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Providing accurate utilization forecasts is key to maintaining optimal vaccine stocks in any
health facility. Current approaches to vaccine utilization forecasting are based on often
outdated population census data, and rely on weak, low-dimensional demand forecasting
models. Further, these models provide very little insights into factors that influence vaccine
utilization. Here, we built a state-of-the-art, machine learning model using novel, temporally
and regionally relevant vaccine utilization data. This highly multidimensional machine
learning approach accurately predicted bi-weekly vaccine utilization at the individual
health facility level. Specifically, we achieved a forecasting fraction error of less than
two for about 45% of regional health facilities in both the Tanzania regions analyzed. Our
“random forest regressor” had an average forecasting fraction error that was almost
18 times less compared to the existing system. Importantly, using our model, we gleaned
several key insights into factors underlying utilization forecasts. This work serves as an
important starting point to reimagining predictive health systems in the developing world by
leveraging the power of Artificial Intelligence and big data.
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INTRODUCTION

Vaccines have been touted as the “single most life-saving healthcare innovation ever” (Orenstein and
Ahmed, 2017). It has also been emphasized that vaccination and not vaccines save lives (Breiman and
Friedman, 1984). Additionally, a recent study on 94 low- and middle-income countries estimated
that a $34 billion investment in immunization programs resulted in savings of $1.53 trillion in broad
illness-related economic benefits (Ozawa et al., 2016). Maximizing immunization coverage for any
population is an important public health goal for all countries and 194 Member States of the World
Health Assembly in May 2012 agree, having developed a framework to prevent millions of deaths by
2020 throughmore equitable access to existing vaccines for people in all communities (WHO, Global
Vaccine Action Plan 2012–2020).

One of the challenges that countries need to overcome to move closer to this goal is accurate
forecasting of vaccine utilization (Meuller et al., 2016). Under-estimation of vaccine demand can lead
to reduced coverage and vaccine stock-outs while over estimation leads to vaccine wastage (Meuller
et al., 2016). The majority of existing vaccine utilization forecasting systems fall into one of two broad
categories: 1) Routine data collection such as data on immunization and/or stock level changes
entered by health workers (Logistimo, 2011) and past trends detected from immunization and/or
stock level change data extrapolated to forecast future utilization; and 2) Population level data using
population level survey data on pregnant women and child births (John Snow, Inc. and USAID,
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2010) extrapolated based on an age-based vaccination scheme
and then used to calculate utilization. A recent study had also
used a discrete event simulation model to predict the effect of
introducing a demand forecasting system into a low-income
country’s supply chain (Mueller et al., 2016).

However, as pointed out by multiple studies, existing vaccine
utilization forecasting systems are far from perfect and have
large room for improvement (Patel et al., 2015; Lydon et al.,
2017, Path and World Health Organization report, 2011). These
significant inaccuracies in forecasting vaccine utilization may
stem from data inaccuracies. For example, the error inherent in
attempting to extrapolate population census data which is often
vastly outdated. Also, leading to inaccuracies in forecasting
vaccine utilization is the use of univariate forecasting models
that do not take into account the multivariate nature of the
problem inherent in its scope. For example, vaccine utilization
at any given health facility is driven by factors apart from the
catchment population. Factors may include the characteristics
of the facility such as ease of access as reflected in its geo-
coordinates, type of facility such as private or public, altitude,
etc. These two challenges can be addressed by 1) use of actual
vaccine utilization data for each health clinic as this data is very
close to ground reality and is recent; and 2) building and
applying a multivariate machine learning approach that not
only uses vaccine utilization data, but also leverages other kinds
of data about the health facility and population to predict
vaccine utilization.

Here, we used recent vaccine utilization data, together with
publicly available highly multivariate health facility data to
forecast individual health facility level vaccine utilization in
two Tanzania regions. Importantly, to accurately forecast
vaccine utilization, we trained and applied a powerful machine
learning model: a Random Forest Regressor (RFR). Our approach
not only gives accurate vaccine utilization forecasts, but also
provides insights into the data itself. Our findings have clinical
and global health program relevance because accurate forecasting
of utilization down to facility level will serve to reduce vaccine
wastage and stock-outs, in turn contributing to optimal vaccine
deployment and the most efficient use of resources.

To the best of our knowledge, this paper is the first to leverage
regionally and temporally relevant utilization data together with a
host of other features to forecast vaccine utilization.

We worked with the Ministry of Health of Tanzania and an
NGO partner, PATH, with experience in the region and
specifically vaccines to pilot our approach in three regions of
Tanzania.

MATERIALS AND METHODS

We used Python v3.6 (Python Software Foundation, 2018), and
Jupyter notebook v5.4.0 (Perez and Granger, 2007) for all
calculations and plots. Specifically, for data pre-processing, we
used the fastai library (v1.0, Howard and Gugger, 2020), whereas
for machine learning and model performance evaluation, we relied
on scikit-learn v0.21 (Pedregosa et al., 2011). We used seaborn and
matplotlib for generating plots of data (Seaborn, Matplotlib).

Data Gathering and Feature Augmentation
We used a diverse set of features or variables to forecast vaccine
utilization. We obtained daily vaccine utilization data from 710
health facilities across three different regions in
Tanzania—Arusha, Tanga and Kilimanjaro. The data had 13
features for every observation. We split the datetime feature into
12 features using the fastai add-datepart function (Howard and
Gugger, 2020). While these features can partially contribute to
predicting vaccine consumption, we believed that analyzing
additional features describing individual facilities and their
catchment populations would improve predictive performance.
Therefore, we examined the Tanzania Health Facility Registry
(THFR, see website reference) and the Tanzania National Bureau
of Statistics (TNBS, see website reference) to extract several
additional dimensions of data to augment our feature set. We
also used a web-based tool (GPS visualizer, see website reference)
to add elevation to each health facility. The data we used for
building predictive models included several new features such as
geo-coordinates, distance to nearest facility, type of facility and
regional population (See Table 1 for a comprehensive list of
features). Additionally, since recent vaccine utilization can serve
as a useful feature, we used a rolling 3-month average as a feature.
This resulted in a total of 32 features which went into our
machine learning model. These features encompassed key
intuitive vaccine utilization determinants — 1) Details of the
nature of the vaccine, 2) details of each health facility and 3)
features related to the catchment population around each facility.

TABLE 1 | List of features used for predicting vaccine utilization in three regions of
Tanzania.

Sl No Name of feature

1 Facility ID1

3 Region1

4 District1

5 Ward1

6 Village/street1

7 Transaction description1

8 Vaccine type1

9 Change in stock1

10 Reason for change1

11 Immunization type1

12 Expiry1

13 Vaccine manufacturer1

14–25 12 features derived from immunization date (“year”, “month”,
“week”, “day”, “dayofweek”, “dayofyear”, “Is_month_end”,
“Is_month_start”
“Is_quarter_end”, “Is_quarter_start”, “Is_year_end”,
“Is_year_start”)*

26 Geo-coordinate I: Latitude2

27 Geo-coordinate II: Longitude2

28 Geo-coordinate III: Elevation2

29 Total regional population2

30 Type of facility2

31 Ownership2

32 Average utilization from a three-month rolling average calculation

Table 1 is a comprehensive list of all 32 features we used for building the predictive
model. Facility refers to a health facility. 1 indicates the data for the feature was obtained
through PATH and Tanzania MoH. 2 indicates the data for the feature was obtained from
other sources. Here, “*” indicates the vaccination date was split into 10 columns using
the fastai’s add_datepart function (Tanzania Health Ministry Registry and Tanzania
National Bureau of Statistics).
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Data Preprocessing
We used fastai modules—train_cats, add_datepart, and proc_df
for initial data pre-processing (Howard and Gugger, 2020).
Specifically, we carried out the following steps — 1) Assessing
fraction null values for each column. No column had more than
4% null values, 2) For categorical variables, null values were
treated as a separate level, and imputed cells were recorded in a
separate variable, 3) Median values were used to impute missing
continuous variables, 4) Date field was split into 12 separate fields
such as time elapsed from the start of the year, is date start of
month, etc. All date fields are documented elsewhere (fast.ai, see
Howard and Gugger, 2020), and 5) Categorical mapping rules
and imputation value to feature mappings were stored in a
dictionary which was re-used for pre-processing test data.

Data Ordering and Partitioning
We aggregated data per facility and vaccine type into biweekly
utilization, which we attempted to forecast. The decision to
forecast biweekly utilization was based on discussions with
healthcare providers in Tanzania (internal communication).
Additionally, summarizing the data into monthly or bimonthly
rows does not give us sufficient data size to make robustly
extrapolatable forecasts. A factor that led to this decision was
the frequency of power outages in those regions. We trained,
tuned, and evaluated an RFR to forecast biweekly vaccine
utilization at a given health facility in Arusha, Tanga, and
Kilimanjaro.

Further, approximately 70% of the data was used to train the
model. We equally partitioned the remaining data into validation
and test sets. The validation data was used for hyper-parameter
tuning whereas the test set was used to report final performance
scores. Since the goal was to predict future vaccine utilization,
train-validation-test split was done in a temporally sortedmanner
making sure that the hold-out sets contained only data from dates
that were in the future relative to the training, or the
validation data.

Measures of Model Performance and
Optimization Function
We used two different measures to evaluate model performance,
1) Root Mean Square Error (RMSE) between predicted and actual
biweekly utilization values, and 2) Fraction error (F. E), to
measure how far each predicted target variable value was from
the actual value of that variable. We also used F. E as the
optimization function for our model. We define F. E as

F. E � |(A.U − P.U)|÷A.U
Where AU is actual biweekly utilization and P.U is predicted
bimonthly utilization.

RESULTS

Model Selection
We implemented a wide range of commonly used machine
learning algorithms to select the best model. Among all the

algorithms—regularized linear regression, support vector
machine, k-nearest neighbors, RFR and autoregression based
univariate time series models, random forests had the best
performance on the validation set (Table 2). Our exploratory
model building also included multilayered neural networks,
including recurrent neural nets; however, the models 1) failed
to yield comparable performances to some of the other classic
machine learning models and, 2) gave largely uninterpretable
predictions with no simple way to find feature importances. This
bolstered our choice of RFR for vaccine utilization forecasting.

Using an Random Forest Regressor to
Forecast Bi-Weekly Vaccine Utilization in
Tanzania
We trained, tuned, and evaluated an RFR to forecast biweekly
vaccine utilization at health facilities in Arusha, and Tanga. We
chose RFR for further downstream analyses because, 1) As
measured by the Root Mean Square Error (RMSE) RFR
outperformed all five of the most commonly used machine
learning algorithms and, 2) RFR is a powerful and
generalizable predictive framework which can also be
leveraged to understand the data better.

We used the validation data to set the values for 1) number of
estimators, 2) max features, and 3) min samples leaf. Further, we
optimized the model to obtain a minimal validation set RMSE.
Our optimized values for these hyperparameters were 40, 0.95,
and 7, respectively. We also set n_jobs � −1 in scikit-learn, to
effectively utilize all available compute cores.

We made two different versions of our RFR (Leo Brieman,
2001) ↓ model I which uses all 32 features and model II which
uses all 32 features except the 3-months rolling average. The two
models are both based on random forests but differ in the number
of features. Importantly, recent vaccine utilization averages are
not used for forecasting in model II.

Overall Performance of Our Models at
Various Levels of F. E Threshold
Model I. We picked this optimized RFR and achieved an F. E of
less than 0.2 for a significant subset of facilities, that is, an error of
±2 doses where actual vaccine utilization was 10 doses (Figure 1).

Further, we found that for the majority of health facilities
where our predictive performance passed a given threshold for
one vaccine, it also passed the same threshold for the other

TABLE 2 | Performances of different machine learning (ML) algorithms on our
dataset.

Sl no ML algorithm RMSE

1 Random forest 17.0
2 Gradient boosting 17.2
3 K- nearest neighbors 19.1
4 Elasticnet 19.3
5 Support vector regression 22.4
6 ARIMA 24.7
7 Neural net (3 layered) 26.5

Table 2 Performance, based on RMSE, of different hyper-parameter tuned machine
learning models on the validation set.
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vaccine as well. We were thus able to predict bi-weekly vaccine
utilization within an F. E < 0.1 for 22–27% of the facilities
depending on the vaccine (Figure 2). Our model performed
best for rotavirus vaccine utilization, with almost 50% of
facilities approaching a F. E < 0.2.

Model II. This version of the model is more generalizable since
all its features can be derived from publicly available resources. It
has an F. E < 0.2 for 15–20% of facilities (Supplementary Figure

S1). Vaccine type was identified as the most important feature for
this model (Supplementary Figure S2).

Feature Importance Using Random Forest
Regressor
We used the “mean decrease accuracy” method to calculate
importance scores for all features in our model. This involved

FIGURE 1 | For model I, the percentage of health facilities in Tanzania meeting F. E thresholds. For each of the six vaccines, our model performances across
facilities at different F. E thresholds.

FIGURE 2 | F. E for vaccine types across facilities in Tanzania based on model I. Values were derived from prediction of bi-weekly vaccine doses applying our
random forest regressor. Facility ID annotations on the x-axis are sparse owing to space limitations.
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randomly permuting each column of data, and then calculating
the decrease in R2 on the out of the box datasets (Brieman and
Friedman. 1984). This feature importance scoring scheme, as
implemented in scikit-learn, outputs relative feature importance
scores.

Model I. By far, the three-months utilization rolling average
has the greatest impact on the model prediction. This is followed
by the time, relative to year beginning, to vaccination. A number
of features that relate to the health facility come next in our
model—public or private, GIS coordinates, district, and ward. We
hypothesize that features related to the facility implicitly encode
demand characteristics of the catchment population (Figure 3).

Model II. Vaccine type was identified as the most important
feature for this model (Supplementary Figure S3). Again, a
number of features that relate to the health facility showed
up next.

We made sure our model performance evaluation included
completely non-overlapping “future” data. We included actual
geo-coordinates and altitude to remove subjective levels like
“High altitude” or “Low altitude”. Removing the geo-
coordinates still gives us a meaningful model with only a
small (0.7) decrease in forecasting accuracy. This is hardly
surprising since the relative feature importance based on the
Random Forest Regressor falls off rather sharply after feature #3
“Births”.

We hypothesize that features related to the facility implicitly
encode demand characteristics of the catchment population.

Comparisons With Existing Model
In order to get a measure of vaccine utilization forecasts based on
the existing system, we mined stock addition data. We did not
find evidence of any statistical forecasting model. The amount of
new stock additions immediately prior to our validation and test
dates, were treated as “forecasts” made by the baseline, existing

system. Since we had actual utilization data for the validation and
test period, we were able to calculate F. E and RMSE for the
existing system. Evaluation of RFR model performance against
this baseline was made on the basis of F. E and RMSE (see
Table 3).

The Global Alliance for Vaccines and Immunization
anticipates a six-fold increase from 2010 to 2020 in the
number of vaccine doses given to complete immunization.
Global coverage for basic childhood vaccines has reached a
record 86%, but there has been a parallel increase in vaccine
wastage, decreasing resource efficiency. Vaccine stock-outs
compound the problem by wasting opportunities for
immunization. There is no good reason why the correlation
between higher rates of immunization and supply chain waste
should persist. Further, wastage of all kinds is largely a result of
inaccurate, univariate or static models of vaccine demand
assumptions; in summation the wrong quantity and type of
vaccines at the wrong time. There is thus an enormous
economic incentive to reduce vaccine wastage and stock-outs,
without sacrificing high immunization coverage rates.

Random Forests (Leo Breiman, 2001) is an algorithm that uses
bootstrap to sample multiple data observations or rows from the
original data, builds decision trees for each bootstrap sample, then
integrates predictions of multiple decision trees, and finally uses

FIGURE 3 | Feature importance for our RF regressor underlying model I was computed by “jumbling up” the data within each feature (� column) and calculating the
change in R2.

TABLE 3 | Comparison of predictive performance and benchmarking.

Sl no Predictive
model or system

Avg RMSE Avg F. E

1 Existing system 351 43.02
2 RFR model I 17.90 1.56
3 RFR model II 19.00 2.42

Table 3 summarizes benchmarking of the two RFR models against the existing system.
RFR model 1 includes 3 months moving average as a feature while model 2 does not.
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majority vote or averaging to arrive at final predictions. The RFR)
is conceptualized as a strong predictor combining a bunch of
weak predictors.

To our knowledge there has only been one paper where
machine learning has been applied to predict vaccine
utilization and/or demand (Fruggiero et al., 2012). In that
study, the researchers used a combination of autoregressive
integrated moving average model and neural networks to
forecast annual MMR demand in Taipei County, Taiwan.
Specifically, the authors use 10 features to build a decision
model, using data related to vaccine demand relative variables
and population growth relative variables. Our study differs from
theirs in several respects— 1) their goal is to forecast annual
demand whereas we aim at forecasting bi-weekly demand, 2) they
aim at forecasting demand using variables related to population
or stock. No features related to health facility location or the
facility itself were included. Our model is significantly more
comprehensive, as it includes many granular details of the
health facilities including their geo-location, altitude, facility
details and 3) they aim at forecasting county wide demand
whereas we forecast health facility level demand. Our model is
therefore, significantly more fine grained.

Vaccine campaigns sometimes deliver vaccines directly or
serve to increase demand. Here, we did not have information
on vaccine campaign data. In the next round of data gathering, we
may be able to access that data and build an increasingly
multidimensional, and more accurate model.

CONCLUSION

In summary, we present for the first time an interpretable
predictive model to forecast vaccine utilization that has a
broad scope and can be adapted to many countries and
regions. Our study underscores the importance of applying
machine learning on hard-to-gather, temporally and spatially
relevant integrative datasets to make accurate vaccine utilization
forecasts. Importantly, we also present two different versions of a
predictive model. RFR model 1 has high predictive performance
and can be used in places where recent vaccine utilization data is
available. RFR model 2 has slightly less predictive performance
but can easily be adapted to other regions and countries. It has
broader application scope. This is a tool that can help translate the
Global Vaccine Action Plan for 2011–2020 into action: meeting
vaccination coverage targets in every region, country and
community and strengthening health systems by empowering

program managers with access to high quality information on
stock needs at each specific location.
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