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Increasing quality and performance of artificial intelligence (AI) in general and machine

learning (ML) in particular is followed by a wider use of these approaches in everyday

life. As part of this development, ML classifiers have also gained more importance for

diagnosing diseases within biomedical engineering and medical sciences. However,

many of those ubiquitous high-performing ML algorithms reveal a black-box-nature,

leading to opaque and incomprehensible systems that complicate human interpretations

of single predictions or the whole prediction process. This puts up a serious

challenge on human decision makers to develop trust, which is much needed in

life-changing decision tasks. This paper is designed to answer the question how

expert companion systems for decision support can be designed to be interpretable

and therefore transparent and comprehensible for humans. On the other hand, an

approach for interactive ML as well as human-in-the-loop-learning is demonstrated

in order to integrate human expert knowledge into ML models so that humans

and machines act as companions within a critical decision task. We especially

address the problem of Semantic Alignment between ML classifiers and its human

users as a prerequisite for semantically relevant and useful explanations as well

as interactions. Our roadmap paper presents and discusses an interdisciplinary yet

integrated Comprehensible Artificial Intelligence (cAI)-transition-frameworkwith regard to

the task of medical diagnosis. We explain and integrate relevant concepts and research

areas to provide the reader with a hands-on-cookbook for achieving the transition from

opaque black-box models to interactive, transparent, comprehensible and trustworthy

systems. To make our approach tangible, we present suitable state of the art methods

with regard to the medical domain and include a realization concept of our framework.

The emphasis is on the concept of Mutual Explanations (ME) that we introduce as a

dialog-based, incremental process in order to provide human ML users with trust, but

also with stronger participation within the learning process.

Keywords: explainable artificial intelligence, interactive ML, interpretability, trust, medical diagnosis, medical

decision support, companion
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1. INTRODUCTION

Although modern ML approaches improved tremendously in
terms of quality (prediction accuracy) and are able to even exceed
human performance in many cases, they currently lack the ability
to provide an explicit declarative knowledge representation and
therefore hide the underlying explanatory structure (Holzinger
et al., 2017). Due to this inability, modern ML approaches
often result in black-box approaches—models and techniques,
whose internal approach stays unknown and that just connect
observable input- and output information without allowing
an understanding nor an explanation of the way results have
been produced (see Figure 1). Exactly that missing transparency
makes it difficult for users of ML techniques to develop an
understanding of the recommendations and decisions, which
mostly constitutes an inherent risk (Sliwinski et al., 2017).
In a legal sense the question of legal security and liability security
arises. Since the European General Data Protection Regulation
(GDPR and ISO/IEC 27001) has entered into force in May,
2018, the relationship between AI and applicable law contains
tremendous potential for clarification (Holzinger et al., 2017).
As an example, the question of liability arises, especially if third
parties suffer damages that are caused by recommendations
or decisions made by ML approaches. According to latest
jurisprudence, software architects, software developers as well as
users are only liable for their actions and artifacts if a certain
behavior of the systemwould have been predictable (Burri, 2016).

Most current architectures as described in Figure 1 often lead
to several problems. On the one hand, the system of internal
rules itself often is not interpretable by humans. On the other
hand, the ML results in terms of classification, regression or
policy outputs are not comprehensible nor explainable due to
biases and uncertainty introduced by the used model, the data

FIGURE 1 | Present ML-approaches as black-box approaches.

or other factors. In addition, human experts have difficulties
in integrating their expert knowledge into the learning process.
All of the just mentioned points of criticism have led to a
steadily increasing importance of the research areas Explainable
Artificial Intelligence (xAI), Interpretable Machine Learning
(iML) and Interactive ML that we summarize and refer to
as cAI. These primarily aim at developing approaches that
in addition to a precise prediction accuracy fulfill concepts
like interpretability, explainability, confidence including stability
and robustness, causality, interactivity, liability and liability
security in a legal sense, socio-technical and domain aspects,
bias awareness as well as uncertainty handling. The intention
of cAI can be characterized by either achieving interpretability
regarding the models or by making at least the results itself
understandable and explainable and therefore interpretable (see
Figure 2). We develop and present our cAI framework with
regard to the application of ML for medical diagnosis. Since
medical diagnosis comprises a complex process relevant for
many succeeding medical sub-disciplines with high human
involvement, diagnostic decisions not only need to be done
accurately and precisely, but also in a comprehensible and
trustworthy manner. Convolutional neural networks can be used
to demonstrate the current trade-off between ML performance
and interpretability. Such deep learning approaches often used
for image-based medical diagnosis perform well in terms of
prediction accuracy, but the models as well as their decisions
cannot be interpreted easily without further investigations.

2. METHOD/DESIGN

In order to address the shortcomings mentioned above, we first
provide an overview of the cognitive concepts that are used in
the course of this paper to differentiate between different research
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FIGURE 2 | Future comprehensible ML-approaches (i.e., gray-box approaches).

branches (see Figure 3). The cognitive concept of interpretation
can be seen as the key concept, whose different shapings can be
used as a criterion for differentiation of iML and xAI. From a
philosophical and hermeneutical perspective, understanding and
explaining are correlated terms and sometimes considered as
symmetric cognitive concepts (Schurz, 2002). Having recognized
and understood an issue therefore leads to having an explanation
for it, and, reaching the state of understanding comes with having
generated explanations. Thus the concept of understanding can
be seen as necessary and sufficient condition for explaining and
explaining represents a sufficient condition for understanding.
Both concepts, understanding and explaining, in combination
constitute a necessary condition for interpretation. iML and xAI
differ in the explanandum as well as in the nature of desired
interpretability, which the authors from Adadi and Berrada
(2018) call the scoop of interpretability.

The task of making classifications, regressions or derived
policies of an ML approach interpretable, contains sub-tasks
like understanding and explaining as described in Figure 3.
Understanding, which means recognizing correlations (context)
in an intellectual way, can be seen as the bridge between human
recognition and decision and is therefore the basis of explanation.
Humans are performing really good in understanding a context
and based on this generalizing from observations, whereas
there is a long way still to go for AI especially in terms
of contextualizing. On the basis of understanding a context,
the explanation task, in addition, includes making the reasons
of observed facts by stating logical and causal correlations
comprehensible for humans (Holzinger, 2018). We draw a
distinction between the attributes explainable and explicable
within the AI context in stating that making facts explicable is a
sub-task of the explanation task, meaning that purely explicating
facts is not enough for humans to build an understanding.
In terms of our cAI terminology (see Figure 3), ML models
and results need to be explicable so that they are transparent

to human users, but they need to be explainable for being
comprehensible, too. We therefore refer to explicability as a
property, which forms the basis for explainability and states
that something potentially can(!) be explained, but it doesn’t
necessarily correspond to the concrete explanation for a certain
set of facts in rationale terms. The focus of explaining can be
differentiated regarding the explanation of the reasoning, the
model or the evidence for the result (Biran and Cotton, 2017).
However, in all cases, the goal of the explanation task can be
seen as updating the humans’ mental models (Chakraborti et al.,
2018), where good explanations must be relevant to a, potentially
implicit, human question as well as relevant to the mental model
of the explainee (Miller, 2019).

Explanations can provide a valuable basis for providing
transparency and comprehensibility regarding systems’ decisions
and therefore can lead to increased trust of ML users (Pu et al.,
2011; Prahl and Swol, 2017; Miller, 2019). A high level of initial
trust in ML systems, which often decreases rapidly in case of
erroneous or unexpected reactions (Madhavan and Wiegmann,
2007), as well as interaction and influencing possibilities might
be an acceptance criterion for the usage of such systems
(Schaefer et al., 2016). As illustrated in Figure 3, we distinguish
between two different shapings of the cognitive concept of
interpretation—namely iML and xAI, which differ in the kind of
understanding as well as in the way explanations are revealed.
In our opinion, iML focuses on using or generating global
interpretability by providing intrinsic—ex ante—understanding
of the whole logic of the corresponding models (Adadi and
Berrada, 2018). Global explanations therefore relate to the inner
functioning of models, meaning the entire and general behavior
in terms of the entire reasoning describing HOW the systems
work internally. Hence, the scoop of this type of interpretability
is to inform about the global effects giving some indication on
the real concepts that a system has learned. The explanandum
is therefore the ML model itself where we consider the rules
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FIGURE 3 | Derivation of cAI from iML and xAI considering the underlying cognitive concepts.

of reasoning as the explanans giving information about how
all of the different possible outcomes are connected to the
inputs. On the other hand, we see xAI’s focus more on enabling
local interpretability by providing an ex post-understanding of
the model’s specific behavior. Local explanations for individual
decisions or single predictions strive for making the input-
output-correlations clear to the user without the need for
knowing the model’s internal structure (Adadi and Berrada,
2018). Thus, the scoop of this type of interpretability is to
make justifications WHY a model produced its output in the
way it did. The explanandum is therefore an individual ML
result or a group of results where we see the occurrences,
importances, and correlations of input features as the explanans
giving information about the logical and causal correlations
of inputs and outputs. The two dimensions spanned by cAI,
in our understanding of interpretability, namely transparency
and comprehensibility (see Figure 3), might aim at different
requirements of different kind of users. Therefore, we refer
to transparency as a property especially relevant to domain
or ML experts that are not solely interested in why a certain
output was made but also trying to explore the nature and
characteristics of the underlying concepts and its context. In
contrast, we refer to comprehensibility as a requirement raised
particularly by humans that are directly affected by the outputs
and the correlated consequences trying to understand why a
specific decision was made. We define the overall objective of
cAI as developing transparent and comprehensible AI systems
that humans can trust in as well as improving the systems’ “joint
performance,” both by means of global interpretability (iML)
in combination with local interpretability (xAI). Depending on
the domain and the ML problem to be solved an adaptive
combination of white-box approaches and black-box approaches
with connected explanation generators and interfaces (gray-box
approach) will be necessary in order to reach cAI.

Figure 4 illustrates our suggestion for a possible transition
framework, which includes interdisciplinary concepts,
approaches and measures to reach cAI and thus the next
level of transparent and interactive companions for decision
support. As discussed, current ML approaches lack conceptual
properties like interpretability of the model as well as the

results. Additionally, missing reproducibility of ML predictions
and the according explanations imposes requirements on a
concept called confidence, which the authors from Arrieta
et al. (2020) refer to as a generalization of robustness and
stability of ML approaches. Furthermore and due to missing
interpretability, state of the art ML systems often do not provide
any possibility for human interaction, since humans are not able
to understand the rules the system has learned. Therefore, any
correction of erroneous rules or any inclusion of domain-specific
knowledge through human experts (i.e., physicians) is not
possible. In addition, the points of criticism mentioned so far
also lead to tremendous potential for clarification in terms of the
relationship between AI and applicable law. Legal security and
liability security will play a crucial role in the near future. As an
example, in the medical domain the question of liability arises,
especially if a patient suffers damages that are caused by amedical
treatment of a physician who acted on the recommendation
of an ML approach. Additionally, we consider socio-technical
and domain aspects as other important conceptual properties,
since in most cases ML pipelines need to be adapted to the
according context of the problem to be solved. In the same
way, explanation and interpretation techniques need to be in
accordance with the individual domain and social as well as
ethical requirements. Causality is another necessary concept
(Pearl, 2009) and refers to making underlying mechanisms
transparent beyond computing correlations (Holzinger et al.,
2019) to derive the true reasons that lead to a particular outcome.
Therefore, causality depends on available interpretability and
explainability of models. This requirement as precondition
to causality can be referred to as causability and is currently
examined in the context of explanation evaluation, especially
for the medical domain (Holzinger et al., 2019). Analogously to
our differentiation between explicability and explainability, we
strongly agree with the authors from Holzinger et al. (2019) that
results gained from explainable and interpretable models should
not only be usable but also useful to humans. In this regard they
refer to Karl Popper’s hypothetical deductive model in order to
derive facts from laws and conditions in a deductive manner by
causal explanations. Bias awareness as further concept focuses on
avoiding ML-related biases in predictive modeling like sample
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FIGURE 4 | cAI transition framework using interdisciplinary concepts, approaches and measures to reach next level of AI.

bias, exclusion bias, label bias, bias in ground truth as well as
other more general biases like observer bias, prejudice bias and
measurement bias. A remedy can be to use techniques such as
FairML, which is a toolbox for diagnosing bias in predictive
modeling (Sgaard et al., 2014; Adebayo, 2016). Uncertainty
is another concept that should be taken into account. In ML
two types of uncertainty are distinguished (Kendall and Gal,
2017). Uncertainty that originates from noise in observations,
meaning for example missing measurements, irrelevant data or
mislabeled examples, is called aleatoric uncertainty. The other
type of uncertainty is called epistemic uncertainty. It refers to
uncertainty that results from the model. In particular in image
classification, approaches such as Bayesian deep learning can be
applied and extended to handle and explicate uncertainties.

For enabling such conceptual properties, an integration of
concepts, approaches, techniques and measures from a variety of
disciplines is necessary as depicted in Figure 4. We refer to and
extend a proposal from the Defense Advanced Research Projects
Agency (DARPA) to elaborate cAI emphasis by showing relevant
research disciplines and its relationships to AI (Gunning, 2016).
In this context, the emphasis of cAI is defined as an overlapping
of the disciplines AI, Human Computer Interaction (HCI)
and End User Explanation with its interdisciplinary techniques
and approaches like visual analytics, interactive ML and dialog
systems. Furthermore, domain requirements, legal as well as ethic
aspects participate and contribute to an overall understanding
of cAI.

3. FUNDAMENTALS OF cAI TRANSITION
APPLIED TO MEDICINE

The relevance of cAI becomes clear when ML is applied to
medicine. In common, medical sub-disciplines rely on high
sensitivity and specificity of diagnostic decisions. In order to
choose the right therapy and to avoid delays in treatment

caused by initial misdiagnosis, neither false alarms nor miss
outs are desirable. Several recent studies show that ML can
help to increase the accuracy of diagnosis (Weng et al., 2017;
Haenssle et al., 2018; Hu et al., 2019). Applying ML therefore
has the potential to save lives and resources. Especially sub-
disciplines that are based on image processing and classification,
like histology, could benefit from high performing approaches
such as convolutional neural networks (Buetti-Dinh et al., 2019).
However, since these approaches remain a black-box, medical
experts cannot comprehend why a certain classification was
performed and thus convolutional neural networks should not
be applied in decision-critical tasks unless their predictions
are made comprehensible and robust. Even though an ML
approach shows a high classification accuracy, it still might be
biased (Gianfrancesco et al., 2018). In the following sections we
present the cornerstones as well as some specific approaches
for improving comprehensibility of expert companions for the
medical domain.

3.1. Explanation Generation and Visual
Analytics
Visual analytics techniques, which in our transition framework
from Figure 4 are located at the intersection of AI and End
User Explanation, can be used to provide visualizations that are
helpful for humans to interpret according models or its results.
Therefore, human comprehensible End User Explanations need
to be built on top of formal explanations by considering and using
knowledge from psychological and philosophical investigations.
These, inter alia, strive for the generation of explanations
understandable for humans and for an efficient communication
by conveying the causal history of the events to be explained
(Lewis, 1986). As a consequence, most state of the art explanation
generators try to use visualization techniques in order to generate
explanations that are relevant both to the implicit questions of
the explainees as well as to their mental models (Miller, 2019).
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FIGURE 5 | LIME: Explaining individual predictions in the medical context (Ribeiro et al., 2016).

A prominent xAI technique, which allows for local, model-
agnostic and post-hoc interpretations by approximating black-
box models locally in the neighborhood of predictions of interest,
was proposed by Ribeiro et al. (2016). LIME uses a local linear
explanation model and can thus be characterized as an additive
feature attribution method (Lundberg and Lee, 2017). Given the
original representation x ǫ R

d of an instance to be explained,
x′ ǫ {0, 1}d

′

denotes a binary vector for its interpretable input
representation. Furthermore, let an explanation be represented
as a model g ǫ G, where G is a class of potentially interpretable
models like linear models or decision trees. Additionally, let�(g)
be a measure of complexity of the explanation g ǫ G, for example
the number of non-zero weights of a linear model. The original
model that we are searching explanations for is denoted as
f : R

d → R. A measure πx(z) defining the locality around x is
used that captures proximity between an instance z to x. The
final objective of LIME is to minimize a measure L(f , g,πx(z))
that evaluates how unfaithful g is in approximating f in the
locality defined by πx(z). Striving for both interpretability and
local fidelity, a LIME explanation is obtained by minimizing
L(f , g,πx(z)) as well as keeping �(g) low enough to be an
interpretable model:

ξ (x) = argmin
gǫG

L(f , g,πx(z))+ �(g) (1)

For being a model-agnostic explainer, the local behavior of f
must be learned without making any assumptions about f . This
is achieved by approximating L(f , g,πx(z)), drawing random
samples weighted by πx(z). Having drawn non-zero elements
of x′ uniformly at random, a perturbed sample z′ ǫ {0, 1}d

′

is
obtained. Recovering z from z′ and applying f (z) then yields
a label, which is used as label for the explanation model. The
last step consists of optimizing Equation (1), making use of
dataset Z that includes all perturbed samples with the associated
labels. Figure 5 depicts an exemplary explanation process of
LIME in the medical domain that explains why a patient was
classified as having the flu by portraying the features sneeze
and headache as positive contributions to having the flu, while
no fatigue was considered as evidence against the flu. Other
techniques for generating explanations, especially for concrete
predictions of neural networks, comprise Layer-wise Relevance

Propagation (LRP), which identifies properties pivotal for a
certain prediction, as well as neural network rule extraction
techniques like Neurorule, Trepan, and Nefclass (Beasens et al.,
2003; Lapuschkin, 2019). All of these approaches share in
common that they either provide explanations in terms of
visualizations by showing the most important features relevant
for a single prediction or by providing rules that are represented
as decision table. As an example, Binder et al. (2018) developed an
approach for predictive learning of morphological and molecular
tumor profiles. In addition to purely focusing on prediction
accuracy, the authors applied LRP in order to analyze the non-
linear properties of the learning machine by mapping the results
of a prediction onto a heatmap that reveals the morphological
particularities of the studied pathological properties. Hägele et al.
(2019) analyzed histopathological images and applied LRP for
visual and quantitative verification of features used for prediction
as well as for detection of various latent but crucial biases
using heatmapping.

Out of such explanations and visualizations, experts might
get valuable interpretations, but to even improve interpretability
especially for lay humans it could be helpful to include
other explanation modalities. As an example, combining visual
explanations with natural language explanations as well as
allowing for more interactivity between ML systems and
users could further improve trust in the system. Additionally,
in our opinion the process of transferring and presenting
generated explanations should be made up in a way such
that semantic level of detail as well as semantic context are
aligned between the ML system, the explanation system and
the human user. Therefore, our transition framework includes
an interdisciplinary, psychologically motivated research area
that deals with End User Explanations. Psychological insights
into the process of generating and communicating explanations
can be derived from explanatory understanding (Keil, 2011).
According to that, explanations reveal a transactional nature
and communicate an understanding between individuals.
Additionally, as humans adapt stances or modes of construal
(Dennett, 1987) that frame explanations, the latter ones reveal
an interpretative nature and require humans to perform mental
calculations in order to understand explanations. Therefore,
the authors from Sloman et al. (1998) and Ahn et al.
(2000) name circularity, relevance and especially coherence as
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further important dimensions that guide systematic evaluation
of explanations. Coherence in the domain of explanations
describes the fact that humans prefer explanatory features within
induction, which are most causally interdependent on others
and therefore coherent. Furthermore, explanations are deemed
relevant and informative when being presented to humans at
the correct level of semantic detail. In essence, high quality
explanations stick together and represent an internally consistent
package, whose elements form an interconnected, mutually
supporting relational structure (Gentner and Toupin, 1986;
Thagard, 2000).

Many state of the art explanation systems, especially those
based on perturbations, reveal some significant drawbacks. One
of them is the fact that they sample instances around the instance
to be explained by drawing samples uniformly at random.
Doing so they ignore feature dependence when sampling from
a marginal distribution (Molnar, 2019). Thus, there is a high
chance that subsequent explanation strategies put too much
weight on unlikely data points and are therefore susceptible for
extrapolation. In such a case, explanations can then easily be
misinterpreted. As a further consequence, context between the
explanation features is not considered, yielding explanations,
where humans have to perform many mental calculation steps
in order to interpret and understand the explanations properly.
Another potential problem is described by the authors (Alvarez-
Melis and Jaakkola, 2018), namely potential instabilities of
explanations manifesting in great variances for explanations
of two close data points. Due to the random-sampling-step, one
of the necessary concepts from our transition framework, namely
confidence, is often violated. The authors from Arrieta et al.

(2020) refer to confidence as a generalization of robustness and
stability, which are themselves also motivated by the problem
of missing reproducibility of the ML predictions as well as
the according explanations. Finally, missing context between
explanation features can lead to a lack of semantic interactivity
between ML system and human users, since humans think
and explain via semantic coherent concepts that the explanation
systems are often not able to deal with.

As LIME is a representative of perturbation-based explanation
systems and constitutes state of the art within xAI for image as
well as for text classification (both of which are highly relevant
within the medical domain), we propose an architecture to
overcome some of the drawbacks mentioned above especially
for text classification combined with LIME. Therefore, we
propose the integration of (a) a ML classification algorithm,
(b) an explanation system like LIME as well as (c) a semantic
approach. In text domain, the latter is represented as a text
modeling approach, in specific a topic modeling approach
like Latent Dirichlet Allocation (LDA) that captures semantic
and contextual information of the input domain. The goal
of this integrated architecture (as illustrated in Figure 6)
is to provide the basis for coherent and therefore human-
interpretable, contextual explanations and to enable insights
into the classifier’s behavior from conceptual point of view.
Harnessing semantic and contextual meta-information of the
input domain by learning human-interpretable latent topics with
LDA enables a Perturbation-based Local Explanation Generator
like LIME to sample from a realistic local distribution via topic-
based perturbations. As a result, topic-encoded explanations
are obtained, which allow humans to recognize correlations

FIGURE 6 | Integration of a ML classification algorithm, an explanation system like LIME as well as a semantic approach: Black arrows represent the classical way of

generating and communicating explanations in a model-agnostic and perturbation-based way, while the blue dotted arrows show the explanation process integrating

a semantic approach.
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(context) and to perform interpretations more intuitively by
aligning the encoded semantic concepts with their mental model.
Another interesting property of a combination of an explanation
system combined with a semantic approach is its semantic
interrogation ability. When it comes to the point, whether to
trust a ML classifier, potential questions to be answered could
be: “Does a classifier behave in a manner that is expected by
humans?” or “How much does a classifier resemble human
intuition”. A semantically enriched architecture enables humans
to generate documents that reveal a specific semantic content
(represented as a mixture of certain topics and according
words) as well as semantic structure. Presenting those user-
specified documents to the classifier and receiving the according
classifications, human users can interact with the classifier
through an explanation system via semantic interrogations. These
will be answered by the classification system with topic-based
explanations allowing the user to interpret them in terms of
human semantic concepts.

Applying such an architecture to the medical domain can
help with improving and explaining automatic recognition of
medical concepts in (un-)structured text (i.e., patient records),
which is a complicated task due to the broad use of synonyms
and non-standard terms in medical documents (Arbabi et al.,
2019). In essence, better reproducibility of explanations can be
achieved by reducing randomness during perturbation by the
integration of semantic sampling that also allows to generate
contextual explanations, which in turn can be interpreted by
humans more intuitively.

3.2. Verbal Explanations
As described in the previous subsection, providing visual
explanations and semantics helps to increase the interpretability
of opaque classifiers. In addition, natural language explanations
constitute an important explanation modality, since, for
their expressiveness, they capture complex relationships better
than visualizations (Finzel et al., 2019; Rabold et al., 2019;
Schmid and Finzel, 2020) and increase comprehensibility
(Muggleton et al., 2018).

In our transition framework (see Figure 4) we include verbal
explanations at the intersection of End User Explanation and
HCI. We show in the following paragraphs that natural language
plays a key role in enhancing the comprehensibility of classifier
results and that it is an important modality to allow for
meaningful interactions between the classifier and a medical
expert. Medical diagnosis often relies on the visual inspection
of image- or video-based data, such as microscopy images,
cardiograms or behavioral data from videos (Schmid and Finzel,
2020). In many cases, diagnostic decisions are not made solely
based on the mere occurrence or absence of symptoms and
abnormalities. The analysis of images and videos often takes into
account spatial information and spatial relationships between the
entities of interest. Visual explanations are limited with respect
to representing relations. Visualizations, such as heatmaps
and superpixel-based highlights are restricted to presenting
conjunctions of information, i.e., (co-)occurrence of entities of
interest. Although negation can be encoded with the help of the
color space (e.g., in LRP-based heatmaps, where highlights in a

color opposite to positive relevance indicate that some important
property is missing), interpreting and semantically embedding
which property is negated in comparison to the properties
of contrasting classes, remains the task of the human expert.
Therefore, enhancing understanding by visual explanations is
limited, since the latter can only be interpreted with respect
to positions of entities and given conjunctions of highlights
encoded by the color space. They lack to express more complex
relationships, such as spatial relations between two or more
entities. Arbitrary relationships and special cases of relational
concepts, for example recursion, can be better represented in
natural language. Therefore, verbal explanations better qualify
for giving insights into causal chains behind classification and
thus diagnostic problems. This is especially important, since
expert knowledge is often implicit and making it explicit can be
hard or even impossible for experts. Particularly interesting are
therefore systems that are capable of learning relational rules,
which can then be translated into natural language expressions
for generating verbal explanations. As presented for example in
Schmid and Finzel (2020), spatial relationships are considered
in the analysis of microscopy images to verbally explain the
classification of the depth of invasion for colon tumors. In this
use case, not only the occurrence of tissues, but also the complex
spatial relationships between different types of tissue must be
taken into account. For example, if tumor tissue has grown
passed muscle tissue and already invades fat, the tumor class
is more critical compared to a tumor that resides within tissue
of the mucosa (Wittekind, 2016). As further pointed out in
Schmid and Finzel (2020), ML approaches should therefore be
able to reveal which relationships lead to a certain classification.
Furthermore, relationships should be communicated in a
comprehensible way to medical experts and this can be
achieved with the help of natural language explanations.
In their project the authors utilize Inductive logic programming
(ILP) to implement a comprehensible explanation interface
for a Transparent Medical Expert Companion, a system that
explains classification outcomes of black-box and white-box
classifiers and allows for interaction with the medical expert.
ILP is an ML approach that produces output that can be
transformed into verbal explanations for classification outcomes.
In the Transparent Medical Expert Companion, microscopy scans
are classified either by human experts or by an end-to-end
black-box ML system. In the given example (see Figure 7),
target class is tumor class pT3. Scans that are classified as
pT3 are positive examples, scans with different classification are
negative. Learning can be realized by a one-against-all-strategy
or separated in different sub-problems, such as discriminating
one target class from the most similar alternative classes. An
ILP system can now be used to learn over the given examples.
In Figure 7, an illustration for one learned rule is given. A new
scan is classified as pT3 if it fulfills all components of the rule. In
order to transform such rules into verbal explanations, methods
similar to those introduced in the context of expert systems can
be utilized (Schmid and Finzel, 2020).

In addition, experts can still provide their knowledge to the
algorithm, as illustrated in Figure 8, where an exemplary spatial
relationship touches is defined in the background knowledge
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FIGURE 7 | Training examples and learned rules for a hypothetical diagnostic domain of colon cancer (Schmid and Finzel, 2020).

FIGURE 8 | Background theory with domain rules for a hypothetical diagnostic domain of colon cancer (Schmid and Finzel, 2020).

and can thus be found by the algorithm in the data if relevant
to the classification of pT3. It has been shown that due to the
implicitness of expert knowledge and variants in how health
symptoms manifest, it is easier for an expert to determine why
a certain example belongs to a diagnostic class rather than
describing the class in its entirety (Možina, 2018). Rules learned
by ILP can be traced, meaning that they can be applied to the
background knowledge, which contains the data from examples
like a data base. This way, the learned program, consisting of

the learned rules and the data base, can explain its reasoning
to the human expert. This is done by showing the output
from the chain of reasoning steps, as it has been implemented
for example in the diagnostic system MYCIN (Clancey, 1983).
Traces can be translated into natural language expressions and
then used in explanatory interaction in the form of a dialog
between the system and the human expert, where the expert
can ask for clarification in a step-wise manner. Research on
how these dialogs could be implemented are concerned with
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rule-based argumentation (Možina et al., 2007), argumentation
schemes and the form of argumentative input [e.g., free-form,
structured, or survey-based (Krening et al., 2017)]. Finally,
natural language is the basis for more expressive correction
of classification decisions, which will be discussed in the
next subsection.

3.3. Interactive Machine Learning
Since medical knowledge changes steadily (which can lead to a
bias in models learned on outdated data), ML approaches are
needed that are able to adapt or that can be adapted easily by
medical experts. This is where interactive ML comes into play.
The main motivation of human-in-the-loop-based interactive
ML is to build systems that improve their learning outcome
with the help of a human expert who interacts with them
(Holzinger, 2016). The human expert interacts for example
with the data to improve the prediction outcomes and helps
to reduce the search space through her expertise. The vision
behind interactive ML is to “enable what neither a human nor
a computer could do on their own” (Holzinger, 2016). Still, in
the context of comprehensible interfaces for machine learned
classifiers, mostly explanations are unidirectional—from the AI
system to the human (Adadi and Berrada, 2018). Therefore, there
exists a big potential for themedical domain to improve diagnosis
with the help of developing new interactive ML approaches.
State of the art approaches include systems where the human
expert labels an example that was chosen by the algorithm
according to some preference mechanism. In adherence to the
so-called active learning paradigm, the system learns from the
interaction with the user and may produce better prediction
outcomes afterwards. Likewise experts can change labels of
incorrectly classified examples or may add new examples with
new labels in an incremental way. Furthermore, there exist
approaches where the user has the possibility to indicate which
features are relevant or irrelevant to a certain classification.
An exemplary system is the EluciDebug prototype (Kulesza
et al., 2015) for categorizing emails. After putting an incoming
email into a certain folder, the system lists the words that

have been considered as relevant. The user can adjust weights,
for example to decrease the importance of words in order
to remove them from decision rules. With the help of active
learning particularly the data bias can be controlled by the human
expert. There exist approaches and proposals for systems that
offer explainable classification and allow user feedback in form
of corrections beyond re-labeling and feature weighting that
in a next step are used to adapt the machine learned model.
One of the first approaches is the interactive learning system
Crayon that enables the user to correct a classification of objects
in an image by simply re-coloring some of the misclassified
pixels (Fails and Olsen, 2003) to retrain the model. A second
approach is named CAIPI (Teso and Kersting, 2019). It combines
querying an example image, making a local prediction with a
black-box learner and explaining the classification with an xAI
approach, allowing the user to give feedback in the form of
pixel re-coloring and re-labeling of false positives. Although
both approaches offer promising ways of user interaction, they
only take into account pixel-based visual information, omitting
textual or relational information that might be relevant for expert
decision making.

Interaction can be taken a step further. In domains where
class decisions are based on complex relationships, interaction
that allows for correction of relational models can improve the
human-AI partnership (Schmid and Finzel, 2020). It has been
shown also in other domains of AI that explanations can be used
to revise current models (Falappa et al., 2002). A bi-directional
exchange between an ILP system and a human expert is realized
in the exemplary system LearnWithME (Schmid and Finzel,
2020) that integrates the principle of ME.

The aim behind the application LearnWithME is to
provide medical experts a companion system for improved
diagnosis. Companion systems serve as assistants to
support humans in their daily or work routine. Adaptive
machine learning, which incorporates interaction with
the human and incremental learning, is suitable to
enhance such companions (Siebers and Schmid, 2019).
Furthermore, cognitive conditions imposed by the context

FIGURE 9 | Model of a mutual explanations system (Schmid and Finzel, 2020).
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of use and the user should be considered (Cawsey, 1991,
1993).

Accordingly, the concept of Mutual Explanations is a
cooperative, interactive and incremental act of information
exchange between humans and machines with the goal to
improve the joint performance of the involved partners in
classification problems. The process of explanation refers (1) to
providing arguments that make simple and complex relations,
which apply to the domain of interest, explicit and (2) to
integrating corrective explanations into existing internal models
in order to adapt these (Schmid and Finzel, 2020). A model of
such aME system, which allows for bidirectional communication
via explanations as well as interactive ML (corrections for
model adaptation), is given in Figure 9: Starting with an
initial ILP model, a new instance e is classified. The class
decision for e is presented to the human who can accept
the label or ask for an explanation. The explanation can be
accepted or corrected with the help of defining constraints
over the verbalized model at class level or at the level of the
instance explanation.

Learning expressive, explicit rules rather than a black-box
classifier has the advantage that generation of verbal explanations
is quite straight-forward. However, in image-based medical
diagnosis, it is clearly desirable to indicate a system’s decision
directly in the image. Often, only a combination of visual
highlighting and verbal relational explanations allows to convey
all information relevant to evaluate a decision. We believe
that our cAI framework therefore provides a guideline to the
development of interpretable systems for the medical domain by
integrating visual and verbal explanations as well as interactive
machine learning at the level of model adaptation through
corrective feedback.

4. CONCLUSION

In the course of this paper we described why comprehensibility
and interactivity will be crucial properties of modern ML
systems in many application domains and especially for the
task of designing transparent expert companions for the
medical domain. Since thoughts on improved interpretability
started to get considerable attention and many related
concepts and terms have not been clearly defined yet, we
introduced the term and concept of Comprehensible Artificial
Intelligence. By describing and putting the basic cognitive
concepts for cAI research and practice in relation, we were
able to assign and discuss many current related research
questions in an integrated manner from conceptual point of
view. Furthermore, we gave a brief summary of connected
interdisciplinary research areas and their overlappings,
jointly being able to address many of the shortcomings
mentioned in current literature. An integrated cAI transition
framework was introduced revealing the guiding principles
for exploring and implementing ML approaches that humans
have trust in and can interact with. Our framework can be
considered by developers and practitioners as a guideline to

identify necessary concepts and possible solutions for their
individual medical context. To the best of our knowledge,
this has not been done yet beyond the scope of a literature
review. We based our transition framework on theoretical
foundation, derived practical implications and gave examples for
possible solutions.

Following along our framework during some prototypical
use cases, we identified Semantic Alignment between ML
classifiers and human users, which is often overlooked in current
approaches, as necessary prerequisites for comprehensibility as
well as interactivity. Considering psychological insights from
explanatory understanding, we proposed to properly account for
the individual mental models of the explainees by integrating a
semantic approach into a classification pipeline and presenting
explanations at an appropriate level of semantic details.
Especially when using black-box-algorithms and perturbation-
based explanation systems, such an architecture can be used
to enable realistic perturbations that reflect the underlying
joint distribution of the input features and to generate
meaningful, useful and more reproducible explanations. Our
claim is that semantic and contextual information provided
by the input domain must be taken into account during
explanation generation and presentation, such that coherent
and human-interpretable explanations are obtained bringing
to light logical as well as causal correlations. For the task
of classifying and explaining text documents being made of
medical concepts, we describe a process that allows to find
local topic-based explanations using topic models like Latent
Dirichlet Allocation together with LIME. To even increase
comprehensibility of explanations in terms of expressiveness,
we suggest to include other explanation modalities as well. In
addition to visual inspection as often conducted in medical
diagnosis, verbal explanations and according methods to directly
obtain them from classification systems are analyzed and shown
exemplary with the help of Inductive Logic Programming.
Furthermore, we provide the prospect of Semantic Interrogations
to compare a classifier’s semantic classification ability with
human semantic concepts. As a kind of overall realization
concept this paper introducesME that in our opinion can provide
a valuable basis for providing bidirectional information exchange
between humans and machines. Summarizing and integrating
all mentioned concepts in a single framework shall guide
practitioners when attempting to create interactive, transparent
and comprehensible ML systems that even laymen can interpret
and build trust in.

Although many topics have been discussed with regard
to the medical domain, the main points remain valid across
different application domains. Adapting these approaches
to the context of the individual problem as well as assessing
explanations’ quality quantitatively as well as qualitatively
in a pragmatic way, these are the points that in our opinion
constitute main future demands on cAI. Trying to anticipate
ML’s future in research and practice, we request for a stronger
interdisciplinary thinking on cAI. This implies not just
researching for formal explanations for ML systems and
decisions, but trying to allow for an efficient generation and
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transportation of interpretation artifacts to human users
considering disciplines like explanatory understanding.
It shall allow humans to gain a deeper understanding
leading to improved interpretations forming the basis
for transparent and comprehensible AI that we refer to
as cAI.
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