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Purpose: Artificial intelligence (AI) employs knowledge models that often behave as a

black-box to the majority of users and are not designed to improve the skill level of

users. In this study, we aim to demonstrate the feasibility that AI can serve as an effective

teaching aid to train individuals to develop optimal intensity modulated radiation therapy

(IMRT) plans.

Methods and Materials: The training program is composed of a host of training

cases and a tutoring system that consists of a front-end visualization module powered

by knowledge models and a scoring system. The current tutoring system includes a

beam angle prediction model and a dose-volume histogram (DVH) prediction model.

The scoring system consists of physician chosen criteria for clinical plan evaluation as

well as specially designed criteria for learning guidance. The training program includes

six lung/mediastinum IMRT patients: one benchmark case and five training cases.

A plan for the benchmark case is completed by each trainee entirely independently

pre- and post-training. Five training cases cover a wide spectrum of complexity from

easy (2), intermediate (1) to hard (2). Five trainees completed the training program with

the help of one trainer. Plans designed by the trainees were evaluated by both the scoring

system and a radiation oncologist to quantify planning quality.

Results: For the benchmark case, trainees scored an average of 21.6% of the

total max points pre-training and improved to an average of 51.8% post-training.

In comparison, the benchmark case’s clinical plans score an average of 54.1%

of the total max points. Two of the five trainees’ post-training plans on the

benchmark case were rated as comparable to the clinically delivered plans

by the physician and all five were noticeably improved by the physician’s

standards. The total training time for each trainee ranged between 9 and 12 h.
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Conclusion: This first attempt at a knowledge model based training program brought

unexperienced planners to a level close to experienced planners in fewer than 2 days.

The proposed tutoring system can serve as an important component in an AI ecosystem

that will enable clinical practitioners to effectively and confidently use KBP.

Keywords: knowledge model, lung cancer, machine learning, tutoring system, intensity modulated

radiation therapy

INTRODUCTION

Knowledge models collect and extract important patterns and
knowledge from high quality clinical plans and utilize them to
predict clinically optimal solutions for new cases. For treatment
planning, this comes in the form of selected beam angles,
optimized collimator settings, predicted achievable dose-volume
histogram (DVH) endpoints for inverse optimization, and
combined multiple parameter predictions for a fully automated
treatment planning process (Zhu et al., 2011; Breedveld et al.,
2012; Zhang et al., 2012, 2018, 2019a,b; Good et al., 2013; Voet
et al., 2013; Zarepisheh et al., 2014; Sheng et al., 2015, 2019;
Yuan et al., 2015, 2018; Hazell et al., 2016). Knowledge models
have been successfully used in the clinical workflow for fully
automated planning for some simpler cancer sites like prostate
(Voet et al., 2014), but for more complicated sites, there may yet
be some hurdles to overcome. Due to the limitation of training
samples and other factors, they are often simplified to improve
generalizability by regulating the capability of handling a wide
array of niche scenarios in which a human planner would be
better fit to tackle. Despite this, there is a lot to be gained
from investigating the implicit knowledge of these models. The
simple, logical principles that most of these models are built
upon can not only start a foundation for less experienced users
to progress toward clinical reliability but also bridge the gap
between human and model knowledge in what to look for in
evaluation and identification of planning intricacies. The goal
is to make a human-centered artificial intelligence (AI) system
to exploit the strengths from both ends and efficiently train
competent planners.

While extensive training and arduous hours of practice can
certainly cultivate competent and professional planners, more
effective training programs are urgently needed to help more
planners become proficient in the clinic as technologies continue
to become more advanced and more complex. Of course, there
are aspects of planning that can only be obtained by years of
nuanced planning, but plan quality is not always shown to be
better in those who have more experience (Nelms et al., 2012).
Some planners with planning experience may encounter a bottle-
neck in improving their versatility in planning various scenarios,
due to the lack of understanding of the underlying subtlety which
can be readily provided and instructed by the knowledge-based
models. In addition, training a planner to a highly proficient
level in a traditional mentor-tutor fashion is expensive in time
and resources, and sometime the limited training resources are
dispatched to more entry level learners and/or regional centers.
A person can quickly learn how to plan well if the teaching

is well-thought out and provides the base for the person to
build their own intuition. A training program that introduces
the benefit of knowledge-based models can accomplish this and
aid in tearing down the notion of these models being entirely a
black box which has been restrictive to clinical usage of models.
Such a program can be a catalyst to bring more models into
routine clinical work by showing how they work and what the
best practice is. This study examines the workflow and feasibility
of a training program that takes advantage of two knowledge-
based models (Yuan et al., 2012, 2018) with carefully developed
scoring criteria to facilitate efficient and quality learning of lung
IMRT treatment planning to help establish intuition to trainees
with no previous clinical planning experience.

The proposed training program lays the foundation for an
entirely self-sufficient training module that will be designed as
a constraint-based intelligent tutoring system (ITS) (Mitrovic
et al., 2007, 2013; Dermeval et al., 2018). The constraint-based
approach supports the type of learning problem that does not
have an explicit solution or path for a user to follow as is
the case of IMRT planning. The constraints are defined in
the form of the scoring system, and the end goal is for the
user to learn the planning actions that optimize the scoring
system to obtain the highest score possible. In this constraint
based framework, the user has to forge their own path from
the information that is directed to them, and two people can
take entirely different strategies and arrive at good solutions.
This is a proof-of-concept study to show that there is valuable
information to be gained from the knowledge models and
they can be effectively and efficiently used in training new
planners and give them the ability to utilize these models to
generate quality plans. Here, we define new planners as those
who have completed adequate medical physics course work but
have minimal clinical treatment planning practice. As such,
they would have completed classroom instructions of radiation
therapy physics and advanced treatment planning. They would
have basic operational knowledge of the TPS system, but have no
experience in planning real clinical cases.

METHODS AND MATERIALS

Training Program Design
Program Overview
The overall training program design is shown in Figure 1. At
the core of the training program is the tutoring system which
consists of a front-end visualization module powered by KBP
models and a plan scoring system. The visualization module
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FIGURE 1 | System design diagram for the training program which includes a tutoring system at its core and a host of training cases. The tutoring system brings

together the trainee, trainer, and the TPS. A trainer is optional for assisting the interaction between the trainee and the tutoring system. The tutoring system is powered

by a scoring system and a set of knowledge models.

(Figure 2) provides the vital interactive workspace for the trainee
and trainer, while the KBP models and scoring system provides
back-end knowledge support. The KBP models currently include
a beam bouquet prediction model and a dose-volume histogram
(DVH) prediction model, while the scoring system consists
of physician chosen criteria for clinical plan evaluation as
well as specially designed criteria for learning guidance. These
additional specially designed criteria were designed to help
trainee understand the full scope of treatment planning and
eventually achieve the ability to create a high quality plan,
especially focusing on the criteria that are often qualitatively
evaluated by the physician such as the overall isodose line
conformity. Further, the tutoring system works in concert
with the clinical treatment planning system (TPS) as trainees
learn to generate clinically plans in a realistic clinical planning
environment. In this study, we use the Eclipse R© TPS (Varian
Medical Systems, Palo Alto, CA) which provides fluence map
optimization and dose calculation.

The current training program utilizes six lung/mediastinum
IMRT patient cases: one benchmark case (shown in Figure 3)
and five training cases. Each case is composed of clinical images,
structures, and a delivered plan which were de-identified before
incorporated into the training program. The benchmark case is
used to track skill development. The five training cases cover
the complexity from easy (2), intermediate (1) to hard (2) in
lung IMRT planning. The difficulty level is determined by an
experienced planner who evaluated the prescription, tumor size,
complexity of shape, and proximity to organs-at-risk (OARs).
The benchmark case, considered “intermediate-to-hard,” has a
target volume of 762.8 cc and a prescription of 62Gy; two “easy”
training cases have an average target volume of 113.8 cc and
prescription of 40Gy (reduced dose due to prior treatment); the
“intermediate” training case has a target volume of 453.0 cc and a

prescription of 60Gy; two “hard” training cases have an average
target volume of 845.7 cc and prescriptions of 60 Gy.

Before training begins, each trainee undergoes a
benchmarking process to determine baseline score. In this
process, the trainee is introduced to the treatment planning
system with functionality they might not be familiar with as they
have no prior experience. They are provided with the scoring
metrics and asked to plan the benchmark case without any
intervention from the trainer or the tutoring system (referred
to as the baseline plan). The trainee is instructed that they have
the choice of 6 or 10MV beams and could have no more than 11
beams to align with current clinical practice.

Training Workflow
Figure 4 illustrates the typical training workflow (solid lines)
for learning to plan one training case. The cases are selected
sequentially from the easy ones to the difficult ones. For each
case, a trainee goes through two phases of training: the beam
selection phase and the fluence map optimization phase. In
both phases, each training episode involves three main steps:
(1) the trainee makes a decision (or takes an action); (2) the
training program generates a plan corresponding to the decision
and displays relevant dose metrics; (3) the training program
then generates a comparison plan according to predictions
from knowledge models and displays the same set of relevant
dose metrics for comparison. The majority of interaction
centers around the process with which the trainee learns to
explain the differences between their plan and the comparison
plan, as well as the resulting dosimetric implications of those
differences.

During the beam selection phase, the trainee can choose
the number of beams (seven to 11) and the direction of
beams. The comparison plans are those generated with beams
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FIGURE 2 | Interactive user interface of the tutoring system. Within the system, the trainee is capable of checking the current plan’s metrics against the clinical plan

and knowledge model DVH prediction.

determined by the knowledge-based beam selection model. Both
trainee plans and comparison plans are created by an automatic
KBP algorithm. The trainee determines whether they prefer to
move along the direction of model prediction or continue with
their own direction. At the end of this phase, the final beam
comparison provides an assessment of the expected dosimetric
differences contributed by trainee’s beam design.

When the optimization training phase begins, the trainee
creates the initial optimization objectives and finishes the
planning process. In parallel, a comparison plan is generated with
the KBP beam setting using trainee’s dose-volume constraints.
Dosimetric comparisons between plans allow the trainee to
appreciate whether the results aligned with their expectations
during the aforementioned assessment, which builds a forward
intuition on beam choice implications.

Following this, the KBP DVH model is imported and the
trainee is able to compare their plan’s DVHs and dose objectives
to where the DVHmodel predicts they should be able to achieve.
The trainee then makes changes based on what they see is

obtainable. After the changes are made and the plan is scored, a
final comparison is done with the clinically delivered plan. The
trainee works backwards by looking at the scoring and DVH
of the clinical plan and ponders on how the clinically delivered
plan might have been achieved. This is to further ingrain a
backwards intuition for the metrics related to certain collective
beam arrangements.

As shown in Figure 4, the training workflow also includes a
few steps (dashed boxes) that are designed for people with little
to no knowledge of treatment planning. These steps are optional
when trainees are at more advanced stages during the training
process. The first beam assessment is an initial guidance with the
trainer about the best beam direction to select if they were to
make a plan with only a single beam. This step encourages the
trainee to think about how each individual beam will contribute
to the final dose distribution. The second beam assessment helps
the trainee make an optimal plan when only two beams are used.
This helps planners understand how multiple beams interact
with one another (i.e., the second best beam isn’t necessarily the
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FIGURE 3 | Screenshot of the benchmark case in (a) axial, (b) coronal, and (c) sagittal view. The clinically delivered plan’s isodose is displayed.

best beam to work with the first). Lastly, the “basic constraint
assessment” step is a simple check to ensure that the trainee has
at least one objective for all the relevant structures and two for
the target.

The current training program takes the trainee through the
workflow described in Figure 4 five times, one for each training
case, in increasing order of difficulty. After completing all five
cases, the trainee returns to the benchmark case and creates a
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FIGURE 4 | Training diagram that is largely based on comparison between trainee’s results and knowledge-based planning (KBP) models. Blue-colored process is

geometry-based assessment. Red-colored process is objective-based assessment. Green-colored process is geometry and objective based assessment. Dashed

box is considered optional step. Cylindrical block is based on knowledge-based model.

new plan entirely on their own without any intervention from
the trainer, knowledge models, or the tutoring system. This
post-training plan in comparison to the baseline plan on the same
case provides an objective way to assess if there is any significant
improvement in their planning ability.

Tutoring System Design
As introduced in the previous section, the current tutoring
system includes three major components: a visualization module
for user interaction, knowledge models for planning guidance,
and a scoring system for plan assessment. The visualization
module is integrated with the Eclipse R© TPS and is currently
implemented as a script using the Eclipse R© API. In the following,
we provide a brief description of the knowledge models and the
scoring system.

Beam Angle Selection Model
The beam model (Yuan et al., 2015, 2018) predicts the best beam
configuration for each new case, including the number of beams
and the angle of the beams. It operates on a novel beam efficiency
index that tries to maximize the dose delivered to a PTV and
minimize the dose delivered to OARs based on a number of
weighting factors. It also introduces a forced separation among
good quality beams to cover sufficient co-planar space. The
weighting factors and other parameters of the beam model are
learned from a set of high quality prior clinical cases (Yuan et al.,
2018). For the purposes of simplicity of introduction to new
planners, all beams in the current training program are restricted
to co-planar beams.

DVH Prediction Model
The DVH prediction model estimates the best achievable DVH
of the OARs based on a number of anatomical features:
distance-to-target histogram (DTH) principal components, OAR

volume, PTV volume, OAR-PTV overlapping volume, and out-
of-field OAR volume (Yuan et al., 2012). The model is trained
with a set of prior lung cases with a variety of tumor sizes
and locations. For this study, the model predicts DVHs that
are useful for the trainees during the learning and planning.
Organs-at-risk included in each DVH are cord, cord+3mm,
lungs, heart, and esophagus.

Plan Scoring System
A plan scoring system was designed to help trainees understand
the quality of different plans from the choices of beams and DVH
parameters. Therefore, the scoring system incorporates both
physician’s clinical evaluation criteria and planning knowledge.
The metrics with their respective max point values are shown in
Table 1. As noted, since each case has its own unique anatomy
and complexity, the most achievable points of a plan is always
less than the total max points, while more difficult cases have
lower best achievable points. The best achievable points of each
plan are not normalized so the trainees are encouraged to rely
on the actual planning knowledge to “do their best,” rather than
to get “100 percent score” or gaming the system. There were a
total of 164 points, with which the raw score was normalized to
represent the percentage score. A maximum scoring would have
100% percentage score. Normalization was performed after the
training was done as a summary of the data. It is worth reiterating
that the trainee was unaware of the maximally achievable score
for each case so they couldn’t game the system. Note that even
clinically delivered plans may not be perfect in all categories, and
therefore, may not achieve the highest possible scores.

An effective scoring system can be created in many ways.
The current system starts with the logic of rewarding dosimetric
endpoints that are clinically relevant as explained in RTOG
reports (Chun et al., 2017), other clinical considerations (Kong
et al., 2011; Baker et al., 2016) and planning competitions
powered by ProKnow (ProKnow Systems, Sanford, FL;
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TABLE 1 | Metrics chosen to be a part of the scoring system and their respective maximum point value.

Target Max Lung Max Heart Max Esophagus Max Spinal cord Max

PTV D98% 21 Max dose 5 Max dose 5 Max dose 7 Cord max dose 10

PTV min dose 10 Mean dose 5 Mean dose 7 Mean dose 5 Cord+3mm max dose 10

GTV min dose 10 V20Gy 10 V30Gy 5

CN 95% 12 V5Gy 15 V40Gy 5

CI 50% 12

Location of max dose 10

PTV, Planning Target Volume; GTV, Gross Tumor Volume; CN, Conformity Number; CI, Conformity Index.

www.proknowsystems.com). The conformity index (CI)
(Knoos et al., 1998) aims to limit the isodose volume. The
conformation number (CN) or Paddick conformity index
(Paddick, 2000) follows similar logic to CI but focuses on the
portion of that isodose volume within the target.

Training Program Assessment
To assess the effectiveness of the training program, five trainees
who satisfy the criteria of new planners went through the entire
training program. For all five trainees, the baseline and post-
training plans of the benchmark case were scored and analyzed
for evidence of learning. Furthermore, the post-training plans
of all the training cases as well as all the clinically delivered
plans were also scored and analyzed for trainee performance and
potential knowledge gaps.

Moreover, to assess how the overall scores given by the scoring
system closely reflect true plan quality in a real clinical scenario,
a physician who specializes in the treatment of lung cancer
evaluated each of the plans to provide an expert opinion on their
clinical quality. For each trainee, the post-training plan of the
benchmark case was first compared with the baseline plan of the
same case and then against the clinically delivered plan by the
physician. Each comparison was categorized on a simplified 5-
point scale of (1) significantly worse, (2) moderately worse, (3)
comparable, (4) moderately better, and (5) significantly better.
The physician also evaluated the trainee’s post-training plans on
whether they could be approved for clinical delivery.

RESULTS

Scoring Results
Five trainees went through the training program and their
scores are shown in Figure 5. All trainees went through multiple
classroom courses on radiation physics, anatomy, radiation
biology, and treatment planning/dosimetry. They also completed
a basic practicum course to learn the essential operations of
a treatment planning system. After training, the overall score
of all trainees was unanimously improved from the baseline
and was much closer to that of the clinically delivered plan
(Figure 5A). Trainee 1 and 3 received a planning score point
that was slightly above that of the clinically delivered plan, with
an average of 54.4%, while the other three were marginally
lower with an average of 50.1%. In comparison, the score of

the clinically delivered plan was 54.1%. Detailed scores are listed
in Table 2. For the five cases used within the training program
(Figure 5B), every trainee obtained a score in the final plan that
was greater than that of the clinically delivered plan with the
exception of case 3 for trainee 5 and there was an overall average
of 12.6 raw planning score point improvement over the respective
clinically delivered plans. Detailed breakdown of each trainee’s
performance on each training case is listed in Table 3.

Physician Evaluation Results
Table 4 shows the physician evaluation of the trainee’s post-
training plans as compared to the benchmark plans and the
clinically delivered plans for the benchmark case. Two plans
designed by trainees #1 and #3 that scored slightly better than the
clinical plan per the scoring system were deemed as comparable
to the clinical plan by the physician. The other plans were rated
as marginally worse. All trainee’s post-training plans were rated
moderately better than the initial benchmark plans. Only one of
the trainee’s plan was deemed appropriate for clinical use based
on the physician’s discretion.

DISCUSSION

This is the first attempt at developing an effective training
program for IMRT planning that capitalizes on the implicit
planning tactics that is built into knowledge models for lung
IMRT. As trainees go through the training program, the
prediction from knowledgemodels provides guidance at multiple
steps and the carefully thought-out scoring objectives direct them
toward appropriate choices or skills to create a clinically viable
plan. The initial assessment indicates that the knowledge model
based training program can substantially improve the planning
knowledge of novice trainees in a short period of time (9–12 h in
this study). Furthermore, for some trainees their knowledge may
approach a clinical proficient level within this short period.

This training program demonstrates the feasibility that
knowledge models can be effective teaching aids to help
human planners understand the key steps toward generating a
clinically viable plan. This is an important first attempt to use
knowledge models in a human training process. We hypothesize
that by giving trainees opportunities to compare and reflect
on the predictions from knowledge models and their own
understanding of the planning process, these human planners
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FIGURE 5 | (A) For each trainee (column), the total score for the benchmark case: pre-training plan (purple dot) and post-training plan (green dot) compared to the

clinically delivered plan (black line). (B) For each training case (column), and for each trainee (color dots), the score difference between the trainee plan and the

clinically delivered plan (black line indicating 0).

TABLE 2 | Scores of the benchmark plan for each trainee before and (“Initial”)

after (“Final”) training.

Trainee ID Plan Raw score Percentage score

Trainee 1 Initial 46.69 28.47

Trainee 2 Initial 30.64 18.68

Trainee 3 Initial 37.53 22.88

Trainee 4 Initial 16.83 10.26

Trainee 5 Initial 45.42 27.70

Trainee 1 Final 89.54 54.60

Trainee 2 Final 85.18 51.94

Trainee 3 Final 88.96 54.24

Trainee 4 Final 83.56 50.95

Trainee 5 Final 77.74 47.40

will have a better and more concrete understanding of the
knowledge models and thus have confidence in making their
planning decisions rather than simply accepting the predicted
results. While further research is needed to design more effective
mechanisms for incorporating knowledge models in human
learning, this study has shown that proper design of a plan
scoring system provides one effective approach to helping
trainees understand the effects of beams and constraints. Further
development and testing of the scoring system are warranted
since five cases are not likely to cover the possible case variations
and review by only one physician may not be sufficient to cover
variations in clinical considerations.

While the beam and DVH prediction models used in
this study make for a good foundation, additional and more
sophisticated knowledge models are needed to address the
skills and knowledge that are currently provided by trainers
throughout the training to produce clinically viable plans.
Examples of important considerations during planning include

collimator optimization and strategies to fine-tune small regions
that are less optimal.

In the current implementation, the plan scoring system serves
multiple purposes. First, the total score should measure the
overall quality of a plan. Second, the less than satisfactory
scores should emphasize the most important metrics that require
attention. Third, in an indirect way, we want the total score
to measure a trainee’s mastery of planning knowledge and the
difference in scores on the same case to measure the trainee’s
level of improvement (i.e., learning). Scoring for the first purpose
has been studied in quality assurance literature (Mayo et al.,
2017). Unfortunately, this scoring will always have an ad hoc
nature as physicians’ preferences will vary, and one scoring
system that is in perfect agreement with one physician may not
hold true for another. Moreover, some metrics are prioritized
conditionally depending on other metrics. One such scoring
difficulty is in terms of the metrics that physicians utilize
to make decisions based on seemingly minor differences. For
example, in some cases, the esophagus may not be prioritized
as highly as the lung or the heart, but if the other metrics
are at an acceptable level then even small differences in the
esophageal metrics may be considered more important than
moderate differences in lung dose. This is because most people
with locally-advanced lung cancer will experience some degree
of esophagitis (Chapet et al., 2005) while a much smaller
percentage will experience pneumonitis. This type of conditional
prioritization poses significant challenges for scoring system
design and require further investigation. Scoring systems for
the latter two purposes have not been previously studied. One
challenge that we faced is the exploitation of the scoring system
by trainees. That is, poorly designed scoring systems tend to allow
trainees to attain high scores without actually understanding
planning knowledge and actually creating high quality plans.
We have improved our scoring system iteratively by adjusting
the priority (i.e., max point) assignments based on pilot testing
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TABLE 3 | Scores of five plans during training for each of five trainees. Score

difference is defined as the difference between trainee’s plan’s score vs. the

clinical plan’s score.

Trainee ID Raw score Score difference Plan

1 129.02 11.9 Easy 1

2 133.84 16.74 Easy 1

3 138.49 21.39 Easy 1

4 126.8 9.7 Easy 1

5 132.71 15.61 Easy 1

1 120.51 1.77 Easy 2

2 144.27 25.53 Easy 2

3 128.36 9.62 Easy 2

4 136.75 18.01 Easy 2

5 133.79 15.05 Easy 2

1 54.75 3.53 Intermediate 1

2 56.49 5.27 Intermediate 1

3 70.42 19.2 Intermediate 1

4 55.08 3.86 Intermediate 1

5 48.27 -2.95 Intermediate 1

1 60.66 33.48 Hard 1

2 44.78 17.6 Hard 1

3 48.32 21.14 Hard 1

4 34.7 7.52 Hard 1

5 50.4 23.22 Hard 1

1 83.91 14.68 Hard 2

2 72.32 3.09 Hard 2

3 73.17 3.94 Hard 2

4 73.72 4.49 Hard 2

5 80.91 11.68 Hard 2

TABLE 4 | Physician evaluation of trainee post-training plan on 5-point scale

(significantly worse to significantly better) and clinical feasibility rating.

Trainee # Comparison to

clinical

Comparison to

benchmark

Clinically

feasible

1 Comparable Moderately better No

2 Moderately worse Moderately better No

3 Comparable Moderately better Yes

4 Moderately worse Moderately better No

5 Moderately worse Moderately better No

results. It is also important not to adjust the scoring priority
for every plan or trainee because there will always be new ways
to exploit any scoring system. One possible solution to this is
to have a progressive scoring system that adjusts priority when
reaching certain thresholds. Another approach is to use entirely
separate and different mechanisms for the latter two purposes.
For example, instead of using a score to measure a trainee’s
knowledge, wemay use a Bayesianmodel to assess the probability
of the trainee’s understanding of a case as is done in modern
Intelligent Tutoring Systems (Santhi et al., 2013).

The current training program has many limitations. We
can observe one example by comparing the left and right

of Figure 5. As seen in the right figure, after training using
the knowledge models, all five trainees were able to generate
plans that score higher than clinically delivered plans for
all five training cases. However, as shown in the left figure,
when the trainees returned to the benchmark case, only two
trainees were able to achieve near or just at the level of the
clinically delivered plans. It can be inferred that some of the
trainees might not have fully absorbed the knowledge that was
presented to them through the training program. It is also
possible that the benchmark case requires special knowledge
that is not well-presented to the trainees. In addition, we
noticed that during physician plan evaluation, only one of
two plans that outscored the benchmark case’s clinical plan
was deemed clinically acceptable. It is possible that additional
plan quality related metric could be introduced in the scoring
system to better quantify a plan’s clinical applicability. Further
research in all aspects of the program, including the knowledge
models, the scoring system, the coverage of essential knowledge,
and the selection of training cases, is necessary to improve
the effectiveness of the training program. Finally, the current
implementation is based on a specific commercial TPS platform
and its existing application programming interface. While
general principles of training workflow design are applicable to
other commercial platforms, methods for adapting the proposed
design to other planning technologies and platforms deserve
further investigation.

Even though the current training program has shown
encouraging results that demonstrate its feasibility, there are
clearly much to be done to develop a truly effective training
program for knowledge-based IMRT planning. The immediate
next stage includes the need to enhance the scoring system,
extend knowledge models, and expand to a larger study with
more training cases and with a variety of sites beyond just
the lung. Another important task is to conduct a larger study
with more trainees and more physicians to fully evaluate the
benefits of the training program centered around knowledge-
based models. As discussed in the introduction, our ultimate goal
is to develop the training program into a fully asynchronous
intelligent tutoring system as we gain a better understanding
of the essential components and algorithms that are required
by such a training system. Having a human trainer in
the current program will provide important feedback for
future designs. With permission of trainees, all conversations
can be recorded in order to find where and how best to
provide certain learning materials and pertinent hints. An
intelligent training system operating asynchronously may be
invaluable for reducing costs of planner training, providing an
educational resource to graduate programs, tearing down the
black box mindset of knowledge models in clinical practices,
and improving the quality of care in cancer centers across the
world (Zubizarreta et al., 2015).

CONCLUSION

We have demonstrated that knowledge models can be effectively
used as teaching aid in a training program to bring unexperienced
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planners to a level close to experienced planners in a short period
of time. The assessments indicate that the knowledge models
helped trainees improve their knowledge and skills for producing
higher quality plans. We believe this knowledge model based
training program can serve as an important component of an
AI ecosystem that will enable clinical practitioners to effectively
and confidently use KBP in radiation treatment. Further efforts
are needed to enhance, validate, and ultimately automate the
training program.
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