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Jazz improvisation on a given lead sheet with chords is an interesting scenario for studying
the behaviour of artificial agents when they collaborate with humans. Specifically in jazz
improvisation, the role of the accompanist is crucial for reflecting the harmonic and metric
characteristics of a jazz standard, while identifying in real-time the intentions of the soloist
and adapt the accompanying performance parameters accordingly. This paper presents a
study on a basic implementation of an artificial jazz accompanist, which provides
accompanying chord voicings to a human soloist that is conditioned by the soloing
input and the harmonic and metric information provided in a lead sheet chart. The model of
the artificial agent includes a separate model for predicting the intentions of the human
soloist, towards providing proper accompaniment to the human performer in real-time.
Simple implementations of Recurrent Neural Networks are employed both for modeling the
predictions of the artificial agent and for modeling the expectations of human intention. A
publicly available dataset is modified with a probabilistic refinement process for including all
the necessary information for the task at hand and test-case compositions on two jazz
standards show the ability of the system to comply with the harmonic constraints within the
chart. Furthermore, the system is indicated to be able to provide varying output with
different soloing conditions, while there is no significant sacrifice of “musicality” in
generated music, as shown in subjective evaluations. Some important limitations that
need to be addressed for obtaining more informative results on the potential of the
examined approach are also discussed.

Keywords: automatic accompaniment system, music generative system, real-time music interaction, music
improvisation, machine learning, long short-term memory

INTRODUCTION

The use of automatic systems for generating music is a captivating vision and a multidisciplinary
research problem studied for decades. The diversity of music generative systems relies on their
different objectives and the musical content that they produce, such as chord progressions,
melody generation, accompaniment arrangements and counterpoints (Briot et al., 2019).
Already from the late 1950s and early 1960s, composers such as Lejaren A. Hiller (Hiller Jr
and Isaacson, 1957) and Iannis Xenakis (Xenakis, 1963) explored stochastic models for
algorithmic music generation.
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With the recent advances in the computational capabilities of
modern computers, there is an exploding tendency of generative
system proposals, incorporating complex artificial neural
network architectures as a technical foundation. Conditional
generative models based on Generative Adversarial Networks
(GANs) have been used to combine unpaired lead sheet and
MIDI datasets for generating lead sheet arrangements. The lead
sheet arrangement can be defined as the process that receives a
lead sheet as input and outputs piano-rolls of a number of
instruments to accompany the melody of a given lead sheet.
Liu and Yang (2018) proposed an architecture that comprises
three stages (lead sheet generation, feature extraction and
arrangement generation) in order to generate eight-bar phrases
of lead sheets and their arrangement. The feature extraction stage
is responsible to compute symbolic-domain harmonic features
from the given lead sheet in order to condition the generation of
the arrangement. Wang and Xia (2018) developed a framework
for generating both lead melody and piano accompaniment
arrangements of pop music. Specifically, they consider a chord
progression as input and propose three phases for generating a
structured melody with layered piano accompaniments. First, the
harmony alternation model receives a given chord progression in
order to transform it to a different one that fits better with a
specified music style based on Hidden Markov Models (HMMs).
Then, the melody generation model generates the lead melody
and the layered accompaniment voices through seasonal ARMA
(Autoregressive Moving Average) processes. The final phase
implements the melody integration model which is responsible
for integrating the melody voices together as the final piano
accompaniment.

On the other hand, Recurrent Neural Networks (RNNs) are
often used to generate sequences of musical content in a stepwise
manner, where the network input is the previous note and output
is considered the predicted note to occur on the following time
interval (Mozer, 1994). In a similar manner, RNNs with Long
Short-Term Memory (LSTM) cells have been utilized for
generating blues style melodies conditioned by a given chord
progression (Eck and Schmidhuber, 2002). By definition, LSTM-
based models have the ability to correlate and capture the
temporal context of a sequence, thus simulating the human
cognitive abilities for predicting sequential information. Also,
RNNs have proven efficacy on modelling complex musical
structures such as polyphonic chorales. For instance, the
DeepBach system was trained to generate four-part chorales in
the style of J. S. Bach (Hadjeres et al., 2017). Generative systems
can be also constrained by music theory rules via a reinforcement
learning mechanism as it is demonstrated by Jaques et al. (2017).
In addition to the music theory rules, Boulanger-Lewandowski
et al. (2012) employed probabilistic harmonic and rhythmic rules,
based on distribution estimators conditioned by a RNN that is
trained to discover temporal dependencies from polyphonic
music scores of varying complexity.

Other approaches take into account the chord progressions for
providing longer musical structures. For instance, in the work of
Choi et al. (2016), a text-based LSTM network is employed for
capturing the relationships within text documents that contain
symbols of chord progressions. Another example based on chord

progressions is the JamBot system (Brunner et al., 2017) that
generates music in two steps. The bottom network is a LSTM
architecture that predicts a chord progression based on a chord
“embedding,” while a second LSTM generates polyphonic music
based on the predicted chord progression received from the
bottom network. Nevertheless, this approach lacks the ability
of modeling interactions within a polyphonic musical ensemble.
In order to overcome this limitation, Chu et al. (2016) proposed a
hierarchical architecture, where each level is a RNN that generates
different accompaniments for the song. A monophonic melody is
generated first, followed by the accompanying chords and drums.

In the scope of the Impro-Visor (Jazz Improvisation Advisor)1

project, Johnson et al. (2017) proposed a neural network
architecture consisting of two LSTM-based sub-networks that
jointly learn to predict a probability distribution over future notes
conditioned on past notes in the melody. Additionally,
researchers from the same laboratory developed the JazzGAN
system (Trieu and Keller, 2018) that utilizes RNN-based GANs to
improvise monophonic jazz melodies over given chord
progressions. Their results indicated that the proposed system
was capable to address frequent and diverse key changes, as well
as unconventional and off-beat rhythms, while providing
flexibility with off-chord notes. Other proposals incorporate
music theory grammar in combination with LSTM neural
networks to generate jazz music. For instance, Wang et al.
(2019) extracted the interval, duration and note category
information from jazz MIDI files and trained a LSTM model
to learn the transition probabilities between notes. Then they take
advantage of the music grammar in order to arrange and output
the generated sequence of notes.

LSTM networks have been also tested for generating jazz
music compositions constrained by a given performer’s style.
In particular, De Prisco et al. (2017) developed a three staged
generative system, consisting of a One-Class Support Vector
Machine (OCSVM) for learning the performing style of a
specific jazz musician, an LSTM network to generate patterns
relevant to the learned style and a splicing system to compose
melodic lines in the given style. Splicing systems are formal
models for generating languages (sets of words), inspired by a
recombinant behavior of DNA (De Felice et al., 2015). A music
splicing composer requires to define an alphabet, an initial set and
a set of rules. Another example of a complex system that utilizes
LSTM networks for learning statistical correlations between
instruments within a jazz piano trio ensemble (piano, bass,
drums) was proposed by Hori et al. (2017). They trained a
LSTM architecture to learn the relationship between the
musical features of the piano performance that is applied on
top of a Hidden Markov Model (HMM), which is responsible to
segment the bass and drums performance feature spaces. Overall
the system is capable to generate coherent rhythmic patters and
bass melodies as accompaniments to a piano solo input. However
the authors specify that their model can be further improved due
to the lack of available jazz datasets. To this regard, Hung et al.

1https://www.cs.hmc.edu/∼keller/jazz/improvisor/ – last accessed February
1st, 2020.
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(2019) employed transfer learning techniques aiming to solve the
problem of jazz data insufficiency. They proposed a Bidirectional
Gated Recurrent Unit (BGRU) Variational Autoencoder (VAE)
generative model trained on a dataset of unspecified genres as
source and a Jazz-only dataset as target.

It is worth noting that only a few projects experiment with
real-time creative scenarios where a human improviser is
accompanied by an automatic agent without any musical
constraints. To this end, Kaliakatsos-Papakostas et al. (2012)
proposed an accompaniment system that employs Differential
Evolution and Genetic Algorithms for producing the
accompanying music. Another approach to real-time music
generation for jazz improvisation that was proposed by
Hutchings and McCormack (2017), implements a composite
system with an LSTM-based melody agent, which was trained
on chord progressions of jazz “standard” compositions and a
rule-based harmony agent that manipulates precomposed
melodies for improvising new themes and variations. The
composition flow between the agents is controlled by a rating
system that rewards harmonic consistency and melodic
continuity.

Aim of this paper is to examine the characteristics of
musical accompaniment that an artificial agent can provide
in real-time to a human improviser, in a setting similar to
typical forms of jazz improvisation, i.e. under the constraints
of previously agreed upon harmonic sequence and metrical
structure. Software tools and methods that are able to generate
“static” accompaniment to human soloists, exist for a long
time (Ferguson, 2005). The paradigm discussed in this paper
includes “spontaneous” alterations in accompaniment
responses of an artificial agent both in terms of rhythm and
harmony, based on the improvisation of a human soloist. The
algorithmic cornerstone of the examined approach relies on
LSTM RNNs architectures. The motivation for pursuing and
studying such an approach in modeling human-machine
improvisation and the reasons for choosing to examine
basic deep learning neural networks as an algorithmic
backbone is analysed in the following section.

MOTIVATION, RESEARCH QUESTIONS
AND CONTRIBUTION

In music, “masterful” violation of anticipation has been identified
as key component for the emergence of emotion, meaning,
concepts and overall interest (Huron, 2006). Furthermore,
anticipation is shaped by the exposure to stimuli with
common characteristics, a fact that induces relations between
fundamental mechanisms of music understanding and statistical
learning (Huron, 2006). The basic principles of jazz
improvisation evolve around the violation of expectation, with
improvising musicians constantly attempting to introduce
meaningful novelty in the way they express themselves and
communicate with other musicians in real-time. Therefore,
jazz improvisation could be described as an exemplar for
studying the core-mechanism of music cognition: interplay
between anticipation and violation thereof.

Communication between improvising musicians is a key-
point for achieving interesting and meaningful improvisations.
In jazz improvisation, specifically, the role of each musician is
manifold; the most prominent characteristics of the role of each
musician, according to how they relate with the study at hand, can
be summarised as follows:

1. Preserve harmonic and rhythmic characteristics of a piece.
Typical jazz improvisation incorporates a standard jazz
melody with a fixed harmonic description in a fixed metric
structure. These components, however, are expected to be
creatively altered by improvising musicians (usually not the
metric structure though), towards creating meaningful
violations of anticipation on the overall harmonic and
rhythmic domain. For instance, chord substitutions are
usual, either by introducing chords that include alternate
voicings, extensions or even by including new chords
altogether (e.g. tritone substitution).

2. Express original ideas. Violation of harmonic/rhythmic
expectations is expected to come “with a reason.” A
common approach for soloists to attempt to build new
musical phrases when improvising, is by creatively
modifying and combining “standard” jazz licks, a fact that
helps towards building and violating anticipation. Jazz licks in
the (muscle) memory of the soloist are products of statistical
learning, built through practicing and listening multiple jazz
pieces, excerpts and phrases.

3. Communicate musically with the improvisation/
accompaniment of other musicians. In a broad sense, the
role of the accompanist is to highlight musical choices of
the soloist, or, even further, understand the intentions of
the soloist and improvise accompaniments accordingly.
Therefore, communication, on the side of the accompanist,
includes predicting the intentions of the soloist and preparing
the response in a timely manner, given that proper
accompaniment needs to be provided concurrently with the
solo. Jazz musicians, as musicians in any other field, develop a
common perception that, in the examined case, can be
described as the integration of a “similar” statistical model
both in the soloist and the accompanist; this model allows the
accompanist to roughly predict the imminent soloist choices
during improvisation.

To this end, an artificial agent that is able to perform basic
musical accompaniment in real-time under the aforementioned
setting needs to have: 1) the ability to comply with harmonic and
metrical constraints set by an input chart; 2) a model of
anticipating for imminent actions of the human soloist; 3) a
dictionary of accompanying voicings for given chords that is rich
enough for producing diverse/interesting accompaniment; and 4)
the ability to “adapt” its playing style (both in terms of voicings
and rhythm) to the anticipated choices of the human soloist.
Since the problem description incorporates statistical learning
and given the fact that deep neural networks have exhibited
impressive capabilities in capturing the prominent statistical
behaviour in large amounts of training data, this study
examines the incorporation of such machine learning tools for
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the task at hand. Therefore, the research questions revolve around
the suitability of deep learning methods for the described
improvisation setting, under the methodological framework
that is presented in Materials and Methods. These questions
are formulated as follows:

A. Is the presented framework able to capture “static” harmonic
information of a given chart in a setting of dynamic
constraints (changing playing style of the human soloist)?

B. To what extent is the proposed system responding to
dynamic components introduced by the human agent?

C. Is the examined setup suitable for real-time performance,
both in terms of robustness and computational feasibility?

Recent advances in deep learning include the development of
systems that are able to generate music that adapts to pre-
configured constraints. In general terms, such systems either
compose music sequentially or non-sequentially. In sequential
systems (e.g. as the one presented by Makris et al. (2019)), the
decision for each note depends only on previous notes, with
additional potential constraints. In non-sequential systems (e.g.,
as Deep Bach; Hadjeres et al. (2017)), new notes are inserted by
sampling, forming “dynamic” constraints for notes that are
inserted later on, regardless of time precedence – i.e. notes at
the end of the piece could be inserted at an earlier stage than notes
earlier in the piece, depending on randomly sampled priorities. In
one sense, a system that is able to perform real-time
accompaniment, as described in the presented study, needs to
be able to both compose sequentially (since time moves forward
while performing) and comply with constraints that change as the
composition is constructed (since the human soloist is expected
to violate the expectations reflected by the solo predictive model).

The main contribution of this paper is that it studies the
characteristics of a complex, multi-layered neural network where
both static and dynamic components are combined for
preforming predictions. The real-time improvisation setup
discussed herein offers a well-defined platform of
experimentation with potential interest for real-world
applicability and clearly defined research questions.

MATERIALS AND METHODS

The proposed system provides real-time accompaniment to a
human musician, based on a given harmonic description of lead
sheet chord symbols. The role of the system is to reflect harmonic
information as given in the lead sheet and also interpret this
information with variability, responding to the predicted implied
harmonic variability of a human solo. To this end, data need to
include information about: 1) metric structure, for letting the
system become aware of measure changes; 2) lead sheet
information, for learning to comply with given lead sheet
chords; 3) a human solo channel, for learning to respond to
what the human soloist is expected to play; and 4) an
accompaniment channel, for learning to play proper
accompaniment chords/voicings over the given lead sheet
chords. Up to our knowledge, such a dataset containing all the

aforementioned properties is missing from the research
community. To this end, Data Preparation describes the
processes for constructing a dataset by starting off with an
initial dataset collected from online resources that covers most
of the requirements. Afterwards, we present the proposed system
that incorporates two layers of information processing: the first
for predicting the imminent steps of the human performance and
the second for integrating this prediction along with other static
constraints (i.e. metric and lead sheet information) for making
the final chord accompaniment prediction.

Data Preparation
The initial dataset2 (Liu and Yang, 2018) contains all necessary
information about the pieces, including tempo, beat, melody and
the chords on a lead sheet. It should be noted that only lead sheet
information is included in this dataset without actual notation of
the accompaniment chords. In order to address this issue we
performed a harmonic enrichment procedure that is discribed in
detail later in this section. Furthermore, the beat information
indicates the start of a measure. A single time step corresponds to
the 1/24 of a quarter note, a time resolution which is fine enough
to even represent rhythm values of sixty-fourth triples. The
melody and the accompanying chords are represented as 128-
key piano rolls with the aforementioned time resolution, where
each active note at each time instance is annotated with the
respective velocity value. With this representation however, the
information about a note repetition is potentially obscured. For
instance, there is no differentiation between a single note/chord of
a quarter duration (24 time steps) and two successive notes/
chords with a duration of an eighth per note (12 time steps). A
time resolution reduction from 24 steps per beat (quarter) to two
steps per beat was performed, such that each time step was
represented by 1/2 of a quarter note, which is an eighth note.
In other words, from each beat (24 time steps) we only kept the
melodic information of the first and 13th time step, by splitting
each quarter (24 time steps) in half. Thus keeping only the first of
each of the two subsets of time instances (12 time steps).

In order to construct a suitable and compact representation of
chord information in the form of a jazz standard lead sheet, we
use the information extracted from the accompanying chords
channel of the initial dataset. Specifically, instead of keeping the
velocity values of the chord notes and their MIDI numbers, we
only kept the pitch class of their root, as well as the type of those
chords, by using ready-made functions from the MIT
Music21 Python library3, which contains a set of functions for
computer-aided musicology. Moreover, we chose to represent the
jazz standard chord information as a binary vector of size 15,
where the first 12 bits represent the root pitch class information,
while the remaining 3 bits represent major/minor third, perfect/
augmented/diminished fifth and major/minor seventh
respectively. The reason for performing such an abstraction
for representing chord information on the lead sheet is

2https://github.com/wayne391/lead-sheet-dataset/ – last accessed February
1st, 2020.
3https://web.mit.edu/music21 – last accessed February 1st, 2020.
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motivated by the fact that jazz musicians need a fundamental
description of harmony, which they can manipulate/alter in a
creative manner. The employed scheme allows for basic chord
types to be represented, e.g., major/minor triads, dominant
seventh, major seventh, (half) diminished and augmented.

As mentioned earlier, the initially obtained dataset includes
information only about lead sheet chords, without specific
notation of actual accompanying chords. Hence we
constructed the actual accompaniment chords algorithmically
by applying a basic “harmonic enrichment” process, where the
lead sheet chords are transcribed into actual accompanying
chords with different inversions and diverse rhythmic patterns.
The enrichment process begins by assigning accompaniment
chords to positions of lead sheet chord symbols. After that,
inverted chords are probabilistically inserted after the initially
placed chords. The probability of chord insertion at a specific
position on the score depends on the time passed without a chord
event (the more the time, the higher the probability) and whether
there is a melodic note event (melody notes increase the
probability for chord insertion). Aim of this process is to
introduce rudimentary variability in the accompaniment
channel, based on the lead sheet chord symbols and the
melodic rhythm.

Since the melody channel is monophonic, the 128-sized
vector representation of each note in the melody channel is
flattened to its single non-zero value (the actual MIDI number
of that note). For the accompaniment channel, i.e. the actual
notes that the system is intended to learn, a dictionary of all the
unique chords in the training set is created and each chord is
represented by its index in the dictionary. Practically, the

“flattened” values for both the melody and the
accompaniment parts allow us to apply one-hot
representation of the respective data streams. Before the
harmonic enrichment process, the initial dictionary of the
accompaniment chords incorporated 476 chord classes,
while after the augmentation and before the transposition
to all the possible 12 pitches we had 847 classes. Finally,
after all the data preparation procedure, including the
augmentation and transposition processes, we ended up
having 2677 unique accompanying chord classes.

System Architecture and Real-time
Considerations
As it is already mentioned, the generated accompaniment part
should be related to the soloist’s intentions on the future melody
notes to be played. To this regard, the proposed system
architecture depicted in Figure 1, consists of two sub-systems,
namely the Human Agent RNN (HA-RNN) and the Artificial
Agent RNN (AA-RNN), that rely on the effectiveness of the
LSTM recurrent neural network (RNN) for modeling sequential
information.

The overall system receives as input successively overlapping
windows comprising 16 time steps, representing events within a
time resolution of eighth notes. The window slides one step/
eighth note at each iteration, which occurs in every eighth
successively. Information for each time step includes:

• The metric information (bt).
• The soloist’s melodic/solo part (ht).

FIGURE 1 | A detailed overview of the proposed system architecture. Consecutive overlapping time frames are processed by the two sub-systems. The HA-RNN
predicts the soloist melody that is later used by the AA-RNN for predicting the accompaniment chords for the following time step.
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• The accompaniment chords that are expected to be learned
from the system (mt).

• The chord information in the abstract lead sheet style
described in Data Preparation (ct).

Since the HA-RNN is responsible for predicting the solo melody
of the following time step (ht+1), it excludes the accompaniment
channel from its input, while having the beat and chord information
channels one eighth ahead from the current melody. On the other
hand, the AA-RNN takes under account all the information
channels, in addition to the predicted P(ht+1) of the HA-RNN,
in order to anticipate the accompaniment chord for the future eighth
(mt+1). Both agents at their core, implement a similar neural network
architecture. Firstly, the input time frame is processed by the bottom
“Dense linear” (fully connected) layer, where it gets embedded to a
fixed size dimension through a linear transformation. Next, the
embedded output is further encoded into a latent space through the
LSTM RNN layer. Then, the top “Dense linear” layer receives the
encoded LSTM output and applies a linear transform to a space with
a dimensionality equal to the number of the target classes. Finally the
output of the top fully connected layer passes through a softmax
function, resulting to a probability distribution for the target classes
(P(h) and P(m)). The final prediction is the class with the highest
probability.

As a proof-of-concept, we trained a basic system with batches of
128 samples. The embedding dimension of the bottom fully
connected layer was equal to the size of the feature dimension of
the input frame, whilst the RNN layer contained 64 LSTM cells. We
used the Adam optimisation algorithm (Kingma and Ba, 2014) for

the minimization of the cross entropy cost function with a learning
rate of 0.001. Both the HA-RNN and AA-RNN architectures were
implemented using the TensorFlow 2.0 framework (Abadi et al.,
2016) and trained for at least 1,200 epochs on a computer equipped
with the NVIDIA Tesla K40c GPU, an Intel Core i7-5820K CPU at
3.30 GHz and 32 GB DDR4 RAM at 2133 Mhz. With the
aforementioned experimental setup, we observed that the average
time of the overall system to predict an accompaniment chord was
around 0.66ms (0.31ms for the HA in addition to 0.35ms for the
AA). This fact indicates the feasibility of the proposed system to be
adopted in real-time applications, however a thorough evaluation of
the real-time capabilities of the presented method needs to be
examined as future work. In this regard, we developed a prototype
web application based on MIDI.js and Tensorflow.js javascript
libraries for testing the adaptability of the proposed model to the
user’s soloing input in a real-time setting. The model implementation
and training code of the LSTM models, as well as the real-time web
interface are hosted on a GitHub repository4. Since the project
continuously evolves, the online repository will be updated with
future developments and improvements.

RESULTS

The results are oriented towards answering the research
questions given in Motivation, Research Questions and
Contribution, i.e. whether and to what extent is the system

TABLE 1 | System interpretations of chart chords for “All of Me” without solo (top) and with random (bottom) solo at epoch 59, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 4, 7, 11] [0, 4, 7, 11] (80) [0, 3, 8] (4) [2, 7, 10] (12) [0, 2, 4, 5, 7] (24)
[0, 4, 7, 10] [0, 5, 7, 10] (1) [2, 6, 11] (1) [2, 4, 6, 8] (4) [2, 4, 8, 11] (1) [0, 4, 7, 10] (25)
[2, 4, 8, 11] [2, 6, 9, 11] (1) [2, 4, 8, 11] (185) [0, 4, 7] (4) [0, 4, 7, 10] (18)
[1, 4, 7, 9] [1, 4, 7, 9] (168) [2, 5, 9] (4) [2, 7, 10] (4)
[2, 5, 9] [2, 5, 9] (128)
[0, 4, 9] [0, 4, 9] (64)
[0, 2, 6, 9] [0, 2, 6, 9] (64)
[0, 2, 5, 9] [1, 4, 7, 9] (8) [0, 2, 5, 9] (72)
[2, 5, 7, 11] [2, 5, 7, 11] (79)
[0, 5, 9] [0, 5, 9] (32)
[0, 5, 8] [0, 5, 9] (4) [0, 5, 8] (28)

Random solo
Chart chord

System interpretations

[0, 4, 7, 11] [4, 6, 8, 10, 11] (1) [4, 6, 8, 11] (3) [2, 6, 11] (3) [0, 4, 7, 11] (80)
[0, 3, 8] (4) [2, 7, 10] (12) [0, 2, 4, 5, 7] (24)

[0, 4, 7, 10] [0, 4, 7, 10] (32)
[2, 4, 8, 11] [0, 4, 7] (4) [2, 4, 8, 11] (186) [0, 4, 7, 10] (18)
[1, 4, 7, 9] [1, 4, 7, 9] (168) [2, 5, 9] (4) [2, 7, 10] (4)
[2, 5, 9] [2, 5, 9] (128)
[0, 4, 9] [0, 4, 9] (64)
[0, 2, 6, 9] [0, 2, 6, 9] (64)
[0, 2, 5, 9] [1, 4, 7, 9] (8) [0, 2, 5, 9] (72)
[2, 5, 7, 11] [2, 5, 7, 11] (79)
[0, 5, 9] [0, 5, 9] (32)
[0, 5, 8] [2, 5, 9] (4) [0, 5, 8] (28)

Numbers in parentheses show the total time steps that a system-generated PC-set occurs under the respective chart PC-set.

4https://github.com/kosmasK/JazzICat.
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able to capture the harmonic lead sheet constraints, to what
extent is the system influenced by different soloing styles and
what are possible limitations for applying this approach in
real-time settings with current technologies. To this end, two
test jazz standards, “All of Me” and “Au Privave” are
examined in different and diverse artificial improvisation
settings, that simulate two extreme scenarios: where the
human player 1) is not playing any note during the solo
(consecutive occurrences of pause events) and 2) is playing
random notes within two octaves (as a form of extremely
complex improvisation). The responses of the system under
these two settings for each piece are analysed for different
epochs of training (randomly sampled across all training
epochs), providing insights about how harmonic
compliance is varied and how the existence of a solo

affects system responses (adaptability) at different stages
of training. Since technical limitations led to building a
system with limited computational power (incorporating
solely a single LSTM layer with few neurons for the
artificial agent) and keeping time resolution to eight notes,
getting useful feedback from musicians through exhaustive
real-time experiments was not possible. In this regard, a
preliminary empirical evaluation based on listening tests
was conducted by comparing generated and original
accompaniments. We maintain, however, that the results
presented herein indicate that employing more
sophisticated architectures for (at least) the part of the
artificial agent would lead to a system that both adapts to
the playing style of the user and preserves harmonic
consistency according to the given lead sheet.

TABLE 2 | System interpretations of chart chords for “All of Me” without solo (top) and with random (bottom) solo, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 4, 7, 11] [3, 5, 8, 11] (2) [0, 2, 9, 10] (1) [2, 4, 9] (1) [1, 3, 10, 11] (1) [1, 3, 6, 10] (1)
[0, 3, 8] (1) [2, 5, 10] (1) [0, 4, 7, 11] (103) [3, 7, 10] (13) [0, 5, 9] (3)

[0, 4, 7, 10] [0, 3, 8] (2) [2, 5, 10] (1) [0, 4, 7, 10] (23) [2, 5, 7, 11] (3) [2, 7, 11] (3)
[2, 4, 8, 11] [2, 4, 8, 11] (162) [4, 8, 11] (1) [4, 7, 11] (4) [0, 3, 5, 9] (1) [3, 6, 8, 11] (1)

[1, 4, 9] (1) [1, 4, 7, 9] (12) [1, 4, 6, 10] (3) [2, 6, 8, 11] (3) [2, 5, 9] (6)
[0, 2, 5, 9] (3) [0, 2, 6, 9] (3)

[1, 4, 7, 9] [1, 4, 7, 9] (124) [2, 4, 7, 11] (9) [1, 2, 6, 9] (11) [2, 4, 8, 11] (7) [1, 3, 10, 11] (4)
[2, 6, 8, 11] (4) [5, 8, 11] (3) [2, 8, 11] (3)

[2, 5, 9] [2, 5, 7, 9] (15) [2, 7, 10] (4) [2, 5, 9] (94) [1, 3, 10, 11] (3) [1, 5, 8, 10] (3)
[3, 7, 10] (6)

[0, 4, 9] [0, 4, 9] (12) [3, 6, 10] (1) [1, 6, 9] (1) [4, 8, 11] (1) [0, 2, 4, 9] (45)
[2, 5, 9] (3)

[0, 2, 6, 9] [0, 2, 6, 9] (54) [0, 4, 9] (5) [0, 3, 6, 10] (1) [0, 5, 8] (1) [0, 3, 5, 8] (1)
[2, 5, 10] (1)

[0, 2, 5, 9] [2, 5, 10] (13) [0, 2, 5, 9] (36) [0, 3, 7, 10] (2) [3, 7, 10] (1) [1, 3, 4, 11] (8)
[0, 5, 8] (12) [2, 4, 7, 11] (4) [2, 5, 7, 10] (4)

[2, 5, 7, 11] [2, 5, 7, 11] (65) [2, 3, 7, 10] (4) [0, 3, 7] (4) [0, 5, 8] (3) [2, 5, 9, 10] (3)
[0, 5, 9] [0, 4, 5, 9] (28) [2, 5, 9] (4)
[0, 5, 8] [0, 5, 8] (28) [3, 7, 10] (4)

Random solo
Chart chord

System interpretations

[0, 4, 7, 11] [3, 5, 8, 11] (1) [1, 3, 6, 8] (2) [2, 4, 9] (1) [0, 4, 5, 9] (1) [1, 3, 6, 10] (1)
[2, 7, 10] (1) [0, 5, 9] (5) [0, 4, 7, 11] (86) [3, 7, 10] (5) [0, 2, 4, 5, 7] (14)
[0, 4, 7] (2) [2, 4, 5, 9] (1) [1, 5, 8, 11] (1) [2, 5, 10] (1) [0, 2, 6, 9] (1)

[0, 3, 6, 8] (1) [1, 4, 9] (2) [2, 5, 9, 10] (1)
[0, 4, 7, 10] [0, 4, 7, 10] (28) [1, 5, 8] (1) [0, 4, 5, 9] (1) [2, 7, 11] (2)
[2, 4, 8, 11] [2, 4, 8, 11] (177) [1, 4, 7, 9] (12) [4, 8, 11] (2) [4, 7, 11] (3) [1, 4, 8, 11] (2)

[1, 6, 9] (2) [2, 4, 5, 9] (1) [3, 6, 9, 11] (1) [2, 4, 7, 11] (1)
[1, 4, 7, 9] [1, 4, 7, 9] (140) [1, 2, 6, 9] (5) [2, 4, 8, 11] (5) [1, 4, 6, 10] (4) [1, 6, 8, 11] (5)

[0, 2, 6, 9] (6) [2, 4, 7, 11] (4) [2, 4, 5, 9] (1)
[2, 5, 9] [2, 5, 9] (95) [2, 5, 7, 9] (30) [2, 7, 10] (2) [0, 4, 7] (1)
[0, 4, 9] [0, 2, 4, 9] (30) [2, 5, 9] (2) [0, 4, 9] (25) [1, 3, 10, 11] (2) [2, 4, 6, 7] (2)

[4, 8, 11] (1)
[0, 2, 6, 9] [0, 2, 6, 9] (46) [0, 4, 9] (8) [1, 3, 10, 11] (2) [2, 5, 7, 10] (2) [0, 4, 7, 9] (2)

[2, 7, 11] (2)
[0, 2, 5, 9] [0, 2, 5, 9] (49) [1, 3, 10, 11] (3) [0, 2, 5, 8] (2) [0, 4, 7] (6) [0, 1, 5, 8] (2)

[2, 5, 7, 10] (6) [3, 7, 10] (3) [2, 6, 9] (2) [0, 3, 5, 8] (2) [2, 5, 10] (2)
[0, 5, 8] (1) [0, 2, 5, 7] (1)

[2, 5, 7, 11] [2, 5, 7, 11] (62) [2, 5, 9, 10] (2) [2, 5, 10] (8) [2, 3, 7, 10] (1) [2, 7, 11] (1)
[5, 8, 11] (1) [0, 4, 7, 10] (1) [0, 2, 5, 9] (1) [0, 4, 7] (1)

[0, 5, 9] [0, 4, 5, 9] (28) [2, 5, 9] (4)
[0, 5, 8] [0, 5, 8] (28) [3, 7, 10] (4)

Numbers in parentheses show the total time steps that a system-generated PC-set occurs under the respective chart PC-set.
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Compliance with Lead Sheet Harmony
This section examines the ability of the system to play chords that
correspond to the chord symbols on the lead sheet chart. This
part of the study concerns the compliance with the basic
harmonic guidelines provided by the chart and, therefore,
comparison is presented on the level of pitch class sets (PC-
sets). To this end, the lead sheet chart chords are translated to
their corresponding pitch classes as well as the interpretations of
the system. To obtain insight on how training epochs influence
the harmonic compliance of the system, results are taken from an
early and a late epoch of training (59 and 1,251). Table 1 (epoch
59) and Table 2 (epoch 1,251) show the chord symbols and the
responses of the system in “All of me” when no solo (top) and
random solo (bottom) was provided; similarly, Tables 3, 4 show
the responses of the system in “Au Privave” without and with
random solo.

Regrading “All of Me”, Table 1 shows that in most cases the
exact harmonic description in the lead sheet chart is reflected by
the system. Initially, it should be noted that harmonic deviations
mostly concern the first few starting measures of each piece,
where the system has not incorporated any memory in its
decisions. The beginning chord of the chart, [0, 4, 7, 11],
appears to have the most alterations, some of which are
clearly erroneous (e.g. the [4, 6, 8, 10, 11] interpretation that
was composed for random solo). Figure 2A shows the first eight
measures and Figure 2B measures 33 to 40, composed by the
system for “All of Me” in a real-time simulation setting with
random solo (the solo part is not shown). The “erroneous”
choices appear to be artefacts of the initial delay of the system
to catch up with the constraints and start building up harmonic
memory; Figure 2A shows that the first three chord shown in the
lower part of Table 1 are a result of this delay. Other harmonic
deviations concern the delay of the system in complying with
“unexpected” chord changes – given that most pieces in the
dataset are pop songs. For instance, some misinterpretations of
the E7 chord ([2, 4, 8, 11]) are a result of delay in
“comprehending” the unexpected change; this is shown in the
third bars of both (A) and (B) parts of Figure 2. System-generated
chords for “Au Privave” follow a similar pattern in terms of
harmonic compliance but with fewer erroneous harmonic
deviations, as evident in Table 3.

Variability
The chords generated by the system in each improvisation setting
for each piece are expected to be different, since different
improvisations from the human soloist should trigger different
responses. Those differences are examined by direct comparison
of the system generated chords for the two improvisation modes,
i.e. the chords generated by the system without human solo and
with a random solo. A general figure that describes the differences
between the system-generated chords in both examined pieces
with (random) and without solo, is given by computing the
percentage of chords that are different per time step for
accompaniment sessions comprising four repetitions of the
entire chart, with (random) and without solo. In “All of Me”
only 2% of system-generated chords are different between
random and no solo for epoch 59, which jumps to 60% for

epoch 1,251, showing that the system decisions are affected
slightly by the presence of a solo in early epochs, while the
effect of solo is more evident as epochs progress. In “Au Privave”
this percentage starts from 74% during epoch 59 and jumps to
84% at epoch 1,251, showing that system generations are more
sensitive to the presence of a chord solo for this piece.

For observing the differences within each improvisation
session, the system-generated chords in four repetitions of the
entire chart are examined repetition-by-repetition – forming four
quarters of the entire composition, referred to as “quartiles”.
Tables 5–8 show the quartile similarities for “All of Me” (epochs
59 and 1,251) and “Au Privave” (epochs 59 and 1,251)
respectively, without (left) and with random solo (right). In
“All of Me” and with an absence of solo, both in the early and
the late epoch of training only the first repetition is different from
the remaining three, as show in the first rows and columns of both
matrices in Tables 5, 7. The insertion of the random solo does not
influence the overall result in the early epoch (right matrix in
Table 5), but for the late epoch the influence is evident (right
matrix in Table 7). Therefore, the example of “All of Me” shows
that training the system for more epochs allows some sense of
responsiveness to human input, as evident by the variability that
emerged from the random solo. In “Au Privave”, on the other
hand, the incorporation of the random solo (Table 6) influences
each repetition even from early training epochs, therefore
creating different variations of the chart in each of the four
iterations (except repetition three and four that differ only by
1%); variations for this test piece are even more evident in the
more progressed training epoch (Table 8).

TABLE 3 | System interpretations of chart chords for “Au Privave” without solo
(top) and with random (bottom) solo at epoch 59, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 5, 9] [2, 5, 10] (6) [0, 5, 9] (61) [0, 5, 9, 10] (12)
[2, 5, 7, 10] [2, 5, 7, 10] (60) [0, 4, 7, 9] (36) [2, 5, 9] (16)
[0, 4, 7, 10] [0, 4, 7, 10] (35) [2, 5, 8, 10] (4) [1, 3, 7, 10] (4) [0, 2, 6, 9] (4)
[0, 3, 7, 10] [0, 3, 7, 10] (16)
[1, 3, 5, 9] [0, 3, 5, 9] (1) [0, 3, 6, 8] (2) [5, 8, 11] (9)
[2, 5, 8, 10] [2, 5, 10] (1) [2, 5, 8, 10] (28) [3, 6, 10, 11] (3)
[1, 5, 8, 10] [1, 5, 8, 10] (16)
[1, 3, 7, 10] [2, 5, 8, 10] (16)
[0, 4, 7, 9] [2, 5, 7, 10] (8) [0, 2, 5, 9] (4) [0, 4, 7, 9] (4)
[0, 2, 6, 9] [0, 4, 5, 9] (12) [2, 5, 9, 10] (4) [0, 2, 5, 9] (4) [0, 2, 6, 9] (12)

Random solo
Chart chord

System interpretations

[0, 5, 9] [2, 5, 10] (3) [0, 5, 9] (73) [0, 5, 9, 10] (3)
[2, 5, 7, 10] [0, 5, 9] (1) [2, 5, 7, 10] (83) [0, 4, 7, 9] (12) [2, 5, 9] (16)
[0, 4, 7, 10] [0, 4, 7, 10] (46) [0, 2, 6, 9] (1)
[0, 3, 7, 10] [0, 3, 7, 10] (16)
[1, 3, 5, 9] [0, 3, 5, 9] (5) [0, 3, 6, 8] (6) [2, 6, 9, 11] (1) [2, 5, 9, 11] (2)
[2, 5, 8, 10] [2, 5, 10] (1) [2, 5, 8, 10] (31)
[1, 5, 8, 10] [1, 5, 8, 10] (16)
[1, 3, 7, 10] [2, 5, 8, 10] (4) [1, 3, 7, 10] (12)
[0, 4, 7, 9] [0, 4, 7, 9] (16)
[0, 2, 6, 9] [0, 2, 5, 9] (2) [0, 2, 6, 9] (30)

Numbers in parentheses show the total time steps that a system-generated PC-set
occurs under the respective chart PC-set.
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A final examination of variability in the generated chords is
performed by measuring the number of different voicings per
chord symbol on the chart. This is a more detailed examination
of how the PC-sets presented in Tables 1–4 are further split
down in voicing layouts, i.e. what is the variability in terms of
inversions and note doublings in the chords generated by the
system. Figure 3 shows the average number of different
voicings composed by the system for each chord label in
the chart, in form of errorbars for some random epochs
sampled accross all training epochs. In “All of Me” (left
image), each chord symbol in the chart is materialised with
approximately 2.5 different voicing implementations in epoch
59, almost regardless of the presence of solo (red “x” indicates
presence of random melody and blue circle absence thereof).
The system presents increased voicing variability dependence
on human solo input for this piece as the epochs increase. In

the case of “Au Privave,” the tendency of the system to become
more dependent on human input becomes more evident as
epochs increase. The error value of the objective function in a
validation set during training is shown in Figure 4. The typical
decrease that is observed indicates that there is a relation
between error loss and system adaptability to human input,
i.e., better training leads to further variability.

Listening Tests
The dataset used to train the artificial agent, contains a broad
variety of popular western music melodies with simulated
accompaniments derived from an augmentation process.
Furthermore, the quantitative metrics presented in the
previous subsections are not capable to completely capture the
perceptual quality and originality of the chord accompaniments
generated by the proposed system. To this end, we carried out a

TABLE 4 | System interpretations of chart chords for “Au Privave” without solo (top) and with random (bottom) solo at epoch 1,251, shown as pitch class sets.

No solo
Chart chord

System interpretations

[0, 5, 9] [1, 3, 10, 11] (5) [0, 3, 5, 9] (5) [0, 3, 7, 8] (1) [3, 6, 11] (1) [2, 6, 8, 11] (1)
[1, 3, 7, 10] (1) [0, 5, 8] (1) [0, 3, 8] (1) [2, 7, 11] (1) [0, 5, 9] (51)
[5, 8, 11] (4) [2, 7, 10] (4) [0, 5, 7] (3)

[2, 5, 7, 10] [2, 5, 8, 10] (2) [2, 5, 7, 10] (59) [0, 1, 5, 8] (1) [2, 3, 7, 10] (1) [0, 5, 8] (1)
[1, 3, 10, 11] (4) [1, 4, 6, 9] (4) [0, 4, 7, 10] (10) [1, 4, 7, 9] (4) [0, 3, 7] (4)
[2, 5, 10] (4) [0, 2, 5, 7] (12) [0, 2, 5, 9] (3) [0, 2, 7, 10] (3)

[0, 4, 7, 10] [0, 3, 7] (16) [2, 5, 10] (1) [1, 3, 6, 10] (1) [0, 4, 7, 10] (24)
[0, 3, 7, 10] [0, 3, 7, 10] (16)
[1, 3, 5, 9] [0, 3, 5, 9] (1) [0, 1, 5, 8] (8) [1, 3, 7, 10] (3)
[2, 5, 8, 10] [3, 5, 8, 11] (4) [0, 3, 7] (7) [2, 7, 10] (3) [2, 5, 8, 10] (4) [2, 5, 10] (7)

[0, 5, 8] (4) [2, 5, 9] (3)
[1, 5, 8, 10] [3, 5, 7, 10] (10) [1, 3, 7, 10] (6)
[1, 3, 7, 10] [1, 3, 7, 10] (2) [0, 3, 8] (4) [0, 5, 8] (4) [3, 7, 10] (6)
[0, 4, 7, 9] [0, 4, 7, 9] (16)
[0, 2, 6, 9] [0, 2, 6, 9] (12) [0, 3, 7] (8) [0, 5, 8] (4) [0, 5, 7, 8] (4)

Random solo
Chart chord

System interpretations

[0, 5, 9] [1, 3, 10, 11] (4) [2, 5, 7, 10] (5) [3, 5, 8, 10] (1) [1, 3, 7, 10] (1) [1, 3, 5, 8] (1)
[1, 5, 8] (1) [3, 5, 7, 10] (2) [2, 5, 10] (2) [3, 6, 11] (6) [0, 4, 5, 9] (11)

[2, 5, 8, 10] (5) [0, 3, 7] (2) [0, 5, 9] (17) [3, 7, 10] (4) [4, 8, 11] (3)
[0, 3, 5, 9] (3) [3, 5, 8, 11] (2) [0, 4, 7, 10] (2) [0, 5, 8] (3) [0, 3, 8] (1)

[2, 5, 7, 10] [1, 3, 7, 10] (2) [0, 3, 7] (1) [0, 3, 8, 10] (1) [2, 6, 8, 11] (1) [2, 5, 7, 10] (57)
[5, 6, 8, 11] (2) [0, 3, 5, 9] (2) [2, 5, 9] (7) [1, 3, 10, 11] (4) [1, 4, 6, 9] (3)
[1, 5, 8, 10] (1) [2, 3, 7, 10] (3) [1, 4, 9, 11] (2) [1, 4, 6, 10] (3) [0, 5, 7, 9, 10] (1)
[0, 5, 8, 10] (1) [1, 4, 9] (1) [0, 5, 9] (1) [2, 5, 10] (4) [5, 8, 11] (1)

[0, 2, 3, 5, 10] (1) [3, 6, 8, 11] (1) [0, 2, 5, 9] (1) [0, 3, 7, 8] (2) [0, 5, 8] (1)
[2, 7, 11] (1) [2, 5, 9, 10] (1)

[0, 4, 7, 10] [0, 3, 7] (6) [3, 5, 7, 8] (1) [0, 5, 8] (2) [0, 4, 7, 10] (18) [0, 3, 8] (1)
[2, 5, 10] (3) [1, 4, 6, 9] (1) [1, 3, 6, 10] (1) [3, 6, 8, 11] (1) [2, 7, 10] (1)
[0, 3, 7, 8] (2)

[0, 3, 7, 10] [0, 3, 7, 10] (11) [1, 4, 9, 11] (1) [1, 3, 10, 11] (1) [3, 7, 10] (2) [0, 1, 5, 8] (1)
[1, 3, 5, 9] [0, 3, 5, 9] (5) [1, 4, 6, 10] (1) [2, 6, 8, 11] (1) [0, 3, 5, 8] (1) [1, 3, 7, 10] (1)

[0, 5, 8] (1) [0, 3, 7] (3)
[2, 5, 8, 10] [2, 7, 10] (1) [2, 5, 8, 10] (19) [0, 5, 8] (5) [1, 3, 7, 10] (1) [3, 7, 10] (1)

[2, 5, 10] (3) [2, 5, 7, 10] (2)
[1, 5, 8, 10] [1, 3, 6, 10] (1) [1, 3, 5, 10] (3) [1, 3, 7, 10] (2) [3, 5, 7, 10] (3) [1, 5, 8, 10] (6)

[2, 5, 8, 10] (1)
[1, 3, 7, 10] [1, 3, 7, 10] (8) [0, 5, 8] (1) [3, 6, 10] (1) [3, 7, 10] (4) [0, 3, 8] (1)
[0, 4, 7, 9] [0, 4, 7, 9] (12) [0, 2, 3, 5, 10] (1) [2, 5, 7, 10] (1) [1, 3, 5, 6, 8] (1)
[0, 2, 6, 9] [0, 2, 6, 9] (10) [0, 3, 5, 9] (2) [0, 3, 7] (5) [0, 5, 8] (3) [0, 2, 5, 9] (3)

[2, 5, 7, 11] (1) [0, 1, 3, 8] (1)

Numbers in parentheses show the total time steps that a system-generated PC-set occurs under the respective chart PC-set.
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subjective evaluation based on listening tests, aiming to study
whether the generated accompaniments are comparable to the
original chords existing in the dataset.

For preparing the listening tests we randomly selected 10 solo
melodies along with their original accompaniments from the
validation set. Then we used the 10 selected melodic parts to

FIGURE 2 | First eight measures (A) and measures 33–40 (B) of system-generated chords over the respective lead sheet chords for “All of Me” with random solo
part (ommitted in the depiction).

TABLE 5 | “Quartile” similarity in system-generated chords in “All of Me” without
(left) and with random solo (right) at epoch 59.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.09 0.09 0.09
2nd qrt 0.09 0.00 0.00 0.00
3rd qrt 0.09 0.00 0.00 0.00
4th qrt 0.09 0.00 0.00 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.05 0.05 0.06
2nd qrt 0.05 0.00 0.00 0.00
3rd qrt 0.05 0.00 0.00 0.00
4th qrt 0.06 0.00 0.00 0.00

TABLE 7 | “Quartile” similarity in system-generated chords in “All of Me” without
(left) and with random solo (right) at epoch 1,251.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.53 0.53 0.54
2nd qrt 0.53 0.00 0.00 0.00
3rd qrt 0.53 0.00 0.00 0.00
4th qrt 0.54 0.00 0.00 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.51 0.72 0.19
2nd qrt 0.51 0.00 0.30 0.55
3rd qrt 0.72 0.30 0.00 0.72
4th qrt 0.19 0.55 0.72 0.00

TABLE 6 | “Quartile” similarity in system-generated chords in “Au Privave”without
(left) and with random solo (right) at epoch 59.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.34 0.34 0.35
2nd qrt 0.34 0.00 0.00 0.01
3rd qrt 0.34 0.00 0.00 0.01
4th qrt 0.35 0.01 0.01 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 1.00 0.99 0.99
2nd qrt 1.00 0.00 0.33 0.34
3rd qrt 0.99 0.33 0.00 0.01
4th qrt 0.99 0.34 0.01 0.00

TABLE 8 | “Quartile” similarity in system-generated chords in “Au Privave”without
(left) and with random solo (right) at epoch 1,251.

No solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.40 0.40 0.41
2nd qrt 0.40 0.00 0.00 0.01
3rd qrt 0.40 0.00 0.00 0.01
4th qrt 0.41 0.01 0.01 0.00

Random solo

1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.65 0.96 0.70
2nd qrt 0.65 0.00 0.91 0.73
3rd qrt 0.96 0.91 0.00 0.83
4th qrt 0.70 0.73 0.83 0.00
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generate their corresponding chord accompaniments with the
proposed artificial agent, thus ensuring that the system receives
novel input, not wielded during training. Accordingly, each
participant was presented with 10 tests; each test included
three audio clips, starting only with the melodic part and
followed by its combinations with the two accompaniments
(original and generated), which are introduced in a random
order so as to avoid any possible biases. The actual audio
excerpts had a duration of around 30 s and looped for six
times to reach 3 min. Then, the participants had to answer the
following three questions for each accompaniment (six questions
per test) in a Likert scale from 1 (low) to 5 (high):

• Q1: Evaluate the overall high-level structure of the accom-
paniment with respect to the introduced melody.

• Q2: Evaluate the harmonic compliance of the accompaniment
with reference to popular western music.

• Q2: Evaluate the rhythmical compliance of the accompaniment
with reference to popular western music.

In our study 21 participants were involved, 15 male and six
female, with the majority being 20–40 years old. All of the

participants were musicians with different levels of expertise,
having at least intermediate knowledge of music theory.
Consequently, we collected a total of 1,260 answers and the
results are presented in Table 9. By inspecting only the mean
values we can observe that the participants evaluated slightly
better the original accompaniments in most questions. However
in order to determine whether this preference is statistically
important, we performed a Wilcoxon rank sum test, having as
null hypothesis that there is no difference between the two
accompaniments. The calculated p-values demonstrated that there
is statistically significant difference between the original and the
generated accompaniments in examples 5, 6, 7, 9 and 10 (highlighted
with bold fonts inTable 9), while we cannot reject the null hypothesis
for the remaining examples. In other words, in 50% of the examples,
we cannot be certain about whether the generatedmusic is inferior to
the original, as far as the examined qualities can define.

Overall, we can say that the accompaniments generated by the
proposed artificial agent had better rhythmical compliance rather
than harmonic, which might be due to the metric information
that is included in the system input. Also, the poor performance
in some examples indicates that the computational capabilities
of a single LSTM layer are limited, thus suggesting more
sophisticated architectures to be tested. We strongly encourage
the reader to visit the online repository and listen to the audio files
of the listening tests.

CONCLUSION

The paper at hand presented a study on how deep neural network
architectures can be employed for simulating a jazz improvisation
setting between a human soloist and an artificial accompanist, based
on a common chord chart. A basic implementation incorporating
deep neural networks was presented and publicly available data were
transformed in a way that all necessary information for the task at
hand became available, i.e. information about metric structure, lead
sheet chords, human-generated solo/melody and system-generated
accompaniment responses. The motivation of this work is based on
modeling the interplay between expectation and its violation by two
improvising musicians (one human and one artificial) with implicit

FIGURE 3 | Error-bars of different voicings employed by the system for each chord label in the chart accross a sampled set of epochs.

FIGURE 4 | Loss of the training objective function in the validation set
across multiple epochs.
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machine learning approaches (deep neural networks) and the
methodology included the development of “a model within a
model”, that allows the artificial agent to have its own model of
expectation for the human improviser. Additional challenges included
the adaptation of large amounts of data to the desired form, leading to
the development of a data enrichment process that generated
variability in the accompaniment parts of the collected pieces.

Results were obtained by testing the system in two real-time
simulation settings: without any assumed human solo and with the
inclusion of a random solo. The responses of the system under these
two settings in two well-known jazz standards (“All of me” and “Au
Privave”) indicated that harmonic compliance with the chart chords
was mainly achieved, except mainly from the beginning of each
accompaniment session where the system needs to “collect memory”
for starting performing better; this is possibly due to the random
initialisation of the states in the LSTMnetworks that are in the core of
the presented basic implementation. Even though it was expected for
the system to be influenced by the incorporation of a human solo, this
was not the case in both examined pieces. Specifically, in “All of Me”
the inclusion of a random solo did not appear to affect the output of
the system, while the system-generated chords exhibited self-
repetition in accompaniment sessions incorporating four iterations
of the chart. Conversely, in “Au Privave” the inclusion of the random
solo affected the system output both by decreasing self-repetition in
four iterations and by increasing the number of chord voicings
employed by the system for given chart chords. In order to

evaluate the perceptual quality of the generated chords, we also
performed a subjective evaluation based on listening tests, where
participants had to compare original and generated accompaniments
given their corresponding melodies, by ranking their harmonic and
rhythmical compliance in a liker scale. AWilcoxon rank sum test on
the responses showed that 50% of the examples were not significantly
inferior to the original accompaniments.

Future research is necessary for a more thorough examination of
such system for real-time accompaniment. The results presented
herein indicate that it is possible to model expectation and violation
thereof for real-time jazz accompaniment with deep neural
networks, however, severe limitations have to be acknowledged
for performing further studies:

1. There is no proper data available with all the necessary
information (lead sheet chords, metric information, solo
and accompaniment). A crucial part of the data, i.e. the
accompaniment, was actually constructed algorithmically
while the solo part included melodies (rather than solos)
with restricted expressional variability. The data enrichment
method that was developed to construct artificial variability
in the data was based on a rudimentary probabilistic
implementation which is not enough for creating consistent
connections that could be learned from the system.

2. The execution time of predictions might be marginally
acceptable for scalable real-time systems. For the presented

TABLE 9 | Results of our listening tests.

Question p-value Accompaniment Median Mean Question p-value Accompaniment Median Mean

Example 1 Q1 0.48121 Original 4.0 3.57 Example 6 Q1 0.04689 Original 4.0 3.71
Generated 3.0 3.33 Generated 3.0 2.9

Q2 0.35198 Original 3.0 3.43 Q2 0.00025 Original 4.0 3.95
Generated 4.0 3.71 Generated 2.0 2.48

Q3 0.6966 Original 4.0 3.95 Q3 0.00826 Original 4.0 3.86
Generated 4.0 3.86 Generated 3.0 2.86

Example 2 Q1 0.30236 Original 4.0 3.57 Example 7 Q1 0.00007 Original 4.0 4.19
Generated 3.0 3.24 Generated 2.0 2.43

Q2 0.44293 Original 4.0 3.52 Q2 0.0 Original 4.0 4.19
Generated 3.0 3.24 Generated 1.0 1.62

Q3 0.66891 Original 4.0 3.52 Q3 0.00005 Original 5.0 4.33
Generated 4.0 3.33 Generated 2.0 2.43

Example 3 Q1 0.26296 Original 4.0 3.67 Example 8 Q1 0.48907 Original 4.0 3.95
Generated 3.0 3.29 Generated 4.0 3.86

Q2 0.08951 Original 4.0 3.86 Q2 0.1159 Original 4.0 4.24
Generated 3.0 3.24 Generated 4.0 3.76

Q3 0.95987 Original 4.0 3.71 Q3 0.88003 Original 4.0 3.9
Generated 4.0 3.71 Generated 4.0 4.0

Example 4 Q1 0.32656 Original 4.0 3.86 Example 9 Q1 0.03353 Original 4.0 3.76
Generated 4.0 3.52 Generated 3.0 3.0

Q2 0.15523 Original 4.0 3.86 Q2 0.00001 Original 5.0 4.24
Generated 3.0 3.38 Generated 2.0 2.24

Q3 0.41361 Original 4.0 3.86 Q3 0.00037 Original 4.0 4.1
Generated 4.0 3.52 Generated 2.0 2.57

Example 5 Q1 0.0543 Original 4.0 3.71 Example 10 Q1 0.00153 Original 4.0 3.95
Generated 3.0 2.9 Generated 2.0 2.76

Q2 0.00022 Original 4.0 3.76 Q2 0.0014 Original 4.0 3.71
Generated 2.0 2.19 Generated 2.0 2.29

Q3 0.00766 Original 4.0 4.0 Q3 0.02863 Original 4.0 3.52
Generated 3.0 2.86 Generated 2.0 2.62

The bold fonts indicate the statistically significant differences provided by a Wilcoxon rank sum test between the original and the generated accompaniments.
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study, time resolution was significantly reduced for making the
system safely compatible with real-time conditions, however,
this fact reduced the expressional capabilities of the system. This
includes not only restricted capabilities for the system responses,
but also restricted capabilities for the system to identify
expressional characteristics of the human soloist.

3. The prominent style found in the datasetwas pop,which comprises
smaller harmonic variability in comparison to jazz. Therefore, the
resulting accompaniment had to be creatively adjusted for more
reflecting complex jazz lead sheet progressions. A consistent dataset
of jazz standard accompaniment sessions is necessary for studying
this problem more deeply.
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