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In this paper we discuss the socialization hypothesis—the idea that speakers of the same
(linguistic) community should share similar concepts given that they are exposed to similar
environments and operate in highly-coordinated social contexts—and challenge the fact
that it is assumed to constitute a prerequisite to successful communication. We do
so using distributional semantic models of meaning (DSMs) which create lexical
representations via latent aggregation of co-occurrence information between words
and contexts. We argue that DSMs constitute particularly adequate tools for exploring
the socialization hypothesis given that 1) they provide full control over the notion of
background environment, formally characterized as the training corpus from which
distributional information is aggregated; and 2) their geometric structure allows for
exploiting alignment-based similarity metrics to measure inter-subject alignment over
an entire semantic space, rather than a set of limited entries. We propose to model
coordination between two different DSMs trained on two distinct corpora as dimensionality
selection over a dense matrix obtained via Singular Value Decomposition This
approximates an ad-hoc coordination scenario between two speakers as the attempt
to align their similarity ratings on a set of word pairs. Our results underline the specific way
in which linguistic information is spread across singular vectors, and highlight the need to
distinguish agreement from mere compatibility in alignment-based notions of conceptual
similarity. Indeed, we show that compatibility emerges from idiosyncrasy so that the unique
and distinctive aspects of speakers’ background experiences can actually
facilitate—rather than impede—coordination and communication between them. We
conclude that the socialization hypothesis may constitute an unnecessary prerequisite
to successful communication and that, all things considered, communication is probably
best formalized as the cooperative act of avoiding conflict, rather than maximizing
agreement.
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1 INTRODUCTION

Psychological approaches to semantic and conceptual knowledge
rely on intertwined yet distinct notions of concepts and words
(Malt et al., 2015; Malt, 2019): concepts are “the building blocks of
thought” taken to be crucial to cognition at large (Margolis and
Laurence, 2019), while words are “the smallest linguistic expressions
conventionally associated with non-compositional meaning [. . .]
which can be articulated in isolation to convey semantic content”
(Gasparri and Marconi, 2019). Those psychological
approaches—also referred to as cognitivist or subjectivist
(Gärdenfors, 2014; Barsalou, 2017; Pelletier, 2017)—assume
concepts, unlike words, to be private mental entities, which poses
a major challenge for communication, for how could two speakers
communicate if the words they utter do not refer to identical
concepts? (Fodor, 1977; Pelletier, 2017).

The solution to this conundrum, we are told, lays in the
inherently social nature of the lexical acquisition process
(Clark, 1996; Murphy, 2002; Barsalou, 2017) for if children do
acquire lexical items by matching new words to previously
learned concepts (e.g., Bloom, 2000) they do not do so
randomly: they learn through socialization which concepts go
with which words, so that the internal mental representations
associated with words are shaped by many years of interactions
with other speakers of the same (linguistic) community. As a
result, speakers of the same community relate words to very
similar concepts (Murphy, 2002, p. 391). The socialization
hypothesis—as we propose to name it—therefore postulates
that speakers of the same community should share similar
concepts given that they are exposed to similar environments
and operate in highly-coordinated social contexts (see
Section 2.1).

Yet, conceptual similarity remains hard to validate
experimentally, and is more often than desired a matter of
seeing the glass as half full: speakers never significantly
disagree on their judgments of similarity, but never totally
agree either (see Section 2.2). Meanwhile, recent work in
cognitive science has attempted to come to term with the idea
that concepts may vary widely across individuals, some even
suggesting that it may not necessarily represent an obstacle to
communication, as what matters ultimately is that speakers
coordinate during conversation and align their conceptual
representations on aspects relevant to the situation under
discussion (see Section 2.3).

Yet again, this notion of alignment remains dubious as it is
often relaxed to mere similarity or sufficient overlap. But what
does it mean for two concepts to be similar? And how much
similarity is enough for successful communication? In fact,
alignment-based similarity appears more often than not to
be a matter of overall compatibility rather than strict
agreement: being highly tolerant to variability, it can
potentially settle for minimal overlap so that speakers
holding marginally identical conceptual representations can
still be assumed to understand one another. But if anything
goes, then this notion of similarity becomes rather devoid of
content and pretty much useless for assessing the pertinence of
the socialization hypothesis.

As always, the devil is in the details. For indeed the
socialization hypothesis focuses on conceptual spaces and as
such pertains to the whole structure rather than the superficial
parts. After all, the notion of conceptual variability considered so
far remains superficial in as much as it is only observed through
the lens of limited behavioral response patterns in humans. And
since superficial variability does not preclude latent structural
similarity, conceptual spaces could still very well be aligned
despite the apparent variability, provided the adequate
characterization of alignment (see Section 2.4). Additional
methodological challenges still remain in order to validate the
socialization hypothesis, for 1) it is never possible to gain full
access over speakers’ background experiences which presumably
condition the formation of their respective conceptual spaces; and
2) it is in practice never possible to test human subjects on their
entire lexicons, let alone conceptual spaces, in order to guarantee
the robustness of the observed experimental results.

To overcome parts of those methodological challenges, we
propose in this work to rely on distributional semantic models of
lexical meaning (DSMs) which create vector representations for
words via latent aggregation of co-occurrences between words
and contexts (see Section 3). We argue that those models prove
particularly suited for assessing the validity of the socialization
hypothesis, given that 1) they provide full control over speakers’
background experiences, formalized experimentally as the
training corpus from which distributional information is
aggregated; 2) their geometric structure allows for exploiting
alignment-based similarity metrics to measure inter-subject
alignment, and do so over an entire semantic space rather
than a set of limited entries, thereby overcoming the
experimental shortcomings of testing on human subjects; and
3) their overall generation pipeline parallels humans’ conceptual
processing in a cognitively plausible fashion.

Following the core assumptions underpinning the
socialization hypothesis stated above, we propose to
distinguish within our model background experience from
active coordination. On the one hand, we control for
background experience by varying the data fed to the DSM.
On the other hand, we implement active coordination by
modifying the standard DSM pipeline, which normally
includes a dimensionality reduction step involving the top
singular vectors of a Singular Value Decomposition (SVD).
Specifically, we replace the variance-preservation bias by an
explicit coordination bias, sampling the set of d singular
vectors which maximize the correlation with a particular
similarity dataset (see Section 4.1). Thereby, we approximate
an ad-hoc coordination scenario between two speakers as the
attempt to align their similarity ratings on a set of word pairs. We
then propose to quantify structural alignment between two DSMs
as the residual error between their two matrices, measured after
having put their elements in correspondence with one-another
(see Section 4.2).

Using the above methodology, the paper makes three
contributions. First, we show that no variance-preservation
bias means better superficial alignment. Indeed, we show that
replacing the variance-preservation bias by an explicit sampling
bias leads to near-systematic improvements on various lexical
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similarity datasets. We show in addition that this result is
fundamentally grounded in the fact that different dimensions
in the SVD encode different semantic phenomena, so that DSMs
can actually capture a collection of possible meaning spaces from
the same set of data, rather than a single one (see Section 5.1).

Second, we show that better superficial alignment does not
mean better structural alignment. Although alignment is arguably
a complex and multifaceted process, we show that, when
considered from the point of view of our specific
characterization, the systematicity of the relation between
superficial and structural alignment does not hold (see
Section 5.2).

Third, we show that conceptual spaces generated from
different background experiences can be aligned in different
ways, and that the aforementioned considerations over
alignment and compatibility extend from conceptual
representations to conceptual spaces. Indeed, we show that
DSMs can be aligned by sampling pairs of singular vectors
which highly correlate with one another, but also very often by
sampling singular vectors that do not correlate but nonetheless
increase the structural similarity between the two modeled
conceptual spaces (see Section 5.3). A deeper investigation
of this effect suggests that compatibility emerges from
idiosyncrasy, so that the unique and distinctive aspects of
speakers’ background experiences can actually
facilitate—rather than impede—coordination and
communication between them (see Section 6).

We conclude that the socialization hypothesis may constitute
an unnecessary prerequisite to successful communication and
that, all things considered, communication is probably best
formalized as the cooperative act of avoiding conflict, rather
than maximizing agreement.

2 CONCEPTUAL VARIABILITY AND THE
SOCIALIZATION HYPOTHESIS

2.1 The Socialization Hypothesis: Review
and Overview
The primary observation underpinning the socialization
hypothesis is that conceptual acquisition precedes lexical
acquisition, so that children first acquire concepts before
learning to map them to corresponding lexical labels (Clark,
1983; Mervis, 1987; Merriman et al., 1991; Bloom, 2000). The
key idea behind the hypothesis is then to consider that the
acquisition of this conceptual-to-lexical mapping is not
random but rather heavily constrained, in that it takes place
in a highly coordinated social context, so that speakers of the
same community end up assigning similar concepts to the same
words. Phrased along those lines, the hypothesis can be found
in (Murphy, 2002, p. 391):

[. . .] people do not associate any old concept to a word.
Instead, they learn through socialization which
concepts go with which words. So, as a child, you
learned that dog refers to a certain kind of animal. If

you first developed the hypothesis that dog refers to any
four-legged mammal, you would soon find yourself
miscommunicating with people. Theywould not
understand you when you referred to a sheep as dog,
and you would not understand them when they said
that all dogs bark, and so on. Thus, there is a social
process of converging on meaning that is an important
(and neglected) aspect of language [. . .]

However, the socialization hypothesis extends beyond the
conceptual-to-lexical mapping itself: since human beings
should have similar cognitive systems and evolve in similar
environments overall, they should end up sharing similar
conceptual spaces (Barsalou, 2017, p. 15):

[. . .] different individuals have similar bodies, brains, and
cognitive systems; they live in similar physical
environments; they operate in highly-coordinated
social contexts. As a result, different individuals
acquire similar distributed networks for a given
concept over the course of development. Within a
particular social group or culture, different individuals’
networks are likely to be highly similar, given similar
coordinated experiences with many shared exemplars.
Even across different cultures, these networks are likely to
be highly similar, given that all humans have similar
bodies, brains, and cognitive systems, operating in
similar physical and social environments.

In both Murphy’s and Barsalou’s formulations of the hypothesis
we find the idea that there are both individual and
collective—cognitive and social—processes at play in both
conceptual and lexical acquisition, as well as linguistic
communication as a whole. The underlying idea is that people
cooperate with one another when they use language (Austin, 1962;
Grice, 1975) and perform what Clark (1996) has called joint actions
on top of individual actions, so that they coordinate with one
another in order to converge to some common ground (Clark, 1992;
Clark, 1996). This notion of common ground (see also Stalnaker,
2002; Stalnaker, 2014) encompasses notions of common knowledge
(Lewis, 1969), mutual knowledge or belief (Schiffer, 1972) and joint
knowledge (McCarthy and Lifschitz, 1989) and covers whatever
knowledge or beliefs speakers of the same (linguistic and/or
cultural) community may share. It also includes what
Gärdenfors (2014) refers to as third-order intersubjectivity: not
only what I know, but also what I assume you know and what I
assume you know that I know. Overall, the general idea put forth by
Clark (1996) is that the more time people spend together, the larger
their common ground; an idea which we can re-interpret in light of
the socialization hypothesis as shared experiences entail shared
conceptual spaces.

But coordination is also a process which takes place at the
lexical level so that speakers can settle for a particular word
meaning, a phenomenon that Clark (1992) has called
entrainment.1 As such, and in as much as the socialization

1For earlier work on lexical coordination focusing on reference, see (Clark and
Wilkes-Gibbs, 1986; Brennan and Clark, 1996).
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hypothesis can be said to presuppose meaning to derive from
convention, one can trace its foundational considerations to
Plato’s Cratylus (Cooper, 1997) and its discussion on the
essence of meaning. According to Rescorla (2019), there is
now a wide consensus in philosophy to stand with
Hermogenes against Cratylus in considering that language at
large is conventional, in that the association between a word and
its referent is arbitrary and driven by convention rather than
intrinsic to the nature of words. Conventional views of meaning
have given rise to a very rich literature since the signaling games of
Lewis (1969) which have proposed a formal characterization of the
phenomenon of semantic convergence, grounded in Gricean
pragmatics and the idea that meaning emerges from active
coordination between speakers’ communicative intentions and
hearers’ expectations (Grice, 1969).

Conventional views of meaning do not preclude however
the semantics of a word to vary across time, or even across
utterances. Cruse for instance, has argued that the meaning of
a word changed to some extent at each of its
occurrences—what he has called context modulation (Cruse,
1986, p. 52). Barker (2002) further observed that utterances
could shift the meaning of a predicate, and those
considerations have led several researchers to propose the
idea of the existence of a core meaning for each word sense,
core meaning potentially pragmatically modulated at each
utterance (Lasersohn, 1999; Recanati, 2004; Wilson and
Carston, 2007). Such considerations extend to concepts at
large and the question of whether or not they have cores
themselves (see Barsalou, 2017, for an overview). Indeed,
several proposals have been made to argue against the
notion of conceptual core and for the idea that concepts
are, in part of in full, context-dependent (Evans, 2009;
Connell and Lynott, 2014; Casasanto and Lupyan, 2015).
This argument is partly supported by empirical evidence
showing that not all conceptual information, even what
could be considered central one, is automatically activated
across context (Kiefer et al., 2012; Gawronski and Cesario,
2013; Lebois et al., 2015).

However, and despite the above consideration over conceptual
variability, the socialization hypothesis remains grounded in the
idea that identicity of concepts across speakers is not necessary
for successful communication: sufficient conceptual overlap or
similarity suffice. This idea can be found as early as (Humboldt,
1836/1988, p.152), when stating that:

Men do not understand one another [. . .] by mutually
occasioning one another to produce exactly and
completely the same concept; they do it by touching
in one another the same link in the chain of their
sensory ideas and internal conceptualizations, by
striking the same note on their mental instrument,
whereupon matching but not identical concepts are
engendered in each.

Relaxing the constraint over conceptual identicity across
subjects remains nonetheless problematic, for it pushes the
burden of proof over to the notion of similarity: what does it
mean for two concepts to be similar? And how much similarity is

enough for successful communication? (see, e.g., Connell and
Lynott, 2014, p. 400). As we will see in the following section,
unequivocally aligning similarity judgments is difficult to achieve
across human subjects, and the proper characterization of
similarity remains both a theoretical and an experimental
challenge, so that the question of whether or not two speakers
hold similar conceptual spaces is sometimes left to seeing the glass
as half full.

2.2 Conceptual Similarity: An Experimental
Challenge
What does it mean to hold a concept? As a first approximation,
Murphy (2002) proposes to assimilate conceptual knowledge to
lexical knowledge, although it has been convincingly argued that
words do not begin to capture the richness of their underlying
conceptual representations (Landau et al., 2010; Wolff and Malt,
2010; Gleitman and Papafragou, 2012). Marconi (1997) proposes
to further distinguish within lexical knowledge the notion of
inferential competence—the ability to name objects—from the
notion of referential competence—the ability to refer to objects.
This distinction is supported by empirical evidence from
neuroscience showing that certain brain pathologies may affect
one competence while leaving the other intact (Warrington, 1975;
Heilman et al., 1976; Kemmerer et al., 2012; Pandey and Heilman,
2014). Marconi (1997) takes it for granted that lexical competence
may vary widely across speakers of the same language, for
language reflects what Putnam (1975) has called the division of
linguistic labor which derives from the division of non-linguistic
labor. That is, knowledge effects entailed by differences in
expertise on a given domain may translate as differences in
lexical knowledge across speakers. Yet, Marconi still assumes
that certain parts of the lexicon will remain preserved from the
interference of specialized knowledge, so that lexical competence
for a certain number of words can be considered reasonably
identical across speakers. He takes the word spoon to be one such
example (Marconi, 1997, p. 57), and yet Labov (1973) showed in
his seminal work on the semantics of tableware items that
denotation for words such as mug, cup, bowl and vase could
vary widely across individuals when modifying objects properties
such as width, depth, content or even presence or absence of a
handle. Labov’s study illustrates what has since been confirmed
over and over experimentally, and what Pelletier summarizes as
the fact that “different subjects give individually different results
on the many tasks about meaning that have been administered
over the decades in cognitive psychology” (Pelletier, 2017, p. 74).
Indeed, psychological experiments on lexical similarity—which
typically ask subjects to grade lists of word pairs on a ten-point
scale, or triangular arrays of words by choosing among a pair of
word the most similar to a referent word (Hutchinson and
Lockhead, 1977)—exhibit mixed levels of agreement across
subjects: from 0.44 to 0.63 on word pairs and from 0.45 to
0.66 on triangular arrays depending on the categories being
tested (e.g., fruits or birds; see Hutchinson and Lockhead,
1977, p. 667).

Those results could be considered artifactual of experimental
setups artificially decontextualizing lexical items by presenting
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them in isolation and without sentential context—potentially
ignoring thereby the effect of context modulation (see Section
2.1). And indeed Anderson and Ortony (1975) confirmed
experimentally that subjects modulate the meaning of a word
at least based on the sentence in which it occurs. Murphy and
Andrew (1993) even showed that subjects could change their
judgments over synonyms and antonyms depending on the
presented word pairs. Nonetheless, even experiments which do
try to evaluate human similarity judgments in heavily constrained
contextual setups exhibit non-trivial inter-speaker variability: in
their study comparing lexical expectations across individuals,
Federmeier and Kutas (1999) presented subjects with clozed
sentence pairs such as They wanted to make the hotel look
more like a tropical resort. So along the driveway, they planted
rows of . . . and three target words comprising an expected
exemplar (e.g., palms for the above example), an unexpected
exemplar of the same category (e.g., pines) and an unexpected
exemplar of a different category. Expectations regarding missing
words were first evaluated as clozed probabilities computed by
asking a set of subjects to select the best target candidate given the
presented context, but only averaged at 0.74 while ranging from
0.17 to 1 depending on tested items. Other lexical substitution
experiments performed on humans exhibit similarly low
agreement levels across subjects: 0.28 for McCarthy and
Navigli (2009) and as low as 0.19 and 0.16 for Kremer et al.
(2014) and Sinha and Mihalcea (2014).

Could such relatively moderate levels of agreement constitute
mere byproducts of the unreliability of introspective judgment?
The question is not quite settled: Federmeier and Kutas (1999)
did attempt to analyze the distribution of N400 across subjects—a
negative-going potential peaking around 400ms after stimulus
onset which often indicates semantic anomaly or an unexpected
event. Yet, and although they did find slight differences in N400
patterns across subjects, they blamed the intrinsic variation of
brainwaves across individuals and did not investigate further
given the relatively small size˜(6) of their sample of participants.

Of course, one could also say that lab experiments
operatenecessary methodological approximations which lead to
unrealistic language usage setups that do not, all things
considered, invalidate the socialization hypothesis:
communication is not a clozed test, let alone a lexical
similarity task. Lexical variability at the word level, even if
attested experimentally, does not preclude conceptual
similarity to be validated when language takes places in a
realistic, articulated, and coordinated communication setting.
Words are seldom if ever used in isolation to refer to their
underlying conceptual representations, and vice versa. Yet,
inter-speaker variations in concept-to-word mappings led to
very concrete problems when attempting to design verb-
mediated computer interfaces in the 1990s: Furnas et al.
(1987) for instance showed that agreement on (computer-)
function-to-word mapping ranged from 0.07 to 0.18, and
agreement on word-to-function mapping remained at 0.15 (see
also Brennan, 1998). In other words, subjects barely used the
same word to refer to the same function/concept, or thought of
identical functions/concepts when using the same word,

rendering verb-mediated computer interfaces practically
unusable.

The notion of (conceptual and/or semantic) similarity itself is
a challenge: it varies with experience, knowledge, expertise or
even (linguistic) context (see Medin et al., 1993; Goldstone and
Son, 2012, for an overview). Its theoretical foundations are
somehow shaky, for A is always similar to B with respect to
something (Goodman, 1972). Therefore, it pushes yet again the
burden of proof over to modeling considerations on the notion of
context, especially as similarity judgments remain sensitive to
tasks (Murphy and Medin, 1985) and instructions (Melara et al.,
1992).

We could still acknowledge the ubiquity of conceptual
variability across speakers but postulate nonetheless that the
notion of similarity should pertain to a more stable or invariant
part of the conceptual structure. Prototypes (Rosch, 1973;
Rosch, 1975; Rosch, 1978) could form such a proposal for
conceptual invariance, and yet they also prove sensitive to
context (Roth and Shoben, 1983). Moreover, the stability of
prototypical structure across subjects may not be as high as
originally demonstrated, as Barsalou (1987) showed on a large-
scale replication study that inter-subject agreements on
prototypes ranged between 0.45 and 0.50, significantly below
the original 0.90 reported by Rosch (1975).

Assessing conceptual similarity experimentally is subject to
many interfering parameters. One of them, as we previously
mentioned, is knowledge (Goldstone and Son, 2012). Several
proposals have been made to bypass knowledge interference,
one of them being to experiment on dummy or artificial concepts
which specifically require no previous knowledge from tested
subjects (Murphy, 2002, p. 141). Yet again, similarity judgments
based on artifact categories have proven unreliable as artifact
categories are unstable and depend on the categorization task at
hand (Sloman and Malt, 2003; Malt and Sloman, 2007).

In short, conceptual similarity remains hard to validate
experimentally, and is more often than desired a matter of
seeing the glass as half full: speakers never significantly
disagree on their similarity judgments, but they never
totally agree either. The pervasiveness of conceptual
variability has gradually worked its way through cognitive
science, and much recent work now take for granted that
conceptual representations can never be assumed to be fully
identical across speakers, given that they are essentially
grounded in different background experiences (e.g., Connell
and Lynott, 2014, p. 400). For some, it should be relatively easy
to come to term with the idea that speakers hold rather
different concepts, given how often linguistic
communication actually requires clarification (Yee and
Thompson-Schill, 2016, p. 1024). For many, however, this
still does not necessarily represent an obstacle to successful
communication, as what matters ultimately is that speakers are
able to coordinate during conversation to align their
conceptual representations on aspects relevant to the
situation under discussion (e.g., Pickering and Garrod,
2006; Connell and Lynott, 2014). We now turn to a
historical overview of those approaches and to what their
formal characterizations entail.
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2.3 From Coordination to Alignment
As we have previously detailed in Section 2.1, linguistic
communication requires cooperation and coordination between
interlocutors in that it notably involves speakers doing things
with words while trying to have their addressees recognize their
intentions (Clark, 1992, p. xii). As Clark (1996) emphasized, there
is more to language than just a speaker speaking and a listener
listening, thus linguistic communication cannot be reduced to
mere signal processing. Several research have therefore since
proposed to approach (linguistic) communication as alignment
of information states rather than information transfer (e.g.,
Pickering and Garrod, 2004; Pickering and Garrod, 2006;
Garrod and Pickering, 2009; Pickering and Garrod, 2013;
Wachsmuth et al., 2013). Speakers and addresses, they argue,
are not rigid entities but interactive agents, constantly negotiating
meaning during conversation while relying on dynamic and
perpetually evolving conceptual representations. Coordination,
then, should be understood as the process by which interlocutors
converge to similar if not identical mental representations during
conversation, a process referred to as alignment (Pickering and
Garrod, 2004, p. 172).

Interactive-alignment-based models of linguistic
communication such as (Pickering and Garrod, 2004;
Pickering and Garrod, 2006) distinguish what they call
situation models from linguistic representations and general
knowledge. A situation model is defined as a multi-dimensional
representation of the situation under discussion—encoding
space, time, causality, intentionality and reference to main
individuals under discussion (Zwaan and Radvansky, 1998)—
and is assumed to capture what people are “thinking about”
during conversation. The embodied (and embedded) approach
to cognitive science operates a similar distinction between
representations and concepts. A representation refers to a
“specific, situated, contextual instantiation of one or more
concepts necessary for the current task”, while a concept
refers to “a general, aggregated, canonical (i.e., contextfree)
aspect of experience that has the potential to form the basis of
an offline representation” (Connell and Lynott, 2014, pp.
391–392). The distinction between (online) representations
and (offline) concepts allows the aformentioned approaches to
overcome the challenge posed by conceptual variability to
communication: offline concepts may differ widely across
interlocutors, successful communication remains possible
provided that online representations—or situation
models—can be aligned (see, e.g., (Pickering and Garrod,
2006, p. 204) or (Connell and Lynott, 2014, p. 400)).

The way in which those approaches accommodate
conceptual variability remains nonetheless quite relative, all
things considered. First of all, because they assume
coordination to play a key role in the socialization
hypothesis itself. Indeed, they do not expect concepts and
representations to develop in isolation, but rather to mutually
influence one another: online representations or situation
models are expected to draw upon both linguistic and
general (conceptual) knowledge (Connell and Lynott, 2014,
pp. 391–392) while, in return, online perception affects offline
representation (see Principle 1 in Connell and Lynott, 2014, p.

393). Moreover, they assume that alignment at one level of
representation will enable or improve alignment at other levels
(Pickering and Garrod, 2004, p. 172) so that speakers are
expected to align their general knowledge—and the
underlying concepts—alongside their situation models
throughout coordination (Pickering and Garrod, 2006, p.
215). Consequently, coordination is considered to act as a
catalyzer of conceptual similarity: it is not only that speakers of
the same community will be better able to coordinate thanks to
the similarity of their conceptual spaces—itself deriving from
the similarity of their background experiences—it is also that
repeated coordination between them will in turn increase their
overall conceptual similarity, ultimately leading to a virtuous
circle of mutual understanding across speakers of the same
community.2

Second of all, and more importantly, the tolerance of the
aforementioned approaches to conceptual variability remains all
relative in that they still consider similarity between background
experiences to constitute a prerequisite to successful alignment,
coordination and therefore communication. As Garrod and
Pickering (2009) point out, “alignment is typically achieved
[. . .] because people start off at a very good point. They
communicate with other people who are largely similar to
themselves, both because they process language in similar
ways and because they share much relevant background
knowledge” (see p. 294). As such, they rest upon a strong
interpretation of the socialization hypothesis, where it should
not be possible for any two speakers to coordinate and therefore
successfully communicate if their respective conceptual spaces
remain grounded in fundamentally different background
experiences. In fact, the socialization hypothesis still remains a
prerequisite to successful communication.

Those considerations invariably lead us to question how
strictly we should understand the notion of alignment so far
defined to entail identicity of conceptual representations. After
all, given that online representations are expected to draw upon
both linguistic and offline conceptual knowledge, alignment
should always be partial at best (Pickering and Garrod, 2006, p.
215). But the interactive-alignment-based models remain
heavily grounded in the Shannon–Weaver code model of
communication (Shannon and Weaver, 1949) and as such
they still often explicitely consider identicity of messages
between interlocutors to define communication success (see,
e.g., Pickering and Garrod, 2013, p. 329). Yet again, this
identicity constraint is often relaxed to mere similarity or
sufficient overlap (e.g., Connell and Lynott, 2014, p. 400) and
successful communication under conceptual misalignment is
then considered possible, but only in as much as misalignment
pertains to aspects of conceptual knowledge that are irrelevant
to the conversation at hand (Pickering and Garrod, 2006, p.
215). The following example, adapted from (Connell and
Lynott, 2014, p. 401) illustrates how, in fact, alignment may

2The role of coordination in the socialization hypothesis is explicit in Barsalou’s
characterization introduced in Section 2.1.
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not always equate agreement but sometimes mere compatibility
between conceptual representations:

[. . .] imagine your lifetime experience of dogs has been
entirely of the small, handbag-dog variety, and that you
are unaware that dogs come in any form larger than a
chihuahua. You then meet someone who has only ever
experienced large working dogs and is unaware that
dogs come in any form smaller than a German
shepherd. An exchange such as “Do you like dogs?”
“Yes, we have one at home,” “Same here, we just got one
last week from the shelter,” is perfectly effective
communication where each party understands the
other, even though each individual is representing
quite a different dog in both canonical (i.e., liking
dogs in general) and specific (i.e., my pet dog at
home) forms [. . .]

The question, then, pertains to the prevalence of compatibility:
should it be considered the norm rather than the exception? And
how far does it extend? For if indeed the notion of similarity so far
considered actually tolerates extreme ranges of variability and
negligible overlap between conceptual representations, then it
becomes rather devoid of content. Even more so if, as we later
show in Section 6, compatibility emerges from idiosyncrasies in
speakers’ background experiences, so that alignment can be
satisfied even with conceptual representations grounded in
fundamentally different background experiences. And the
socialization hypothesis then becomes unnecessary, if not
inoperative. Before we turn to a more formal investigation of
the questions at hand, let us detail several remaining theoretical
and methodological challenges.

2.4 Remaining Obstacles to the Formal
Characterization of the Socialization
Hypothesis
As we have previously emphasized in Section 2.1, the
socialization hypothesis is first and foremost a hypothesis
about conceptual spaces. As such, it rests upon a very
important property of human cognition at large, namely, that
the conceptual space has structure (Gärdenfors, 2004;
Gärdenfors, 2014).

This particular emphasis on the structure of the conceptual
space stresses the need to operate a distinction between latent
structure and surface form, especially when it comes to
alignment. This distinction is all the more important that
Wachsmuth et al. (2013) underlined that the two do not
necessarily go hand-in-hand, for, first, superficial alignment
does not necessarily guarantee structural alignment (see p. 5).
In the particular case of conceptual similarity that concerns us
here, this notion of surface form can be understood as the
behavioral response subjects typically exhibit on various
cognitive tasks—such as lexical similarity judgments—the
only type of empirical evidence actually accessible to us in
practice, for conceptual representations within subjectivist or
cognitivist approaches remain mere theoretical constructs.
Yet, the problem is, as it has been long argued, that

behavioral correlates between subjects on such tasks do not
guarantee identicity of concepts (see, e.g., (Davidson, 1984, p.
163), or (Pelletier, 2017, p. 52)). Indeed, Gentner (1988), for
instance, showed that adults and children below 8 years old
respond differently to the question “how is a cloud like a
sponge?”: children, unlike adults, are more inclined to favor
the attributional interpretation that “they are both soft and
fluffy” over the relational one that “they can both hold water
and give it off later”. Such differences in response patterns
typically exemplify discrepancies across subjects’ underlying
concepts of CLOUD and SPONGE, and across their relationships to
other concepts such as WATER or even FLUFFINESS. Those
apparent discrepancies, however, do not preclude mutual
agreement on their respective judgments of similarity with
respect to CLOUD and SPONGE.3

Conversely, Wachsmuth et al. (2013) argued that superficial
variability does not necessarily imply structural misalignment
(ibid.). Here again, one must bear in mind that the socialization
hypothesis pertains to a whole that is more than just the sum of its
parts. Yet, due to the practical limitations of experimenting on
human subjects, the type of conceptual variability reported in
Section 2.2 is almost systematically aggregated on a (very)
limited set of entries that may not be representative of the
conceptual space as a whole. Therefore, it is perfectly possible
that such empirical evidence does not actually call into question
the socialization hypothesis, for it may not actually prevent a
characterization of overall similarity between conceptual spaces.
Even more so if we are to take into account the division of
linguistic labor previously detailed in Section 2.2, which suggests
that variations across speakers’ conceptual representations may be
unevenly distributed across the entire conceptual space, and that
high local variability is actually to be expected. Thus, in addition to
developing experimental protocols that allow for testing conceptual
similarity across the entirety of the conceptual space, it appears
necessary to develop measures of conceptual similarity that quantify
the overall structural similarity between any two spaces, while
potentially tolerating high degrees of local and superficial variability.

To overcome parts of the aforementioned challenges, we
propose to resort to distributional semantic models of lexical
meaning. Indeed, we argue that those models prove
particularly suited for the modeling task at hand, given that
1) they provide full control over speakers’ background
experiences; 2) their geometric structure allows for defining
two distinct notions of similarity: a) at the superficial level,
between any two elements, through the notion of cosine
similarity which models humans behavioral response to
lexical similarity tasks; and b) at the structural level,
between any two distributional models, through the notion
of transformational alignment which makes it possible to
quantify similarity over entire spaces, rather than a set of
limited entries; and 3) their overall generation pipeline

3In case readers were to wonder whether her experimental protocol were not
forcing artificial similarity judgments upon subjects, note that Gentner (1988)
specifically mentions cases were children explicitly reject metaphorical
interpretations for concepts they do not consider to be similar.
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parallels that of human processing and conceptual formation
in a cognitively plausible way. We now turn to their formal
introduction.

3 DISTRIBUTIONAL SEMANTIC MODELS

3.1 Definition
Distributional SemanticModels (DSMs; Turney and Pantel, 2010;
Clark, 2012; Erk, 2012; Lenci, 2018) can be formalized as tuples
<T ,C, F, S> , meaning that a set of targets T is represented in
terms of a function F of the frequency of co-occurrence of its
elements with a set of contexts C. S is then a measure defined over
T × T that yields results interpreted as similarity judgments. DSMs
have been shown to successfully account for a number of linguistic
phenomena, both at the word and sentence level (see Lenci, 2018, for
an overview). Their success, however, is dependent on the exact
shape of the model, in particular its architecture and
hyperparameters, and the fine-tuning of each of the components
has been widely explored in the literature (Bullinaria and Levy, 2007;
Bullinaria and Levy, 2012; Baroni et al., 2014; Kiela and Clark, 2014;
Lapesa and Evert, 2014; Levy et al., 2015).

DSMs come in two notable variants: count-basedmodels such as
those originally used for Latent Semantic Analysis (Landauer and
Dumais, 1997) and prediction-based models which create dense
representations for words by learning to predict target words and/or
context words using neural networks (e.g., Collobert and Weston,
2008; Mikolov et al., 2013a; Mikolov et al., 2013c). Although Baroni
et al. (2014) originally argued that prediction-based DSMs
outperform their count-based counterparts, Levy et al. (2015) and
Mandera et al. (2017) have since shown that both count and predict
models could perform equally well provided specific modeling
adjustments and hyperparameters tuning, especially as Levy and
Goldberg (2014) showed that certain implementations of prediction-
basedmodels are actually equivalent to count-based ones in that they
actually perform implicit matrix factorization of the PMI weighed
word-contextmatrix. Despite all considerations, count-basedmodels
remain the more direct implementation of the distributional
hypothesis of Harris (1954) and are still considered solid options
for meaning representation, especially because of the increasing
necessity to have transparent and explainable models.

In a traditional count-based model distributional
representations of words are computed by aggregating co-
occurrence counts of context words found on both sides of a
target within a specified range called the window size. A given
entry of the raw count matrix, corresponding to the row index of a
target word w and the column index of a context word c is then
weighted using Positive Pointwise Mutual Information (PPMI):

PPMI � max(PMI(w, c), 0) (1)

where the PMI for w and c is given by:

PMI(w, c) � log
P(w, c)

P(w) · P(c) (2)

In order to reduce the dimensionality of the T × C matrix and to
capture higher order co-occurrences that are latent in the data, the

sparse PPMI matrix of word vector representations W is then
converted to a dense matrix using Singular Value Decomposition˜(SVD):

W � U · Σ · Vu (3)

where U is the matrix of (left) singular vectors, Σ is the matrix of
singular values, andV is the matrix of (right) singular vectors.W is
then reduced to a low-dimensional matrixWd by selecting the top
d singular vectors ranked in decreasing order of singular values:

Wd � Ud · Σα
d (4)

where the exponent α ∈ [0, 1] is a hyperparameter which has
been shown to positively impact performances on some specific
semantic tasks (Caron, 2001; Bullinaria and Levy, 2007; Bullinaria
and Levy, 2012; Levy et al., 2015).4

The usual motivation behind dimensionality reduction is to
drop factors that account for little variability in the original
weighted PPMI matrix. In the particular case of SVD
described above, the reduced matrix Wd is often referred to as
the best rank-d approximation (e.g., Martin and Berry, 2007, p.
41). The choice of the first d dimensions therefore relies on a
variance-preserving assumption: as the obtainedWd matrix is the
one that best approximates, among matrices of rank d, the
original PPMI matrix, it should also be the one that better
represents the desired semantic space. Yet, while the
hyperparameters’ space has been widely explored in the
literature, this assumption has hardly ever been questioned.
Interestingly, we show in the following section that the
preservation of the total variance in the original matrix is
marginal at best, casting doubts on the original motivation
behind this variance-preservation bias. As we will later show
in Section 4.1, calling into question the variance-preservation
bias proves determinant in investigating the socialization
hypothesis, in that it concretely allows us to model
coordination and conceptual alignment within the
distributional semantics framework with only marginal
modifications to the traditional DSM generation pipeline.
Indeed, we show in Section 5.1 that it is actually possible for
DSMs to capture different kinds of semantics relations from the
same corpus, so that rather than generating a single meaning
space from the PPMI matrix, a collection of possible meaning
spaces could coexist within the same set of data. Coordination
then becomes the process of dimensionality sampling, that is, the
process of reducing the SVDmatrix by selecting the set of singular
vectors that best satisfy the coordination constraints under
consideration, rather than those that best preserve the variance.

3.2 The Variance-Preservation Bias
Bullinaria and Levy (2012) originally questioned the importance
of the top singular vectors in the SVD matrix and suggested
removing the first 100 dimensions, claiming that the highest
variance components were influenced by aspects that turned out
to be irrelevant to lexical semantics. Their observation remained

4We further discuss the influence of the α parameter in Section 5.1.
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nonetheless largely ignored in the literature, and it is only very
recently that research formally questioned the process of
dimensionality selection in DSMs (Mu and Viswanath, 2018;
Raunak et al., 2019) ultimately bringing further supporting
empirical evidence to the original claim of Bullinaria and Levy
(2012).

The process of dimensionality selection can be motivated by
slightly different considerations: 1) creating compact and
computationally efficient vector representations, which can
even lead to significant performance improvement (Landauer
and Dumais, 1997; Bullinaria and Levy, 2012); 2) reducing some
undesirable geometrical effect in the original vector space
(Grefenstette, 1994, p. 102); or even 3) mitigating the noise
intrinsically present in partial data and increasing the
robustness of the model (Deerwester et al., 1990). Regardless
of the underpinning motivation, the dimensionality reduction
process considered here remains a lossy process, where part of the
data may be deliberately discarded following specific modeling
considerations. In that sense it is to be distinguished from
rebasing and potentially lossless methods which may be able to
align the dimensionality of the reduced space to the original data
matrix rank. An example of such approaches ismultidimensional
scaling (MDS; Shepard, 1962a; Shepard, 1962b) where similarity
ratings on sets of word pairs are first collected among human
subjects, before attempting to account for the entirety of the
collected data via a few potentially meaningful latent dimensions
in order to further explore the notion of similarity under study
(Heider and Olivier, 1972; Ross and Murphy, 1999).5

The best rank-d SVD approximation that interests us here,
however, is historically grounded in methodological
considerations coming from image processing and more
specifically image compression (e.g., Andrews and Patterson,
1976a; Andrews and Patterson, 1976b). Given an image
represented as a matrix of pixels, the frequent correlation
between nearby pixels in images will allow for the creation of
low-dimension representations with only a few singular vectors
accounting for most of the variance in the original data (Strang,
2016, p. 365). Variance-preservation is quantified via the notion
of matrix energy (E), formally defined as the square of the
Frobenius norm of the data matrix and also equal to the sum
of the squared singular values of the data matrix SVD (see Eq. 5).

EW � ∣∣∣∣∣∣∣∣W∣∣∣∣∣∣∣∣2F � ∑n
i�1

∑m
j�1

∣∣∣∣wi,j

∣∣∣∣2 � ∑min{m,n}

i�1
λ2i ,with

⎧⎪⎪⎨⎪⎪⎩
W ∈ Rm×n

W � U · ⎡⎢⎢⎢⎢⎢⎣ λ1 1
λmin{m,n}

⎤⎥⎥⎥⎥⎥⎦ · Vu (5)

A traditional rule of thumb for SVD dimensionality selection
in image processing is to try and retain about 90% of the original
energy (Leskovec et al., 2014, p. 424). Yet, as we can see in
Table 1, this is far from being the case when selecting the top 300
dimensions of the SVD on a standard PPMI-weighted count-
based DSM model, as the preserved energy remains
systematically below ∼ 15%. Moreover, results on d � 10,000
suggest that the aforementioned rule of thumb is difficult to apply
as-is to DSMs as it leads to high-dimensional and therefore
computationally inefficient models.

This issue, however, is barely mentioned in the literature:
Bullinaria and Levy (2007) explain that dimensionality
reduction is performed with minimal loss defined using the
standard Frobenius norm, but do not quantify it (see p. 897).
Earlier work using SVD for Latent Semantic Analysis state that
many of the latent singular values remain small and can
therefore be ignored (Deerwester et al., 1990, p. 395). But
this observation is misleading: as we can see in Figure 1, the
distribution of singular values follows a highly-skewed Zipfian
curve, so that the latent components may indeed quickly
appear very small in comparison to the top components.
However, the tail of the distribution remains quite long,
especially as Table 1 suggests the matrix rank to be
significantly higher than 10,000. The cumulative effect of
the tail’s length can therefore be so that retaining only a
few top components, even if those correspond to
significantly higher singular values, may prove to account for
only a tiny portion of the total energy. Be that as it may, the
most frequent observation supporting the choice of a limited
number of top components in the SVD remains that models
simply “work” as-is, and the double benefit of having both
computationally efficient and effective models frees authors
from having to investigate further the consistency of their
modeling choices (e.g., Lund and Burgess, 1996).

3.3 Cognitive Plausibility of DSMs
Determining whether DSMs constitute cognitively plausible
models first requires asking what DSMs are supposed to be
models of. And yet the answer to that question appears to be
far from consensual: Sahlgren (2008), for instance, insists that
distributional models are models of word meaning “as they are in
the text” and not “in the head”, so that DSMs should be
considered primarily as computational models of meaning
rather than “psychologically realistic model[s] of human
semantic processing” (Sahlgren, 2008, pp. 134–135).
Meanwhile, Günther et al. (2019) consider that DSMs stand in
the long tradition of learning theories which postulate that
humans are excellent at capturing statistical regularities in
their environments. Yet, even if we are to agree with Günther
et al. (2019), we must acknowledge that Sahlgren (2008) raises an
important question: can distributional information found in
corpora be considered representative of the type of
distributional information grounding humans’ conceptual
representations in the first place?

TABLE 1 | Percentage of total energy preserved with d � 10000 and d � 300 top
dimensions for DSMs trained on various corpora described in Table 2.

d � 10 000 d � 300

WIKI07 66% 11%
OANC 72% 11%
WIKI2 58% 10%
ACL 62% 13%
WIKI4 52% 9%
BNC 59% 10%
WIKI 39% 9%

All models are PPMI-weighted count-based DSMs generated with a window of 2.

5See also (Osgood, 1952, p. 228) very similar in spirit.
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3.3.1 DSMs Are Not Grounded in Sensorimotor
Experience
The first challenge faced by DSMs in their lack of grounding in
sensorimotor experience of the real world, which makes them
theoretically problematic as a sole account of meaning (e.g., De
Vega et al., 2008; Wingfield and Connell, 2019). And indeed,
Landauer and Dumais (1997) originally acknowledged that “to be
more than an abstract system like mathematics, words must
touch reality at least occasionally” (see p. 227). The problem is
probably best illustrated by Harnad (1990) and his Chinese/
Chinese dictionary-go-round example, itself an extension
Searle’s Chinese Room argument (Searle, 1980): if one only
had access to a Chinese/Chinese dictionary in order to learn
the Chinese language, one would soon find themselves locked
into a symbol/symbol merry-go-round that would render the task
impossible (Harnad, 1990, pp. 339–340). As Glenberg and Mehta
(2008) further note, no amount of statistical information can
actually solve the problem of the circularity of definitions, if one
cannot resort to alternative grounded modalities to understand
what words actually mean (see p. 246).

By and large, such considerations raise the question of whether the
type of linguistic distributional information found in text can be
reasonably assumed to adequately mirror more general distributional
information found in the world. As Connell (2019) puts it:

Linguistic distributional statistics and simulated
distributional statistics contain similar patterns, but do
not directly reflect one another. In contrast to linguistic
information, which comprises statistical regularities
between word forms, simulated information encodes
statistical regularities at the level of meaning due to the
inclusion of situational context in simulated
representations. A car, for instance, typically has wheels
and a driver, operates on the road or street, and sometimes
needs a service or repair. Objects, events, and other
situational entities tend to occur together in the real
world in ways that, through cumulative interactive

experience, can give rise to statistical patterns of how
referent concepts are distributed in relation to one another.

This question then extends to the question of the
representativeness of linguistic distributional information in
and of itself, and to whether what is found in standard DSM
training corpora can be considered—both quantitatively and
qualitatively—to constitute a representative sample of the type
of linguistic distributional information humans are exposed to
(Wingfield and Connell, 2019, pp. 8–11).

Yet, despite Connell’s concerns, several investigations have
actually considered language to mirror the real world in ways that
distributional information found in text could be assumed to
reflect, in part or in full, distributional information grounded in
sensorimotor experience (see, e.g., Barsalou et al., 2008; Louwerse,
2011). Be that as it may, what is important for our purpose here is
not that distributional patterns found in corpora constitute
comprehensive samples of distributional information grounding
humans’ conceptual representations, but only that they condition
the structural properties of the conceptual space in a plausible
fashion (see more details in Section 3.3.2). Furthermore, insofar as
the distributional hypothesis remains a hypothesis about cascading
variations—more similar background experiences should entail
more similar conceptual spaces—emphasis should be put on
modeling plausible differences across distributional patterns
speakers may be exposed to. We will return to that question in
greater length in Section 6.

3.3.2 Can DSMs Nonetheless Model Conceptual
Knowledge?
DSMs have historically been considered to model conceptual aspects
of meaning, given how successful they prove to be at performing
conceptual tasks such as lexical similarity, priming or analogy (see
Westera and Boleda, 2019, §3.2). But can the vector for “cat” in a
standard DSM really be considered to model the concept CAT when
indeed it is only an abstraction over occurrences of the word cat and
not over occurrences of actual cats? ForWestera and Boleda (2019) it
should not, and DSMs can at best be claimed to model concepts of

TABLE 2 | Corpora used to generate DSMs

Corpus Word count Details

OANC 17M Open american national Corpus.a includes both spoken and written language, ranging from telephone and face-to-face
conversations to letters, fiction, technical reports, newspapers or travel guides

WIKI07 19M 0.7% of the English wikipedia (WIKI) sampled across the entire dump

ACL 58M Association for computational linguistics (ACL) anthology References corpus (Bird et al., 2008). Contains research papers in
computational linguistics exclusively

WIKI2 53M 2% of the English wikipedia (WIKI) sampled across the entire dump. WIKI2 contains 12.5% of WIKI07

BNC 113M British national Corpus.b includes both spoken and written language, ranging from informal conversations and radio shows
to newspapers, academic books, letters or fiction

WIKI4 106M 4% of the English wikipedia (WIKI) sampled across the entire dump. WIKI4 contains 15% of WIKI07 and 100% of WIKI2

WIKI 2 600M Full English wikipedia dump of January 20, 2019, generated and preprocessed (tokenize and lowercased) with WiToKitc

based on wikiextractord and polyglot (Al-Rfou et al., 2013). WIKI contains 100% of WIKI07, WIKI2 and WIKI4

ahttps://www.anc.org/OANC/index.html
bhttp://www.natcorp.ox.ac.uk/
chttps://github.com/akb89/witokit
dhttps://github.com/attardi/wikiextractor
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words but definitely not concepts. And this distinction has its
importance as, for them, one cannot expect relations that hold
between concepts to necessarily hold between concepts of words.
For example, the entailment relationship that may exist between CAT

and ANIMAL may not necessarily hold between THEWORDCAT and
THEWORDANIMAL.

Insofar as those considerations derive from the lack of grounding
of DSMs previously detailed in Section 3.3.1, we will argue along the
same lines. That is, we will not argue that DSMs provide
comprehensive models of the conceptual space as a whole, but
only that they provide satisfactory approximations for the purpose
at hand. Our emphasis throughout this work being on the structure of
the conceptual space—especially with respect to alignment—rather
than, say, its cardinality, we remain mainly interested in the
distribution of information across the dimensions of the DSM, and
how thatmight be able to capture and reflect some structural properties
of the conceptual space. In response toWestera and Boleda (2019), we
will therefore say that, after all, concepts of words are concepts, so that
even though DSMs were only able to model concepts of words, they
could still be characterized as subspaces of a larger conceptual space,
governed by similar constraints and structural properties: whatmatters
here is not necessarily that, e.g., similar entailment relationships that
hold between concepts also hold between concepts of words, but that a
notion of entailment could be characterized in both the space of
concepts and the subspace of concepts of words.

3.3.3 When DSMs Parallel Human Cognition
As we have previously mentioned, DSMs stand in the long tradition
of learning theories which postulate that humans are excellent at
capturing statistical regularities in their environments (Günther
et al., 2019, p. 6). And in fact, as Connell and Lynott (2014)
note, “natural languages are full of statistical regularities: words
and phrases tend to occur repeatedly in similar contexts, just as their
referents tend to occur repeatedly in similar situations” (see p. 395).
Humans, as it appears, are sensitive to those regularities (e.g., Aslin

et al., 1998; Solomon and Barsalou, 2004; Louwerse and Connell,
2011) which allows them to build conceptual representations from
distributional knowledge (e.g., McDonald and Ramscar, 2001).
Children, for example, are known to exploit statistical regularities
in their linguistic environments, either via simple conditional
probabilities when segmenting speech streams into words (Saffran
et al., 1996), or via distributional patterns when acquiring syntactic
knowledge (Redington et al., 1998).6

Jenkins (1954) originally proposed a summary of the whole
lexical acquisition process: “intraverbal connections arise in the
same manner in which any skill sequence arises, through
repetition, contiguity, differential reinforcement” (see p. 112).
Since then, several research have argued that the learning of
associations between stimuli is driven by contingency rather
than contiguity (Rescorla and Wagner, 1972).7 As Rescorla
(1968) details, the notion of contingency differs from contiguity
in that it takes into account not only what is there but also what is
not in the form of conditional probabilities. In essence, the notion
of contingency characterizes the informativity of a given stimuli.
For Günther et al. (2019), PPMI-based DSMs directly follow such
learning theories as they indeed encode mutual information
between words and contexts, that is, their respective
informativity, rather than raw word-context co-occurrence count.

A crucial aspect of DSMs is that they follow the emergentist
approach to cognitive development (e.g., Elman et al., 1996) and
conceptual representations (e.g., Rogers and McClelland, 2004) in
considering that long-term knowledge is an emergent representation
abstracted across multiple experiences. Within the emergentist
family of connectionist models, there is no real distinction
between knowledge of something and knowledge of the contexts
in which that thing occurs, and several implementations have
historically been proposed to show how a conceptual
representation could be abstracted from contextual experience
(e.g., Elman, 1990; Elman, 1993; Altmann, 1997).

For Jones et al. (2015) both the connectionist and the
distributional approaches have in common to hypothesize
the existence of a data reduction mechanism that enables
focusing on important statistical factors that are constant
across contexts while throwing away factors that are
idiosyncratic to specific contexts (see p. 240). Landauer and
Dumais (1997) argued early on that the dimensionality
reduction step in the DSM generation pipeline could model
the transition from episodic to semantic memory,8 formalized
as the generalization of observed concrete instances of word-
context co-occurrences to higher-order representations
potentially capturing more fundamental and conceptual
relations (see p. 217). The idea that DSMs could provide
computational models of semantic memory can also be
found in (McRae and Jones, 2013; Jones et al., 2015).

FIGURE 1 | Distribution of singular values across [0, 10,000] top
dimensions for a PPMI-weighted count-based DSM generated on the full
English Wikipedia (WIKI) corpus detailed in Table 2, with a window of 2.

6See also (Saffran, 2003; Smith and Yu, 2008; Aslin and Newport, 2012; Hall et al.,
2018).
7Although see maybe (Papini and Bitterman, 1990) for a counter-argument.
8Episodic memory is assumed to contain memory of autobiographical events while
semantic memory is assumed to be dedicated to generalized memory not linked to
specific events (Tulving, 1972).
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Another important assumption made with respect to this
compression mechanism is that it relies on a form of covariation-
based decomposition of the previously aggregated stimuli. As such, it
operates in a similar fashion than Singular Value Decomposition
(SVD) or Principal Component Analysis (PCA) in being able to
structure and organize latent information based on variance: broad,
high-order distinctions come first before more fine-grained ones
(Rogers and McClelland, 2004; Jones et al., 2015). This assumption
is supported by empirical evidence showing that children acquire
concepts through progressive differentiations: 18-months-olds first
develop global conceptual categories such as animals, vehicles,
plants, furniture and kitchen utensils before being able to operate
high-constrat basic-level distinctions among those categories
by 30 months, and ultimately learning to operate low and
moderate basic-level contrasts among those categories later
one (Mandler et al., 1991).

Now Glenberg and Mehta (2008) argued that covariation among
words is not sufficient to characterize meaning, and showed that
participants failed to rely on covariance structure to, e.g., classify
unnamed features for familiar domains. Yet, this does not mean that
covariation cannot be used as a proxy to capture certain conceptual
properties such as lexical similarity. Again, the fact that concepts
cannot be characterized by covariation alone does not make it useless.
Note again here, as Landauer andDumais (1997) have stressed before,
that we do not need to consider SVD to constitute the cognitive
mechanism used by humans to perform data compression. We can
just assume that the brain uses some sort of dimensionality reduction
mechanism akin to SVD in order to create abstract conceptual
representations by favoring high covariance structure while
eliminating idiosyncrasies.

In short, the standard DSM generation pipeline can be
considered to parallel human cognition via three specific
processes (see Figure 2): 1) contingency-based aggregation of
distributional information through word-context co-occurence
counting and PPMI-weighting; 2) covariation-based
decomposition through Singular Value Decomposition; and 3)
compression through dimensionality reduction of the SVD matrix.

4 MODEL AND EXPERIMENTAL SETUP

4.1 Modeling Coordination as Singular
Vectors Sampling
Recall the “dog” example of Connell and Lynott (2014) previously
introduced in Section 2.3: imagine yourself discussing dogs with
someone who has only ever encountered dogs the size of a German
shepherd while you have only encountered dogs the size of a
chihuahua. At the beginning of the conversation, those differences
across background experiences could translate as differences across
your respective similarity judgments: assuming here for the sake of the
argument that all similarity judgments are solely based on a size
feature, you may think that DOG is more similar to CAT or even to
MOUSE than to BEAR, while your interlocutor may think the opposite.
Yet, provided that you talk long enough, you and your interlocutor
may somehow accommodate those discrepancies across your
respective background experiences and update your conceptual
representations of dogs accordingly. This may in turn translate as
cascading updates in your similarity judgments, and at the end of the
conversation you may then both consider DOG to be more similar to
CAT than to BEAR, and to be more similar to BEAR than to MOUSE.9

In this work we propose to characterize superficial alignment
during ad-hoc coordination as the cooperative act of aligning

FIGURE 2 | Parallel between the standard DSM generation pipeline (upper part) and human cognition (lower part). The left part of the diagram details the cognitive
processing of external stimuli converting episodic memory to semantic memory, while the right part is our proposed extension for modeling ad-hoc coordination (detailed
in Section 4.1). Note that the standard output of a traditional DSM generation pipeline (see *) is a low-dimensional matrix of dimension k ≈ 300 made of top variance-
preserving components. As we detail in Section 4.1, we replace this by top k � 10000 components from which we sample a subset of singular vectors.

9We are not arguing here that similarity judgments are always necessarily “feature-
based” or that there could exist more prominent features systematically influencing
similarity judgments. We only provide this example for illustrative purposes in
order to give the reader a better intuition of our sampling algorithm’s underlying
logic. Nonetheless, our examples remains grounded in empirical evidence which
show, e.g., that novices tend to judge similarity based on superficial or surface
features, whereas experts rely on deeper underlying principles (Chi et al., 1981). So
in fact our example is not completely implausible as differences in knowledge
grounded in differences across background experiences could perfectly translate as
differences in similarity judgments: a biologist could be more inclined to consider
that Cat is more similar to Tiger than to Dog on the ground of their being both part
of the felidae family, while someone else, say a child, unaware of this sort of
classification, could consider Dog and Cat to be more similar on the basis of their
being both of similar shape or size.
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lexical similarity judgments on a limited set of word pairs. In
practice, we propose to model coordination with DSMs as singular
vectors sampling: we modify the standard DSM generation pipeline
by replacing the ill-motivated variance-preservation bias described
in Section 3.2 by an explicit coordination bias, sampling the set of d
singular vectors which maximize the correlation with a particular
lexical similarity dataset. The core assumption underlying our
sampling algorithm is that it is actually possible for DSMs to
capture different kinds of semantic relations from the same corpus,
so that rather than generating a single meaning space from the
PPMI matrix, a collection of possible meaning spaces could coexist
within the same set of data. The collocates of cat, for instance, could
provide enough information to characterize it as similar to tiger on
the one hand (i.e., having a neighborhood of ontologically-related
words), or tomeow on the other hand (i.e., having a neighborhood
of generically related words), and be aggregated in different
dimensions during the factorization step. This assumption will
be supported later on by our experimental results showing that
DSMs relying on our sampling algorithm rather than the variance-
preservation bias can indeed perform significantly better on several
lexical similarity datasets, as different dimensions encode different
semantic phenomena (see Section 5.1).

In practice, given that the rank r of the sparse PPMI matrix is
usually well beyond a manageable order of magnitude (r >
100,000) to explore all possible subsets in U, we propose a
sampling algorithm to efficiently sample only a limited
number of subsets of singular vectors in U. Our sequential
(seq) sampling algorithm works in two passes:

(1) add: during the first pass, the algorithm iterates over all
singular vectors and selects only those that increase
performance on a given dataset;

(2) reduce: during the second pass, the algorithm iterates over
the set of added singular vectors and removes all those that do
not negatively alter performance on the given dataset.

The structure of the algorithm, especially the presence of the
reduce step, is motivated by the presence of many complex
semantic redundancies across singular vectors from the point
of view of fitting a particular meaning space, so that adding a
particular singular vector to a set pre-existing ones may make
some of them redundant.

Additionally, and for computational efficiency, we reduce the
number of singular vectors under consideration by sampling over
the top-k singular vectors only, with k � 10,000.10 The algorithm
can be run through multiple iterations, and may iterate over
singular vectors in linear or shuffled order (of singular value). We
apply 5-fold validation and report scores averaged across test
folds, with the corresponding standard error. We define

performance on a given similarity dataset as both the
Spearman correlation and the Root Mean Square Error (see
Eq. 6) computed on a set of word pair similarities. That is, the
sampled models have to align both the ranking and the absolute
similarity values of the set of word pairs with that of the dataset.
This feature modeling choice is motivated by preliminary results
on k-fold validation showing a tendency to overfit when
performance metric is restricted solely to Spearman correlation.11

In effect, our model approximates coordination as context
modulation, where context modulation is understood as the act of
accommodating past experienced contexts to the specific context
of the discussion. Indeed, several research have shown that
dimensions in DSMs capture different contexts in which
words are used (e.g., Griffiths et al., 2007, p. 221) so that, in
fact, the process of singular vectors sampling is tantamount to
context selection and aggregation. The main benefit of our
approach is that it allows us to model cascading conceptual
modulation across the entire conceptual space. Since latent
singular vectors condition the content of all semantic
representations, sampling a set of singular vectors will not just
impact the representations of the lexical items being aligned, but
actually the entire conceptual space. Moreover, this mechanism of
singular vectors sampling is theoretically very convenient as it
relieves us from having to formulate explicit assumptions
regarding the latent structure of the conceptual space:
cascading modulation will always be conditioned on latent
interdependencies which are grounded in shared contextual
aggregates across semantic representations.

Note, however, that we do not model conceptual update, neither
during nor after coordination. As a matter of fact, since we assimilate
coordination to the act of accommodating existing knowledge to the
situation at hand, we do not actually need to update the original PPMI
matrix, which relieves us fromhaving to formulate a theory about how
conceptual update could and should proceed in such situations. Since
ourmain purpose throughout this study is to investigate the dynamics
of alignment during ad-hoc coordination, we can actually focus on an
approximation of the coordination process between any two arbitrary
points in time. Similarly, we donotmodel online coordination at every
step of the process—such as conceptual update occurring at every
utterance during real-time communication—as we do not need this
level of granularity for the purpose at hand. Once again, this should be
seen as an opinionated modeling decision rather than a limitation of
our model.12

Finally, we exclusively focus here on count-based DSMs given
that, as we have seen in Section 3.3 their generation pipeline nicely

10Our choice of k � 10 000 is questionable given that we previously showed in
Table 1 that it could at best retain 72% of the total energy. It is primarily motivated
by computational considerations and the necessity to maintain acceptable overall
computing time. As we show in Section 5.1 it appears to be a reasonable
compromise given than 90% of the sampled dimensions on all our DSMs and
across all our lexical similarity datasets remain below the 8,000th dimension.

11Note that in order to minimize interferences with reported results, we perform
pre-validation on the MEN and SimLex datasets only, using DSMs generated
exclusively from the WIKI corpus. Full details regarding this point are made
available in the Supplementary Material.
12On practical matters, note that a rich literature exists on incremental SVD update
(e.g., Businger, 1970; Bunch and Nielsen, 1978) so that our particular
implementation would not necessarily constitute an obstacle to modeling
online coordination: see (Gentle, 2009) for a comprehensive introduction to the
topic. Brand (2003, 2006) has notably proposed an algorithm for incrementally
adding, removing and updating rows and columns in the SVD matrix that could
prove particularly useful for that purpose.
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parallels the functioning of human cognition. Moreover, they
provide more transparent, explainable and modular models in
comparison to their prediction-based counterparts, which makes
it easier to operate cognitively-motivated modeling modifications. It
appears difficult indeed to transpose our proposed approach to
prediction-based DSMs as-is. The singular vectors sampling
mechanism could probably be replaced by a kind of post-
processing technique akin to what Mu and Viswanath (2018)
have used for instance as a way to somehow bypass the variance-
preservation bias. But those postprocessing techniques have yet
to be formalized for our purpose and one would loose the
benefits of sampling on dimensions that explicitly capture
context aggregates. Not to mention additionally that those
postprocessing techniques usually rely on linear
transformations that are sort of “one-shot” and cannot
necessarily easily be made to function incrementally.

4.2 Measuring Conceptual Alignment via
Matrix Transformation
In the previous section we proposed to characterize superficial
alignment during ad-hoc coordination as the cooperative act of
aligning lexical similarity judgments on a limited set of word pairs.
Recall from Section 2.4, however, that we stressed the need to
distinguish superficial from structural alignment when investigating
the socialization hypothesis, as the two do not necessarily go hand-
in-hand. We argued more specifically in favor of a notion of
conceptual similarity that could quantify the overall structural
similarity between any two conceptual spaces, while potentially
tolerating high degrees of local and superficial variability.

In this section we therefore propose to model structural
similarity between two DSMs as the minimized Root Mean
Square Error (RMSE; Eq. 6) between them. DSMs are first
aligned using absolute orientation with scaling (see Algorithm
1 below from Dev et al., 2018, originally Algorithm 2.4 in their
paper) where the optimal alignment is obtained by minimizing
the sum of squared errors under the Euclidian distance between
all pairs of common data points, using linear
transformations—rotation and scaling—which do not alter
inner cosine similarity metrics and hence preserve measures of
pairwise lexical similarity.

The Root Mean Square Error (RMSE) between the two
matrices A and �B is then given by:

RMSE(A, �B) � �������������
1

|A| ∑|A|i�1

∣∣∣∣∣∣∣∣ai − �bi
∣∣∣∣∣∣∣∣2√√

(6)

Note that due to floating point approximations, our computed
RMSEs are not symmetric, so that RMSE(A, �B)≠RMSE(�A, B),
with B

� � AOS(A,B) and A
� � AOS(B,A). To alleviate this

problem, we always report the averaged RMSE: RMSE �
1/2[RMSE(A, �B) + RMSE(�A,B)].

Our notion of structural similarity follows alignment-based
models (Goldstone and Son, 2012, p. 165) in that it attempts to
place elements of the two DSM matrices in correspondence with
one-another via a set of structure-preserving operations, and
therefore does not measure a raw comparison between them. The
underlying methodology has been widely used in computational
linguistics to align DSMs across languages (e.g., Mikolov et al.,
2013b) although it is to be distinguished from other alignment-
based approaches in the field which apply potentially non-cosine-
preserving linear transformations (e.g., Tan et al., 2015). Such
methodologies can also be found in neuroscience with the
hyperalignment approach put forth by Haxby et al. (2011)
which proposes to align patterns of neural response across
subjects using linear transformations—namely rotations and
reflections—minimizing the Euclidian distance between two
sets of paired vectors, in order to abstract away the intrinsic
variability of voxel spaces across subjects. The underlying logic is
always the same: two models can be transformationally
equivalent although they may not appear similar in absolute.
Aligning the coordinate system or the basis of two vector spaces,
for instance, can uncover measures of relative similarity between
two models that otherwise appear radically different when
comparing only their original respective coordinate values.

Recall also from Section 4.1 that we proposed to model
superficial alignment during coordination with DSMs as
singular vectors sampling, with the benefits thereby of being
able to model cascading conceptual modulation across the entire
conceptual space. The question that arises, then, is if, as defined,
superficial alignment will necessarily entail structural alignment.
That is, will maximizing the Spearman correlation on a lexical
similarity dataset using our singular vectors sampling algorithm
on two DSMs generated from two distinct corpora in turn lower
the RMSE between them. We report our results on the matter in
Section 5.2.

It is important to note here, however, that the connection
between our characterizations of superficial and structural
alignment are not necessarily obvious. Indeed, our notion of
structural similarity satisfies the requirements detailed in
Section 2.4 in that it can indeed tolerate high degrees of
local and superficial variability: since the RMSE-based
structural similarity measures absolute distances between
points in space, it is insensitive to relative measures of
semantic proximity, unlike what is expected from
correlations with lexical similarity datasets. Naturally, if two
DSMs have a null RMSE, they will produce identical similarity
judgments on a set of word pairs. But the slightest deviation
from 0 can have unpredictable consequences depending on the
configuration of the space. So in fact, our model makes it
possible for any two DSMs to behave very differently with
respect to lexical similarity while actually being well aligned
structurally (and conversely) following thereby the position of
Wachsmuth et al. (2013) detailed in Section 2.4.

Algorithm 1: | Absolute orientation with scaling AOS(A, B)

Compute the sum of outer products H � ∑ ​ n
i�1bT

i ai
Decompose [U,S,VT ] � svd(H)
Build rotation R � UVT

Rotate ~B � BR so each ~bi � biR
Compute scaling s � ∑​ n

i�1〈ai , b̃i〉/
∣∣∣∣∣∣∣∣~B∣∣∣∣∣∣∣∣2F

return �B as �B←s~B so for each �bi � sb̃i

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 52392014

Kabbach and Herbelot Avoiding Conflict

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


4.3 Experimental Setup
We generate PPMI-weighted DSMs using a window of size 2 from
seven different corpora detailed in Table 2. All corpora are
lowercased and tokenized with Polyglot (Al-Rfou et al., 2013). All
Wikipedia subsets are generated by sampling theWIKI corpus at the
sentence level. Corpora are chosen so as to provide pairs of
comparable size (OANC and WIKI07; ACL and WIKI2; BNC
and WIKI4) covering different domains and/or different genres
(see details in Table 2). Note that our point here, as we have
previously detailed in Section 3.3.1, is not to model plausible
individual speakers, but plausible differences across background
experiences. What is important therefore is not that corpora be
produced by individual speakers, or even characterize the linguistic
experience of individual speakers, but that the differences across
their linguistic distributional patterns model plausible differences of
background experiences. We return to this question in more details
in Section 6. We therefore select corpora which we assume to
characterize quite different linguistic distributional patterns: ACL for
instance covers exclusively research papers in computational
linguistics, while OANC and BNC both include spoken and
written language from different genres (newspapers, fiction,
technical reports, travel guides, etc.).

For word similarity datasets, we rely onMEN (Bruni et al., 2014),
SimLex-999 (hereafter SimLex (Hill et al., 2015); and SimVerb-3500
(hereafter SimVerb; Gerz et al., 2016). MEN is a relatedness dataset
containing a list of 3,000 word pairs with a strong bias toward
concrete concepts; while SimLex intends to encode similarity rather
than relatedness for 999 word pairs, and provides a more balanced
account between concrete and abstract concepts. Words that have
high relatedness in MEN may have low similarity in SimLex. For
example, the pair “chicken-rice” has a similarity score of 0.68 in
MEN and 0.14 in SimLex. Following previous claims and standard
linguistic intuitions, the relatedness dataset MEN should be only
weakly compatible with the similarity dataset SimLex: one expresses
topical association (i.e. cat andmeow are deemed related) while the
other expresses categorical similarity (i.e. cat and dog might be
considered similar in virtue of being members of the same
category). Thus, those datasets encode possibly incompatible
semantic constraints and it is theoretically impossible to perfectly
fit both the meaning spaces they encode with a single DSM. Those
two datasets therefore allow exploring our approach across two
distinct coordination situations. The third dataset, SimVerb, is a
similarity dataset consistent with SimLex, but focusing on verb
meaning and providing 3,500 word pairs. Although theoretically
compatible with the notion of similarity encoded in SimLex, it
focuses on different semantic categories and as such on a potentially
different domain with distinct semantic constraints. Given that we
rely on MEN and SimLex for pre-validation of our sampling
algorithm (see Section 4.1) we add SimVerb as an additional
dataset to further check the robustness of our results.

Mincount hyperparameters are set so as to maximize lexical
coverage on all similarity datasets while maintaining reasonable
overall computing time. We choose a mincount of 2 for OANC,
WIKI07, ACL, WIKI2, BNC and WIKI4 and 30 for WIKI.
Lexicons are aligned across all DSMs after the SVD
computation and we obtain a MEN coverage of 93.0% (2,817
pairs out of 3,000), a SimLex coverage of 99.5% (994 pairs out of

999) and a SimVerb coverage of 94.91% (3,322 pairs out of
3,500).

We compute p values on each test fold using a Steiger’s test
(Steiger, 1980)13 following (Rastogi et al., 2015). We consider as the
null hypothesis the fact that two models perform identically on a
given lexical similarity dataset. We then combine all p values for a
given k-fold using the weighted harmonic mean (see Wilson, 2019)
treating folds as dependent tests, and report a single p value per
k-fold.

Finally, we make our code available for replication at https://
gitlab.com/akb89/avoiding-conflict.

5 RESULTS

5.1 No Variance-Preservation Bias Means
Better Superficial Alignment
We first report the performance of our seq sampling algorithm
described in Section 4.1 against PPMI-weighted count-based (TOP)
models reduced by selecting the top n singular vectors in the SVD
matrix, with (α � 1) or without (α � 0) singular values. In order to
provide a completely fair comparison across models, we generate for
each fold a specific TOP model with the exact same number of
dimensions n than the one sampled by our seq algorithm for that
particular fold. We similarly compute the statistical significance of
the difference of performance between the SEQ and the TOPmodels
per fold. We then report a single Spearman correlation per model,
corresponding to themean and standard error across all 5-folds, and
report a single statistical significance score, computed as the
harmonic mean of the p values across five folds, as previously
detailed in Section 4.3.

Our results show that replacing the traditional variance-
preservation bias with our sampling algorithm leads to near-
systematic improvements on all corpora and across all similarity
datasets (see Table 3). The detrimental effect of variance-
preservation is first exemplified when comparing DSMs with
singular values (α � 1) to those without (α � 0), an effect
originally noted by Caron (2001) and also discussed by Levy
et al. (2015). This detrimental effect is then further exemplified by
introducing our sampling algorithm and proves most salient on
the ACL corpus, with a 17 points increase in performance on
MEN, a 13 points increase on SimLex, and a 12 points increase on
SimVerb, all statistically significant (p< 0.01).

Explicitly sampling singular vectors leads to an even more
interesting observation: different dimensions encode different
semantic phenomena. Contrary to what was originally argued in
(Schütze, 1992, p. 794), all singular vectors are not necessarily
meaningful to discriminate particular patterns of word
similarities. For example, the semantic phenomenon of
relatedness encoded in MEN is characterized by a different
sampling pattern than the similarity phenomenon encoded in
either SimLex or SimVerb (see Table 4). Overall, MEN is
characterized by higher singular vectors, when SimLex and

13As implemented by Philipp Stinger: https://github.com/psinger/CorrelationStats/
blob/master/corrstats.py
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SimVerb are characterized by lower and more latent ones, which
could explain the historical success of variance-based DSMs at
capturing semantic relatedness rather than similarity.
Moreover, our results show that models generated from
different corpora will distribute information differently across
their singular vectors, as shown per the variations of sampling
patterns within identical similarity datasets displayed in
Table 4: ACL-based DSMs for instance encode MEN much
more latently in comparison to other corpora
(dimi � 1, 233 ± 43) which explains the originally low
performance on MEN of the variance-based DSM generated
from ACL (see TOP scores for ACL in Table 3). In short, the
information necessary to characterize a particular semantic
phenomenon may actually be present (at least to some
extent) in a given corpus, but not actually distributed in the
top components of the SVD, calling once again into question the
pertinence of the variance-preservation bias.

5.2 Better Superficial Alignment Does Not
Mean Better Structural Alignment
Results of Section 5.1 show that explicit singular vectors sampling on
MEN, SimLex and SimVerb leads to increased superficial alignment
across datasets, and that the sampled singular vectors do not
systematically correspond to the top components of the SVD.
Still, would those specific sampling patterns also improve
structural alignment between DSMs by lowering their RMSE?
Probably not. To prove our point, let us plot the evolution of
RMSE across bins of 25014 consecutive singular vectors, for
corpora of same size but different domains (Figure 3) and
different size but similar domains (Figure 4).

TABLE 3 | Spearman correlations on MEN, SimLex and SimVerb for DSMs generated from different corpora.

Model α WIKI07 OANC WIKI2 ACL WIKI4 BNC

MEN
TOP 1 0.48 ± 0.01 0.50 ± 0.01 0.53 ± 0.02 0.25 ± 0.03 0.54 ± 0.01 0.61 ± 0.01
TOP 0 0.56 ± 0.01 0.59 ± 0.01 0.61 ± 0.01 0.34 ± 0.02 0.62 ± 0.01 0.69 ± 0.01
SEQ - 0.60 ± 0.01 0.64 ± 0.01 0.66 ± 0.01 0.51 ± 0.01 0.69 ± 0.02 0.74 ± 0.00

p value 0.0023 0.0003 <10− 4 <10− 4 < 10−4 < 10−4

ndim 186 ± 5 195 ± 6 200 ± 3 300 ± 9 215 ± 6 161 ± 6

SimLex
TOP 1 0.20 ± 0.04 0.18 ± 0.02 0.24 ± 0.02 0.11 ± 0.06 0.25 ± 0.02 0.27 ± 0.03
TOP 0 0.24 ± 0.03 0.22 ± 0.02 0.26 ± 0.02 0.14 ± 0.05 0.27 ± 0.02 0.32 ± 0.03
SEQ - 0.25 ± 0.03 0.19 ± 0.04 0.30 ± 0.03 0.27 ± 0.03 0.38 ± 0.02 0.41 ± 0.02

p value 0.3802 0.0906 0.0646 0.0001 0.0010 0.0056

ndim 184 ± 12 240 ± 9 196 ± 12 221 ± 5 224 ± 6 201 ± 10

SimVerb
TOP 1 0.08 ± 0.02 0.07 ± 0.02 0.11 ± 0.03 0.07 ± 0.01 0.12 ± 0.01 0.16 ± 0.01
TOP 0 0.13 ± 0.01 0.13 ± 0.02 0.15 ± 0.03 0.11 ± 0.01 0.17 ± 0.01 0.22 ± 0.02
SEQ - 0.20 ± 0.03 0.19 ± 0.02 0.21 ± 0.03 0.23 ± 0.01 0.25 ± 0.01 0.29 ± 0.01

p value 0.0019 0.0216 0.0001 0.0015 0.0043 0.0015

ndim 290 ± 17 185 ± 12 317 ± 18 267 ± 13 376 ± 11 331 ± 12

All models are PPMI-weighted count-based models generate with a window size of 2. SEQ models are reduced via our seq algorithm detailed in Section 4.1, while TOP models are
reduced by selecting the top n � ndim singular vectors from the SVDmatrix, with ndim corresponding for each fold to the number of dimensions sampled by the SEQmodel on that fold. All
results are averaged across test folds applying 5-fold validation, after taking the best of 10 shuffled runs. Bold results indicate statistically significant differences (p<0.01) between SEQ
and TOP (α � 0) models.

TABLE 4 | Average mean, median and 90-th percentile of sampled dimensions indexes on MEN, SimLex and SimVerb for 10 shuffled runs in seq mode.

MEN SimLex SimVerb

Median Mean 90% Median Mean 90% Median Mean 90%

WIKI07 196 ± 12 576 ± 58 995 ± 237 612 ± 46 1,917 ± 107 6,314 ± 325 564 ± 45 1768 ± 98 6,227 ± 315
OANC 172 ± 9 567 ± 64 1,022 ± 168 677 ± 70 2,003 ± 92 6,499 ± 200 672 ± 68 2,210 ± 97 7,371 ± 200
WIKI2 220 ± 13 462 ± 48 917 ± 89 606 ± 35 1,218 ± 64 3,091 ± 242 586 ± 26 1,188 ± 60 2,847 ± 253
ACL 586 ± 15 1,233 ± 43 3,201 ± 178 935 ± 80 2,289 ± 106 7,376 ± 212 717 ± 47 1852 ± 79 6,012 ± 330
WIKI4 270 ± 11 532 ± 35 1,120 ± 59 662 ± 27 1,177 ± 50 2,635 ± 209 721 ± 37 1,297 ± 67 3,100 ± 260
BNC 163 ± 8 419 ± 48 651 ± 84 439 ± 22 969 ± 67 2,285 ± 291 518 ± 21 980 ± 41 2,254 ± 83

14Corresponding to the rough average number of singular vectors sampled across
models and datasets in Table 3.
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What those plots show first is the ability for our structural
similarity metric to capture the intuition of similar domains
across corpora: plots displaying the evolution of RMSE
computed over pairs of models of partly overlapping
Wikipedia samples follow much more similar trends than
plots over pairs of models from different domains (compare
gaps between plots across Figure 4 and Figure 3). What they
show next, however, in that the RMSE is minimal for the top
250 components of the SVD and that it rapidly increases then.
Therefore, any sampled set of 250 non-top singular vectors
such as those reported in Table 4 will necessarily obtain a
higher RMSE in comparison. In other words, increasing
superficial alignment will necessarily decrease structural
similarity.

5.3 Beyond Structural Alignment:
Agreement vs. Compatibility
Figure 3 and Figure 4 exhibit a similar global pattern across
aligned models: to minimize the RMSE, singular vectors can be
sampled via the very top or the much more latent part of the
SVD. Those two parts of the SVD, however, capture quite
different information: more systematic information about
language for the top components, and more idiosyncratic
information regarding the corpus at hand for the more
latent components. This phenomenon can be quantified by
plotting the absolute Pearson correlation between pairs of
singular vectors sampled across two DSMs (see Figure 5):
top components have a correlation value closer to 1
∼(log ≈ 0) although it rapidly decreases as we move toward
more latent singular vectors.

And yet, as we plot the evolution of the RMSE as a function
the Pearson correlation, averaged on bins of 30 consecutive

singular vectors sampled across [0, 10 000], we do not observe
a linear curve: that is, alignment does not get more and more
difficult as the Pearson correlation decreases, but reaches a
peak before significantly diminishing again (see Figure 6).
This further illustrates a fundamental property of our
alignment-based notion of similarity: two given models may
be aligned if they both have similar components, but also if
they have dissimilar components, provided that those
components do not conflict. Notions of agreement,
compatibility and conflict can be defined via the absolute
Pearson correlation as described in Figure 6: maximal
agreement is given by an absolute Pearson correlation of 1,
and maximal compatibility is given by an absolute Pearson
correlation of 0. In between, conflict increases as the absolute
Pearson correlation goes down from full agreement to the peak
of disagreement which maximizes the RMSE, then decreases
again until it reaches maximal compatibility. Concretely, the
peak of disagreement will correspond to sampling patterns
that maximize structural dissimilarity between conceptual
spaces, although this may not necessarily translate as
superficial dissimilarity and explicit conflict between
speakers during conversation, for reasons explained in
Section 2.4. Note, moreover, that agreement and
compatibility are defined on different domains: agreement is
only defined rightward of the peak of disagreement, while
compatibility is only defined leftward of the peak. Therefore,
two speakers in full agreement cannot be said to have
incompatible conceptual spaces.

A concrete example detailing the underlying mathematics
of agreement and compatibility is given in Eq. 7: both matrix
B and C can be aligned with matrix A when using our
alignment algorithm, with a near-null RMSE ( < 10− 15).
Yet, both matrices have quite different Pearson

FIGURE 3 | Evolution of RMSE for aligned bins of 250 consecutive
singular vectors sampled across [0, 10000] for aligned corpora of different
domains but similar size.

FIGURE 4 | Evolution of RMSE for aligned bins of 250 consecutive
singular vectors sampled across [0, 10 000] for aligned corpora of similar
domains but different size.
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correlations: B’s and A’s elements have similar values and
therefore A and B’s column vectors have a pairwise Pearson
correlation of 1, while A and C’s pairwise Pearson
correlation is merely at 0.3.

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ B �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ .9 0 0 0
0 .9 0 0
0 0 .9 0
0 0 0 .9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

This phenomenon directly relates to the “dog” example of Connell
and Lynott (2014) previously detailed in Section 2.3, which showed
how alignmentmay not always equate agreement but sometimes mere
compatibility between conceptual representations: speakers holding
marginally identical conceptual representations—in this case widely
differing representations of prototypical dogs size—can still be assumed
to understand one-another, especially if disagreement pertains to
aspects of conceptual knowledge that are irrelevant to the
conversation at hand. Our experimental results support the idea
that such considerations also extend to conceptual spaces and
notions of structural similarity: widely differing aggregates of
contextual experience captured by singular vectors can still
sometimes provide a solid basis for structural alignment. Our
characterizations of notions of structural agreement and
compatibility, however, are more flexible than previous ones, in that
they notably do not require a form of explicit, lexicalized, “feature-
based” interpretation of what they entail. In our case, they can be
defined in a more systematic fashion as a form of latent structural
property of the conceptual space with respect to alignment.

6. DISCUSSION

6.1. Why Is Compatibility Relevant Anyway?
Why should we care about compatibility in the first place? After all,
Figures 3, 4, and 6 combined show that the RMSE is significantly lower
in the agreement zone than in the compatibility zone, especially for the
top components of the SVD.Why should speakers striving to align their
conceptual spaces, then, not endup sampling those top components, and
only those top components? The answer to that questionwill depend on
how many singular vectors we can reasonably assume to be sampled
during a realistic coordination setting. Because the RMSE is certainly
lowest for the top components of the SVD,but those topcomponents are
actually not thatmany: after thefirst 250 singular vectors, theRMSE then
significantly increases across all corpora in a systematic fashion.

And indeed when looking at it more closely, the compatibility
zone appears to include many more singular vectors than the
agreement zone. Our results show indeed that the peak of
disagreement is located roughly at d � 2, 175 for
OANC–WIKI07, d � 2, 850 for ACL–WIKI2, and d � 4, 750 for
BNC–WIKI4, out of 10,000 singular vectors in total. Yet the
comparison does not stop there as the location of the peak of
disagreement alone does not guarantee that singular vectors sampled
from the agreement zone will systematically lead to lower RMSE
compared to singular vectors sampled from the compatibility zone.
As a matter of fact, numbers drop even further then: only about 225
singular vectors of the 2,175 that are in the agreement zone of
OANC–WIKI07 can lead to a lower RMSE than the lowest RMSE of
the compatibility zone. For ACL–WIKI2, the corresponding number
is about 250 out of 2,850, and for BNC–WIKI4, 1,400 out of 4,750.15

FIGURE 5 | Evolution of the log of the average absolute pariwise
Pearson correlation between singular vectors for bins of 250 sampled across
[0, 10000] on OANC and WIKI07.

FIGURE 6 | Evolution of RMSE with log of average absolute Pearson
correlation for aligned bins of 250 consecutive singular vectors sampled
across [0, 10 000] on OANC and WIKI07.

15All those numbers were computed for small bins of 25 singular vectors to get a
more fine-grained appreciation of the evolution of the RMSE across the SVD
spectrum.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 52392018

Kabbach and Herbelot Avoiding Conflict

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Concretely, what those results suggest is that every ad-hoc
coordination scenario characterized by a sampling pattern
comprising more than 225, 250 and 1,400 vectors respectively will
have to select singular vectors in the compatibility zone in order to
minimize the RMSE.And there is every reason to expect that the order
of magnitude of the number of vectors sampled during a realistic
coordination scenario will be even higher than that. SimVerb, on that
matter, may provide an interesting perspective, as it almost
systematically leads to larger sampled sets of singular vectors:
closer to 300 average, while MEN and SimLex remain at 200 (see
Table 3). One could assume first such differences to constitute
byproducts of the number of constraints encoded by each dataset:
SimVerb is indeed supposed to characterize the same notion of
similarity than SimLex but does so on a much larger sample of
word pairs (3,500 vs. 999). Yet, quantitymay not be the sole key factor
here, asMENalso characterizes constraints on about 3,000word pairs,
with a similar sampling average than SimLex.

The quality and nature of those constraints may prove more
determinant indeed: SimVerb encodes more fine-grained nuances on
a much narrower conceptual domain in comparison to the other
datasets, which could explain why it actually requires additional
singular vectors to be characterized. Furthermore, we will argue
here that the nature of its constraints probably makes SimVerb a
much more adequate and representative lexical similarity dataset for
the task at hand. Coordination, we would argue, is indeed probably
better approximated by the idea that speakers align their similarity
judgments on verbs like enforce and impose, rather than on the fact
that automobile and car should be deemed related while dog and silver
should not, as inMEN, or on the fact that arm and shoulder should be
deemed similar, while hard and easy should not, as in SimLex.

If our intuition is correct, then maybe what we need in
computational linguistics to better model coordination are lexical
similarity datasets that encode very nuanced distinctions between
lexical items, rather than broad semantic categorizations. In any
case, it does not seems completely unreasonable to assume that, in
a realistic ad-hoc coordination scenario, sampled vectors will ultimately
fall into the compatibility zone in order to minimize the RMSE. All in
all, compatibility should matter then in order to optimize structural
conceptual alignment.

6.2. Compatibility Emerges From
Idiosyncrasy
Considering it plausible for singular vectors to be sampled from the
compatibility zone is one thing, but it does not tell us how many of
them will actually be sampled. In order to make a point about the
significance of the compatibility phenomenon, we must first indeed
guarantee that the number of vectors sampled from the compatibility
zone will not bemarginal in comparison to the agreement zone. Is the
size of the compatibility zone reported in Section 6.1, then, a
reasonable approximation of the reality or a mere artifact of our
experimental setup?

To answer this question, we must first understand where this
compatibility phenomenon comes from. Recall from Section 5.3 that
the compatibility zone corresponds to the lower components of the
SVD which capture more idiosyncratic information regarding the
corpus at hand, in comparison to the top components which capture
more systematic information about language. Agreement and

compatibility are therefore first and foremost characterized by
different distributional patterns across corpora, themselves deriving
from differences over co-occurrence counts. Indeed, count-based
DSMs only aggregate information from word-context co-
occurrences, so that differences across aggregated distributional
patterns are necessarily byproducts of cascading differences
originating from the raw count matrices (recall Figure 2).

Yet, this particular focus on co-occurrence counts glosses over an
important modeling choice of ours: in our experimental setup, DSM
vocabularies are aligned after the SVD step, and not before. Therefore,
the raw count matrix of a particular DSMmay aggregate information
over context words that are absent from other DSMs. In effect, this is
tantamount to assuming that different speakers could process external
stimuli from a different set of cognitive receptors, or that they could
process external stimuli from a shared set of cognitive receptors but
that some of those receptors will only be triggered in specific speakers.

And how much would the set of receptors differ across speakers
then? Pretty much, according to our results: for the OANC–WIKI07
pair for instance, 36%of thewords inOANC are not found inWIKI07,
while 62% of the words in WIKI07 are not found in OANC. Note,
however, that due to the Zipfian distribution of words in each corpus
(Zipf, 1936; Zipf, 1949) those out-of-shared-vocabulary words only
account for 2% and 3% of the total corpus word counts respectively.

What happens, then, if we align vocabularies across DSMs before
the SVD step and filter out context columns of the original raw count
matrices for words outside of the shared vocabulary? Our results,
displayed in Figure 7, show that the phenomenon of compatibility
almost completely disappears.

Those results have fundamental consequences for the socialization
hypothesis. Indeed, they show that, if differences across speakers’
background experiences are to be understood as differences in
distributional patterns over external stimuli triggering a shared set
of cognitive receptors, then in fact alignment equates agreement so that
it should indeed be impossible for speakers to coordinate and align

FIGURE 7 | EvolutionofRMSEwith logof averageabsolutePearsoncorrelation
for aligned bins of 250 consecutive singular vectors sampled across [0, 10 000] on
OANC and WIKI07, for DSMs with vocabularies aligned before the SVD step.
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their respective conceptual spaces if those are grounded in
fundamentally different background experiences.

Of course the aforementioned considerations could be deemed
artifactual of the SVD and more specifically of its sensitivity to null
values in the original PPMI matrix: Landauer and Dumais (1997), for
instance, already noted that “a change in the value of any cell in the
original matrix can, and usually does, change every coefficient in every
condensed word vector” (see p. 218), while Levy and Goldberg (2014),
citing (Koren et al., 2009), stressed how SVD is known to suffer from
unobserved values (see p. 6). But this would only provide a technical
explanation while the main question remains: should we consider this
artifact to be present in human cognition as well? Probably so, at least if
we are to consider conceptual knowledge to emerge from contingency-
based aggregation and covariation-based decomposition of
distributional information (see Section 3.3.3).

ll in all, our results show that compatibility emerges from
idiosyncrasy, but that idiosyncracy here should not be understood
as a distinctive difference in the distribution of information across
background experiences, but as a difference of nature. Compatibility,
so it seems, emerges from the uniqueness of each speaker and from
aspects of their background experiences that uniquely distinguish
them from others. Coordination, then, is enabled by what makes
speakers unique rather than different from one-another.

Yet, is it completely realistic to consider that the background
experience of a speaker could be primarily constituted (for more
than 60% as our results above suggest) of stimulus components not
experienced at all by other speakers, even if those stimuli account for
a tiny portion of the overall experienced stimuli? Interestingly, those
considerations directly connect us with the longstanding debate in
cognitive science regarding the nature of conceptual knowledge. The
fundamental question, as Huebner and Willits (2018) frame it, is
really whether “knowledge consists primarily (or exclusively) of a
rich sets of associations between sensory-motor features, or instead
also consists of abstract, amodal concepts that bind those features
together”. For if indeed conceptual knowledge is to be aggregated
mostly from sensorimotor experience, it seems dubious to consider
contextual vectors in DSMs to model anything but low-level core
cognitive components, necessarily shared across speakers. All the
more so if we are to follow previous approaches detailed in Section
3.3.1 and consider distributional linguistic information to mirror
distributional information grounded in sensorimotor experience.

But if, however, we are to consider conceptual knowledge to be
aggregated mostly from pre-existing intermediate conceptual
knowledge, a new perspective opens. Most concepts become complex
concepts, and DSMs now model distributional learning mediated by a
speaker-specific intermediate cognitive layer, rather than a set of
universal core cognitive components. An unexpected solution to our
puzzle appears to rest on the possible compromise between two
seemingly incompatible approaches to human cognition.

7. CONCLUSION

Do speakers of the same linguistic community share similar concepts
given that they are exposed to similar environments and operate in
highly-coordinated social contexts? In as much as the notion of
similarity hereby specified entails agreement between speakers and

their conceptual spaces, the claim remains to be proven, for non-trivial
conceptual variability between speakers systematically observed across
experimental setups continues to be a major obstacle to be
accounted for.

Yet, if we are to distinguishwithin similarity the notion of agreement
from that of compatibility, new perspectives open: speakers no longer
need to converge to close-enough conceptual representations in order to
successfully communicate, for agreement is no longer necessary when
you can merely avoid conflict by aligning your non-identical but
nonetheless compatible representations. Even more so as this notion
of compatibility leaves ample room for adjustments across speakers and
thus, ultimately, successful coordination and communication. From
latent compatibility to superficial agreement: all we need is a tiny
conceptual shift in our characterization of similarity.

Although the cognitive plausibility of our proposedmodel remains
to be assessed, it already provides an intuitive explanation to the very
problem of conceptual variability, henceforth conceived as a mere
artifact of conceptual compatibility. Indeed, our experimental
approach shows that the number of compatible subspaces largely
extend the number of agreeing ones, so that speakers can never be
expected to agree more than to some extent. Conceptual variability
should therefore not be seen as a byproduct of faulty experimental
setups, but rather as a key property of human cognition.

All in all, the socialization hypothesis may very well prove to be
an unnecessary prerequisite to successful communication. But our
study suggests implicitly that other assumptions grouding standard
models of communication could also prove unnecessary, if not
unfounded. The identicity of messages, assumed to characterize
communication success in a standard Shannon–Weaver code
model, could be one of them.

All things considered indeed, communication may probably be
best formalized as the cooperative act of avoiding conflict, rather than
maximizing agreement.
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