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Neural networks have to capture mathematical relationships in order to learn various

tasks. They approximate these relations implicitly and therefore often do not generalize

well. The recently proposed Neural Arithmetic Logic Unit (NALU) is a novel neural

architecture which is able to explicitly represent the mathematical relationships by the

units of the network to learn operations such as summation, subtraction or multiplication.

Although NALUs have been shown to perform well on various downstream tasks, an

in-depth analysis reveals practical shortcomings by design, such as the inability to

multiply or divide negative input values or training stability issues for deeper networks.

We address these issues and propose an improved model architecture. We evaluate our

model empirically in various settings from learning basic arithmetic operations to more

complex functions. Our experiments indicate that our model solves stability issues and

outperforms the original NALU model in means of arithmetic precision and convergence.

Keywords: neural networks, machine learning, arithmetic calculations, neural architecture, experimental

evaluation

1. INTRODUCTION

Neural networks have achieved great success in various machine learning application areas.
Different network structures have proven to be suitable for different tasks. For instance,
convolutional neural networks are well-suited for image processing while recurrent neural
networks are well-suited for handling sequential data. However, neural networks also face
challenges like processing categorical values or calculating specific mathematical operations.

The presence of mathematical relationships between features is a well-known fact in many
financial tasks (Bolton and Hand, 2002; Lopez-Rojas et al., 2016). Other examples can be found in
the intrusion detection domain. For example, some intrusion detection methods count the number
of certain events (Garcia et al., 2014) or consider some restrictions such as network packets having
a minimum and maximum number of transmitted bytes (Ring et al., 2019). A model which is able
to capture these relationships explicitly in an automated way is therefore very desirable and can be
incorporated in various machine learning tasks.

Problem
While neural networks are successfully applied in complex machine learning tasks, single neurons
often have problems with the calculation of basic mathematical operations (Trask et al., 2018). This
fact can be explained by inspecting the structure of neurons in detail. The output of a neuron i is
the weighted sum of all input signals, an optional bias b and an activation function:

outputi = act





(

n
∑

j=1

xj · wj

)

+ bi



 (1)
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FIGURE 1 | Standard mathematical tasks.

The neuron i in Equation (1) receives n input signals xj which
are multiplied by the weights wj. The parameter bi represents
an optional bias and act(·) is an arbitrary activation function
like the identity for a linear or sigmoid for a non-linear neuron.
This allows neurons to assign different weights to different input
features. Further, linear neurons are able to add (or subtract)
different inputs by setting their corresponding weights to 1
(or −1), see tasks (a) and (b) in Figure 1. However, activation
functions, weights and bias allow neurons only to approximate
the result of multiplications and divisions in their training range,
since the output is the weighted sum of all inputs. Consequently,
they can’t solve multiplication and division tasks for values
outside the training range [see tasks (c) and (d) in Figure 1].

Trask et al. (2018) show empirically that artificial neurons
have especially difficulties with extrapolation of mathematical
operations and present the Neural Arithmetic Logic Units
(NALU) to address this problem. However, the NALU is only able
to calculate non-negative results for multiplication and division
by design. Madsen and Rosenberg Johansen (2019) further show
that the NALU is not able to learn division reliably and often fails
to converge to the desired weights.

Objective
Inspired by the NALU, we want to improve the architecture
to address the above mentioned problems. Our focus lies
on processing negative values and improving extrapolation by
forcing the internal weights to intended values.

Contribution
In this paper, we propose iNALU as improvement of the NALU
architecture (Trask et al., 2018). Our proposed architecture
improves the stability, enables the network to calculate with
negative and positive inputs and improves the precision of
arithmetic tasks in general. Therefore we change several technical
aspects of the original NALU. To be precise, we add another path
to allow multiplication and division with mixed-signed inputs.
Further, we propose an input independent implementation of the
gate, switching between the summative and multiplicative path.
Based on empirical observations, we add regularization to the
training procedure to prevent approximation of the results due
to unwanted combination of mathematical operations. Then, a
maximum function for the multiplicative path is introduced to
avoid too large values (infinity) for deep networks with several
hidden layers and many neurons. We experimentally evaluate
the improved architecture in various settings:Minimal arithmetic

tasks, one-layer calculations where among others the relevant
inputs have to be recognized and simple function learning where
a combination between operations has to be learned in two layers.

Our main contributions are the improvement of the
extrapolation results of the NALU and the mixed-signed
multiplication with negative values as result. The iNALU code is
available on github1.

Structure
The paper is structured as follows: The next section describes
related work. Section 3 explains the NALU and our improved
model iNALU in more detail. Experiments are presented in
section 4 and the results are discussed in section 5. Finally,
section 6 concludes the paper.

2. RELATED WORK

This section reviews related work on processing mathematical
operations using neural networks.

Kaiser and Sutskever (2016) present Neural GPU, a neural
network architecture which is able to solve algorithmic tasks.
The architecture of Neural GPU is based on a type of
convolutional gated recurrent units (CGRU). The authors show
that their approach is able to learn long binary summations
and multiplications and that their approach generalizes well
for longer numbers. However, in the experimental evaluation,
the input to the network is limited to four symbols. Freivalds
and Liepins (2018) propose an improvement for the Neural
GPU which speeds up the training time and provides better
generalization. Similarly, Kalchbrenner et al. (2015) propose Grid
Long Short-TermMemory, a network of LSTM cells which is able
to add 15-digit integer numbers. These three approaches from
Kaiser and Sutskever (2016), Freivalds and Liepins (2018) and
Kalchbrenner et al. (2015) process sequential data and are able
to learn simple algorithmic tasks.

Another work in this area is proposed by Chen et al. (2018).
The authors use reinforcement learning to solve mathematical
operations such as summation, subtraction, multiplication or
division. However, compared to our setting, Chen et al.
provide the mathematical operation as an additional input to
their network.

The most similar work to ours is from Trask et al. (2018).
The authors propose the neural arithmetic logic unit which is

1https://github.com/daschloer/inalu
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able to perform mathematical operations. They show in their
experimental evaluation that their model generalizes better than
traditional neurons for extrapolation tasks. However, the NALU
has some limitations which we discuss in section 3.2.

Other works with small intersections are presented by
Zaremba and Sutskever (2014) as well as by Reed and De Freitas
(2015). Both use Recurrent Neural Networks to execute small
code snippets which contain the summation of digits. Counting
the number of specific objects in images can also be seen in the
wider scope of related work. In this context, works by Xie et al.
(2018) and Zhang et al. (2015) involve counting the number of
microscopy cells respectively crowd counting.

3. IMPROVED NEURAL ARITHMETIC
LOGIC UNIT

In this chapter, we first describe the Neural Arithmetic Logic Unit
and discuss properties and challenges.We then introduce iNALU,
a new model variant, to address these challenges.

3.1. Neural Arithmetic Logic Unit
The NALU as proposed by Trask et al. (2018) consists of a
multiplicative and a summative path, which can be seen as a
linear layer with a weight matrix constrained to [−1, 1]. The
weights W are constructed as point-wise product between a
matrix Ŵ with tanh activations and a matrix M̂ with sigmoid
(σ ) activations.

W = tanh(Ŵ)⊙ σ (M̂) (2)

By matrix multiplication of inputs x and weights W, output
values stay within the magnitude of the input values (since−1 ≤

Wi,j ≤ 1) and result in the summation for values of Wi,j = 1
and subtraction for values of Wi,j = −1. By balancing the
weights between −1, 0, and 1 any function composed of adding,
subtracting and ignoring inputs can be learned. This summative
path a is defined in Equation (3).

a = xW (3)

To multiply or divide, this calculation is performed in log-
space (see Equation 4). The NALU encounters the problem of
calculating log(x) for x ≤ 0 by restricting the calculation to
absolute input values and adding a small constant value ǫ.

m = exp
(

log(|x| + ǫ)W
)

(4)

A gate is used to decide between the summative and the
multiplicative path depending on the input vector.

g = σ (xG) (5)

Since the gate weights G are multiplied with the inputs x, each
gate dimension maps to an input dimension and contains the
corresponding weight to which the input shall contribute to the
decision between both arithmetic paths.

The output is obtained by adding the gated summative (see
Equation 3) and multiplicative (see Equation 4) paths.

NALUo: ynalu = g · a+ (1− g) ·m (6)

The NALU model can finally be implemented in two ways. One
can either use a weight vector G and a scalar gate g or a weight
matrix G and a gate vector g. Tasks for which the selection of the
operation is different for each output or for which it is depending
on input values might benefit from the gate matrix. However,
this introduces additional parameters which for many tasks are
unnecessary. In our experiments we use both, vector basedNALU
and a NALU with matrix based gating for comparison which we
refer to as NALU (v) respectively NALU (m).

However, some of these design decisions for the NALU result
in challenges we want to address in the following section.

3.2. Challenges
3.2.1. Exploding Intermediate Results
In our experiments, we observe that training often fails because of
exploding intermediate results especially when stacking NALUs
to deeper networks and having many input and output variables.
For example, consider a model consisting of four NALU
layers with four input and output neurons each and a simple
summation task. Assuming the same magnitude for all input
dimensions the first layer could (depending on the initialization)
calculate x4 for each output dimension whereas the following
layer could calculate (x4)4 ultimately leading to x4l for layer l.
Therefore, the calculation can exceed the valid numeric range
already in the forward pass ultimately causing the training to fail.
For example in a network with three NALU layers in an MNIST
classification downstream task, the NALU models failed after the
first training steps (resulting in NaNs).

3.2.2. Multiplication/Division With Negative Result
The NALU by design isn’t capable of multiplying or dividing
values with a negative result. In the multiplicative path,
the input values are represented by their absolute value to
guarantee a real-valued calculation in log-space. Therefore,
learning multiplication for mixed signed data with a result
y < 0 fails. Since the NALU is expected to learn either
multiplication / division or summation / subtraction in each
layer, sign(y) is in the multiplicative case clearly determined by
the number of negative multiplicands being even or odd. Since
input dimensions can be deactivated for Wi,j = 0, the sign can’t
be inferred counting negative input variables. In the next section,
we propose a method taking deactivated input dimensions into
account to correct the sign of the multiplicative path.

3.2.3. Mixed Sign Gating
Despite the summative path is capable of dealing with mixed
input signs, the construction of the gating mechanism leads to
problems. If input values are constantly positive or constantly
negative, Equation 5 leads to the desired gating behavior.
However, if the input values mix negative and positive values, σ
and thus the gate is dependent of the sign since G can’t fit the
designated gate state systematically correctly.
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3.2.4. Initialization Sensitivity
We observed that the NALU architecture is very prone to non-
optimal initializations, which can lead to vanishing gradients or
optimization into undesired local optima. Finding the optimal
initialization in general is difficult since it depends on the task
and the input distribution, which in a real world scenario is
both unknown.

3.2.5. Leaky Gates
Another challenge we observe are variables, not tied near to
their boundaries. Generally in the NALU design the variables
W and g are intended to reach their boundaries of [−1, 1] and
[0, 1] for maximum precision. However, during training and
for interpolation, an approximation of the intended calculation
having gates trained to g = 0.5, for example with a specific
configuration ofW represents a local optimum. For extrapolation
such a model fails by large margin. We suggest regularizing the
trained variables to avoid this behavior.

3.3. Improvements
This section describes the improvements we incorporate in
our iNALU model to address the aforementioned challenges.
Figure 2 summarizes the complete model architecture. In the
following, we discuss each improvement and extension in detail.

3.3.1. Independent Weights
The summative and the multiplicative paths share their weights
Ŵ and M̂ in the NALU model. We propose using separate
weights for each path for two reasons: First, the model can
optimize W for the multiplicative and summative path without
interfering the other path. For example, in a setting with inputs
a, b < −1 with the operation a × b, the result would be a
positive number greater than 1 and the optimal parameter setting
would be Wa = Wb = 1 and g = 0. However, the only way
for the summative path (see Equation 3) to generate positive
results is to force the weights Wa and Wb toward −1. In this
case, the summative and multiplicative path force the weights
into opposite directions. With separate weights, the model can
learn optimal weights for both paths and select the correct path
using the gate. Second, consider the multiplicative path yields
huge results whereas the summative path represents the correct
solution but yields relatively small results. In that case, the
multiplicative path influences the results even if the sigmoid gate
is almost closed. For example in a setting with inputs a, b, c > 0
with the desired result a+b, the summative path yields the correct
solution and the optimal weight setting isWa = Wb = 1,Wc = 0
and g = 1. In that case,Wmay contain very small weights to omit
the input c. However, small negative weights forWc (e.g.,−10−5)
leads to the situation, that the multiplicative path divides the
inputs a and b by values near to 0 which results in large numbers.
Consequently, the multiplicative path influences the results even
if the gate (see Equation 5) is almost closed. In this case, themodel
with independent weights can optimize Wm to smaller values to
mitigate influence caused by the leaky gate. Ourmodifications are
summarized in the following equations:

Wa = tanh(Ŵa)⊙ σ (M̂a) (7)

Wm = tanh(Ŵm)⊙ σ (M̂m) (8)

a = xWa (9)

m = exp
(

log(|x| + ǫ)Wm

)

(10)

3.3.2. Weight and Gradient Clipping
To address the challenge of exploding intermediate results
in a multi-layer setting, we improve the model by clipping
exploding weights in the back-transformation from log-
space (see Equation 11) and avoid calculating imprecisely by
incorporating ǫ and ω only if x values caused exploding
intermediate results.

m = exp
(

min
(

log
(

max(|x|, ǫ)
)

Wm,ω
)

)

(11)

This kind of weight clipping is a simple practical solution to
improve the stability of deep iNALU networks which has for
example been successfully employed in Wasserstein Generative
Adversarial Networks (Arjovsky et al., 2017). The original
NALU architecture didn’t address this problem causing practical
stability issues. To validate this, we incorporated three NALU
layers in a MNIST classification downstream task. Our proposed
clipping mechanism resulted in successful training solving the
task very well2, whereas the original NALU fails producing NaNs.

This shows the effectiveness of our proposed improvement,
albeit more sophisticated solutions might be an interesting topic
of future work to avoid vanishing gradients for clipped neurons.
Further, we apply gradient clipping to avoid stability problems
due to large gradients, which can for example occur when input
values are near to zero. We set ǫ to 10−7 and ω to 20.

3.3.3. Sign Correction
The NALU cell by design isn’t capable of multiplying or dividing
values with a negative result. Therefore, NALU fails calculating
multiplication of mixed signed data. Considering the sign within
the log-space transformation is not trivial since log(x) is not
defined for x < 0 in R. Instead inferring the correct sign
post-hoc is a more feasible solution, which follows the human
intuition of multiplying or dividing numbers with mixed signs.
However, multiplying over the sign (x) vector doesn’t provide
a universal solution, since some input dimensions may be
deactivated (Wi,j = 0). We propose a solution by taking the sign
of only relevant input values into account (i.e., allWi,j 6= 0).

msm1 = sign(x)⊙ |Wm| (12)

msm2 = 1− |Wm| (13)

msm = msm1 +msm2 (14)

msv =
∏

i

msmij (15)

iNALUs: ynalu = g · a+ (1− g) ·m⊙msv (16)

The sign correction is independent of the operation in the
multiplicative path and has to be applied for multiplication and

2With an accuracy of 0.94 after 64000 steps.
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FIGURE 2 | Architecture of the improved Neural Arithmetic Logic Unit (iNALU).

division. Therefore, we use the absolute value of the weight
matrixWm to identify relevant and irrelevant input values. First,
the sign function is applied to the input vector x which then
is multiplied element by element with the absolute value of
the weight matrix Wm, which leads to +1 for positive relevant
inputs, -1 for negative relevant inputs and 0 for irrelevant inputs
(see Equation 12). The multiplication of all row elements (input
dimensions) per column of msm1 leads to 0, if any input
dimension is irrelevant (Wi,j = 0). To prevent this, we represent
all irrelevant inputs as +1, since +1 does not influence the result
of a multiplication. We achieve this by introducing a second
matrixmsm2 (see Equation 13) which is +1 for irrelevant inputs
and 0 for relevant inputs and add msm1 and msm2. Finally, we
infer the sign vector containing the sign of the multiplicative
path for each output dimension (see Equation 15) by multiplying
over each column of msm. This sign represents the correct
solution, if W is discrete i.e., Wi,j ∈ {−1, 0, 1}. Discrete
weights are a desired property (Trask et al., 2018) to achieve
generalization and interpretability and ensure that msm is also
discrete, i.e.,msmi,j ∈ {−1, 1}. By introducing regularization (see
section 3.3.4), we force the model to find discrete weights W.
Implementing both improvements enables the model to calculate
inputs with mixed signs for the multiplicative path correctly.

3.3.4. Regularization
In general, W and g having discrete values is often crucial for a
model to generalize and learn a calculation correctly instead of
approximating the solution. This becomes even more important
for the sign corrected multiplication. We therefore propose
regularizing the weights such that Ŵ, M̂, and G don’t contain
values near zero by introducing a piecewise linear regularization
term (see Equation 17) which adds to the loss until the weight has

reached a discretization threshold t. We found t = 20 suitable
since σ (−20) < 10−9 and 1− tanh(20) < 10−17.

Lreg(w) =
1

t
max(min(−w,w)+ t, 0) (17)

Consider for example weights−t < ŵ, m̂ < t, e.g., ŵ = m̂ = 0.3.
Applying Equation 2 to these weights results in w = tanh(ŵ) ·
σ (m̂) ≈ 0.167. This means that the corresponding input is
scaled down for the calculation of the additive or multiplicative
path. Although mixing scaled inputs might result in suitable
approximations of the underlying training data, usually such
solutions fail to generalize the function and thus to extrapolate.
By incorporating regularization loss, the model has a small
gradient forcing the weights ŵ and m̂ toward −t respectively t.
Therefore the model is penalized for (local) approximations with
values−t < ŵ, m̂ < t pushing tanh(ŵ) toward 1 or−1 and σ (m̂)
toward 0 or 1.

Note that the regularization can cause gradient-directions
contradicting the gradient-direction of the loss without
regularization depending on the initialization. We try to mitigate
this problem by incorporating the regularization only after
several training steps, when the loss is below a threshold (see
section 4 for more details).

Further, regularization is especially useful to improve
extrapolation performance. For example, we evaluate
regularization in the Simple Function Learning Task (see
section 4.7) setup for a summation task (i.e., an overdetermined
task where an optimal and generalizing solution can be found
even for −1 < Wi,j < 1). We obtained after 10 epochs without
regularization an interpolation loss of 5.95 · 10−4 and an
extrapolation loss of 4.46 · 1011. The model has found a suitable
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approximation for the training range but failed to generalize.
Introducing regularization after the 10th epoch and evaluating
after 15 epochs we reach an interpolation loss of 2.2·10−13 and an
extrapolation loss of 2.2 · 10−11, whereas without regularization
we just improve the interpolation loss (8.30 · 10−5) and the
extrapolation loss even impairs (8.76 · 1014).

3.3.5. Reinitialization
Since NALU doesn’t recover well from local optima by its
own (Madsen and Rosenberg Johansen, 2019), we suggest a
reinitialization strategy. This strategy evaluates the loss for each
m-th epoch and randomly reinitializes all weights if the loss did
not improve for the last n steps and if the loss is greater than a
predefined threshold.

3.3.6. Independent Gating
In the original NALU model the gate deciding between the
multiplicative and the additive path is calculated by multiplying
the input vector and the gate weight matrix G (see Equation 5).
While this can be beneficial if the decision between operations is
encoded in an op-code alike fashion, in many tasks, the decision
which operation path to choose is not depending on the input
values but instead fixed for the task, e.g., typical spreadsheet tasks
like calculating the sum or product of different columns.

For this case we propose a model, where the scalar gate
is replaced by a vector which is, contrarily to the original
NALU model, independent from the input (see Equation 18).
Thereby the gate weights are indirectly optimized through back-
propagation during training of the network to represent the best-
fitting operation, reminiscent of training bias in a linear layer.

g = σ (G) (18)

For example consider a NALU network with one layer, the
operation+ and the inputs x1 = (2, 2) and x2 = −x1 = (−2,−2)
resulting in the calculations 2+ 2 = 4 and−2+ (−2) = −4. For
the original NALU the function y = σ (xG)·a+(1−σ (xG))·m has
to be optimized, i.e., a G has to be found which holds σ (xG) → 1
for all x to choose the correct operation. Both inputs x1 and
x2 have to be calculated with the same operation +, thus for a
suitable G, σ (x1G) = σ (x2G) ⇔ σ (x1G) = σ (−x1G) must hold.
Since G = 0 is the only solution leading to σ (xG) = σ (0) = 0.5,
a valid solution satisfying both constraints doesn’t exist. With
independent gating, the iNALU can optimize σ (G) → 1 up to
an arbitrary precision and therefore learn the function correctly.

Additional choosing a vector over a scalar enables our model
to select the operation for each output independently introducing
the capability to calculate for example y1 = a + b, y2 = a · b for
an input x = (a, b) simultaneously.

4. EXPERIMENTS

4.1. Design of Experiments
In this section, we perform an experimental evaluation of
the proposed iNALU model to analyze its basic abilities to
solve mathematical tasks in comparison to the original NALU.
Precisely, we compare two NALU models, NALU (v) with a gate
vectorG, NALU (m) with gate matrixGwith two iNALUmodels,

iNALU (sw) with shared weights between the additive and
multiplicative path and iNALU (iw) with independent weights for
each path. In this section, experiments of varying complexity are
conducted to examine several research questions:

Experiment 1 examines the research question, how well
each model performs in its minimal setup for different input
distributions i.e., one layer with two input and one output
neurons. We show that the iNALU outperforms the NALU and
reaches very low error rates for almost all distributions.

In experiment 2 we evaluate how well the models perform on
different magnitudes of input data. The results show that, the
iNALU models can reach a high precision for data of different
magnitude, albeit the precision for multiplication impairs with
increasing magnitude of input data.

Experiment 3 examines the capability of each model to ignore
input dimensions.We show that the iNALU is capable of learning
to ignore input dimensions well, whereas the original NALU fails
for most operations and distributions.

With experiment 4 we compare different initialization
strategies. The parameter study shows that the initialization
has a large impact on the stability of the network. We finally
identify the most suitable parameter configuration for more
complex tasks.

Finally experiment 5 examines the performance of NALU
and iNALU models for a function learning task involving two
arithmetic operations per function using architectures with two
layers and 100 input dimensions. We show that the iNALU
models outperform both NALUmodels by large margin and yield
a very high precision for all operations except division.

4.2. Prerequisites
This section describes at first the general commonalities of
all experiments.

4.2.1. Datasets
For all experiments, we evaluate on an interpolation task as
well as an extrapolation task. For the interpolation task, the
training and evaluation dataset are drawn from the same
distribution. For the extrapolation task, the evaluation dataset
is drawn from a distribution with a different value range
in order to evaluate the ability to generalize. Each dataset
contains N = 64 000 samples.

4.2.2. Tasks
For our experiments we focus on mathematic operations since
these are the building-blocks of more complex tasks. All tasks
involve applying an operation ⋄ ∈ {+,−,×,÷} to input and/or
hidden variables a and b to calculate y = a ⋄ b. Note that Trask
et al. (2018) introduces additional operations such as identity,
square and the square-root but since these operation are special
cases of the basic operations, their learning performance is closely
correlated with the performance on the basic operations and
therefore omitted for the sake of clarity. The input variables for
all experiments are sampled randomly from a distribution P

with a parameterization λ, which are defined in the following
sections in more detail. Note that for P = N the normal
distribution for our experiments is truncated to λ = [a, b] =
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[µ − 3σ ,µ + 3σ ] (containing ≈ 99, 7% probability mass)
to ensure that the extrapolation task is performed out of the
test distribution range. For the exponential distribution (P =

E) the extrapolation task involves no extrapolation in a literal
sense but rather examines if generalization for different λ values
can be achieved.

4.2.3. Evaluation
In contrast to Trask et al. (2018), we choose a different evaluation
strategy: Trask et al. reported the error for each operation
relatively in comparison to a random initialized network prior
training. Since the performance of the untrained network is
constantly bad, the relative performance reported this way can
be used to decide how well each architecture performs rank-
wise but it can’t be used to infer, to which extend the calculated
result differs from the expected result. Instead, we use a more
intuitive approach for evaluation and report the mean squared
error (MSE) between the calculated and the expected results over
the complete evaluation datasets. For all experiments we report
results for extrapolation, since this is the more difficult task.

MSE(ypred, yreal) :=
1

N

N
∑

i

(y
pred
i − yreali )2 (19)

The MSE comes along with another advantage. Combined
with a predefined threshold, the MSE can be used to
evaluate if the model reaches the necessary precision (Madsen
and Rosenberg Johansen, 2019). If not stated otherwise we
understand a MSE ≤ 10−4 as successful training.

We repeat each experiment ten times with different random
seeds. This procedure examines if the performance is stable or
how much it scatters randomly.

4.2.4. Training
We use the Adam optimizer (Kingma and Ba, 2015) in mini-
batch training with a learning-rate of 0.001 and a batch size of 64.
Training is done for 100 epochs using the MSE as loss. Clipping,
regularization and random reinitialization as described in section
3.3 are implemented. Regularization is activated after 10 epochs
whenever the training loss L < 1. Reinitialization is applied each
10th epoch if the loss hasn’t improved over m = 10, 000 steps.

FIGURE 3 | MSE for various input distributions per operation over the extrapolation test dataset of experiment 1 (minimal arithmetic task). The original NALU is

colored in orange and green, (m) stands for the matrix gating, and (v) for the vector gating version. Our iNALU models are depicted in red for the shared weights

variant and blue for the version with independent weight matrices for the summative and multiplicative path. For truncated normal (N) as for uniform distributed data

(U), the first parameter tuple represents the training data range, the second tuple represents the extrapolation range. For exponentially distributed data (E) the

parameter λ is reported.
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FIGURE 4 | MSE on extrapolation in the minimal arithmetic task for various uniformly distributed input magnitudes per operation. For a detailed description

see Figure 3.

This means during training reinitialization can occur up to nine
times. Note that this method could lead to incompletely trained
models if a reinitialization occurs late during training in favor of
a fair model comparison.

4.3. Experiment 1 - Minimal Arithmetic Task
Experiment 1 constructs the most minimalistic task where
the model has two inputs and one output and analyzes the
influence of the input value distribution by sampling a and b
from uniform, truncated normal and exponentially distributed
random variables in various ranges.

4.3.1. Results
The extrapolation results of this experiment are presented
in Figure 3.

In general our iNALU models perform substantially better on
all operations. With the exception of exponentially distributed
data for λ = 0.2, for summation all and for subtraction almost
all models succeed. For multiplication iNALU with independent
weights performs best reaching very good precision with the

exception of E(0.2) and N(−4, 2). All models yield worse results
for division. In fact, for the original NALU, no tested input
parameter configuration leads to acceptable MSEs (the average
MSE is 4.36 · 104). Our models also yield mixed results, some
solving the task nearly perfect after one to six reinitialization but
others failing after nine reinitialization as well.

4.4. Experiment 2 - Input Magnitude
In this experiment we generate data of differentmagnitude for the
minimal arithmetic task of experiment 1 to examine the influence
of the data magnitude on the model precision. We sample a
and b from a uniform random variable symmetrically around
0 from (min,max) = (−10−2, 10−2) to (−104, 104). For each
configuration we extrapolate to (max, 2 ·max).

4.4.1. Results
The results of this experiment are shown in Figure 4. For input
data of a magnitude larger than 1, the NALU models fail to
capture the underlying function precisely for all operations. In
contrast, the iNALUmodels calculate precisely for all magnitudes
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FIGURE 5 | MSE for various input distributions per operation over the extrapolation test dataset of experiment 3 (simple arithmetic task). For a detailed description

see Figure 3.

for summation and subtraction. For multiplication the influence
of the input data magnitude is larger, which was to be expected
since the magnitude of the results for a = 10x, b = 10y, a × b
is 10x+y and so is the magnitude of the error, which is, as we
report the mean square error, squared in addition. For division
independently of the data magnitude, some iNALU models
capture the underlying operation very precisely, others fail. All
NALU models fail to calculate division precisely.

4.5. Experiment 3 - Simple Arithmetic Task
Experiment 3 is a generalization of the minimal arithmetic
task where the model has to learn to ignore irrelevant input
dimensions to calculate the correct solution.

This setting is motivated by real world tasks like spreadsheet
calculations where one column is calculated by applying a simple
operation to two specific columns while other columns are
present but must not influence the result.

Themodel consists of oneNALU layer with ten inputs and one
output. We test the same input distributions as in the minimal
arithmetic task (see section 4.3).

4.5.1. Results
Figure 5 shows the results of this experiment. Although, the
setting of experiment 3 is slightly more complex than experiment

1, most performance patterns repeat. In the following, we want to
highlight some interesting exceptions.

For input data sampled from an exponential distribution,
the results improve for the original NALU models especially
for summation and multiplication. For summation training is
unstable, since some models succeed but others fail to learn the
task. In contrast to the minimal arithmetic task, iNALU succeeds
for summation of exponentially distributed data with λ = 0.2 and
shows better results for multiplication. For division the situation
of unstable training as discussed before even worsens such that
only very few of our iNALU models succeed (≈ 6.4% of all
experiments reach a MSE < 10−5). The original NALU failed
constantly for division. For subtraction, our model with shared
weights is slightly more unstable but ourmodel with independent
weights still yields stable results and calculates precisely.

4.6. Experiment 4 - Influence of
Initialization
Experiment 1 suggests that training is unstable for some
operations (subtraction and division). Whereas some of
our improved models happen to solve the minimal task
flawlessly, others fail to converge. As a consequence, suitable
initialization seems to be crucial for successful training of
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more complex architectures. This fact is also confirmed by
Madsen and Rosenberg Johansen (2019).

In this experiment, we analyze the effect of different
parameters for random weight initialization of the neurons.

In contrast to the Minimal Arithmetic Task, the variables a
and b are constructed by summing up 100 input vector entries
assigned to a and b. Since Trask et al. (2018) doesn’t specify
the assignment in detail, we construct it by randomly assigning
entries mutually exclusive to a and b and demand some inputs
to be ignored by the model (since they neither contribute to a
nor to b). We decide on the assignment once per task randomly
such that the assignment is constant for all samples. Note, that
the assignment is not an additional input to the neural network
but instead it has to learn this assignment.

For this study, we examine the model performance of
our iNALU model with shared weights for standard normal
distributed input values such that P = N and λ =

(µ, σ ) = (0, 1). We choose to initialize the model weights
following a normal distribution as well. To find suitable
initialization parameters, we performed an exhaustive search
for the parameters µg ,µM̂ ,µŴ ∈ {−1, 0, 1} and σg , σM̂ , σŴ ∈

{0.1, 0.5}. We repeat each parameter setting 20 times with
different seeds to be able to asses the model stability. Note that
initializations which are too large bias the model toward specific
operations, but especially sigmoid activations suffer from small
random initializations (Glorot and Bengio, 2010).

4.6.1. Results
Table 1 shows the results of our parameter search. We
consolidated the results for σ = 0.1 and σ = 0.5, since
both parameters yielded similar results and report the maximum
MSE of all runs for each parameter setting. This is a very
strict evaluation metric since only 1 of 20 models failing could
obfuscate 19 successful runs. However, we are particularly
interested in parameters which lead to stable models. The
results support our finding from the arithmetic experiments that
division is very unstable to learn. To be precise, no model solved
the problem for all parameter configurations and repetitions.
Stable parameter configurations could be found for the remaining
operations. Overall the configuration (µg ,µM̂ ,µŴ) = (0,−1, 1)
is clearly most stable among all tested parameters for this task
and architecture.

4.7. Experiment 5 - Simple Function
Learning Task
For the Simple Function Learning Task, we keep the setting
of the previous experiment but focus on the comparison of
our model using both, combined path-weights and separated
path-weights to the originally proposed NALU in both variants
(see section 3.1).

Since we found suitable initializations, we sample from
uniform and truncated normal distribution and interpolate
within the interval [a, b] = [−3, 3] for both. This translates to
a standard normal distribution (µ = 0, σ = 1) for the truncated
normal distribution. For the extrapolation interval we choose
[3, 4] and [−5,−3] to test positive as well as negative values
outside the training range with different standard deviations.

TABLE 1 | Maximum MSE over all models for the Simple Function Learning Task

(extrapolation) for weight initializations means of −1, 0, 1.

E[G] E[M̂] E[Ŵ] ADD DIV MUL SUB

−1 1E−01 (93) 7E+09 (0) 1E+07 (81) 1E−02 (95)

−1 0 1E−02 (95) 7E+09 (0) 1E+07 (95) 1E−03 (98)

1 3E+00 (98) 7E+09 (0) 1E−04 (100) 2E−08 (100)

−1 3E+07 (13) 2E+14 (0) 1E+07 (25) 1E+04 (16)

−1 0 0 1E−01 (78) 7E+09 (0) 1E+07 (95) 1E−01 (68)

1 5E+03 (73) 1E+05 (0) 1E−04 (100) 3E−02 (89)

−1 6E+07 (0) 5E+14 (0) 1E+07 (50) 8E+03 (0)

1 0 9E+14 (30) 3E+06 (0) 1E+07 (87) 9E+14 (21)

1 1E+17 (13) 7E+09 (0) 6E+00 (94) 1E+15 (14)

−1 2E−01 (91) 7E+09 (0) 1E+07 (53) 1E−02 (95)

−1 0 1E−01 (88) 1E+05 (0) 1E+07 (64) 1E−02 (94)

1 1E−04 (100) 4E+05 (0) 1E−04 (100) 1E−04 (100)

−1 8E+03 (6) 3E+14 (0) 1E+07 (29) 8E+03 (7)

0 0 0 3E−01 (68) 1E+14 (0) 1E+07 (65) 2E−01 (65)

1 2E−01 (71) 7E+09 (0) 2E−04 (100) 3E+00 (70)

−1 8E+03 (6) 7E+14 (0) 1E+07 (27) 7E+03 (0)

1 0 3E+16 (23) 2E+14 (0) 1E+07 (60) 1E+15 (10)

1 2E+17 (21) 7E+09 (0) 1E+01 (94) 4E+15 (18)

−1 1E−02 (92) 4E+05 (0) 1E+07 (40) 1E−02 (98)

−1 0 9E−03 (93) 7E+09 (0) 1E+07 (50) 5E−03 (87)

1 2E−04 (100) 7E+09 (0) 1E−04 (100) 6E−03 (97)

−1 8E+03 (21) 2E+14 (0) 1E+07 (29) 8E+03 (34)

1 0 0 3E−01 (36) 7E+09 (0) 1E+07 (36) 5E−01 (26)

1 3E+00 (80) 7E+09 (0) 2E−04 (100) 1E−01 (72)

−1 4E+05 (11) 4E+14 (0) 1E+07 (61) 8E+03 (10)

1 0 7E+16 (17) 7E+09 (0) 1E+07 (28) 1E+13 (0)

1 2E+17 (21) 2E+14 (0) 1E+01 (93) 7E+15 (21)

Successful configurations (maximum loss < 0.001) in bold, percentage of successful

repetitions in brackets.

4.7.1. Results
Figure 6 shows, that our iNALUmodels outperforms the original
NALU for summation, subtraction and multiplication on almost
all runs. Our model with independent weights is most promising
since almost all runs succeed. However, few outliers indicate
that the stability problem is not completely solved yet. This
especially holds for division where all models fail to learn the
operation correctly.

5. DISCUSSION

The experiments in section 4 analyzed the ability of the original
NALU and our iNALU to solve various mathematical tasks and
show that the performance of the NALU heavily depends on
the distribution of the input data. The quality of the iNALU
also depends on the input distribution but is in general more
stable and achieves better results. For larger magnitudes of input
data, multiplication becomes challenging for the iNALUhowever,
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FIGURE 6 | Extrapolation MSE for Experiment 5 (simple function learning task). Original NALU with gating matrix (m) and gating vector (v) are colored orange and

green, our iNALU model with shared weights (sw) is colored red and with independent weights (iw) in blue.

compared to the NALU the input range for which the model
can multiply precisely is several magnitudes larger. Experiment
3 extends the arithmetic task by switching off several inputs.
The results reinforce the findings of the first experiment that
iNALU achieves better and more stable results than NALU. The
differences between both iNALU models can be explained by
the separate weighting matrix for summation/subtraction and
multiplication/division. In experiment 5, the iNALU achieves for
three of four operations acceptable results whereas the original
NALU fails for all four operations.

In general, the MSE calculated on the extrapolation datasets
provides a good intuition if the NALU has learned the correct
logical structure which is resilient to other value ranges. The
interpolation results are very similar regarding the relative
performance of all models but in general achieve a higher
precision and thus a lower MSE (e.g., for summation in
experiment 1 our iNALU model with independent yields
6.14 · 10−15 for interpolation and 5.45 · 10−13 for extrapolation
on average MSE).

Further, all experiments show that the operation division is
the most challenging task for NALU and iNALU. The instabilities
for division might be explained by the special case of dividing by
near-zero and the sampling strategy for a and b: For sampling

inputs in an interval including 0, division might cause huge or
very small results depending on the assignments of dividend or
divisor which are represented by completely different weights.
Possibly irrelevant input variables might therefore influence the
result by such magnitude that there is no clear gradient signal for
the assignment.

Another observation is that the optimal initialization is
dependent on many factors such as task, model size and value
range. We want to emphasize that our parameter study is not
intended to raise a claim for generally finding the optimal
parameters, but rather to find initialization parameters for this
specific task to allow a model comparison. Our study suggests the
parameter configuration (µg ,µM̂ ,µŴ) = (0,−1, 1) which seems
to be reasonable, since it treats the summative/subtraction path
and multiplicative/division path equally at beginning and assigns
small activation weights to all inputs.We believe that the problem
of generally finding optimal or near optimal initializations is an
interesting and theoretically challenging task for future work.

6. CONCLUSION

Recently, the NALU architecture was proposed to learn
mathematical relationships, which are necessary for solving
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various machine learning tasks. In this paper, we proposed
an improved version of this architecture called iNALU. The
original NALU is only able to calculate non-negative results
for multiplication and division by design and often fails
to converge to the desired weights. We solved the issues
of multiplying and dividing with mixed-signed results and
proposed architectural variants for shared and independent
weights with input independent gating. Further, we introduced a
regularization term and a new reinitialization strategy which help
to overcome the problem of unstable training.

We evaluated the improvements in four large scale
experiments which examine the influence of different
input distributions and task-unrelated inputs. The first two
experiments analyze the basic capabilities of NALU and
iNALU. Further, the parameter study for the Simple Function
Learning Task shows that the choice of weight initializations
has a huge impact on model stability. The parameter study
revealed suitable initialization parameters. We showed that our
proposed architectures can learn simple mathematical functions
and outperforms the reference models in terms of precision
and stability.

Future work encompasses analyzing the stability issue from a
theoretical point of view and evaluating the extensions in various
downstream tasks. Last but not least, we want to improve the
division in more complex learning scenarios.
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