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Incidence and mortality rates of endometrial cancer are increasing, leading to increased
interest in endometrial cancer risk prediction and stratification to help in screening and
prevention. Previous risk models have had moderate success with the area under the
curve (AUC) ranging from 0.68 to 0.77. Here we demonstrate a population-basedmachine
learning model for endometrial cancer screening that achieves a testing AUC of 0.96.

We train seven machine learning algorithms based solely on personal health data, without
any genomic, imaging, biomarkers, or invasive procedures. The data come from the
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). We further
compare our machine learning model with 15 gynecologic oncologists and primary
care physicians in the stratification of endometrial cancer risk for 100 women.

We find a random forest model that achieves a testing AUC of 0.96 and a neural network
model that achieves a testing AUC of 0.91.We test bothmodels in risk stratification against
15 practicing physicians. Our random forest model is 2.5 times better at identifying above-
average risk women with a 2-fold reduction in the false positive rate. Our neural network
model is 2 times better at identifying above-average risk women with a 3-fold reduction in
the false positive rate.

Our machine learning models provide a non-invasive and cost-effective way to identify
high-risk sub-populations who may benefit from early screening of endometrial cancer,
prior to disease onset. Through statistical biopsy of personal health data, we have
identified a new and effective approach for early cancer detection and prevention for
individual patients.
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INTRODUCTION

Endometrial cancer is the fourth most common cancer among women (Howlader et al., 2017).
Symptoms such as bleeding or spotting often manifest early in the disease, resulting in the early
detection of most cancers and a relatively high 5-years survival rate of 82% (American Cancer
Society, 2017). The standard method for detecting endometrial cancer is endometrial biopsy,
although transvaginal ultrasounds are sometimes used for detection as well (Smith et al., 2001;
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Smith et al., 2018). Screening recommendations from the
American Cancer Society (ACS) have remained constant since
2001 (Smith et al., 2018).Womenwith average or elevated risk are
not recommended to get screened; instead, they should discuss
with their doctor about the risks and symptoms of endometrial
cancer at the onset of menopause. For very high-risk women such
as those with Lynch syndrome, a high likelihood of being a
mutation carrier, or families with suspected autosomal-dominant
predisposition to colon cancer, ACS recommends annual
screening (Smith et al., 2001).

While the 5-years survival rate for endometrial cancer is high,
incidence and death rates of endometrial cancer have increased
from 2010 (Howlader et al., 2017) and are expected to continue to
increase (Arnold et al., 2015). It is expected that endometrial
cancer will soon surpass ovarian cancer as the leading cause of
gynecological cancer death. This has led to academic interest in
improving endometrial cancer detection and prevention.

Two previous studies have been carried out to predict
endometrial cancer risk (Pfeiffer et al., 2013; Hüsing et al.,
2016). Both studies use traditional epidemiological models and
non-invasive data for decision-making on targeted screening and
preventive procedures. Hüsing et al trained a model on a dataset
of 201,811 women (mostly aged 30–65 years), with 855 positive
cases of endometrial cancer (0.4%). This model achieved an AUC
of 0.77 (Hüsing et al., 2016). Pfeiffer et al’s model (Pfeiffer et al.,
2013), which produced an AUC of 0.68, was trained on the same
PLCO dataset that we used, in addition to the NIH-AARP dataset.
Their full dataset had a total of 304,950 women with 1,559
positive cases of endometrial cancer (0.51%). Noting the
moderate performance of endometrial risk stratification
models that were previously created (Hüsing et al., 2016), and
the promising results of our previous work in using machine
learning for cancer risk stratification (Hart et al., 2018; Roffman
et al., 2018a; Roffman et al., 2018b; Muhammad et al., 2019), we
decided to develop machine learning models to achieve greater
performance in predicting endometrial cancer risk. We were able
to surpass the performance of both these models with an AUC
of 0.96.

Finally, a recent review suggests that a risk prediction model
that divides the population up into low-, medium-, and high-risk
groups would be useful for developing tailored cancer prevention
strategies for each patient (Kitson et al., 2017). Such a model can
help clinicians target high-risk populations, for whom clinicians
could suggest interventions to modulate endometrial cancer risk,
such as dietary and exercise changes, progestin or anti-estrogen
therapy, insulin-lowering therapy, and scheduled endometrial
biopsies. This is why we further applied our machine learning
model to stratify patients into low-, medium, and high-risk
groups. We compared our model’s performance on the 3-tier
risk stratification with physicians’ judgment and achieved
promising results.

METHODS
The PLCO Dataset
In this study we developed our machine learning models based on
the Prostate, Lung, Colorectal, and Ovarian Cancer Screening

Trial (PLCO) dataset (Kramer et al., 1993). PLCO was a
randomized, controlled trial investigating the effectiveness of
various screenings for prostate, lung, colorectal, and ovarian
cancers. It was a prospective study that enrolled participants
from November 1993 through July 2001. Participants were
between 55 and 75 years old. Shortly after enrollment,
participants completed a baseline survey detailing their health
history and current health condition. They were then followed
until they were diagnosed with cancer or died, or when 13 years
had passed. From the PLCO dataset, we sub-selected the 78,215
female participants for whom we have data on whether they
developed endometrial cancer within 5 years of enrolling in the
PLCO trial. 961 of these females developed endometrial cancer
within five years of enrolling. This gave 77,254 non-cancer cases
(98.8%) and 961 cancer cases (1.2%) on which we train our
model. For full details about this data and its collection see
Kramer et al., 1993.

With authorization from the National Cancer Institute (NCI)
to access PLCO trial data (PLCO-365), we used the following
inputs for our model: age (Howlader et al., 2017), BMI(Renehan
et al., 2008; Crosbie et al., 2010), weight (20 years, 50 years,
present) (Hosono et al., 2011; Aune et al., 2015), race
(Howlader et al., 2017), smoking habits (Zhou et al., 2008),
diabetes (Anderson et al., 2001), emphysema, stroke,
hypertension (Aune et al., 2017), heart disease, arthritis
(Parikh-Patel et al., 2009), another cancer, family history of
breast, ovary, and endometrial cancer, ovarian surgery (Dossus
et al., 2010), menarche age (Dossus et al., 2010), parity (Dossus
et al., 2010), use of birth control (Dossus et al., 2010), and age at
menopause (Dossus et al., 2010). Many of these inputs, such as
BMI, diabetes and family history, were selected because they
correlate strongly with endometrial cancer incidence (Anderson
et al., 2001; Dossus et al., 2010; Aune et al., 2015) and were also
used as inputs in other works on endometrial cancer risk
prediction (Pfeiffer et al., 2013; Hüsing et al., 2016; Kitson
et al., 2017). Other factors, such as smoking habits,
emphysema and heart disease, were included because they
contributed to good performance in our past works. (Hart
et al., 2018; Roffman et al., 2018a; Roffman et al., 2018b;
Muhammad et al., 2019). There are other known risk factors
such as Hereditary Non-polyposis Colorectal Cancer (HNPCC)
or Lynch Syndrome which would be good to include in a model
but are not in the PLCO dataset. All inputs were scaled to within
the range of [0, 1].

To evaluate the different algorithms, we randomly split the
dataset 70%/30% into training and testing sets, keeping the
proportion of those with and without cancer constant between
the two datasets. The final model was trained on the full training
set and evaluated on the testing set. This gives our model a
Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) level 2a of
robustness (Collins et al., 2015).

Machine Learning Algorithms
In creating our risk prediction models, we trained algorithms that
produce continuous output from 0 to 1, which indicated the
probability that a woman would develop endometrial cancer
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within five years since the input data was gathered. The
algorithms we used were: logistic regression (LR), neural
network (NN), support vector machine (SVM), decision tree
(DT), random forest (RF), linear discriminant analysis (LDA),
and naive Bayes (NB) (Bishop, 2006). The logistic regression was
fit using the NN code with 0 hidden layers. The NN was fit using
the in-house MATLAB code we developed for previous works
(Hart et al., 2018; Roffman et al., 2018a; Roffman et al., 2018b;
Muhammad et al., 2019). It was a multilayer perceptron
consisting of two hidden layers with 12 neurons each and a
logistic activation function. We then used the built-in MATLAB
function “fitrsvm” with a Gaussian kernel to fit the SVM, and we
used the function “fitctree” to create the decision tree. The
random forest was fit with the built-in MATLAB function
“TreeBagger” with 50 trees. The LDA was fit using the built-in
MATLAB function “fitcdiscr,” with “discrimType” set to
“diaglinear”. Lastly, the NB was fit using the built-in
MATLAB function “fitcnb,” with “OptimizeHyperparameters”
set to “auto”. For “fitctree”, “fitcdiscr”, and “fitcnb,” the “score”
from the “predict” function was used to get continuous output,
akin to that returned by the LR, NN, and SVM. We used these six
algorithms because they are well-established machine learning
techniques.

In selecting the algorithm for the final model(s), we used 10-
fold cross-validation within the training and testing sets to
determine the mean AUC of each algorithm. We identified the
twomodels that achieved the highest testing mean AUCs between
training and testing performance. These two models were then
trained on the full training set and evaluated on the testing set.
Afterward, for each of the two best models, we selected a
threshold for determining the sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV),
by maximizing the sum of the training sensitivity and
specificity, i.e., maximizing the balanced accuracy.

Risk Stratification
Once we selected the two best models, we used them to stratify the
population into below, at, or above-average risk, to facilitate a
comparison of our models’ prediction to physicians’ judgment in
the clinic. Specifically, in selecting the boundaries based on the
training data, we considered the bottom 15.9% of risks as below
average, the top 15.9% of risks as above average, and the middle
68.2% as average risks.

Human Intelligence (HI) vs. Artificial
Intelligence (AI)
For comparison of the models’ prediction against physicians’
judgment, we created an online survey (https://yalesurvey.ca1.
qualtrics.com/jfe/form/SV_3TVh1XP27eaktud) with a sub-data
set of 100 women from our original dataset. The survey presented
the information used by our model to physicians and asked them
to rate each woman as below, at, or above-average for endometrial
cancer risk. Clinicians were given no instructions on how to
classify individuals, so that we would get results representative of
what would happen in practice. In an effort to get high-quality
data, we limited the length of the survey by only showing each

physician a random subset of 20 of the 100 women. The answers
from the various physicians were aggregated and averaged for
each woman. We then used our model to stratify the same group
of women. We invited physicians from Yale, Harvard, and
University of Michigan Departments of Obstetrics,
Gynecology, and Reproductive Science/Biology, as well as
primary care physicians from INOR Cancer Hospital
(Abbottabad, Pakistan) and Yale Health Center to participate.
We received usable responses from 15 physicians.

RESULTS

We evaluated seven different algorithms: logistic regression (LR),
neural network (NN), support vector machine (SVM), decision
tree (DT), random forest (RF), linear discriminant analysis
(LDA), and naïve Bayes (NB). Table 1 presents the mean
average area under the receiver operating characteristic (ROC)
curve (AUC) with one standard deviation, from the 10-fold cross-
validation on both the training and testing datasets. The training
AUCs range from 0.68 to 0.99 and the testing AUCs range from
0.68 to 0.95. There is no significant difference in the training and
testing performance for four of the algorithms (LR, NN, LDA and
NB), but SVM, DT, and RF have a significant drop in
performance going from training to testing. The highest
testing performance was for the RF, although NN and RF
testing performance are within one standard deviation of each
other. For the remainder of this paper we will be focusing on the
random forest and neural network models because these two
models achieved the highest mean testing AUCs during cross-
validation.

Selecting the random forest and neural network as the top
models, we then trained them on the full training dataset and
evaluated them on the testing dataset. When calculating the
models’ performance on both the training and testing datasets,
we calculated 95% confidence intervals of the AUC, sensitivity,
specificity, PPV, and NPV (Hanley and McNeil, 1982).

Figure 1A shows the sensitivity and specificity as a function of
the decision threshold for the random forest on both the training
and testing datasets. The same is done for the neural network in
Figure 1B. For the random forest, the sensitivity decreases as the
threshold value increases, while the specificity is above 99.9% on
both the training and testing datasets. For the neural network
model, the sensitivity hovers around 60% and the specificity
remains above 99.9% for most threshold values on both the
training and testing datasets. Given a threshold value that
maximizes the sum of the training sensitivity and specificity,
the random forest model’s sensitivity is 98.4% for the training set
and 75.7% for testing. The specificity is 98.9 and 98.3% for
training and testing respectively. The neural network model’s
sensitivity is 77.2% for the training set and 67.7% for testing. The
specificity is 91.2 and 91.1% for training and testing, respectively.

Using the sensitivity, specificity, and prevalence of
endometrial cancer, we calculate the PPV and NPVs as well.
For random forest, the PPV is 28.2 and 16.3% for the training and
testing datasets respectively. The NPV is 99.9 and 99.9% for
training and testing respectively. For the neural network, the PPV
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is 3.8 and 3.3%, and the NPV is 99.9 and 99.8%, for the training
and testing datasets respectively. The ROC curves for the random
forest and neural network are shown in Figures 2A,B. For the
random forest, the AUC for training and testing are, respectively,
0.99 (95% CI: 0.99–1.00) and 0.96 (95% CI: 0.94–0.97). For the
neural network, the AUC for the training data is 0.91 (95% CI:
0.90–0.93) and for testing it is 0.88 (95% CI: 0.86–0.91).

Following the recommendation of Ref 8, we used the random
forest and neural network models to create a 3-tiered risk
stratification scheme. Based on the risk boundaries selected using
the training data, we stratified the testing data into three groups:
below, at, and above-average risk. Figures 3A,B show Kaplan-Meier

plots for these three groups over the full 13 years they were followed.
The figures clearly show that women classified as above-average risk
have the highest chance of developing endometrial cancer. This is
supported further by the hazard ratio (HR) between the above-
average group and the two other groups.

TABLE 1 | Mean AUC (standard deviation) over 10 cross-validation folds for the seven algorithms tested.

LR NN SVM DT RF LDA NB

Training 0.68 (0.11) 0.89 (0.05) 0.99 (0.00) 0.98 (0.00) 0.99 (0.01) 0.81 (0.00) 0.72 (0.12)
Testing 0.68 (0.10) 0.88 (0.07) 0.80 (0.03) 0.85 (0.04) 0.95 (0.01) 0.81 (0.03) 0.72 (0.12)

FIGURE 1 | A) The sensitivity and specificity of the random forest for
both the training and testing data as a function of the threshold value and (B)
The sensitivity and specificity of the neural network for both the training and
testing data as a function of the threshold value.

FIGURE 2 | A) Area under the ROC curve for the random forest on both
the training and testing data. Similar performance on both datasets indicates
that the random forest has no overfit and (B) Area under the ROC curve for the
neural network on both the training and testing data. Similar
performance on both datasets indicates that the neural network has no overfit.
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In fact, as shown in Table 2, 90.3% of those in the testing set
who developed endometrial cancer during the next 5 years were
labeled by the random forest model as above-average risk and
15.7% of those who did not develop cancer were labeled as below-
average risk. The incidence rates in the below-average, average,
and above-average risk groups are 0.03, 0.17, and 6.17%,
respectively. Similar performances were observed for the
neural network as shown in Table 3

Tables 4, 5 show the comparison of our models with
practicing clinicians in assessing risk for 100 women. In the
below-average risk population, the physicians identified 2.8 times
as many women who did not develop cancer as being below-

average risk, compared to our random forest model (39.5 vs.
14.0%), and 1.65 times as many as our neural network model
(39.5 vs. 24.0%). However, the physicians misidentified twice as
many women who did not develop cancer as being high risk,
compared to the random forest model (27.9 vs. 14.0%), and
3.5 times as many compared to the neural network (27.9 vs.
8.0%). Furthermore, our model was much better than physicians
at aptly stratifying patients who would develop endometrial
cancer. Physicians misidentified 22% of those who did develop
cancer as having below average risk, whereas our random forest
and neural network models predicted none. Additionally,
compared to physicians’ predictions, our random forest model
identified 2.5 times as many women who did develop cancer (94.0
vs. 38.0%) as above-average risk, and our neural network model
identified almost twice as many as the physicians did (70.0 vs.
38.0%). Finally, there is a large inter-observer variability on the
physicians’ assessments, while our models return the same
predictions every time.

DISCUSSION

We created seven different models to predict the probability of an
individual woman developing endometrial cancer in five years
based on readily available personal health data. Of these seven
models we found that the random forest model performed best in
terms of testing AUC, and the neural network performed second
best. We then used both models to stratify the population into
three risk categories. The above-average risk category captured
the majority of those who developed cancer in five years. This
above-average risk population could benefit from regular
screening procedures such as endometrial biopsy and/or
transvaginal ultrasounds.

Of our seven models, logistic regression and naive Bayes
performed the worst and had the most variation between
cross-validation folds. We think that the relatively poor
performance of logistic regression and naive Bayes is due to

FIGURE 3 | (A) Kaplan-Meier plot of the below- (green), at- (yellow), and
above- (red) average risk groups created from the testing data by our random
forest model. Also shown are the p-value and hazard ratio (HR) between each
group. Those in the above-average risk group clearly have the highest
chance of developing cancer and (B) Kaplan-Meier plot of the below- (green),
at- (yellow), and above- (red) average risk groups created from the testing data
by our neural network model with 95% confidence intervals (shaded). Also
shown are the p-value and hazard ratio (HR) between each group. Those in
the above-average risk group clearly have the highest chance of developing
cancer.

TABLE 2 | Stratifying the testing data into three risk groups by the random forest.

Below average
risk

Average
risk

Above average
risk

Number % Number % Number %

Cancer 1 0.3 27 9.4 260 90.3
No cancer 3,628 15.7 15,592 67.3 3,956 17.1

The percentages in each row sum up to 1.

TABLE 3 | Stratifying the testing data into three risk groups by the neural network.

Below average
risk

Average
risk

Above average
risk

Number % Number % Number %

Cancer 3 1.0 76 26.7 206 72.3
No cancer 3,705 16.0 15,920 68.7 3,553 15.3

The percentages in each row sum up to 1.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 5398795

Hart et al. Endometrial Cancer Screening HI vs. AI

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


the lack of interaction terms in these models. Without
interactions between the input factors, these models have no
advantage over traditional epidemiological models. A neural
network with at least one hidden layer allows for mixing of
the input parameters, which may explain its outperforming the
other algorithms we tested.

Four of the models (LR, NN, LDA and NB) generalized well with
similar training and testing AUCs, while SVM andDT overfit on the
training data. Even though SVM, DT and RF achieved near-perfect
AUC on the training data, they still performed better on the testing
data than previous works; a phenomenon we also saw with lung
cancer (Hart et al., 2018). The neural network achieved an AUC of
0.88 on both the 10-fold cross-validation and the testing set. The
random forest achieved a testing AUC of 0.96. Both our random
forest and neural network models significantly outperformed two
previous risk prediction models, including the model introduced by
Pfeiffer et al which achieved an AUC of 0.68 (Pfeiffer et al., 2013).
This improvement is particularly interesting because Pfeiffer et al
trained their model on not only the PLCO data, but also data from
the National Institutes of Health-AARP Diet and Health Study.
Although our model outperforms their model, theirs is more robust
since it has been validated on an external data set, making it
TRIPOD level 3 compared to our level 2a. Another previous
work, by Hüsing et al, achieved an AUC of 0.77 (Hüsing et al.,
2016). Their improvement wasmade by explicitly adding interaction
terms to the epidemiological model. They used cross-validation
making it TRIPOD level 1b. We are seeking access to the
datasets used in these other works as external testing on our model.

With our random forest and neural network models
outperforming previous works, we turn our attention to
comparing our models with clinical judgment. The ultimate
goal of this and our previous work is to create a risk
prediction tool that can support physicians in their clinical
decision-making about cancer prevention and screening for
individuals prior to disease onset. In stratifying 100 women
into below-, at-, and above-average risk groups, the physicians’

true negative rate in the below-average group was 1.6 times better
than that of our neural network model (39.5 vs. 24.0%). However,
physicians’ judgment resulted in a worse false negative rate in the
below-average group (22 vs. 0%) and lower true positive rate in
the above-average group, compared to both our random forest
and neural network models. Thus, we have shown that our
machine learning models are better than practicing physicians
at identifying high-risk above average risk women.

While current guidelines only recommend screening for very
high-risk women, our models may be capable of identifying a larger
population who would benefit from screening. In fact, when
stratifying the population based on stricter criteria (Hart et al.,
2018; Roffman et al., 2018a; Roffman et al., 2018b; Muhammad
et al., 2019) than what was used in this paper, our neural network
model identifies a high-risk group in which 47% of women
developed endometrial cancer within 5 years, among whom most
developed the cancer under a year (data not shown). In addition to
informing women and their physicians in their discussion of the
potential pros and cons of screening, our models can help prompt
life-style changes and other preventive measures or intervention (see
Arnold et al., 2015). Admittedly, the downside to our models for this
application is that understanding the contribution of individual
input factors to the overall risk is not intuitive. So, while the
current model can stratify the population and suggest the above-
average risk group to participate in preventive strategies, it does not
offer much help in deciding which strategies (e.g., diet and exercise,
progestin or anti-estrogen therapy, and insulin-lowering therapy
etc.) would be most effective. We will carry out this study in our
future works. Nevertheless, our machine learning approach shows
great promise in aiding early detection of endometrial cancer, as the
approach yields high-accuracy predictions based solely on personal
health information prior to disease onset, without need for any
invasive or costly procedures like endometrial biopsy or transvaginal
ultrasounds. Furthermore, it could be integrated into existing electronic
medical record systems, giving risk predictions directly to primary care
physicians when they see patients.

TABLE 4 | Random forest model vs. physician stratification of 50 women with cancer (ground truth positives) and 50 women without cancer (ground truth negatives) into
below-, at-, or above-average risk groups.

Below average risk Average risk Above average risk

Model Physicians Model Physicians Model Physicians

Ground truth positives 0.0 22.0% (17%) 6.0 40.0% (16%) 94.0 38.0% (24%)
Ground truth negatives 14.0 39.5% (22%) 72.0 32.6% (16%) 14.0 27.9% (20%)

Inter-observer variability for the physicians is captured by a standard deviation in parenthesis.

TABLE 5 | Neural network model vs. physician stratification of 50 women with cancer (ground truth positives) and 50 women without cancer (ground truth negatives) into
below-, at-, or above-average risk groups.

Below average risk Average risk Above average risk

Model Physicians Model Physicians Model (%) Physicians

Ground truth positives 0.0 22.0% (17%) 30.0 40.0% (16%) 70.0 38.0% (24%)
Ground truth negatives 24.0 39.5% (22%) 68.0 32.6% (16%) 8.0 27.9% (20%)

Inter-observer variability for the physicians is captured by a standard deviation in parenthesis.
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Compared with clinical judgment, the strong performance of
our models, combined with other strongly discriminatory models
for non-melanoma skin cancer (Roffman et al., 2018a), prostate
cancer (Roffman et al., 2018b), lung cancer (Hart et al., 2018), and
pancreatic cancer (Muhammad et al., 2019), presents a real
opportunity to perform a “statistical biopsy” on individuals
prior to disease onset. Analogous to traditional biopsy, which
analyzes cells from a specimen, and the recently developed
liquid biopsy, which evaluates circulating DNA from a blood
sample to diagnose cancer, our machine learning approach to
cancer prediction is essentially a statistical biopsy that mines
personal health data of an individual for early cancer detection
and prevention. Different from traditional biopsy and liquid
biopsy, statistical biopsy seeks to decipher the invisible
correlations and inter-connectivity between multiple medical
conditions and health parameters via statistical modeling. By
mining personal health data via statistical biopsy, it is possible
to generate a holistic profile of an individual’s risk for a variety of
cancer types, with little cost in time or money and no side effects.
Furthermore, if integrated into a modern electronic medical record
(EMR) system, statistical biopsy may help inform preventive
interventions and/or screening decisions in real time. As we test
our models on external datasets and expand the types of cancer
covered, we hope to build a comprehensive model available to
primary care physicians worldwide, allowing for statistical biopsies
during routine clinical care for the general public.

CONCLUSION

In this work we construct machine learning models to predict the
five-year risk of developing endometrial cancer for individual
women based solely on personal health data, without any
genomic or imaging biomarkers, or invasive procedures. We
test seven different algorithms and find that the random forest
performs optimally and outperforms previous models. We
further demonstrate that the random forest is superior to the
15 physicians in stratifying the population into three risk groups,
with a 2.5-fold increase in true positive rate, 2-fold reduction in
false positive rate, and reduction to zero in false negative rate.
With strong discriminatory power, our random forest offers a
cost-effective and non-invasive method to population-based
screening for endometrial cancer prior to disease onset and is
capable of targeting the sub-population with above-average risk.
The ability to identify female patients with above-average risk can

in turn inform the adoption of early cancer prevention strategies,
including both immediate actions like screening and long-term
preventative measures such as chemoprevention.
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