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In Low- and Middle- Income Countries (LMICs), machine learning (ML) and artificial
intelligence (AI) offer attractive solutions to address the shortage of health care
resources and improve the capacity of the local health care infrastructure. However, AI
and ML should also be used cautiously, due to potential issues of fairness and algorithmic
bias that may arise if not applied properly. Furthermore, populations in LMICs can be
particularly vulnerable to bias and fairness in AI algorithms, due to a lack of technical
capacity, existing social bias against minority groups, and a lack of legal protections. In
order to address the need for better guidance within the context of global health, we
describe three basic criteria (Appropriateness, Fairness, and Bias) that can be used to help
evaluate the use of machine learning and AI systems: 1) APPROPRIATENESS is the
process of deciding how the algorithm should be used in the local context, and properly
matching the machine learning model to the target population; 2) BIAS is a systematic
tendency in a model to favor one demographic group vs another, which can be mitigated
but can lead to unfairness; and 3) FAIRNESS involves examining the impact on various
demographic groups and choosing one of several mathematical definitions of group
fairness that will adequately satisfy the desired set of legal, cultural, and ethical
requirements. Finally, we illustrate how these principles can be applied using a case
study of machine learning applied to the diagnosis and screening of pulmonary disease in
Pune, India. We hope that these methods and principles can help guide researchers and
organizations working in global health who are considering the use of machine learning and
artificial intelligence.
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INTRODUCTION

Machine Learning vs. Artificial Intelligence
The advent of computing machines has enabled automation and accelerated productivity. However,
human tasks that involve higher-level thinking, such as abstraction, understanding, or creativity,
remain a challenge for machines. Outside of the technical literature, the terms artificial intelligence
andmachine learning are loosely defined and often used interchangeably; however, it is important to
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note that machine learning is generally considered to be a sub-
field of artificial intelligence (Winston and Brown, 1984).

Machine learning can be generally defined as the methods and
algorithms that enable computers to make optimal decisions
given a set of data; these tasks can range from simple binary
classification decisions to more advanced real-time control tasks,
such as driving a car or playing a video game. Machine learning
methods include an increasing variety of mathematical tools and
mathematical models, ranging from simple logistic regression, to
neural nets and deep learning, to probabilistic methods such as
Bayesian networks. While computers can be used to self-discover
patterns or clusters in a set of data (unsupervised learning), these
decision-making algorithms are commonly constructed in a
supervised manner, using a set of labeled training data to
create models that can be optionally updated and modified
incrementally over time with new data, as a form of
continuous learning (Liu, 2017).

Human intelligence and artificial intelligence, on the other
hand, involve much more than decision-making or controls. The
practice of medicine also extends beyond solving diagnostic
puzzles or performing robotic surgery, and also includes
complex tasks such as intuitively communicating with a
patient, understanding a patient’s story, expressing empathy
through speech, touch, or gaze, and inferring higher-level
abstractions, associations, and meaning from a patient
encounter. Such tasks extend beyond the current ability of
computers and remain an active area of research within the
academic fields of computer science and artificial intelligence.
In the context of medicine, machine learning is currently limited
to tasks such as decision support (disease diagnosis and
screening), processing patient medical data (e.g., detecting
abnormalities in an X-ray or fundus image), or optimizing
processes and services in the delivery of health care, in order
to increase system capacity, allocate resources, or minimize
financial losses (Beam and Kohane, 2018; Ngiam and Khor,
2019).

The Benefits and Risks of Applying Artificial
Intelligence in Global Health
Global health represents a great opportunity for employing
artificial intelligence or machine learning as part of digital
health initiatives (Labrique et al., 2020). Smaller clinics in
LMICs often find themselves understaffed and overburdened,
compounded by a lack of education. Despite a shortage of
resources in these areas, the increasing presence of
computers – especially smart phones – has now provided a
viable platform for hosting and deploying machine learning
tools. Global health researchers and the health ministries in
many LMIC countries have begun exploring various ways that
computers can be used. Such tasks include assisting young
unexperienced doctors and health workers to perform better
disease diagnosis and helping to analyze medical data, such as
automatically identifying malaria parasites in a digital
microscope or automatically identifying signs of coronavirus
in a chest X-ray image (Elgendi, 2020). Machine learning can
also be used to help optimize processes or to predict human

behavior (Hosny and Aerts, 2019; Schwalbe and Wahl, 2020;
Shah et al., 2020).

Without a regulatory and legal safety net, however, the
deployment of any new technology in poor or uneducated
regions must be carefully examined. With increasing use of
computers and smart phones in health care, it is important to
thoroughly examine potential harms. While machine learning is
now being applied to medicine throughout the world, this issue is
particularly sensitive in LMIC countries, where we often
encounter populations that are very poor or politically
marginalized and are very vulnerable to exploitation or
discrimination. In many developing parts of the world, the
legal and regulatory framework may not be well-developed for
the practice of medicine and public health. As a result, artificial
intelligence might only serve to reinforce and exacerbate
problems stemming from socioeconomic disparities or possible
political corruption. Unless the adoption of this technology is
done carefully and thoughtfully, the use of artificial intelligence
may simply exacerbate existing health disparities among different
demographic groups.

Basic Classification and the
Connection to Ethics
A common application of machine learning in medicine is to
perform binary classification based on clinical observations or
laboratory measurements, which are often used in diagnostic
testing or disease screening to classify individuals as healthy vs.
sick, for example. While the connection to ethics may not be
immediately apparent, it is important to remember that
diagnostic decisions are not always correct. As we know, a
medical decision, such as a diagnostic test, can produce a false
positive (Type I error) or a false negative (Type II error), as
illustrated in Figure 1; however, we can control the threshold
used in these decisions and the relative balance between Type I
and Type II errors.

The connection to ethical and legal considerations is often
introduced when we discuss how to address the classification
errors and how to tune or choose the operating point of the
algorithm. Depending on the type of machine learning model
used, the output of a model can generally be tuned by adjusting a
threshold or certain hyper-parameters in the model. By varying
the threshold or hyper-parameters, we can adjust the proportion
of Type 1 and Type 2 errors, as visualized in a Receiver Operating
Characteristic plot or “ROC curve” as shown in Figure 1 (right),
where the sensitivity and specificity represent the true positive rate
and true negative rate respectively, for different settings of the
hyper-parameter. Many machine learning examples optimize for
classification accuracy and select the point on the ROC curve that
is closest to the upper left corner (as an attempt to maximize both
sensitivity and specificity), or maximize the overall area under the
ROC curve (AUC). However, in practice, the choice of operating
point depends on the context in which the model will be used and
often depends on the system of laws and ethical principles that
exist in the local community.

As a simple example, we may compare a diagnostic test for strep
throat (streptococcal pharyngitis) vs. a diagnostic test for the AIDS
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virus. In the case of strep throat, we may prefer to tune our model to
minimize false negatives, in order to make sure that we detect all
cases of the disease. The public is not alarmed by false positives
because this is a very common and mild disease, and we routinely
use antibiotics as a prophylaxis. On the other hand, in the case of an
AIDS test, a positive result could produce great social stigma and
psychological burden for the patient; so for this reason, as well as to
minimize legal liability, health clinics may choose to minimize false
positives, at the expense of missing some actual cases of AIDS. This
trade-off between false positives and false negatives is a common
source of debate in medicine and is frequently discussed in the
context of breast cancer screening (Gøtzsche, 2012), for example. A
set of legal and ethical principles must be identified prior to deciding
on the preferred balance of false positives and false negatives.

Machine Learning in the Context of
Demographic Groups
The ethical component of Machine Learning becomes
increasingly complex when demographic groups are
introduced into the analysis. Since disease etiologies can have
a known biological dependence on race or gender, it may not be
surprising that the accuracy of a diagnostic test can also depend
on race or gender. In situations when a given diagnostic test

performs better on one demographic group vs. another, the
diagnostic test may often be deemed unfair.

When two separate demographic groups are being included in
a machine learning diagnostic model, the difference between the
two groups can be examined on an ROC curve, as shown in
Figure 2. Due to biological differences, as well as difference in
disease prevalence, each demographic group will have a separate
ROC curve. As shown in the figure, it is impossible to tune the
model and select an operating point that will perform optimally
in both demographic groups. If a single diagnostic test will be
applied to the entire population, then some compromise must be
adopted in the tuning of the algorithm in order to address issues
of fairness. These trade-offs are discussed more quantitatively in
later sections of this paper.

In the global health and public health context, machine
learning is often used with a wide variety of data including
images, questionnaires and clinical measurements. In addition
to biological and genetic causes, other factors may also
unintentionally contribute to consistent differences between
test results from two demographic groups. Examples may
include cultural and behavioral differences (e.g., diet, smoking
behavior, etc.), environmental factors (e.g., sanitation, exposure
to air pollution, etc.), or confounding variables in the design of the
measurement apparatus itself. If an algorithm is to be applied to a
general population, it is necessary to consider the tuning of the
algorithm to ensure fairness to all demographic groups. These
decisions again depend on the prevailing legal and ethical
framework in a given community.

In the context of medicine, another potential risk to patients is
that new algorithms, like new medicines, are not always tested or
trained on all demographic groups. In some LMIC and
developing countries, certain demographic groups may hold
greater political power and thus the data that is used to train
or test an algorithm may come from the demographic group that
is most convenient to use, or that represents the majority. This
situation can produce diagnostic tests that perform better on one
demographic group at the expense of others, and is thus deemed
unfair.

While the eventual optimal tuning of an algorithm can thus
depend on many factors, including the local system of laws and
community values, the overall goal of this paper is to introduce
and define the notions of bias, fairness, and appropriate use, as it

FIGURE 1 | (left) Illustration showing sample diagnostic test results for a given threshold; (right) Sample ROC curve showing how the sensitivity varies for different
threshold values.

FIGURE 2 | A sample ROC curve for multiple groups, showing different
possible operating points for the algorithm.
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pertains to machine learning in global health, and also to illustrate
how a given machine learning model can be analyzed to identify
and quantify issues of bias and fairness. With this goal in mind,
this paper is intended for the audience of people who work in
global health and international development, for the purpose of
helping to develop best practices in the adoption of machine
learning and artificial intelligence.

FUNDAMENTAL CONSIDERATIONS IN THE
APPLICATION OF MACHINE LEARNING

In the context of health applications, we discuss below three
fundamental criteria (Appropriateness, Bias, and Fairness) that
can be used to evaluate or audit artificial intelligence andmachine
learning algorithms.

Appropriateness
While most technical literature is devoted to improving the
performance of machine learning algorithms, there is little
guidance available regarding how an algorithm should be
assessed and evaluated prior to deployment in a real-world
operational context. To meet this need, we include here an
additional criteria termed appropriateness, which addresses
how well the machine learning algorithm is matched to the
specific context and the specific population.

Matching the Algorithm to the Specific Problem
When a machine learning model is being used as part of a
public service, such as the delivery of health care, it is
important to consider how and why the technology is
being used. Given the increasing availability of machine
learning software, it has become quite popular to try
applying machine learning to many different decision-
making needs in health care. However, given the
limitations of artificial intelligence, it is also important to
consider at the outset why a computer algorithm is being used
and what is the intended role of the computer algorithm. If
the consequences of a decision are very great (e.g., deciding
whether or not to remove a patient from a life support
machine), then it should be considered whether this
decision should be handled by a machine or if perhaps a
human should be part of the decision process.

In the deployment of a machine learning algorithm, it is
important to consider the context. For example, it is now
technically possible to install an eye scanning machine as part
of an airport biometric security check that could detect certain
types of cancer. However, this is not the appropriate setting for
such an algorithm, even though the hardware may be available.
Similarly, as we create more powerful instruments and machine
learning tools for community health workers, we also need to
consider what tests are appropriate to be administered by a
community health worker, given the level of training and
given the availability of therapeutic options. Such questions
also require serious moral and ethical consideration.

A well-known example of machine learning applied in an
actual hospital environment was published by Caruana in 2015

(Caruana et al., 2015). This example involved a study in the 1990s
that created a computer algorithm to decide which pneumonia
patients arriving at the hospital should be admitted and which
patients should be permitted to go home for outpatient care. The
original algorithm predicted the 30-day probability of death for
each patient, and those with a higher probability would get
admitted to the hospital. At the outset, this seemed like a very
reasonable application of machine learning.

Unfortunately, the results of this algorithm were problematic.
The computer algorithm determined that patients with comorbid
respiratory ailments, such as asthma or COPD or chest pain, had
a lower probability of dying, and therefore, these patients should
not be admitted to the hospital and should be sent home. Based
on historical data, the algorithm also recommended that patients
without co-morbidities had a higher risk of death and should be
admitted to the hospital. The result was the opposite of what an
experienced human doctor would recommend: patients with co-
morbidities and disease history should be admitted, and patients
with simpler cases should be allowed to go home.

Upon re-analysis of this data, it was revealed that arriving
pneumonia patients with co-morbid respiratory ailments did
indeed have a statistically lower probability of death, but this
was due to the fact that these patients had more experience with
respiratory problems and thus sought medical care sooner, which
decreased their probability of dying. But this reasoning ignored
the fact that such patients are also more vulnerable and fragile in
terms of developing complications and can experience more
severe illness. The difference in the health-seeking behavior
between these two groups was not considered, and this
resulted in an incorrect prediction that could affect outcomes.

From this example, we can see that the problem was not the
algorithm per se, but rather the context of the algorithm and the
specific question that the algorithm was asking. While the
probability of death may be a very reasonable question to
consider for a health insurance company, it was perhaps the
wrong question to ask in this context. A better question to ask
would be perhaps to ascertain the severity of the infection, and
based on the severity and risk factors such as age and co-
morbidities, the algorithm could then recommend which
patient should be admitted to the hospital. The available
patient data, such as the level of fever (temperature) and
comorbid respiratory ailments could have also been used to
predict the severity of infection and risk of complications, but
this was not done.

This example reveals not just the need for proper algorithm
design and choice of data, but also identifies the need to include
people with domain knowledge in the algorithm design process.
At the time the algorithm was being developed, some
consultation with a pulmonologist may have avoided the
issues with the original algorithm.

Unbalanced Data and Adapting the Model to the
Specific Population
When applying machine learning to problem in global health, it is
important to consider the type of model as well as how the model
is trained. For use in diagnostic support, the interpretability of the
model is often highly desired by doctors, and models such as
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logistic regression and Bayesian Networks are quite popular for
that purpose. Neural net methods, such as Deep Learning, are less
interpretable but very powerful and particularly useful for data
that contain abstract or hidden features, such as analysis of
patient breathing sounds (Chamberlain et al., 2016b) or tumor
detection in radiology images (Al-Antari et al., 2018).

With regards to training the model, a common machine
learning task in global health is classification, in order to
identify people that may have a specific disease (e.g.,
cervical cancer) or to identify people that practice certain
behaviors (e.g., breastfeeding). In many cases, however, due
to practical reasons, the data used to train such algorithms is
often unbalanced (unequal numbers in each class); in this case,
the smaller, minority class is often poorly predicted, although
the classification acccuracy and specificity could be quite good.
For example, in a diagnostic test where 99% of the patients are
negative and 1% are positive, a diagnostic algorithm could
trivially achieve 99% accuracy by simply predicting all patients
as negative, although the sensitivity in this case would be zero.
As mentioned previously, the proper balance between
sensitivity (true positive rate) and specificity (true negative
rate) is ultimately a subjective decision that depends on the
application objectives and relies on the ethical principles being
adopted.

Furthermore, when a model is going to be deployed in a
particular population, the model needs to be tuned to reflect the
prevalence of each class label in the specific population. For
example, if a model is trained using data from one geographic
region (north India), then the model may need to be modified in
order to apply it in another geographic region (e.g. south India).
Failure to tune the model to a specific population can result in
increased misclassification errors, which would confound the
ability to perform any analysis of bias or fairness.

There are several well-known approaches that are used for
correcting models given an unbalanced data set, which generally
depends on the type of model used. However, the most common
methods are summarized below:

• Resampling: If a data set is large, it may be possible to
randomly undersample the majority class without losing
significant information in order to produce equal class sizes.
However, when there is not an excess of data, a more
common approach is to oversample the minority class.
Popular algorithms, such as SMOTE (Chawla et al.,
2002) can be used to intelligently randomly synthesize
new data to grow the minority class without producing
overfitting. However, in the case of health applications, the
data is commonly comprised of questionnaire data and
medical record fields which may be binary [e.g. “Does
the patient have a fever? (YES/NO)”] and are difficult to
synthesize without producing overfitting.

• Ensemble methods: Two or more types of models can be
combined to produce a hybrid classifier that performs well
on the unbalanced data. Approaches include bagging
techniques (bootstrap aggregation), to reduce variance and
overfitting, and boosting methods, to reduce bias. Popular
ensemble methods include Adaboost and Extreme Gradient

Boost (Galar et al., 2011).While ensemblemethodsmaywork
well for challenging tasks such as cancer detection in
radiology, it is less preferred in diagnostic tasks due to a
lack of interpretability and increased complexity.

• Cost function and hyper-parameter tuning: a simpler
method that is popular for common types of machine
learning models is to tune the hyper-parameters or cost
function that is used for optimization in the training of the
model. The penalty for misclassifying a member of the
minority class can be increased by adjusting the class
weights, which is a standard practice in logistic regression.

• Combinations and variants of these methods also exist, such
as SMOTE-Boost (Chawla et al., 2003), which combines
Adaboost with intelligent oversampling.

When tuning the hyperparameters of a model, the proper
optimization criteria should be chosen in order to ensure that the
minority class is properly predicted. Instead of maximizing
classification accuracy,

Classification Accuracy � TP + TN
TP + TN + FP + FN

other criteria such as the F1 score can be chosen,

F1 � 2TP
2TP + FP + FN

which penalizes more heavily the cost of false negatives and false
positives (Raschka, 2014).

More recently, other measures, such as the Matthews
correlation coefficient (MCC) (Chicco and Jurman, 2020), are
also being used as a preferred optimization criteria for evaluating
binary classifiers when a class imbalance exists.

In addition to class imbalance, a model also generally needs to
be tuned to the specific population where it is being deployed. For
example, the prevalence of tuberculosis among hospital walk-in
patients is generally different than the prevalence of tuberculosis
in the surrounding community.

In probabilistic methods such as Bayesian Networks, the true
prevalence of each class is accounted by adjusting the Bayesian
priors. In logistic regression, however, the operating point can be
tuned by simply adjusting the zero-order term in the predictor
function as follows:

Given a logistic regression prediction model, Y,

Ŷ � β · Xi � β0 + β1x1 + β2x2 + β3x1 + etc.

We can modify β0 as follows to create a new modified
model Y*:

Ŷ
p � βp0 + β1x1 + β2x2 + β3x1 + etc.

Where

βp0 � β0 + log
π

1 − π
− log

π̂

1 − π̂

π � actual prevalence in the population
and π̂ � prevalence in the training data
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Bias
Defining Bias
Since computers are psychologically associated with pure
impartial logic, it was often thought that computers could be
an ideal solution to the human problem of discrimination and
prejudice in complex decisions. We now know, however, that
machine learning algorithms and the data used to train them are
generally a product of human design and can also be flawed.

The term bias has multiple definitions, depending on the
context; however in terms of algorithms, we can define bias as a
systematic error or an unexpected tendency to favor one outcome
over another (Mehrabi et al., 2019). The term bias is also used to
describe when an algorithm has an undesired dependence on a
specific attribute in the data that can be attributed to a
demographic group. An ideal unbiased algorithm should not be
dependent on any protected attributes of a patient, such as gender,
race, or religion. If algorithmic bias leads to unfavorable treatment
of one patient group vs. another, this bias can be judged to be
unfair, from a legal or ethical point of view.

While bias is related to fairness, it should be noted that
algorithmic bias is independent of ethics, and is simply a
mathematical and statistical consequence of an algorithm and its
data. If an algorithm is discovered to have bias, this bias can then be
judged against a set of ethical or legal principles to determine if
unfairness exists, and then the tuning of the machine learningmodel
can be adjusted to satisfy certain fairness constraints. The issue of
fairness is discussed in the next section of this paper.

While some researchers have identified more than 20 different
types of bias (Mehrabi et al., 2019), the various types of bias can be
more simply categorized as having implicit or explicit causes.
These causes may include problems with data sampling,
ideosyncracies of the algorithm, the design of the equipment
used to collect the data, or unexpected human behavior in the
data collection process. The most common form of bias is
sampling bias, resulting from the use of unbalanced or missing
training data that do not adequately reflect the actual proportions
found in the real world. A more challenging form of bias,
however, is implicit bias that is due to unforeseen correlations
between variables in a model. As a result, it is standard practice to
avoid patient data fields that may correlate with protected
attributes, such as a race, gender, or religion. For example,
machine learning algorithms should not explicitly discriminate
against low-income patients, but if the algorithm uses a patient’s
home address or postal code, this variable may also correlate with
the patient’s socioeconomic status and generate implicit bias with
respect to the patient’s socioeconomic status.

Examples of Bias in Machine Learning
The existence of systematic bias is well-known in the
bioinformatics field, and often occurs in the high-throughput
processing of microbiological specimens for testing (the so-called
“batch effect”), due to small systematic differences in the
machines or environmental conditions (Papiez et al., 2019).
The connection of bias to fairness attracted publicity in recent
years due to the discovery of systematic biases that can impact
specific demographic groups. A well-known example of machine
learning bias, publicized by Joy Boulamwini in 2017

(Buolamwini, 2017), was the performance of facial detection
algorithms when applied to people of different skin colors. It
was shown that facial detection models created by IBM and
Microsoft at the time performed surprisingly poorly (accuracy
<40%) when applied to dark-skinned women. Since race and
facial features are protected attributes, this problem raised the
issue of fairness; however the main cause was the image features
employed in the face detection algorithm. This algorithmic bias
could have been greatly reduced, for example, by increasing the
dynamic range of the image to reduce the contrast and including a
larger proportion of dark-skinned faces in the model training.

In another example from 2016, it was reported that computer
algorithms that process passport applications were rejecting some
Asian applicants because their passport photo was determined to
have their eyes closed (Regan, 2016). The algorithm trained on
Caucasian eyes was not able to properly process facial images
from Asian people and incorrectly rejected their photos.

While physical featuresmay be an obvious example of differences
that can produce bias, a more subtle issue is the problem of
unforeseen biases that result from cultural or socio-economic
factors that are endemic to a specific population. For example,
some researchers have used data from the famous Framingham
Heart study, which mainly included white males, to develop a
cardiovascular risk prediction algorithm for African-American
patients; and the result was not successful because the two
demographic groups have different risk factors and disease
etiology (Gijsberts et al., 2015). It cannot be generally assumed
that an algorithm trained with data from one demographic group
can be used to develop a prediction algorithm for another
demographic group. In practice, these problems may be difficult
to uncover when an algorithm is improperly advertised and the
training data for the algorithm are not disclosed to the public,
customers or the patients.

Mitigation of Bias
If bias is discovered in an algorithm, a variety of solutions are now
available to help mitigate and reduce the level of bias (Bellamy
et al., 2019). For algorithms that involve image processing or
signal processing, bias can often be mitigated by examining the
processing algorithm and changing the way the data is analyzed
and the way the features are extracted. Bias can also be addressed
at the data collection stage by adjusting the sampling process
(Kamiran and Calders, 2012; d’Alessandro et al., 2017) and
making sure that all classes are properly represented in the
training data. Algorithmic bias can also be addressed in the
prediction algorithm itself through the use of custom
regularization constraints or cost functions which determine
the relative “cost” of making an incorrect decision (Kamishima
et al., 2012) or adversarial learning algorithms can be used to
minimize the bias (Zhang et al., 2018). Bias can also be addressed
at the output stage by adjusting how certain outputs are labeled
(Hardt et al., 2016). Despite these emerging methods to mitigate
bias, the presence of bias in an algorithm often goes undetected.
Therefore, it is important, as standard practice, to develop
methods to test for bias at all stages of algorithm
development. A simple example of this process is presented as
a case study in this paper.
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It is also important to note that bias is not necessarily
problematic. As an example, a published study from Rwanda
(Fletcher et al., 2021) demonstrated how a computer algorithm
could help identify an infection in a surgical wound, just using a
color photograph of the wound. While the machine learning
algorithm was reasonably successful among dark-skinned
women, the same algorithm would likely perform poorly if
used with lighter skinned women in another country such as
Ethiopia or Mexico. However, this bias could be tolerated if used
exclusively for dark-skinned women. Therefore, even if bias exists
in an algorithm, it may still be acceptable to use such an algorithm
within a specific context, provided that the limitations and
appropriate use of the algorithm are properly declared,
disclosed, and documented.

Fairness
A major consideration of a decision-making algorithm is the
fairness of its decisions. Unlike bias, the fairness of a machine
learning model is judged against a set of legal or ethical principles,
which tends to vary depending on the local government and
culture. In addition to diagnostic prediction, machine learning
algorithms are now being applied to operational aspects of
health care delivery, such as decisions regarding admissions
and triage, as well as determining the cost of insurance
premiums that a patient should pay. All these applications
have the ability to produce unfair outcomes with respect to
demographic groups; therefore, it is necessary to have a
framework for quantitatively assessing the fairness of such
decisions. The following sections provide an overview of
different ways fairness can be defined and measured, to
enable the proper tuning of a machine learning algorithm.

Individual vs. Group Fairness
Given the dictionary definition of fairness (impartial and just
treatment), we can consider fairness at the level of an individual
or a group. We can ask whether a computer algorithm
disproportionately helps or harms specific individuals or
specific groups of people.

Ideally, an algorithm would be customized to an individual,
and fairness criteria could be satisfied by ensuring that the
algorithm provides similar treatment to individuals that share
similar characteristics. Mathematically, if it were possible to
describe an individual by a set of parameters in a multi-
dimensional space, then all individuals within the
neighborhood of the same parametric space would be treated
similarly and receive similar predictions from a machine learning
algorithm (Zemel et al., 2013). This type of fairness is known as
individual fairness and is a measure of consistency. This topic
remains an active area of research.

In practice, however, many countries contain laws that regulate
fairness and prevent discrimination in terms of specific
demographic groups, defined by race, gender or socioeconomic
status. Furthermore, from a biological perspective, we also know
that the prevalence of certain diseases tends to vary across different
racial and ethnic groups. (e.g., diabetes in the South Asian
population, or hypertension in the African-American
population). We also know that there exist significant

physiological variations across racial and ethnic groups (e.g.,
South Asian people have smaller average lung capacity than
Caucasian European people). In some cases, diagnostic tests use
a different criteria for different ethnic groups (e.g., the normalized
standards for spirometry used in pulmonary function testing); but
other types of machine learning models are applied equally across
multiple demographic groups. For these practical reasons, the
implementation of fairness metrics for machine learning is
generally described in terms of group fairness.

Quantifying Fairness
In general, a prediction algorithm can be in the form of a
continuous regression, such as in the case of estimating a
value for a given patient’s insurance premium, or the
algorithm can be in the form of a classifier with a binary
outcome, such as deciding whether or not to provide a specific
treatment to a patient. Fairness criteria can be applied to both
types of algorithms; however, for the purpose of simplicity, we
choose here to describe the case of binary classifiers.

Mathematically, we can describe a binary prediction algorithm,
denoted as Y, that will produce either a positive result Y � 1 or a
negative result Y � 0, based on a patient’s data denoted by X.
However, since the algorithm is not perfect, there will be times
when the algorithm can deny treatment to a patient who deserved
treatment (false negative) or can approve treatment for a patient
that did not need treatment (false positive). As described previously
(Figure 1), the relative ratio between these types of error can be
adjusted by a threshold or tuning hyper-parameter, λ, that can be
depicted graphically by the ROC curve.

When a prediction algorithm is developed for two different
demographic groups, designated as G � a and G � b, it is very
likely that the resulting ROC curve will be different for each group
(Figure 2). The difference in the ROC curves can be due to
possible differences in genetics, behavior, or environment caused
by ethnic, educational, or socioeconomic factors. When it is
necessary to implement a single algorithm for both groups, the
question of fairness arises when determining the optimum
operating point for the algorithm.

Definitions of Fairness
As illustrated in Figure 2, the ROC curves for the two demographic
groups will generally have different false positive rates and false
negative rates. While it is possible to define many different types of
fairness criteria in terms of probability or statistics (Barocas et al.,
2017; Kusner et al., 2017; Verma and Rubin, 2018), we describe here
the three most common definitions for fairness:

• Equal Outcomes, otherwise known as Demographic parity,
enforces that the outcome of an algorithm be equal for both
demographic groups. In this case, an algorithm must approve
treatment for the same rate of patients from Group A as from
Group B. The same (positive rate) fraction of shall be approved
from both groups.

Mathematically, this can be described as follows:

P(Ŷ � 1
∣∣∣∣G � a) � P(Ŷ � 1

∣∣∣∣G � b)
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This definition of fairness satisfies a mathematical criterion
known as independence:

Y⊥G

which enforces that the prediction algorithm Y is independent of
the protected attributes that define each group G. This definition
of fairness focuses on outcomes only, and ignores the error rates
and any disparity in the error rates.

• Equality of Opportunity takes into account the error in
classification, and enforces that the true positive rates are
equal for both groups. This ensures that the positive
outcomes from both groups have the same fraction of
misclassification errors. Since true positive rate is also
known as the sensitivity, this condition of fairness
requires that both groups have the same level of
sensitivity, which corresponds to a horizontal line on
the ROC curve (Figure 2).

Mathematically, this can be described as follows:

P(Ŷ � 1
∣∣∣∣Y � 1, G � a) � P(Ŷ � 1

∣∣∣∣Y � 1, G � b)

Equality of opportunity satisfies a mathematical criterion
known as separation:

Ŷ⊥G
∣∣∣∣Y

This definition of fairness ensures that the same fraction of
patients in each group will receive correct positive test results, but
it ignores any disparity in the negative error rates.

• Equality of odds requires that both the positive error rates
and the negative error rates be equal across both groups.
This is equivalent to stating that the sensitivity of both
groups are equal and the specificity of both groups are also
equal. This corresponds to the point where the ROC curve
from Group A intersects the ROC curve from Group B
(Figure 2).

Mathematically, this can be described as follows:

P{Ŷ � 1
∣∣∣∣Y � y, G � a} � P{Ŷ � 1

∣∣∣∣Y � y, G � b}, y ∈ {0, 1}
If calibrated, this definition of fairness satisfies a mathematical

criterion known as sufficiency:

Y⊥G
∣∣∣∣Ŷ

This definition of fairness balances both the positive and
negative error rates across both groups, but generally results in
a lower overall classification accuracy.

The definition of fairness that is adopted depends on the
local circumstances and the applicable legal and ethical
principles. For example, in the case of an algorithm that
decides college admissions, we may want an algorithm that
produces equal numbers of admitted students from each
demographic group, thus preserving demographic parity.

In the case of algorithms that determine the success of loan
applications, perhaps we may prefer to focus on the fraction
of successful loan applicants from each demographic group,
thus enforcing equality of opportunity. In the case of medical
diagnostic tests, the equality of odds criterion is often chosen,
since we want the test to perform equally well on individuals
from each demographic group, even though the number of
individuals testing positive will differ.

Furthermore, it can be shown that it is not possible
mathematically to satisfy all the three fairness criteria
described above, unless both groups have equal prevalence
rates or the algorithm has perfect accuracy (Kleinberg et al.,
2016; Miconi, 2017). While the equality of odds is perhaps the
most popular choice in the medical context, if the resulting
accuracy is too low, it may be preferable to construct separate
models for each group. It is also important to note that in some
cases, demographic parity or other definitions of fairness may
be mandated by law (e.g., the notion of equal protection).
When developing an algorithm for a specific country or
location, it is thus important to investigate the local laws
and include the opinions of key stakeholders in the design
process.

Preparing a Model for Deployment
The long-term adoption of any new technology in a global
health setting is challenging and depends on many factors.
However, the three criteria described above will help to ensure
that a machine learning model will be better accepted by the
local community and clinical staff. Since the training and
tuning of a machine learning model can vary widely, it is
possible that future use of machine learning in medicine may
additionally require some disclosure on the part of the
developers to state the conditions over which a model is
valid, and to disclose possible applications or situations
where a given model should not be used. At present, the
regulatory framework for algorithms in medicine remains
undeveloped.

To serve as a simple guide for researchers working in global
health in LMICs, it is possible to summarize the previous
discussion into a workflow diagram that describes the
additional analysis and tuning that should be applied to a
machine learning model before it is deployed. Figure 3
represents a version of this workflow diagram.

A CASE STUDY: PULMONARY DISEASE
SCREENING IN INDIA

In section, we present a case study in which we describe the use of
machine learning applied to the problem of pulmonary disease
screening, and we illustrate how the aspects of bias, fairness, and
appropriate use can be addressed.

Clinical Study Description
A study was conducted to develop and test a set of algorithms
to predict several different pulmonary diseases. In LMIC

Frontiers in Artificial Intelligence | www.frontiersin.org April 2021 | Volume 3 | Article 5618028

Fletcher et al. AI Fairness, Bias, and Appropriate Use

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


countries, such as India, the burden of pulmonary disease is very
high, with chronic diseases such as COPD being a second leading
cause of death, and asthma representing a major cause of disability.
The medical care in rural India suffers from a low doctor-patient
ration of 1:1700 and includes many forms of non-allopathic
medicine, which results in relatively high levels of underdiagnosis
and misdiagnosis (Reddy et al., 2011). In order to address this need,
machine learning algorithms were developed to help increase the
capacity of GP doctors to better diagnose pulmonary diseases, using
a simple set of diagnostic tools (stethoscope, peak flow meter, and
smart phone questionnaire). The data used for algorithm
development were collected as part of an IRB approved clinical
study conducted by MIT and the Chest Research Foundation in
Pune, India. The 320 study subjects ranged in age from 18 to 73 and
included 87 healthy controls (Chamberlain, 2016).

The total number of study subjects for each pulmonary disease
was as follows:

• 26 AR Patients
• 48 Asthma Patients
• 54 Asthma + AR Patients
• 36 COPD Patients
• 11 COPD + AR Patients
• 87 Healthy controls
• 41 Other Patients

Despite efforts made to recruit equal numbers of women and
men, the data set was slightly unbalanced with respect to gender,
resulting in 171 male and 132 female patients.

Machine learning models were developed to help predict the
individual risk of several pulmonary diseases, including Asthma,
COPD, and Allergic Rhinitis. In order to provide proper diagnostic
labels and training data for the machine learning algorithm,
every subject in the study was also administered a complete
battery of pulmonary function tests (PFT), which included
spirometry, body plethysmography, impulse oscillometry (IOS),
and lung gas diffusion testing (DLCO). Based upon these tests, an
informed diagnosis was given to each patient by an experienced
chest physician.

Model Development and Considerations for
Appropriateness
Problem Definition
In order to properly develop and train our machine learning
model it was important at the outset to identify the exact
purpose of the model. In this case, we decided to focus first
on developing a machine learning model for the purpose of
decision support, to help general practitioner (GP) doctors who
do not have significant experience diagnosing pulmonary
diseases. With this goal in mind, it was appropriate that we
use a model that is highly interpretable and that we tune our
model to match the prevalence of diseases encountered at a
typical local GP clinic.

Model Selection and Baseline Implementation
Given our need for interpretability, we elected to use logistic
regression supervised learning for the study. Logistic regression

FIGURE 3 | Workflow diagram showing steps required to examine a model for bias, fairness and appropriate use before deployment.
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enables a simple coefficient analysis to be generated that helps
explain the relative weight and contribution of each feature in the
model. For the purpose of this paper, the included features of the
machine learningmodel were the questionnaire and the peak flow
meter data. The questionnaire data were treated as binary
variables and the peak flow meter data were normalized to the
population normal and then converted to binary variables by
dividing the reading into ranges (high, medium, and low).

A baseline logistic regression model was implemented using the
Python Scikit-learnmodule, with L2 regularization. Approximately
80% of the data was used for training, and 20% of the data was
reserved for testing. A separate model was created for each disease
(Asthma, COPD, and Allergic Rhinitis (AR)). Since some patients
had comorbid conditions (e.g., Asthma + AR, or COPD + AR), the
training data for each model included only patients that had a
single disease (e.g., Asthma only, COPD only, and AR only). This
training methodology produced the highest accuracy as measured
by AUC (area under the ROC curve).

Model Tuning and Correcting for Unbalanced Data
For each of the models we created, we tuned the logistic
regression C-parameter by using the grid_search function in
the Python logistic regression module, using the AUC as the
optimization parameter. In order to correct for the unbalanced
data, a second tuning step was then performed using the
class_weights parameter in the Python logistic regression
module to adjust the weights in the training data with higher
weight given to the minority class. The F1 score was used for
optimization in this step.

The resulting approximate median accuracy of the three
models (COPD, Asthma, AR) had AUC values of 85, 75, and
95%, respectively.

Using these trained models, we then proceeded to analyze
these models for bias as described below.

Bias Analysis
General Considerations and Methodology
Using the previously trained and tuned models for each
pulmonary disease, we then tested for the existence of bias
with respect to gender and Socio-economic Status (SES). We
examined two forms of bias, described below:

• Systematic bias: We first tested for systematic bias by
creating two equal-size homogenous test groups (e.g., all
male and all female) and then testing the AUC accuracy for
each demographic group. We also observed the qualitative
shape of the ROC curve for each demographic group.

• Sampling bias: To test for sampling bias, we kept the test set
constant, but varied the training set. We created several
training sets having different proportions of each
demographic group, and then we checked to see if the
mean accuracy and variance of the model had any
dependence on the composition of the training set.

While logistic regression is a deterministic process, it is
important to note that the performance of the model will

generally change as the members of the training set are
changed. Since the members of the training data set are
randomly assigned, this produces a variance in the
performance of the model every time that we conduct a new
training. As a result, there is a stochastic component to the model
accuracy due to these random variations in the training data,
which needs to be considered (Deitterich, 1995).

In our analysis, in order to minimize the stochastic variation,
and focus on the error due to bias, each bias testing configuration
was run for 1,000 iterations and the mean accuracy of each model
was calculated as well as mean of the resulting regression
coefficients. The variation of the model output was recorded
in the form of the inter-quartile range (IQR). (The variance was
not used since the distribution is not Gaussian.)

Gender Bias Analysis
As described above, the systematic bias was examined by testing
the accuracy of the model using equal size homogenous training
sets, and the resulting ROC curves are shown in Figure 4. From
the plots we can immediately see qualitative differences between
the male and female ROC curves for COPD, indicating a
statistically significant gender bias, with higher accuracy for
women (AUC � 93.6%) than men (AUC � 88.5%). The
models for Asthma and AR, however, did not exhibit any
significant gender bias.

In order to test if this bias was due to sampling, we created
four separate test sets, each of size N � 104, but having different
proportions of males and females: 50% female, 37.5% female,
25% female, and 12.5% female. For each iteration of the model,
a different set of patients were randomly selected to be part of
this N � 104 training set. For all iterations, the same held-out
test set (N � 160) was used, consisting of N � 80 males and N �
80 females. The respective data partitions for each experiment
are shown graphically in Figure 5, and the results of 1,000
iterations of this analysis are shown in Figure 6 for the three
disease models.

From the plots in Figure 6, we can see that the accuracy of
all three models did not change significantly as a function of
the proportion of women in the training set. This indicates that
sampling bias is not a significant concern for these models.

However, the results do show that there is a significant
systematic diagnostic gender bias between males and females
for COPD, and a small systematic bias for AR. For Asthma
the model performs equally well for both male and female
patients.

The plots of IQR reveal that there is significant variability in
the COPD and Asthma patients, with the female patients having
the highest variability for COPD and the male patients having the
highest variability for Asthma. For AR, there was low variability
for both males and females.

Socio-Economic Status Bias
In order to explore potential socio-economic bias, a similar
methodology was used to partition the data using pools of
patients having low-SES and high-SES.

For exploring systematic bias, the ROC curves were plotted
for homogenous pools of patients (high-SES vs. low-SES), and
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the results are shown in Figure 7. Asthma and AR did not
exhibit any significant bias; however, COPD exhibited some
systematic bias, with the high-SES group having higher
accuracy.

We then proceeded to examine the presence of bias due to
sampling by creating a held-out test set of 58 patients consisting
of equal proportion of high-SES and low-SES. From the
remaining 245 patients, we created four different pools of
training data having different proportions of low-SES and

high-SES: 50% low-SES, 37.5% low-SES, 25% low-SES, and
12.5% low-SES. For each iteration of the analysis, a different
set of patients outside the test set would be randomly selected to
be part of the N � 140 training set. One thousand iterations of
models were computed and the median and IQR variation was
recorded. The data partitioning for each experiment are shown
graphically in Figure 8, and the results of 1,000 iterations of this
analysis are shown in Figure 9.

Looking at the results in Figure 7, we can see that the ROC
curves for the low-SES and high-SES groups are qualitatively
similar for all diseases. However, we do see that for COPD, the
AUC value is moderately higher for high-SES compared to
low-SES.

In the sampling bias analysis (Figure 9), we can see that the
accuracy remains fairly consistent for each disease as the
proportion of low-SES patients is varied, which indicates that
sampling in the training set is not a cause of bias. In the variability
plots, however, we observed that the AUC for Allergic Rhinitis
(AR) has increased variability as the proportion of low-SES
patients is reduced.

Discussion and Investigation of Bias Results
Although the machine learning model exhibited no significant
bias for the Asthma and AR disease models, a significant
diagnostic bias was noted for the COPD in terms of gender
and also for socio-economic status (SES). Since this bias
persists even when the training data is equally divided
among demographic groups, we know that this is not due
to sampling bias in the training data. What then is the cause of
this bias?

FIGURE 4 | ROC curves for the disease models corresponding to COPD, Asthma and AR as a function of Gender.

FIGURE 5 |Data partitions used for Gender Bias analysis. The size of the
test set and the size of the training set were kept constant, but the proportion
of males and females was varied in the training set.
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In order to explore this further, we then explored the various
risk factors for COPD and examined if any of these factors could
be dependent on demographic group. It is well-known that one
of the greatest risk factors for COPD is smoking cigarettes (a
cause of emphysema that contributes to COPD), which is not
true of Asthma. This was also confirmed by performing a
coefficient analysis on the logistic regression model and
noting that the coefficient value of the smoking variable was
relatively large.

Upon further analysis of the patient data, it was discovered
that the smoking behavior between men and women was
indeed quite different. As shown in Figure 10,
approximately 55% of men smoked cigarettes, whereas none
of the female subjects used cigarettes. From this observation,
we can hypothesize that the gender bias in the algorithms are
primarily due to the large disparity in the smoking status
between men and women. Other features did not show any
significant gender disparity.

FIGURE 6 | Plots of AUC Accuracy (left) and InterQuartile range (right) results of Gender bias analysis for three different disease diagnostic models: (top) COPD;
(middle) Asthma; and (bottom) Allergic Rhinitis (AR). The three colored lines in each plot represent the AUC accuracy for all groups, male only, and female only,
respectively. The horizontal axis represents the proportion of males in the training set, ranging from 50to 100%.
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The smoking data also helps explain why the model accuracy
is higher for women compared to men. Since none of the female
patients smoke cigarettes, there is less variance in the features of
the female patient population, and thus the model is better able to
predict COPD and achieve a higher accuracy.

Regarding the SES bias analysis in the COPD model, we also
investigated how the smoking behavior differs for the two groups
(Figure 11), and we discovered that the high-SES group is
predominantly comprised of non-smokers, whereas the low-

SES group is roughly evenly divided between smokers and
non-smokers. Based on this observation, we can also
hypothesize that the small disparity in the accuracy between
high-SES and low-SES patients is primarily due to the disparity in
the smoking prevalence among these patients’ groups. As with the
case of the female patients in the gender bias analysis, we can also
see that the COPD model produces a higher accuracy among
high-SES patients, mostly likely because this patient group is
more homogeneous in terms of smoking status.

This bias analysis suggests that it could be better to stratify the
patients, and deploy a separate COPDmodel for women vs. men,
or perhaps a separate model for smokers vs. non-smokers.
However, in our case, we were not allowed to deploy a
different model for women vs. men, so a single model had
to be used. While a separate model for smokers was not useful
in our case, there are other applications, such as predicting
health insurance premiums, where smokers could be treated as
a separate group. Rather than charging a higher insurance
premium to all males, it would be possible to specifically
identify the smoking behavior and only penalize patients
who have that behavior.

Another result worth noting is the stability of the AR disease
model as a function of SES. We notice in Figure 9 that the
IQR variability of the model increases significantly if the
proportion of low-SES patients is reduced. This demonstrates
that the AR disease model benefits from having more diverse
representation from all SES groups.

Fairness Considerations
Understanding Bias to Improve Fairness
As shown in Figure 2, our COPD prediction model produced
qualitatively different ROC curves for males vs. females, and a

FIGURE 7 | ROC curves for the disease models corresponding to COPD, Asthma and AR as a function of socio-economic status.

FIGURE 8 | Data partitions used for Socio-Economic (SES) bias
analysis. The size of the test set and the size of the training set were kept
constant, but the proportion of low-SES vs high-SES was varied in the
training set.
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similar but less significant bias was found for COPD with respect
to the patient SES. Without addressing these biases, our COPD
prediction model could produce problems of unfairness.

As discussed above, the cause of bias in this case is due to the
inherent properties of the patients themselves (i.e., smoking
behavior) and therefore, cannot be mitigated. In order to
enforce fairness in the presence of bias, we needed to
choose a definition of fairness that we could enforce in the
algorithm. As discussed in Definitions of Fairness section, we
chose the equality of odds fairness criteria, and we tuned the
threshold of the model to the point where the ROC curve for

males intersects with the ROC curve for females. This change
created a slight reduction in the classification accuracy for
females but produced equal results for both genders, with a
classification accuracy of approximately 89.2%. This change
also produced similar results for the two SES demographic
groups in the COPD model.

Final Tuning for Model Deployment
The final step in our machine learning model development was
to adjusting the baseline probability in each of our models to
match the prevalence in the target population. For

FIGURE 9 | Plots of AUC Accuracy (left) and InterQuartile Range (right) results of Socio-economic (SES) bias analysis for three different disease diagnostic
models: (top) COPD; (middle) Asthma; and (bottom) Allergic Rhinitis (AR). The three colored lines in each plot represent the AUC accuracy for: all groups, High-SES
only, and Low-SES only, respectively. The horizontal axis represents the proportion of high-SES patients in the training set, ranging from 50to 100%.
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implementing our model in the clinical setting, it was necessary
to know the prevalence of each of the disease categories that is
observed in the clinic. Since this data is not generally published
anywhere, we recorded the diagnosis of 200 consecutive patients
at the main clinic, and we used this data to estimate the
prevalence for each model. Adjustment to the logistic
regression zero-order coefficient was made as discussed in
Bias section above.

The final version of the model was then incorporated into an
Android mobile application for use by the local GP doctors. A
description of a similar mobile application for general use has
been published previously (Anand et al., 2018).

CONCLUSION AND RECOMMENDATIONS

Machine Learning Challenges in
Global Health
The introduction and case study presented in this paper are
focused on the issues of Fairness, Bias and Appropriateness.
These issues are not unique to LMICs, but are particularly
important in developing countries, where there may not exist
a legal framework to regulate machine learning or enforcement to
prevent discrimination between different demographic groups.

The astounding economic disparities that exist in many
developing countries also present severe challenges in
maintaining fair access and benefit from these technologies.

Technology infrastructure, such as electronic medical records
(EMR), can facilitate the adoption of machine learning and AI,
but it also introduces risks. A recent study in the United States
found that machine learning algorithms that rely on electronic
health care data tend to discriminate against poor and
minority populations that cannot afford frequent and
continuous medical care (Obermeyer et al., 2019). Mobile
phones now present an interesting opportunity to bring
artificial intelligence to new segments of the world’s
population, through the use of consumer-facing mobile
apps and tools for community health care workers;
however, these new platforms will also introduce new risks
for misuse and health disparities.

It is also important to note that in addition to issues of
Fairness, Bias and Appropriateness, global health certainly
faces many additional challenges that need to be considered in
the process of adopting AI and machine learning. While the need
is very great, other issues of technical capacity, education, public
perception, and cultural sensitivity need to be addressed
simultaneously as this technology evolves (Paul and Schaefer,
2020).

FIGURE 11 | The number of smokers and non-smokers in the each Socio-economic status (SES) group.

FIGURE 10 | The number of smokers and non-smokers in the each gender group.
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Recommendations for Fairness, Bias,
and Appropriate Use
In summary, it is evident that the processes we encounter in global
health (e.g., disease, and human behavior) are complex and can often
include hidden variables. Machine learning analysis generally requires
creating crude approximations to these processes, whichmust be done
carefully and with the proper domain expertise, in order to avoid
introducing errors and false conclusions. Keeping in mind the
preceding discussion, we can formulate a set of basic
recommendations that can be used as guidelines for applying
artificial intelligence and machine learning in the context of global
health:

(1) Question appropriate use: Machine learning models are
designed to answer specific questions. However, since
many health care decisions can have unintended
consequences, it is always important to review if we are
posing the right question. As the use of machine learning and
AI is extended beyond diagnostic tools into questions related
to health care access, medical triage, and insurance coverage,
it is also important to remember that no decision-making
tool is perfect, and that certain important decisions should
perhaps be reserved for humans and not machines.

(2) Maintain transparency for critical decisions: As the
complexity of machine learning models continues to
increase, and new models are invented (e.g., deep neural
nets), the ability to explain the decision of a computer may
become increasingly challenging. The use of “black box”
models is useful in certain cases but not others. For
decisions that involve human input, such as patient
diagnosis, it is recommended to use interpretable models
that will enable review and consensus from human staff.

(3) Enforce transparency in data and algorithms: Algorithms are
not universal, and are only valid when used properly. Algorithms
are critically dependent on the specific training data that was used
for development, as well as the optimization criteria used to tune
the model. In order to avoid problems with fairness, it is
important that this information be disclosed to organizations
and patients that will be using the model. The government
regulation of algorithms is in a very early stage, but it is
perhaps inevitable that some type of regulation will be put in
place, in a manner analogous to the FDA regulation of
pharmaceuticals; “off-label” uses of an algorithm can produce
unexpected or unfair results and should be avoided.

(4) Address and Respect Bias: Bias should be examined at each
level of the computation, and the individual features used in the
training data should themselves be examined for bias. While the
bias found in other application domains of machine learning
(finance, employment, law enforcement, etc.) may often be due to
sampling bias or implicit cultural bias, the domain of health also
contains true systematic bias inherent in biological processes which
may not be possible to mitigate or “repair.” In the domain of
health, there are true genetic differences across different races and
ethnic groupswhich affect disease prevalence, and these differences
cannot (and shouldnot) be ignored. If it is revealed that a particular
algorithm consistently produces very different results for one

patient group vs. another, it is generally best to design a
separate algorithm for each group rather than try to create a
universal algorithm that will likely perform poorly on both groups.

(5) Agree on a Fairness Metric: Since Fairness can be defined in
multiple ways, it is important in each case, to decidewhich fairness
metric will be applied and agree on the criteria that are being
optimized. It is important to recognize that this step involvesmuch
more than technical expertise, and requires the participation of all
stakeholders, including the individual groups that may be
impacted by the use of the algorithm. While individual fairness
is a good ideal,most laws arewrittenwith respect to group fairness,
and thus when machine learning decisions are applied across
multiple groups, it should be recognized that trade-offs and
compromises will often need to be made, to reconcile how the
benefit and the risk will be shared across all groups.

In this paper, we have presented some important considerations
and guidelines that should be examined whenever machine
learning is being applied to health applications in all phases of
the project lifecycle. The use of artificial intelligence and machine
learning to health can bring enormous benefits, but this domain is
complex, and such algorithms should be designed with the proper
considerations and domain expertise required to ensure that the
ultimate goals of applying the algorithms are safely met without
creating any harm to all parties involved.
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