the vertical component of the eye-gaze movement.

FIGURE 10 | Comparing the eye-gaze measurements obtained from the eye-gaze tracker and the Kalman filter results using the first two lines of Columbine Dances

(Martinu) as an example.
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A

B

FIGURE 11 | Illustrating the instances where page turns occurred during the execution of Columbine Dances (Martinu). showing (A) the horizontal component and (B)

the vertical component of the eye-gaze movement. Regions highlighted in yellow indicate the position of the region of interest of each system. The occurrence of a

successful page turn is marked with black circles while delayed page turns are marked with red circles. Page turns occurring within the region of interest do not cause

disturbance in the performance of the piece.

in the music. The remaining 19 page turns occurred within the
region of interest and can thus, be considered as successful page
turns. Table 1, documents the total number of successful, early
and late page turns for the 15 selected pieces. From this table,
we note that out of 289 page turns, only 5 page turns were
delayed, resulting in a 98.3% successful page turns. The delays
observed in the Columbine Dances are due to written tempo
change instruction from a slow section to a faster section. In
these cases, although the Kalman filter model did adapt to the
change in the tempo, the adaptation was not sufficiently quick.
The other three delays are mostly due to the score flattening
approach adopted from (Bonnici et al., 2017). These pieces had
repeat marks within the first half of the system, resulting in
very short systems where the image of the written score was cut
short to allow for the insertion of the repeated section at the
next system. In these cases, our page-turning model required the
subject to spend more time within the system before executing
a page turn. Adjusting the type-setting of the music through,
for example, re-writing the flattened score in MusicXML, would
ensure systems of more uniform lengths and hence, eliminate

this problem. Nevertheless, the delays incurred were of under 3
s in duration and thus, not unlike the delays experienced when
manually adjusting page turns, with the added advantage that the
subject can trigger the page turn without needing to remove their
hands from the keyboard.

Figure 12 further shows the performance of the eye-
gaze tracking under instances when the subject stops and
restarts reading the same section of music. The results shown
demonstrate that the Kalman filter model can react to such
changes, allowing for the eye-gaze following to function even
under changes in the subject’s gaze from the expected reading
model. Accommodating such changes is necessary as it allows
the eye-gaze page-turning to function even under instances of
practice time.

For comparison purposes, we performed a subset of the
scores presented in Table 1 using the audio-based, page turning
function of the PhonicScore App8. The music was performed
on a Yamaha Clavinova CLP545 digital piano. For purposes

8http://phonicscore.com/
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TABLE 1 | The performance of the automated page turning on 15 different

musical pieces, giving the total number of page turns required as well as the

number of successful page turns, the number of late page turns and the number

of early page turns as a percentage of the total number of page turns.

Page turns

Selected piece Total Successful

(%)

Late (%) Early (%)

Columbine Dances, Puppets II,

Martinu

21 90.5 9.5 0

Gavotte, Holberg Suite, Grieg 20 100 0 0

Gnosienne No. 1, Satie 15 100 0 0

Children’s Corner Suite, Mvt. No.

6, Debussy

18 100 0 0

Impromptu in G flat, Schubert 40 100 0 0

Maple Leaf Rag, Joplin 34 100 0 0

Minuet, from Sonata No. 1,

Beethoven

20 95 5 0

Moonshadows On The

Mountain, Linn

13 92.3 7.7 0

My Father’s Favorite, Doyle 16 100 0 0

Nocturne In C Sharp Minor,

Chopin

16 93.8 6.2 0

Papillon Noir, Massenet 15 100 0 0

Prelude In C, from 48 Preludes

and Fugues, Bach

10 100 0 0

Song For Sienna, Crain 24 100 0 0

Sundial Dreams, Kern 27 100 0 0

Total 289 98.3 1.7 0

TABLE 2 | The performance of the automated page turning using PhonicScore on

eight of the pieces given in Table 1.

Page turns

Selected piece Total Successful

(%)

Late (%) Early (%)

Columbine Dances, Puppets II,

Martinu

14 85.7 0 14.3

Gnossienne No. 1, Satie 10 20.0 80.0 0

Children’s Corner Suite, Mvt. No.

6, Debussy

12 58.3 0 41.7

Maple Leaf Rag, Joplin 23 56.5 26.1 17.4

Nocturne in C Sharp Minor,

Chopin

11 63.6 18.2 18.2

Prelude in C, from 48 Preludes

and Fugues, Bach

5 100 0 0

Song For Sienna, Crain 16 50 0 50

Sundial Dreams, Kern 18 61.2 38.8 0

Total 109 61.5 19.3 19.2

The table presents the total number of page turns required as well as the number of

successful page turns, the number of late page turns and the number of early page turns

as a percentage of the total number of page turns.

of evaluation, the CFX Grand Piano tone was used while the
use of pedals was not allowed since any other tone, or the use
of pedaling prevented PhonicScore from recognizing the notes
being played. The scores were selected on basis of the availability
of the music in MIDI and MusicXML file format which are
the two file formats recognized by the app. Table 2 gives the
number of successful, late and early page turns experienced when
using this application. It is important to note that PhonicScore
is not restricted to half-page turns and the number of systems
presented in a page depends on the density of the music. Overall,
the application therefore requires fewer page turns per score.
From Table 2, we note that this application has a larger quantity
of late and early page turns than our eye-gaze tracking system.
Moreover, in all instances, manual intervention was needed to
place the cursor position in the correct place on the score.
All late and early page turns occurred after the application
was unable to match the audio signal with the correct place
on the score. In instances of late page turns, the application
was unable to pick-up where the user was playing and did
not advance at all, whereas in early page turns, the application
found matches in places ahead of the user’s current position
on the score, skipping ahead in the score. These observations
further demonstrate the advantages of using eye-gaze tracking for
page-turning.

6. CONCLUSION

In this paper we present an eye-gaze page turning system
that allows performers to browse through the music while
performing it without lifting the hands from the keyboard. To
achieve this page turning system, we describe a simple reading
model which describes the way a subject’s eye-gaze progresses
through the music score when reading and performing the
music. This reading model makes assumptions about the reading
velocity that are not necessarily strictly observed by the subject.
Measurements of the subject’s point-of-regard through eye-
gaze trackers are therefore used to adjust the position on
the score. However, we note that such a sensor introduces
measurement noise and thus, we propose a Kalman-filter
model to reach a balance between the reading model and the
measurement data.

The resulting eye-gaze tracking allows us to create a robust
page-turning systemwhich, when paired with a half-page turning
display allows constant update of the displayed page such that
the subject always has fresh music to play from. The results
obtained show that successful page turns occurs in 98.3% of the
page turning instances. Furthermore, the page-turning system
is robust to instances of re-starts and skips along the system
being read.

In our model, we assume that, for the most part, the subject
needs to look at the score to read the notes from the score.
However, one can envisage instances when the player performs
parts of the score from memory. In such instances, our proposed
measurement interpolation prevents the Kalman filter model
from diverging. Accuracy in the model can be increased if
the proposed Kalman filter model is augmented to include a
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A

B

C

FIGURE 12 | Illustrating the performance of the page-turning under conditions of re-starts and skips, showing (A) the horizontal eye-gaze position, (B) the vertical

eye-gaze position (C) the measured and Kalman filtered eye-gaze values on the score. (1) The subject starts by reading the music normally but at (2) stops and

restarts the performance from the beginning of the system. The Kalman filter eye-gaze tracking model responds in kind and restarts from the beginning of the system

too. The current system remains visible for the subject, causing no interruptions in the flow other than those intentionally introduced by the subject. At (3) the subject

proceeds to the next system and the Kalman filter model detects this change. The subject plays the first, second, and third bars of this system, but then skips the

fourth bar and goes straight to the fifth bar. The Kalman filter treats such a skip as noise in the measurement model and lags behind. However, the page-turning

mechanism can sense that the subject has moved to the second system and can update the first system (not shown here). Thus, when the subject completes the

second system, the page is refreshed and can proceed with performing the next system which would be displayed on top.
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second measurement input, namely, sound measurement. The
Kalman filter model would then combine the stochastic nature
of the gaze and sound measurements to create a more robust
score following.
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