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Purpose: Treatment planning for pancreas stereotactic body radiation therapy (SBRT)

is a difficult and time-consuming task. In this study, we aim to develop a novel deep

learning framework to generate clinical-quality plans by direct prediction of fluence maps

from patient anatomy using convolutional neural networks (CNNs).

Materials and Methods: Our proposed framework utilizes two CNNs to predict

intensity-modulated radiation therapy fluence maps and generate deliverable plans: (1)

Field-dose CNN predicts field-dose distributions in the region of interest using planning

images and structure contours; (2) a fluence map CNN predicts the final fluence map

per beam using the predicted field dose projected onto the beam’s eye view. The

predicted fluence maps were subsequently imported into the treatment planning system

for leaf sequencing and final dose calculation (model-predicted plans). One hundred

patients previously treated with pancreas SBRT were included in this retrospective study,

and they were split into 85 training cases and 15 test cases. For each network, 10%

of training data were randomly selected for model validation. Nine-beam benchmark

plans with standardized target prescription and organ-at-risk constraints were planned

by experienced clinical physicists and used as the gold standard to train the model.

Model-predicted plans were compared with benchmark plans in terms of dosimetric

endpoints, fluence map deliverability, and total monitor units.

Results: The average time for fluence-map prediction per patient was 7.1 s. Comparing

model-predicted plans with benchmark plans, target mean dose, maximum dose

(0.1 cc), and D95% absolute differences in percentages of prescription were 0.1,

3.9, and 2.1%, respectively; organ-at-risk mean dose and maximum dose (0.1 cc)

absolute differences were 0.2 and 4.4%, respectively. The predicted plans had fluence

map gamma indices (97.69 ± 0.96% vs. 98.14 ± 0.74%) and total monitor units

(2,122 ± 281 vs. 2,265 ± 373) that were comparable to the benchmark plans.
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Conclusions: We develop a novel deep learning framework for pancreas SBRT

planning, which predicts a fluence map for each beam and can, therefore, bypass the

lengthy inverse optimization process. The proposed framework could potentially change

the paradigm of treatment planning by harnessing the power of deep learning to generate

clinically deliverable plans in seconds.

Keywords: deep learning, artificial intelligence, fluence map, treatment planning, convolutional neural network,

pancreas, SBRT

INTRODUCTION

Pancreatic cancer is an aggressive and lethal malignancy that
accounted for an estimated 4.5% of all cancer-related deaths
worldwide in 2018 (Bray et al., 2018). Stereotactic body
radiation therapy (SBRT) utilizes sophisticated image-guidance
and motion-management techniques to allow the delivery of
a highly conformal dose of radiation to the target while
sparing the surrounding normal tissues. Due to the nature of
the higher fractional dose, achieving steeper dose gradients is
prioritized to better spare the gastrointestinal (GI) organs at risk
(OARs), such as the stomach and duodenum/small bowel. In
addition, the highly variable planning target volume (PTV) and
OAR geometry make the planning task extremely challenging.
Although limiting the OARmaximum dose frequently outweighs
target coverage, a trial-and-error process attempts to cover
as much of the target with a prescription dose as possible.
The consistency of plan quality is hard to maintain due
to time pressure and the planner’s experience, which may
result in suboptimal plans. A system capable of maintaining
consistently high plan quality is warranted in modern radiation
oncology departments.

Over the last decade, efforts have been made to implement
treatment-planning automation. Machine learning (ML)
algorithms have been utilized to extract clinical knowledge
from existing plans and apply it in various formats to create
plans for new patients, which is known as knowledge-based
planning (KBP). One KBP approach relies on patient-specific,
dose-volume histogram (DVH) prediction to guide inverse
optimization. Such modeling is based on the patient’s anatomical
structures and prior planning knowledge. Traditional ML
techniques have seen significant success in DVH prediction for
many treatment sites (Zhu et al., 2011; Yuan et al., 2012; Good
et al., 2013; Skarpman Munter and Sjolund, 2015). Another
approach is voxel-wise dose prediction–based treatment-
planning guidance. Over the past several years, a shape-based
method (Liu et al., 2015), atlas-selection methods (Sheng et al.,
2015; McIntosh and Purdie, 2016, 2017), and artificial neural
network methods using handcrafted features (Shiraishi and
Moore, 2016; Campbell et al., 2017) were proposed. Recently,

Abbreviations: BEV, beam’s eye view; CNN, convolutional neural network;

CT, computed tomography; DAO, direct aperture optimization; DL, deep

learning; DVH, dose-volume histogram; FD, field dose; FM, fluence map; GI,

gastrointestinal; iGTV, internal gross tumor volume; KBP, knowledge-based

planning; MAE, mean absolute error; MU, monitor unit; OAR, organ-at-risk; PTV,

planning target volume; ROI, region of interest; SBRT, stereotactic body radiation

therapy; TPS, treatment planning system.

convolutional neural networks (CNNs) have shown success
in predicting 3-D dose distributions (Kearney et al., 2018;
Barragán-Montero et al., 2019; Chen et al., 2019; Fan et al., 2019;
Nguyen et al., 2019a,b). This type of model is typically referred
to as a deep learning (DL) model. A majority of these models
employ network structures similar to U-Net, which was initially
developed for biomedical image segmentation (Ronneberger
et al., 2015). However, in this approach, a second step of plan
generation via inverse optimization is necessary to create a
treatment plan aiming to achieve the predictions (McIntosh
et al., 2017; Fan et al., 2019), either as DVH-based optimization
or as voxel-based dose mimicking.

We contend that high-quality radiotherapy plans with
standardized dose constraints and beam settings can be directly
created by predicting their fluence maps without optimization
or dose mimicking. We refer to this process as direct plan
generation (as opposed to the automated planning process used
in the literature that generally requires two steps as mentioned
above). Few publications have focused on direct fluence map
prediction (Lee et al., 2019; Sheng et al., 2019). In the case of
whole breast irradiation, fluence prediction was achieved with a
random forest model proposed by Sheng et al. (2019). Lee et al.
(2019) show that, given the organ contours and the complete set
of field-dose distributions, fluence maps for seven-beam prostate
IMRT could be reconstructed by a modified U-Net with high
accuracy. However, the study did not investigate how to obtain
the known field dose. Rather, the authors assumed the field
doses were a prerequisite for their technique to work. Indeed,
solving the field dose of each beam remains a challenge. We
hypothesize that anatomical planning features, together with the
physician’s planning objectives, could lead to accurate prediction
of the field doses of each beam and their corresponding fluence
maps. The expert planner incorporates the physician’s planning
objectives during manual planning. Therefore, these planning
objectives are embedded in these plans, and DL models should
be able to capture such information in the training data. In this
feasibility study, we present a novel deep learning framework for
direct fluence map prediction (a.k.a. direct plan generation) and
demonstrate its performance using clinical pancreas SBRT cases.

MATERIALS AND METHODS

Patient Selection and Radiation Therapy
Plan
One hundred pancreatic cancer patients previously treated with
SBRT at Duke University Medical Center between 2014 and
2019 were included in this retrospective study. This study
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FIGURE 1 | Overall workflow of the DL modeling and validation. The prediction pipeline generates fluence maps from CT data and structure contours.

was approved by the institutional review board. In clinical
plans, the dose prescription to the PTV was 25Gy, often with
a simultaneous integrated boost to the internal gross tumor
volume (iGTV) with 33 or 40Gy. The GI OAR (stomach,
C-loop/duodenum, and bowels) dose constraints varied in
maximum dose and maximum volume according to the different
physician preferences. We aim to develop a model that is capable
of generating clinical-quality pancreas SBRT IMRT plans. In
this feasibility study, each case was replanned by experienced
clinical physicists who specialized in GI SBRT using unified
planning objectives and a standardized IMRT protocol with a
single prescription level. The prescription for both the PTV and
iGTV were 33Gy in five fractions. All plans were designed with
nine equally spaced coplanar 10-MV photon beams. Stomach,
C-loop/duodenum, and bowels were combined and referred to
as the OAR. The maximum dose for the OAR was limited to
25Gy (0.1 cc). This protocol creates the scenario of an inverted
relationship of target and OAR dose prescription, a clinical
scenario that often has to be handled manually by an experienced
planner for each case. In the following, we refer to the resulting
standardized plans as the benchmark plans, which were used
to train the model. The same beam orientations, including
gantry angles, and beam shape definition via its open field dose,
referred to as beam templates, were also included as input for
the DL models. The 100 patient cases were divided randomly
into an 85:15 training:testing ratio. All treatment plans were
generated in the Eclipse R© Treatment Planning System (TPS)
(Varian Medical Systems, Palo Alto, CA) version 13.7 with the
volume dose calculated by the Analytical Anisotropic Algorithm
version 13.7.14. A Varian Millennium 120 multi-leaf collimator
(MLC) was used to deliver the modulated fluence maps. The
leaf-sequencing algorithm used was Smart LMC version 13.7.14.

Study Workflow
The overall study workflow is summarized in Figure 1. The
proposed framework adopts a pipeline structure, in which two
CNNs make consecutive predictions to generate the complete
plan with fluence maps. The input into the pipeline includes
planning computed tomography (CT) images as well as contours
of the PTV and OARs. First, the field-dose CNN (FD-CNN)
predicts 9 individual IMRT field dose distributions, i.e., FD-CNN

field dose from CT and structure contours. Next, each 3-D field
dose is projected along the beam’s eye view (BEV), generating the
2-D BEV dose map. Finally, the fluence map CNN (FM-CNN)
predicts the fluence map for each beam from the corresponding
BEV dose map. The two CNNs were implemented in Keras with
the Tensorflow backend and trained separately. The entire model
was trained on a workstation with an Intel Xeon E5 v4 processor,
64 GB of RAM, and an NVIDIA Quadro M4000 graphics card.
In order to evaluate the proposed framework’s performance,
we compared the automatically generated plans using the DL
technique described in this research study, referred to as “model-
predicted plans,” against the benchmark plans generated by
human experts using the standard inverse planning process.

Data Preprocessing

All plans, including CT images, contours, field doses, and fluence
maps, were exported from the Eclipse TPS as DICOM files. As
the original plans have different spatial resolutions, resampling
was performed on dose and contour images with 1mm axial
resolution and 2mm slice thickness. Linear interpolation was
used to increase the resolution of dose distributions to facilitate
more accurate dose prediction. Relative values were used in field
doses with the prescription dose of 33Gy normalized to 100%.
Axial slices were cropped to a 192 × 192 pixel image centered
at the isocenter. Fluence maps and other BEV projections had
a resolution of 2.5 × 2.5 mm2 at the isocenter plane. All
the training data were randomly shuffled before holding out a
validation set.

Field Dose Prediction

The objective of FD-CNN is to predict field doses fromCT images
and structure contours. The network architecture of FD-CNN is
illustrated in Figure 2, and it operates on a slice-by-slice basis.
To predict field dose in one query slice, the main input includes
seven PTV slices (the query slice and six adjacent slices) and the
OAR query slice, which are all 192 × 192 binary masks. The
adjacent PTV slices were included to account for PTV shape
change in the superior–inferior direction. In the downsampling
block, the contour masks were downsampled three times using
strided 2-D convolution to produce 128 channels of 24 ×

24 feature images. An upsampling block produced 72-channel
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FIGURE 2 | Simplified network architecture of FD-CNN. FD-CNN takes contour masks and beam templates as input and predicts nine field doses in an axial slice.

The details of downsampling, upsampling, and convolutional blocks (rounded rectangles) are omitted to highlight the transformation process from the inputs to the

output. PTV±n refers to the n th PTV slice superior or inferior to the query slice. OAR includes only the OAR contour in the query slice. Each rectangle block

represents a layer with the number of channels on the top and image dimensions labeled on the bottom of each layer.

feature images, using strided 2-D transposed convolution three
times to restore the 192 × 192 resolution. CT images were
incorporated in the form of beam templates (Input II in Figure 2)
calculated by the TPS and concatenated to the 72-channel feature
images. A final convolution block was applied to produce nine
field doses for the nine equally spaced beams. The prediction
region was limited to a region of interest (ROI), which was
the PTV expanded by 1 cm. The Swish activation function
(Ramachandran et al., 2017) was used in the network to introduce
non-linearity. Swish is the product of an identity function and a
sigmoid function, which can be expressed as

Swish (x) =
x

e−x + 1
. (1)

In predicting all field doses, the total dose was acquired
automatically by summation. The loss function of FD-CNN
(LFD) was the sum of two parts: field dose (FD) error and total
dose (TD) error in the ROI, which is formulated as

LFD =
1

N (ROI)
[

∑

beam

∑

ROI

(

FDbench − FDpred

)2
+ µ·

∑

ROI

(

TDbench − TDpred

)2

]

(2)

N (ROI) is the number of ROI pixels. FDbench and TDbench are
the benchmark plan field and total doses. FDpred and TDpred

are the predicted field and total doses. The field and total dose
error terms were summed with the regularization term of µ as
tuned by validation. All slices with ROI were used to predict
field dose by FD-CNN. For each patient, all the predicted 2-D
dose slices were stacked together to form the predicted 3-D dose
distributions of a given beam. In total, there were 3,238 slices
from all 85 training cases. The benchmark plan’s field dose is
used as the ground truth for model training. Ten percent of the
training slices were held out for validation. FD-CNN was trained
using an Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.001 and early stopping with patience of eight epochs
(training terminates when validation loss does not improve for
eight epochs).

Fluence Map Prediction

The second DL model is the FM-CNN, which predicts one
fluence map from each 3-D field dose. The network architecture
of FM-CNN is illustrated in Figure 3. It adopts a customized U-
Net shape, which includes three resolution hierarchies (96, 48,
and 24 pixels). The inputs of FM-CNN are the BEV dose map
and the BEV PTV map, and the output is the fluence map. For
one beam, the BEV dose map is the projection of the predicted
field dose along the BEV, and the BEV PTV map is the binary
projection of the PTV contour along the BEV. The upsampling
and downsampling were achieved with strided 2-D convolution
and strided 2-D transposed convolution, respectively. The BEV
dose maps and fluence maps of the benchmark plans serve
as ground truth for model training. The loss function of FM-
CNN (LFM) is a modified mean absolute error (MAE), which is
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FIGURE 3 | Network architecture of FM-CNN. For each beam, FM-CNN predicts the fluence map from the dose map and PTV map (concatenated). Three hierarchies

of image dimension (96, 48, 24 pixels) are used. Each rectangular block represents a layer with the number of channels on the top and image dimensions labeled on

the left of each hierarchy.

formulated as

LFM = (1 + λ)

∑

∣

∣

∣
ybench − ypred

∣

∣

∣

N
(

ybench > 0
) (3)

where ybench and ypred are the benchmark and predicted values
of the fluence map, and N(ybench > 0) is the count of
benchmark fluence map pixels with non-zero values. The factor
λ is the regularization term to prevent FM-CNN from over- or
underestimating the fluence maps overall. It is expressed as

λ =
∣

∣

∣
N

(

ybench − ypred > 0.001
)

−N
(

ybench − ypred < − 0.001
)
∣

∣

∣

N
(

ybench > 0
)

(4)

Because fluence intensity is directly linked to field dose, the
fluence prediction error should have a mean value close to
zero in order to avoid overdosing and underdosing. Therefore,
this regularization factor is added to control the mean value of
prediction error for all pixels and keep the numbers of positive
and negative errors at the same level.

The total training data size was 765 for 85 patients, of which
10%were held out for validation. The model was trained using an

Adam optimizer with a learning rate of 0.001 and early stopping
with patience of 15 epochs.

In the final validation step, these predicted fluence maps
were subsequently imported into the TPS for leaf sequencing
and dose calculation. The resulting plans are referred as model-
predicted plans and are compared to the benchmark plans for
overall performance.

Model Assessment
For model evaluation, the benchmark plan is considered
as the ground truth. Each of the two models is evaluated
separately and then collectively for dosimetric quality and
deliverability. The FD-CNN field dose is compared with the
corresponding field dose of the benchmark plan to evaluate
FD-CNN performance. To evaluate FM-CNN performance,
a special plan, the FM-CNN plan, is generated by FM-
CNN using the field dose from the benchmark plan, thus
eliminating error contamination from the first CNN model.
The model-predicted plan is the final plan created with
the fluence map predicted by the complete model (i.e.,
both CNNs) and, thus, evaluates the overall performance of
the framework.

The 15 cases not included in model training were used as an
independent test set, which consists of 638 slices and 135 fluence
maps. For each test case, an FD-CNN field dose, an FM-CNN
plan, and a model-predicted plan were created. The voxel-wise
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TABLE 1 | Model training and calculation details.

Trainable parameters Training data size Epochs Training time Calculation time per image Calculation time per patient

FD-CNN 3,351,185 3,238 48 3 h 0.026 s 1.100 s

BEV projection n/a n/a n/a n/a 0.663 s 5.966 s

FM-CNN 203,621 765 134 4min 0.003 s 0.030 s

The training details of two CNNs include the number of trainable parameters, training epochs, and training time. BEV projection is a deterministic process that requires no training. The

calculation times listed are average prediction time of CNNs and average calculation times of BEV projection.

TABLE 2 | Dose differences between all predicted plan groups and benchmark plans.

Plan type Dose type Region Voxel dose difference [%] Dmean difference [%] Dmax difference [%]

FD-CNN dose Total dose (CNN) ROI 1.79 ± 2.21 0.41 ± 0.28 0.48 ± 0.31

PTV 0.91 ± 0.79 0.57 ± 0.25 0.48 ± 0.31

ROI–PTV 2.65 ± 2.75 0.51 ± 0.34 0.49 ± 0.54

Field dose (CNN) ROI 1.25 ± 1.11 0.51 ± 0.42 1.82 ± 1.44

FM-CNN plan Total dose (TPS) PTV 1.22 ± 0.96 0.88 ± 0.65 1.46 ± 1.19

OAR 0.86 ± 0.75 0.30 ± 0.17 0.86 ± 0.52

Model-predicted plan Total dose (TPS) PTV 2.41 ± 1.87 1.24 ± 0.74 4.10 ± 2.35

OAR 2.70 ± 2.45 0.94 ± 0.65 4.77 ± 2.84

Model-predicted plans exhibit larger dose differences than FD-CNN doses and FM-CNN plans.

percentage dose difference 1D is calculated as

1D(V ) =
1

N(V)

∑

i∈V

∣

∣

∣

∣

∣

∣

D
(i)
bench − D

(i)
pred

Dprescription

∣

∣

∣

∣

∣

∣

×100 (5)

V is the calculation volume, and N(V) is the number of voxels
in this volume. Several dosimetric endpoints were also used for
assessment. These include PTV max dose (0.1 cc), mean dose,
D95% for the PTV, andmean andmax doses (0.1 cc) for the OARs.
To provide a direct assessment of fluence map prediction, MAEs
were calculated between FM-CNN and benchmark fluence maps.

In Eclipse TPS, optimal fluence maps, generated by inverse
optimization or deep learning models, are converted to actual
fluence maps by leaf-sequencing algorithms to enable delivery
on the machine. Unrealistic optimal fluence map features,
such as extremely heterogeneous regions or high transmission
value at a single pixel, could potentially result in a large
discrepancy between optimized and delivered doses. Therefore,
the deliverability of fluence maps was measured by the gamma
index between optimal (before leaf sequencing) and actual
fluence maps (after leaf sequencing) for both benchmark and
predicted plans. We employed the gamma analysis in a similar
fashion and intent as IMRT quality assurance. Here, a high
gamma passing rate indicates that the optimal fluence map is
physically realistic and could be achieved by the leaf-sequencing
algorithm. Gamma analysis was performed using an in-house
program with a 3%/3mm criterion. Total monitor units (MUs)
from benchmark and model-predicted plans were compared.

After the DL framework was completely trained and tested,
we reduced the training cases for both CNNs and calculated
the loss values on the test set. In addition, a series of ablation
studies were conducted, in which certain CNN components were
removed to test the model performance. For the FD-CNNmodel,

we removed the input of one, two, or three pairs of adjacent PTV
slices or beam templates. For the FM-CNN model, we removed
the input of the PTV map. The reduced models were evaluated
on the same test set and compared with the original models.

RESULTS

Model Training
The model training details are summarized in Table 1. FD-CNN
has 3.35 million trainable parameters and took 3 h to train. FM-
CNN has a much less complex architecture with 0.20 million
trainable parameters and took 4min to train. The projection of
field dose and PTV along the BEV is relatively time-consuming
compared to CNN predictions. On average, prediction of nine
fluence maps for each patient took 7.1 s, including 1.10 s for FD-
CNN prediction, 5.97 s for BEV projection, and 0.03 s for FM-
CNN prediction. In the entire workflow, the computation time of
the model is typically less than that of TPS dose calculation. A DL
model-predicted plan was generated within 1 to 2min, including
calculating themodel-predicted plan dose in TPS, as compared to
the traditional manual planning, which takes between 1 and 3 h.

Model Assessment
The dosimetric evaluation results are summarized in Table 2.
Here, the ground truth is the dose from the benchmark plans.
Model-predicted plans have the largest dose differences among
the three evaluation plans, and they represent the overall
performance of the workflow. In the deliverable plans, i.e., FM-
CNN and model-predicted plans, PTV and OAR (stomach, C-
loop/duodenum, and bowels combined) maximum dose errors
are larger than mean dose errors. Figure 4 compares the total
dose distribution between the model-predicted and benchmark
plans of an example case. Figure 5 compares the DVH for the
same case. As shown in the figure, the predicted fluence map
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FIGURE 4 | Examples of fluence map and dose comparisons with the benchmark in one test case. The model-predicted fluence map recreated the fluence contrast

in the benchmark. The model-predicted plan achieved a similar total dose as the benchmark. The first row shows the benchmark (A) and model-predicted (B) fluence

maps of one beam, and the difference (C). The second row shows one axial slice of the dose distribution of benchmark plan (D) and model-predicted plan (E) and the

dose difference (F). PTV contour is marked with black lines in (D,E).

FIGURE 5 | An example of PTV (solid) and OAR (dashed) DVH comparison in

one test case between the benchmark (blue) and model-predicted (red) plans.

The benchmark plan has slightly better PTV homogeneity than the

model-predicted plan with the FM-CNN plan in between.

achieves similar fluence modulation as the fluence map of the
benchmark plan. Further, the TPS-calculated dose distribution
of the predicted plan exhibits small differences from the
corresponding benchmark plan, indicating highly similar plan

quality. The distributions of PTV and OAR dose metrics of
benchmark and model-predicted plans are plotted in Figure 6.

In terms of fluence map deliverability, the average ±

standard deviation gamma passing rate was 98.14% ± 0.74% for
benchmark plans and 97.69%± 0.96% formodel-predicted plans,
respectively, which demonstrates highly similar deliverability.
The average ± standard deviation of total MU per patient is
2,122 ± 281 in model-predicted plans and 2,265 ± 373 in
benchmark plans.

The model performance of FD-CNN and FM-CNN were
plotted against the number of training cases used, as shown
in Figure 7. It can be seen that the testing loss of FD-CNN
plateaued after 55 cases although FM-CNN required only 35
cases to achieve reasonably good performance. The ablation
study showed that, for FD-CNN, removing the beam template
input would increase the testing loss by 20%; using only four, two,
and zero adjacent PTV slices would increase the testing loss by 7,
25, and 66%, respectively. For FM-CNN, removing the PTVmap
input would only slightly increase the testing loss by 1%.

DISCUSSION

We develop a novel deep learning framework to generate clinical-
quality pancreas SBRT plans in seconds. It offers the advantage
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FIGURE 6 | Test set distributions of PTV (Left) and OAR (Right) dose metrics comparing benchmark and model-predicted plans. Model-predicted plans have higher

PTV and OAR maximum dose and lower D95% than the other plan groups. Dose values are reported as percentage of the prescription dose. Dmax, maximum dose;

Dmean, mean dose; D95%, minimum dose received by 95% of the volume.

FIGURE 7 | The number of training cases vs. testing loss for both CNNs. The testing loss stabilized when using 55 or more training cases for FD-CNN (Left) and 35

or more cases for FM-CNN (Right).

of bypassing lengthy optimization, during which the planner
needs to adjust optimization objectives and aims to achieve
similar performance as the human expert exercising inverse
optimization. This study demonstrates the novel approach of
AI-driven treatment planning via predicting fluence maps, thus
providing a more complete approach to generating deliverable
high-quality plans, which has not been sufficiently addressed in
previous studies (Liu et al., 2015; Skarpman Munter and Sjolund,

2015; Kearney et al., 2018; Barragán-Montero et al., 2019; Chen
et al., 2019; Nguyen et al., 2019a,b). Translating predictions from
previous KBP models, either DVH-based or 3-D dose guidance,
to the final deliverable plan has been challenging and remains
a key implementation bottleneck in clinics. Efforts have been
made to complement KBP models to arrive at the final plan
(McIntosh et al., 2017; Long et al., 2018; Fan et al., 2019).
The aim of the proposed DL solution is to garner knowledge
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from existing plans and generate deliverable plans for new
patients, which falls under the broad KBP vision. Our approach
directly predicts fluence maps rather than predicting achievable
DVH/doses in other KBP approaches. More specifically, we
use CNNs to establish the correlation between patient anatomy
patterns and each individual beam’s dose/fluence map, which has
not been investigated in previous KBP studies. This approach
is built upon beamlet-based fluence optimization, with which a
subsequent leaf-sequencing process converts the fluence maps
to MLC motion parameters. By replacing the FM-CNN, the
proposed approach could also be employed along with direct
aperture optimization (Shepard et al., 2002) in step-and-shoot
IMRT, which would offer the advantage of fewer segments and
MUs. This is an area of potential study that warrants future effort.
It would also be of interest to compare the proposed approach
with other KBP-based plan-generation methods in future studies.

We redesigned the entire radiation therapy treatment-
planning workflow by incorporating DL models for dose
prediction and fluence map generation, thereby completing AI-
driven plan generation in seconds. Our results demonstrate that
such AI-driven plans have similar quality when compared to
manually generated inversely optimized plans although, more
importantly, a ready-to-deliver plan is generated with no further
human intervention needed. In dose prediction, the total dose in
PTV predicted by FD-CNN achieved a similar level of accuracy
as existing deep learning–based dose-prediction models. The
input of adjacent PTV slices provided superior–inferior contour
change information efficiently, which significantly reduced the
testing loss while maintaining lower memory consumption than
3-D networks. The second step of our framework, i.e., fluence
map prediction from an existing field dose, directly converts an
individual field dose into its corresponding fluence map, which
eliminates interplay among beams and require no optimization
or intermediate dose calculation. With the existing ground truth
field dose, we achieved similar fluence map MAE (mean value:
2.06 × 10−3) as Lee et al. (2019) (median value: 9.95 × 10−4).
With similar fluence map prediction accuracy, our proposed
framework is capable of directly predicting a fluence map from
contour and CT alone, which Lee et al. (2019) has yet to achieve.

We used standardized nine-beam IMRT plans as a benchmark
in this study, and this increased consistency in plan quality
and reduced the need for a large amount of training data. We
argue that the training data meticulously generated by human
experts is optimal in terms of the endpoints of target coverage
and luminal structure maximum dose. One limitation of the
model is that the training and testing cases must have the

same beam arrangement, dose prescription level, and physician
preferences. Substantially more training data are anticipated

to be required to train a model that incorporates different
beam arrangements and dose constraints. This study focuses
on pancreas SBRT although we are modifying and testing the
model for other disease sites. With the current model, we do
not think it is generically applicable to other disease sites. We
anticipate that data from each specific site are required to
train a robust model. Further study is underway to address
these challenges.

CONCLUSION

We develop a deep learning framework utilizing two CNNs to
directly generate a clinical-quality IMRT plan from CT images
and contours for pancreas SBRT. This framework changes the
traditional approach of inverse treatment planning by replacing
the inverse optimization engine with the intelligent neural
networks. The proposed method has great potential to improve
clinical efficiency and plan quality consistency for challenging
treatment sites.
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