
Algorithmic Probability-Guided
Machine Learning on
Non-Differentiable Spaces
Santiago Hernández-Orozco1,2, Hector Zenil 2,3,4,5*, Jürgen Riedel2,4, Adam Uccello4,
Narsis A. Kiani3,4 and Jesper Tegnér5*

1Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2Oxford Immune Algorithmics, Oxford,
United Kingdom, 3Algorithmic Dynamics Lab, Unit of Computational Medicine, Karolinska Institutet, Solna, Sweden, 4Algorithmic
Nature Group, LABORES, Paris, France, 5King Abdullah University of Science and Technology (KAUST), Computer, Electrical and
Mathematical Sciences and Engineering, Thuwal, Saudi Arabia

We show how complexity theory can be introduced in machine learning to help bring
together apparently disparate areas of current research. We show that this model-driven
approach may require less training data and can potentially be more generalizable as it
shows greater resilience to random attacks. In an algorithmic space the order of its element
is given by its algorithmic probability, which arises naturally from computable processes.
We investigate the shape of a discrete algorithmic space when performing regression or
classification using a loss function parametrized by algorithmic complexity, demonstrating
that the property of differentiation is not required to achieve results similar to those
obtained using differentiable programming approaches such as deep learning. In doing so
we use examples which enable the two approaches to be compared (small, given the
computational power required for estimations of algorithmic complexity). We find and
report that 1) machine learning can successfully be performed on a non-smooth surface
using algorithmic complexity; 2) that solutions can be found using an algorithmic-
probability classifier, establishing a bridge between a fundamentally discrete theory of
computability and a fundamentally continuous mathematical theory of optimization
methods; 3) a formulation of an algorithmically directed search technique in non-
smooth manifolds can be defined and conducted; 4) exploitation techniques and
numerical methods for algorithmic search to navigate these discrete non-differentiable
spaces can be performed; in application of the (a) identification of generative rules from
data observations; (b) solutions to image classification problems more resilient against
pixel attacks compared to neural networks; (c) identification of equation parameters from a
small data-set in the presence of noise in continuous ODE system problem, (d)
classification of Boolean NK networks by (1) network topology, (2) underlying Boolean
function, and (3) number of incoming edges.

Keywords: algorithmic causality, generative mechanisms, program synthesis, non-differentiable machine learning,
explainable AI

Edited by:
Huajin Tang,

Zhejiang University, China

Reviewed by:
Lijun Zhang,

Nanjing University, China
Guodong Shi,

The University of Sydney, Australia

*Correspondence:
Hector Zenil

hector.zenil@cs.ox.ac.uk
Jesper Tegnér

jesper.tegner@ki.se

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence,

a section of the journal
Frontiers in Artificial Intelligence

Received: 29 May 2020
Accepted: 19 November 2020
Published: 25 January 2021

Citation:
Hernández-Orozco S, Zenil H, Riedel J,

Uccello A, Kiani NA and Tegnér J
(2021) Algorithmic Probability-Guided

Machine Learning on Non-
Differentiable Spaces.

Front. Artif. Intell. 3:567356.
doi: 10.3389/frai.2020.567356

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673561

ORIGINAL RESEARCH
published: 25 January 2021

doi: 10.3389/frai.2020.567356

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2020.567356&domain=pdf&date_stamp=2021-01-25
https://www.frontiersin.org/articles/10.3389/frai.2020.567356/full
https://www.frontiersin.org/articles/10.3389/frai.2020.567356/full
https://www.frontiersin.org/articles/10.3389/frai.2020.567356/full
http://creativecommons.org/licenses/by/4.0/
mailto:hector.zenil@cs.ox.ac.uk
mailto:jesper.tegner@ki.se
https://doi.org/10.3389/frai.2020.567356
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2020.567356

1 INTRODUCTION

Given a labeled data-set, a loss function is a mathematical
construct that assigns a numerical value to the discrepancy
between a predicted model-based outcome and its real
outcome. A cost function aggregates all losses incurred into a
single numerical value that, in simple terms, evaluates how close
the model is to the real data. The goal of minimizing an
appropriately formulated cost function is ubiquitous and
central to any machine learning algorithm. The main heuristic
behind most training algorithms is that fitting a sufficiently
representative training set will result in a model that will
capture the structure behind the elements of the target set,
where a model is fitted to a set when the absolute minimum
of the cost function is reached.

The algorithmic loss function that we introduce is designed to
quantify the discrepancy between an inferred program
(effectively a computable model of the data) and the data.

Algorithmic complexity (Solomonoff, 1964; Kolmogorov,
1965; Chaitin, 1969), along with its associated complexity
function K, is the accepted mathematical definition of
randomness. Here, we adopt algorithmic randomness—with its
connection to algorithmic probability—to formulate a universal
search method for exploring non-entropy-based loss/cost
functions in application to AI, and to supervised learning in
particular. We exploit novel numerical approximation methods
based on algorithmic randomness to navigate undifferentiable
problem representations capable of implementing and comparing
local estimations of algorithmic complexity, as a generalization of
particular entropy-based cases, such as those rooted in cross
entropy or KL divergence, among others. The property of
universality is inherited from the universal distribution (Levin,
1974; Solomonoff, 1986; Hutter, 2001).

Given a Turing-complete language L, the algorithmic
complexity KL of a computable object x is defined as the
length of the shortest computer program p, written in the
language L, that produces x as its output: KL(x) � minp{

∣∣∣∣p∣∣∣∣ :
L(p) � x}, where ∣∣∣∣p∣∣∣∣ denotes the length of the program p in its
written form. Given the existence of a translator (compiler)
between binary Turing-complete languages, the Invariance
theorem (Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1969)
guarantees that the choice of computer language L has only an
impact bounded by a constant. Formally, the Invariance theorem
states that for any two binary Turing complete languages L, L′, we
have that KL(x) � K(x)L′ + O(1) or KL′(x) � K(x)L + O(1). For
this reason, the underlying language L is omitted, defining an
universal algorithmic complexity function

K(x) � minp{∣∣∣∣p∣∣∣∣ : L(p) � x},
where L is any Turing-complete binary language L. A binary
language is any that is expressed using a binary alphabet1. In
simpler terms, K(x) measures the minimum amount of
information needed to define the computable x, with an error

bounded by a constant when using different computing
languages. The conditional algorithmic complexity K(x|y) is
defined as the length of the smallest program that produces x
as an output given y as an input:

K(x|y) � minp{∣∣∣∣p∣∣∣∣ : p(y) � x}.
The previous definition can be understood as the amount of

information needed to define x given y.
In (Zenil, 2011; Delahaye & Zenil, 2012) and (Soler-Toscano

et al., 2014; Zenil et al., 2018), a family of numerical methods was
introduced for computing lower bounds of non-conditional
algorithmic complexity using algorithmic probability under
assumptions of optimality and for a universal reference
enumeration.

The algorithmic probability (Solomonoff, 1964; Levin, 1974)
of an object x is the probability AP of a binary computer program
p producing x by chance (i.e. considering that keystrokes are
binary instructions) running on a Turing-complete computer
language L and halting. That is,

AP(x) :� ∑
p:L(p)�x

1∣∣∣∣p∣∣∣∣ ∼ K(x).

Solomonoff (Solomonoff, 1960) and Levin (Levin, 1974) show
that the concept of Algorithmic Probability (also known as
Solomonoff induction) used in a Bayesian context with the
Universal Distribution as a prior is an optimal inference
method (Hutter et al., 2007) under a computability
assumption and that any other inference method is either a
special case less powerful than AP, or indeed is AP itself.
Algorithmic probability is related to algorithmic complexity by
the so-called Coding theorem: K(x) ∼ − log2AP(s).

The Coding theorem (Delahaye and Zenil, 2012; Soler-
Toscano et al., 2014) and Block Decomposition methods
(Zenil et al., 2018) provide a procedure to navigate the space
of computable models matching a piece of data, allowing the
identification of sets of programs sufficient to reproduce the data
regardless of its length, and thus relaxing the minimal length
requirement. In conjunction with classical information theory,
these techniques constitute a hybrid, divide-and-conquer
approach to universal pattern matching, combining the best of
both worlds in a hybridmeasure (BDM). The divide-and-conquer
approach entails the use of an unbiased library of computable
models, each capturing small segments of the data. These explore
and build an unbiased library of computable models that can
explain small segments of a larger piece of data, the conjoined
sequence of which can reproduce the whole and constitute a
computable model–as a generalization of statistical approaches
typically used in current approaches to machine learning.

Interestingly, the use of algorithmic probability and
information theory to define AI algorithms has theoretically
been proposed before (Solomonoff, 1986; Hutter, 2001;
Solomonoff, 2003). Yet, it has received limited attention in
practice compared to other less powerful but more accessible
techniques, due to the theoretical barrier that has prevented
researchers from exploring the subject further. However, in
one of his latest interviews, if not the last one, Marvin Minsky

1All modern computing languages process this property, given that they are stored
and interpreted by binary systems.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673562

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

suggested that the most important direction for AI was actually
the study and introduction of Algorithmic Probability (Minsky,
2014).

2 AN ALGORITHMIC PROBABILITY LOSS
FUNCTION

The main task of a loss function is to measure the discrepancy
between a value predicted by the model and the actual value as
specified by the training data set. In most currently used machine
learning paradigms this discrepancy is measured in terms of the
differences between numerical values, and in case of cross-
entropy loss, between predicted probabilities. Algorithmic
information theory offers us another option for measuring this
discrepancy–in terms of the algorithmic distance or information
deficit between the predicted output of the model and the real
value, which can be expressed by the following definition:

Definition 1. For computable y and ŷ, let y be the real value and
ŷ the predicted value of a mode. The algorithmic loss function La
is defined as La(y, ŷ) � K(y∣∣∣∣ŷ). It can be interpreted as the loss
incurred by the model at data sample (xi, yi), and is defined as the
information deficit between the real value with respect to the
predicted value.

There is a strong theoretical argument to justify the Def. 1. Let
us recall that given a set X � 〈xi, yi〉, a computable model M for
the set aims to capture, as well as possible, the underlying rules or
mechanics that associate each input xi with its output yi.
Assuming computable underlying mechanics, algorithmic
probability states that the most probable computable model
for the observations has low algorithmic complexity.

Let us assume a prefix-free universal Turing machine and
denote by M* the function that minimizes K(M) such that for
every pair in X we have that M*(xi) � yi and call this an ideal
model. Note that K(M*) is upper bounded by a program Q such
that, given xi and a model M for X, computes ŷi � M(xi). Now,
there exists a program qi such that qi(ŷi) � yi and

∣∣∣∣qi∣∣∣∣ � K(yi
∣∣∣∣ŷi);

let Q call this program on ŷi. Follows that, for all (xi, yi) ∈ M, we
have that Q(xi) � yi and

K(Mp)≤K(Q)≤∑
i

qi + K(M) + O(1)

� ∑
i

K(yi∣∣∣∣ŷi) + K(M) + O(1).

Thus, by minimizing the algorithmic loss function over the
samples, along with the algorithmic complexity ofM itself, we are
approaching the ideal model M*.

An algorithmic cost function must be defined as a function
that aggregates the algorithmic loss incurred over a supervised
data sample. At this moment, we do not have any reason,
theoretical or otherwise, to propose any particular loss
aggregation strategy. As we will show in subsequent sections,
considerations such as continuity, smoothness and
differentiability of the cost function are not applicable to the
algorithmic cost function. We conjecture that any aggregation
technique that correctly and uniformly weights the loss incurred

through all the samples will be equivalent, the only relevant
considerations being training efficiency and the statistical
properties of the data. However, in order to remain congruent
with the most widely used cost functions, we will, for the purpose
of illustration, use the sum of the squared algorithmic differences

Ja(X̂,M) � ∑
(xi ,yi)∈ X̂

K(yi∣∣∣∣M(xi))2.

3 CATEGORICAL ALGORITHMIC
PROBABILITY CLASSIFICATION

One of the main fields of application for automated learning is the
classification of objects. These classification tasks are often
divided into supervised and unsupervised problems. In its
most basic form, a supervised classification task can be
defined, given a set of objects X � {x1, . . . , xi, . . . , xn} and a set
of finite categories C � {c1, . . . , cj, . . . , cm}, as that of finding a
computable function or modelM : X→C such thatM(xj) � cj if
and only if xi belongs to cj. In this section we apply our hybrid
machine learning approach to supervised classification tasks.

Now, it is important to note that it is not constructive to apply
the algorithmic loss function (Def. 1) to the abstract
representations of classes that are commonly used in machine
learning classifiers. For instance, the output of a softmax function
is a vector of probabilities that represent how likely it is for an
object to belong to each of the classes (Bishop & et al., 1995),
which is then assigned to a one-hot vector that represents the
class. However, the integer that such a one-hot vector signifies is
an abstract representation of the class that was arbitrarily
assigned, and therefore has little to no algorithmic information
pertaining to the class.

Accordingly, in order to apply the algorithmic loss function to
classification tasks, we need to seek a model that outputs an
information rich object that can be used to identify the class
regardless of the context within which the problem was defined.
In other words, the model must output the class itself or a similar
enough object that identifies it.

We can find the needed output in the definition of the
classification problem: let us define a class cj as the set
cj � {xi : (xi, yj) ∈ X}. In other words, we define a class as the
set of all elements that belong to it. We can say that finding any
underlying regularities to characterize the class in a more succinct
way is the task of a machine learning model. It follows that an
algorithmic information model must output an object that
minimizes the algorithmic distance to all the members of the
class, so that we can classify them.

For instance, if we have a computable classifier M such that
M(xi) � yi then given yi can use M to compute the set definition
of cj by running over all possible objects x. Now, let l be the place
or index of xi within cj, follows that K(xi|(M, yi)) � K(xi|cj) �
K(l) and there do not exist another single computable object that
can further reduce the conditional algorithmic complexity for all
objects that belong to the class cj. Let us denote by M* a model
where this minimum is reached.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673563

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Now, on the other hand, the general definition of the
algorithmic loss function (def. 1) states that
La(yi, ŷi) � K(yi

∣∣∣∣ŷi). By a substituting yi for its associated set cj
we have that La(y, ŷ) � K(cj

∣∣∣∣{x : M(x) � M(xi)}). Trivially, the
minimum is reached when we have set equality, which is obtained
when M(x) � M*(x) for all x in the applicable set, thus we have
that minimizing La(y, ŷ) is equivalent to minimizing
K(xi|M) � K(xi|cj). Therefore, we can say that

La(yi, ŷi) � K(xi|M(xi)), (1)

where yi is the class to which xi belongs, while M(xi) � ŷi is the
output of the model.

What the Eq. 1 is saying is that the model must produce as an
output an object that is algorithmically close to all the elements of
the class. In unsupervised classification tasks this object is known
as a centroid of a cluster (Lloyd, 1982; Uppada, 2014). This means
that the algorithmic loss function is inducing us to universally
define algorithmic probability classification as a clustering by an
algorithmic distance model2. A general schema in our algorithmic
classification proposal is based on the concept of a nearest
centroid classifier.

Definition 2. Given a training set X̂ �
{(x1, cj1), . . . , (xi, cji), . . . , (xn, cjn)} with m different cj classes, an
algorithmic classification model consists of a set of centroids C* �
{c*1, . . . , c*j . . . , c*m} such that each minimizes the equation

Ja(X̂,M) � ∑
xi ∈ X̂

K(xi|M(cji))
where M(cji) � c*j is the object that the model M assigns to the
class yi, and the class prediction for a new object x is defined as:

ŷ � cj.argmincpj ∈ CpK(x|cpj).
In short, we assign to each object the closest class according to its
algorithmic distance to one of the centroids in the set of objects C*.
Now, in a strong algorithmic sense, we can say that a classifier is
optimal if the class assigned to each object fully describes this
object minus incidental or incompressible information. In other
words, if a classifier is optimal and we know the class of an object,
then we know all its characteristics, except those that are unique
to the object and not shared by other objects within
the class.Formally, a classifier f : X→ {c1, . . . cj . . . cm} is
optimal with a degree of sophistication3 of c if and only if, for
every xi, for any program p and object r such that p(r) � xi and∣∣∣∣p∣∣∣∣ + |r|≤K(xi) + c, then K(xi|f (xi))≤ |r| + c .For example, let
S1 � {g(1), g(2),/, g(i),/} and S2 � {h(1), h(2),/, h(j),/}
be a two disjoint set of numbers where g and h are injective
functions. We are given the task of classifying S1 ∩ S2. For this
classic regression problem we know that finding the underlying
functions g and h will solve the problem: given an x ∈ S1, given g
and h the task of deciding the class membership is that of finding i

such that x � g(i). In the computable case we can fully define x
given g and i, K(x)≤K(g) + K(i) + O(1) and
K(x∣∣∣∣g) � K(i) + O(1), where O(1) is the length of the
program that given f and i finds g(i). In the language of
algorithmic information theory, we say that g is the structured
information of x, which is shared among all the elements in the
class, and i is the incidental or irreducible information, that whose
only belongs to x thus cannot be reduced.Now, consider the
classifier f : S1∩​ S2 → g, h that, given x, runs
g(1), h(1), g(1), h(2),/, g(i), h(i) until finding g(i) � x or
h(i) � x. Note that K(f)≤K(g) + K(h) + O(1), where O(1) is
the length of the program that that executes the described
instructions. We will show that there exist an small constant c
such that f is optimal according to the stated definition.Let w be a
large incompressible4 natural number such that K(w) � |w| + c1
and x � g(w). Given the imcompressibility of w, we have that
there must exist a small constant c2 such that
K(x) � |w| + K(g) + c2, where c2 is the length of the program
that, given w and g, runs g(w) � x; K(x) cannot be shorter due to
the incompressibility of w. Now, let p and r be such that p(r) � x,
thus there exists a constant c3 such that K(x)≤ |r| + ∣∣∣∣q∣∣∣∣ + c3. Let
c � ∣∣∣∣p∣∣∣∣ + c3 − K(g). Assume that K(x∣∣∣∣f (x)) � K(x∣∣∣∣g)> |r| + c,
thus negating the optimality of f with degree c. On one hand
we have that K(x∣∣∣∣g)> |r| + c0K(x)> |r| + k(g) + c, thus |w| +
K(g) + c2 > |r| + K(g) + c and |w|> |r| + c−c2. On the other side
we have that K(x)≤ |r| + |r| + c3 implies that
|w| + K(g) + c2 ≤

∣∣∣∣p∣∣∣∣ + |r| + c3, thus |w|≤ |r| + (∣∣∣∣p∣∣∣∣ + c3 − K(g)) −
c2 � |r| + c − c2 reaching a contradiction.Now, the fact that the
degree of sophistication c depends on the length of the program p
reflects that an optimal classifier could simply contain a list of all
the elements in the class, increasing the size

∣∣∣∣p∣∣∣∣, thus a non-brute
force classifier would need a large sophistication degree to
outperform it. The previous also relates to one of the properties
of we can assign to non-optimal classifiers: large program size,
more than what is needed for an accurate classification, which
algorithmic probability tell us they are exponentially less probable
to be generated by computable dynamics. Another property that
implies non-optimality is that of inaccurate classifications. In this
case, there would exist x such that K(x|f (x))> |r| + c given that we
would need more information to produce x from its class f (x).The
next theorem shows that minimizing the stated cost function
guarantees that the classifier is optimal in a strong algorithmic
sense:Theorem 3. If a classifier f minimizes the cost function
Ja(X, f), then it is an optimal classifier.Proof. Assume that f is
not optimal. Then there exist xi such that there exists a program

∣∣∣∣p∣∣∣∣
and string r such that

∣∣∣∣p∣∣∣∣ + |r|≤K(xi) + c, p(r) � xi and
K(xi| f (xi))> |r| + c. Now, consider the classifier f ′:

f ′(x) � { f (x) if x ≠ xi
p otherwise.

Now, note that given that p(r) � xi computes xi we have implies
K(xi|p)≤ |r|. It follows that

2An unlabeled classificatory algorithmic information schema has been proposed by
(Cilibrasi & Vitányi, 2005).
3The notion of degree of sophistication for computable objects was defined by
Koppel (Koppel, 1991; Koppel & Atlan, 1991; Antunes & Fortnow, 2009).

4A number w is incompressible or random if K(w) � |w| + c, where c is the length
of the program executes the statement PRINT x.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673564

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

J(X, f) − J(X, f ′) � K(xi|f (xi)) − K(xi|p)
> |r| + c − K(xi∣∣∣∣p)
≥ |r| + c − |r|≥ 0.

4 APPROXIMATING THE ALGORITHMIC
SIMILARITY FUNCTION

While theoretically sound, the proposed algorithmic loss (Def. 1)
and classification (Def. 2) cost functions rely on the
uncomputable mathematical object K (Kolmogorov, 1965;
Chaitin, 1982). However, recent research and the existence of
increasing computing power (Delahaye & Zenil, 2012; Zenil et al.,
2018) have made available a number of techniques for the
computable approximation of the non-conditional version of
K. In this Section we present three methods for approximating
the conditional algorithmic information function K(x|y).

4.1 Conditional CTM and Domain
Specific CTM
The Coding Theorem Method (Delahaye & Zenil, 2012) is a
numerical approximation to the algorithmic complexity of single
objects. A generalization of CTM for approximating the
conditional algorithmic complexity is the following:

Definition 4. Lets recall that a relation R between two sets X
and Y is a subset of the Cartesian product, R ⊂ P � X × Y and that
such relation is computable if the characteristic function of the set
R is a computable function. For finite sets, we define the
conditional CTM with respect of M as:

CTM(x|y) � −log2⎛⎜⎜⎜⎝ ∑
(y,x)∈M

1

|P|
⎞⎟⎟⎟⎠

where |P| is the cardinality of P � X × Y . We say that R is a subset
of a Turing complete space if the pairs (x, y) correspond to a
program and its output for an universal Turing machine. When
this is not the case then we say that we have a domain specific
CTM function.

The previous Def. is based on the Coding theorem (Levin,
1974), which establishes a relationship between the information
complexity of an object and its algorithmic probability. For
Turing complete spaces we have that as M increases in size,
CTM(x|y) approaches K(x|y), representing a lower bounded
approximation to K.

In the case where x is the empty string and M is the relation
induced by the space of small Turing machines with 2 symbols
and 5 states, with M computed exhaustively, CTM approximates
K(x), and has been used to compute an approximation to the
algorithmic complexity of small binary strings of up to size 12
(Delahaye & Zenil, 2012; Soler-Toscano et al., 2014). Similarly,
the space of small bi-dimensional Turing machines has been used
to approximate the algorithmic complexity of square matrices of
size up to 4 × 4 (Zenil et al., 2015).

When M refers to a non-(necessarily) Turing complete space,
or a computable input/output object different from ordered

Turing machines, or if P has not been computed exhaustively
over this space, then we have a domain specific version of CTM,
and its application depends on this space. This version of CTM is
also an approximation to K, given that, if M is a computable
relation, then we can define a Turing machine with input x that
outputs y. However, we cannot guarantee that this approximation
is consistent or (relatively) unbiased. Therefore we cannot say
that it is domain independent.

4.2 Coarse Conditional BDM
The Block Decomposition Method (BDM (Zenil et al., 2018))
decomposes an object () into smaller parts for which there exist,
thanks to CTM (Zenil et al., 2018), good approximations to their
algorithmic complexity, and we then aggregate these quantities by
following the rules of algorithmic information theory. We can
apply the same concept to computing a coarse approximation to
the conditional algorithmic information complexity between two
objects. Formally:

Definition 5. We define the coarse conditional BDM of X with
respect to the tensor Y with respect to {αi} as

BDM(X|Y) � ∑
(ri ,ni)∈Adj(X)−Adj(Y)

(CTM(ri) + log(ni))
+ ∑

Adj(X)∩Adj(Y)
f (nxj , ny

j)
where {αi} is a partition strategy of the objects into smaller objects
for which CTM values are known, Adj(X) is the result of this
partition for X and Y respectively, nxj and n

y
j are the multiplicity of

the objects rj within X and Y respectively, and f is the function
defined as

f (nx
j , n

y
j) � { 0 if nx

j � nyj
log(nx

j) otherwise.

The sub-objects ri are called base objects or base tensors (when
the object is a tensor) and are objects for which the algorithmic
information complexity can be satisfactorily approximated by
means of CTM.

The motivation behind this definition is to enable us to
consider partitions for the tensors X and Y into sets of
subtensors 〈xi〉 and 〈yi〉, and then approximate the
algorithmic information within the tensor X that is not
explained by Y by considering the subtensors xi which are not
present in the partition 〈yi〉. In other words, if we assume
knowledge of Y and its corresponding partition, then in order
to describe the elements of the decomposition of X using the
partition strategy {αi}, we only need descriptions of the
subtensors that are not Y. In the case of common subtensors,
if the multiplicity is the same then we can assume that X does not
contain additional information, but that it does if the multiplicity
differs.

The term ∑Adj(X)∩Adj(Y) f (nxj , nyj) quantifies the additional
information contained within X when the multiplicity of the sub-
tensors differs between X and Y. This term is important in cases
where such multiplicity dominates the complexity of the objects,
cases that can present themselves when the objects resulting from
partition are considerably smaller than the main tensors.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673565

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

4.3 Strong Conditional BDM
The previous definition featured the adjective coarse because we
can define a stronger version of conditional BDM approximating
K with greater accuracy that uses conditional CTM. As explained
in Section 10.2, one of the main weaknesses of coarse conditional
BDM was the inability to detect the algorithmic relationship
between base blocks. This is in contrast with conditional CTM.

Definition 6. The strong conditional BDM of X with respect to
Y corresponding to the partition strategy {αi} is

BDM(X|Y) � min
P

∑
((rxi ,nxi),(ryi ,nyi))∈P

(CTM(rxi ∣∣∣∣∣ryj) + f (nx
i , n

y
i))

+ |P|
where P is a functional relation P : (rxi , nxi)1(ryi , nyi), |P| is the
length of the program that computes P and f is the same function
as specified in Def. 5. If conditional CTM is used, then we say that
we have strong conditional CTM.

While we assert that the pairing strategy minimizing the given
sum will yield the best approximation to K in all cases, prior
knowledge of the algorithmic structure of the objects can be used
to facilitate the computation by reducing the number of possible
pairings to be explored, especially when using the domain specific
version of conditional BDM. For instance, if two objects are
known to be produced from local dynamics, then restricting the
algorithmic comparisons by considering pairs based on their
respective position on the tensors will, with high probability,
yield the best approximation to their algorithmic distance.

4.3.1 The Relationship Between CTM, Coarse and
Strong Conditional BDM
Of the three method introduced in this section, Conditional CTM
yields the best approximation to conditional algorithmic
complexity and should be used whenever possible. Coarse
conditional BDM and strong conditional BDM are designed as
a way to extend the applicability of conditional CTM to objects
for which a good CTM approximation is unknown. These
extensions work by separating the larger object into smaller
blocks for which we have an approximation of K , by means of
CTM, and then aggregate these values according to the rules of
algorithmic information theory. The obtained approximation is
less accurate than one obtained by a pure CTM approach.

It is easy to see that under the same partition strategy, strong
conditional BDM will always present a better approximation to K
than its coarse counterpart. If the partition of two tensors 〈rxi 〉
and 〈rxi 〉 does not share an algorithmic connection other than
subtensor equality, i.e. there exists rxi � ryj , then this is the best
case for coarse BDM, and applying both functions will yield the
same approximation to K. However, if there exist two base blocks
where CTM(rxi

∣∣∣∣ryj)<CTM(rxi) then K(X|Y) −
O(log2 A)≤ strongBDM(X|Y)< coarseBDM(X|Y) where A is
the diminishing error incurred in proposition 1 in (Zenil
et al., 2018). Moreover, unlike coarse conditional BDM, the
accuracy of the approximation offered with the strong variant
will improve in proportion to the size of the base objects,
ultimately converging toward CTM and then K itself.

The properties of strong and coarse conditional BDM and
their relation with entropy are shown in the appendix (Section
10). In particular, we show that conditional BDM is well behaved
by defining joint and mutual BDM (Section 10.1), and we show
that its behavior is analogous to the corresponding Shannon’s
entropy functions. We also discuss the relation that both
measures have with entropy (Section 10.2), showing that, in
the worst case, we converge toward conditional entropy.

5 ALGORITHMIC OPTIMIZATION
METHODOLOGY

In the previous sections we proposed algorithmic loss and cost
functions (Def. 1) for supervised learning tasks, along with means
to compute approximations to these theoretical mathematical
objects. Here we ask how to perform model parameter
optimization based on such measures. Many of the most
widely used optimization techniques rely on the cost function
being (sufficiently) differentiable, smooth and convex (Armijo,
1966), for instance gradient descent and associated methods
(Bottou, 2010; Kingma and Adam, 2014). In the next section
we will show that such methods are not adequate for the
algorithmic cost function.

5.1 The Non-smooth Nature of the
Algorithmic Space
Let us start with a simple bilinear regression problem. Let

f (a, b) � 0.1010101 . . . × a + 0.01010 . . . × b (2)

be a linear function used to produce a set of 20 random data
points X̂ of the form (a, b, f (a, b)), and M(a, b) � s1 × a + s2 × b
be a proposed model whose parameters s1 and s2 must be
optimized in order to, hopefully, fit the given data.

According to the Def. 1, the loss function associated with this
optimization problem is J(X̂,M) � ∑(a,b,y)∈ X̂K(y

∣∣∣∣M(a, b))2. A
visualization of the surface resulting from this function, where
K was approximated by coarse conditional BDM (Def. 5) with
a partition of size 3 can be seen on the left of Figure 1. From
the plot we observe that the resulting curve is not smooth and
that gradient based approaches would fail to converge toward
a non-local minimum. This observation was evaluated by
applying several optimization techniques: gradient descent
(constrained to a square of radius 0.25 around the solution),
random search, and a purely random search. The purely
random algorithm simply pooled 5,000 random points and
chose the point where the cost function evaluated was the
lowest. At the right of the Figure 1 we can see that this random
pooling of points yielded the optimization technique. It is well
understood that a random pooling optimization method like
the one we performed is not scalable to larger, more complex
problems. However, the function f has an algorithmic
property that will allow us to construct a more efficient
optimization method, that we will call algorithmic
parameter optimization.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673566

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

5.2 Algorithmic Parameter Optimization
The established link between algorithmic information and
algorithmic probability theory (Levin, 1974) provides a path
for defining optimal (under the only assumption of
computable algorithms) optimization methods. The central
question in the area of parameter optimization is the
following: Given a data set X̂ � 〈x, y〉, what is the best model
M that satisfies M(x) � y, and hopefully, will extend to pairs of
the same phenomena that are not present in X̂?

Algorithmic probability theory establishes and quantifies the
fact that the most probable computable program is also the least
complex one (Solomonoff, 1964; Levin, 1974), thereby
formalizing a principal of parsimony such as Ockham’s razor.
Formally, we define the algorithmic parameter optimization
problem as the problem of finding a model M such that (a)
minimizes K(M) and (b) minimizes the cost function

Ja(X̂,M) � ∑
(x,y)∈ X̂

K(y∣∣∣∣M(x))2.
By searching for the solution using the algorithmic order we

can meet both requirements in an efficient amount of time. We
start with the least complex solution, therefore the most probable
one, and then we move toward the most complex candidates,
stopping once we find a good enough value for Ja or after a
determined number of steps, in the manner of other
optimizations methods.

Definition 7. Let M be a model, Ja the algorithmic cost
function, X̂ the training set and finally let Σ �
{σ1, σ2, . . . , σ i, . . . } be the parameter space which is ordered
according to their algorithmic order (from least to most
algorithmically complex). Then the simple algorithmic
parameter optimization (or algorithmic search) is performed by

minCost � ∞;
i � 0;
while condition do
M̂ � Mσ i;
i++;
if Ja(M̂,X)<minCost then
minCost � Ja(M̂,X);
end

end
Return σ i

where the halting condition is defined in terms of the number
of iterations or a specific value for Ja.

The algorithmic cost function is not expected to reach zero. In
a perfect fit scenario, the loss of a sample is the relative
algorithmic complexity of y with respect to the model itself,
which can be unbounded. Depending on the learning task, we can
search for heuristics to define an approximation to the optimum
value for Ja, and thus end the search when a close enough
optimization has been reached, resembling the way in which
the number of clusters is naturally estimated with algorithmic
information itself (Zenil et al., 2019), stopping the process when
the model’s complexity starts to increase rather than decrease
when given the data as conditional variable. Given the semi-
uncomputable nature of K, there is no general method to find
such conditions, but they can be approximated. Another way to
define a stopping condition is by combining other cost functions,
such as the MSE or accuracy over a validation set in the case of
classification. What justifies Def. 7 is the importance of the
ordering of the parameter space and the expected execution
time of the program provided.

By Def. 7, it follows that the parameter space is countable and
computable. This is justified, given that any program is bound by
the same requirements. For instance, in order to fit the output of
the function f (Eq. 2) by means of the modelM, we must optimize
over two continuous parameters s1 and s2. Therefore the space of
parameters is composed of the pairs of real numbers σ i � [σ i1 σ i2].
However, a computer cannot fully represent a real number, using
instead an approximation by means of a fixed number of bits.
Since this second space is finite, so is the parameter space and the
search space which is composed of pairs of binary strings of finite
size, the algorithmic information complexity value of which can
be approximated by BDM or CTM. Furthermore, as the next two
examples will show, for algorithmic optimization a search space
based on binary strings can be considered an asset that can be
exploited to speed up the algorithm and improve performance,
rather than a hindrance because of its lower accuracy in
representing continuous spaces. This is because algorithmic
search is specifically designed to work within a computable space.

FIGURE 1 | On the left we have a visualization of the algorithmic cost function, as approximated by coarse BDM, corresponding to a simple bilinear regression
problem. From the plot we can see the complex nature of the optimization problem. On the right we have confirmation of these intuitions in the fact that the best
performing optimization algorithm is a random pooling of 5,000 points.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673567

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Now, consider a fixed model structure M. Given that the
algorithmic parameter optimization always finds the lowest
algorithmically complex parameters that fit the data X̂ within
the halting condition, the resulting model is the most
algorithmically plausible model that meets the restrictions
imposed by the Def. of M. This property results in a natural
tendency to avoid over-fitting. Furthermore, algorithmic
optimization will always converge significantly more slowly to
overly complex models that will tend to over-fit the data even if
they offer a better explanation of a reduced data set X̂. Conversely,
algorithmic parameter optimization will naturally be a poor
performer when inferring models of high algorithmic
complexity. Finally, note that the method can be applied to any
cost function, preserving the above properties. Interestingly, this
can potentially be used as a method of regularization in itself.

5.2.1 On the Expected Optimization Time
Computing the algorithmic order needed for definition 7 is not a
trivial task and requires the use of approximations to K such as
CTM, which require extensive computational resources.
However, just as with BDM and CTM, this computation just
needs to be done once and can be reused in constant time for
retrieving the object at i’th position of the algorithmic order by
means of a table or array. For instance, in (Delahaye & Zenil,
2012) it was presented an approximation to the algorithmic
complexity of strings of up to 16 bits, which can be used for
all parameters of up to 16 bits of precision. A greedy approach
was used in 6.2 to apply algorithmic parameter optimization
beyond the precision available in the existing CTM databases.

Given the way that algorithmic parameter optimization works,
the optimization time, as measured by the number of iterations,
will converge faster if the optimal parameters have low algorithmic
complexity. Therefore they are more plausible in the algorithmic
sense. In other words, if we assume that, for the model we are
defining, the parameters have an underlying algorithmic cause,
then they will be found faster by algorithmic search, sometimes
much faster. How much faster depends on the problem and its
algorithmic complexity. In the context of artificial evolution and
genetic algorithms, it has been previously shown that, by using an
algorithmic probability distribution, the exponential random
search can be sped up to quadratic (Chaitin, 2009; Chaitin,
2013; Hernández-Orozco et al., 2018).

Following the example of inferring the function in Section 5.1,
the mean andmedian BDM value for the parameter space of pairs
of 8-bit binary strings are 47.6737 and 47.7527, respectively; while
the optimum parameters {0.10101011, 0.01010101} have a BDM
of 44.2564. This lower BDM value confirms the intuition that
binary representations of both parameters have an algorithmic
source (repeating 10 or 01). The difference in value might seem
small on a continuum, but in algorithmic terms it translates into
an exponential absolute distance between candidate strings: the
optimum parameters are expected to be found at least 23.4 times
faster by algorithmic optimization (compared to a search within
the space). The optimum solution occupies position 1,026 out of
65,281 pairs of strings. Therefore the optimum for this
optimization problem can be found within 1,026 iterations, or
nearly 65 times faster.

The assumption that the optimum parameters have an
underlying simplicity bias is strong, but has been investigated
(Dingle et al., 2018; Zenil, 2020) and is compatible with principles
of parsimony. This bias favors objects of interest that are of low
algorithmic complexity, though they may appear random, For
example, the decimal expansions of the constant π or e to an
accuracy of 32 bits have a BDM value of 666.155 and 674.258,
respectively, while the expected BDM for a random binary string
of the same size is significantly larger: ≈ 681.2. This means that
we can expect them to be found significantly faster, according to
algorithmic probability—about 28 and 27 time steps faster,
respectively, compared to a random string—by using
algorithmic optimization methods.

At the same time, we are aware that, for the example given,
mathematical analysis-based optimization techniques have a
perfect and efficient solution in terms of the gradient of the
MSE cost function. While algorithmic search is faster than
random search for a certain class of problems, it may be
slower for another large class of problems. However,
algorithmic parameter optimization (Def. 7) is a domain and
problem-independent general method. While this new field of
algorithmic machine learning that we are introducing is at an
early stage of development. in the next sections we set forth some
further developments that may help boost the performance of our
algorithmic search for specific cases, such as greedy search over
the subtensors, and there is no reason to believe that more
boosting techniques will not be developed and introduced in
the future.

6 METHODS

6.1 Traversing Non-smooth Algorithmic
Surfaces for Solving Ordinary Differential
Equations
Thus far we have provided the mathematical foundation for
machine learning based on the power of algorithmic
probability at the price of operating on a non-smooth loss
surface in the space of algorithmic complexity. While the
directed search technique we have formulated succeeds with
discrete problems, here we ask whether our tools generalize to
problems in a continuous domain. To gain insight, we evaluate
whether we can estimate parameters for ordinary differential
equations. Parameter identification is well-known to be a
challenging problem in general, and in particular for
continuous models when the data-set is small and in the
presence of noise. Following (Dua & Dua, 2011), as a sample
system we have dz1/dt � −θ1z1 and dz2/dt � −θ1z1 − θ2Z2 (Eq.
2) with hidden parameters [θ1 θ2] � [51] and z(t � 0) � [10]. Let
Ev(t, [θ1 θ2]) be a function that correctly approximates the
numerical value corresponding to the given parameters and t
for the ODE system. Let us consider a model composed of a
binary representation of the pair [θ1 θ2] by a 16 bit string where
the first 8 bits represent θ1, the last 8 bits θ2 for a parameter search
space of size 216 � 65 536, and where within these 8 bits the first 4
represent the integer part and the last 4 the fractional part. Thus

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673568

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

the hidden solution is represented by the binary string
“0101000000010000”.

6.2 Finding Computable Generative
Mechanisms
An elementary cellular automaton (ECA) is a discrete and linear
binary dynamical system where the state of a node is defined by
the states of the node itself and its two adjacent neighbors
(Wolfram, 2002). Despite their simplicity, the dynamics of
these systems can achieve Turing completeness. The task was
to classify a set of 32 × 32 black and white images representing the
evolution of one of eleven elementary cellular automata according
to a random 32-bit binary initialization string. The automata were

C � {167, 11, 129, 215, 88, 32, 237, 156, 173, 236, 110}.
Aside from the Turing-complete rule with number 110, the

others were randomly selected among all 256 possible ECA. The
training set was composed of 275 black and white images, 25 for
each automaton or “class”. An independent validation set of the
same size was also generated, along with a test-set with 1,375
evenly distributed samples. An example of the data in these data
sets is shown in Figure 2.

First we will illustrate the difficulty of the problem by training
neural networks with simple topologies over the data. In total we
trained three naive5 neural networks that consisted of a flattened
layer, followed by either 1, 2, 3 or 4 fully connected linear layers,
ending with a softmax layer for classification. The networks were
trained using ADAM optimization for 500 rounds. Of these 4
models, the network with 3 linear layers performed best, with an
accuracy of 40.3%.

However, as shown in (Fernandes, 2018), it is possible to
design a deep network that achieves a higher accuracy for this
particular classification task. This topology consists of 16
convolutional layers with a kernel of 2 × 3, which was
specifically chosen to fit the rules of ECA, a pooling layer
that aggregates the data of all the convolutions into a vector

of one dimension of length 16, and 11 linear layers (256 in the
original version) connected to a final softmax unit. This network
achieves an accuracy of 98.8% on the test set and 99.63% on the
training set after 700 rounds. This specialized topology is an
example of how, by using prior knowledge of the algorithmic
organization of the data, it is possible to guide the variance of a
neural network toward the algorithmic structure of the data and
avoid overfitting. However, as we will show over the following
experiments, this is a specialized ad-hoc solution that does not
generalize to other tasks.

6.2.1 Algorithmic-Probability Classifier Based on
Coarse Conditional BDM
The algorithmic probability model chosen consists of eleven 16 ×
16 binary matrices, each corresponding to a sample class, denoted
by M, encompassing members mi ∈ M. Training this model,
using Def. 2, the loss function

∑
xi ∈ test set

K(xi∣∣∣∣M(yi)),
is minimized, where M(yi) � mj is the object that the model
assigns to the class yi. Here we approximate the conditional
algorithmic complexity function K with the coarse conditional
BDM function, then proceed with algorithmic information
optimization over the space of the possible 16 × 16 binary
matrices in order to minimize the computable cost function
J(test set,M) � ∑

xi ∈ test set
BDM(xi

∣∣∣∣M(yi)). However, an elementary
cellular automaton can potentially use all the 32-bits of
information contained in a binary initialization string, and
the algorithmic difference between each cellular automaton is
bounded and relatively small (within 8-bits). Furthermore, each
automaton and initialization string was randomly chosen
without regard to an algorithmic cause. Therefore we cannot
expect a significant speed-up by using an algorithmic search,
and it would be nearly equivalent to randomly searching
through the space of 16 × 16 matrices, which will take a
length of time of the order of O(2256). Nevertheless, we
perform a greedy block optimization version of algorithmic
information optimization:

• First, we start with the eleven 16 × 16 matrix of 0 s.

FIGURE 2 | Two 32 × 32 images and their respective classes. The images represent the evolution of the automata 167 and 110 for two different randomly
generated 32-bits binary strings.

5We say that a NN topology is naive when its design does not use specific
knowledge of the target data.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 5673569

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

• Then, we perform algorithmic optimization, but only
changing the bits contained in the upper left 8 × 8
submatrix. This step is equivalent to changing all the 28×8
bits in the quadrant, searching for the matrix that minimizes
the cost function.

• After minimizing with respect to only the upper left
quadrant, we minimize over the upper right 8 × 8 quadrant.

• We repeat the procedure for the lower left and lower right
quadrants.

These four steps are illustrated in Figure 3 for the class
corresponding to the automaton 11.

6.3 Finding the Initial Conditions for Cellular
Automata
The next problem was to classify black and white images
representing the evolution of elementary cellular automata. In
this case, we are classifying according to the initialization string
that produced the corresponding evolution for a randomly
chosen automaton. The classes for the experiment consisted of
10 randomly chosen binary strings, each 12 bits in length. These
strings correspond to the binary representation of the following
integers:

704, 3572, 3067, 3184, 1939, 2386, 2896, 205, 828, 3935.

The training, validation and test sets each consisted of two
hundred 12 × 4 binary images. These images represent the
evolution to 4 steps of one of the 10 strings within the first
128 cellular automata rules (to avoid some trivially symmetric
cases) by means of a randomly chosen cellular automaton. It is
important to note that the first row of the evolution (the
initialization) was removed. Otherwise this classification task
would be trivial.

We trained and tested a group of neural network topologies on
the data in order to establish the difficulty of the classification
task. These networks were an (adapted version of) Fernandes’
topology and 4 naive neural networks that consisted of a flattened
(fully-connected) layer, followed by 1, 2, and 5 groups of layers,
each consisting of a fully connected linear layer with rectilinear
activation (ReLU) function followed by a dropout layer, ending
with a linear layer and a softmax unit for classification. The

adaptation of the Fernandes topology was only for the purpose of
changing the kernel of the pooling layer to 2 × 9 to take into
account the non-square shape of the data. All networks were
trained using the ADAM optimizer.

The best performing network was the shallower one, which
consists of a flattened layer, followed by a fully connected ReLU, a
dropout layer, a linear layer with 10 inputs and a sotfmax unit.
This neural network achieved an accuracy of 60.1%. At 18.5%, the
performance of Fernandes’ topology was very low, being barely
above random choice. This last result is to be expected, given that
the topology is domain specific, and should not be expected to
extend well to different problems, even though at first glance the
problem may seem to be related.

6.3.1 Algorithmic-Probability Classifier Based on
Strong Conditional BDM
The algorithmic probability model M chosen for these tasks
consisted of eleven 12-bit binary vectors. The model was
trained using algorithmic information greedy block
optimization by first optimizing the loss function over the 6
leftmost bits and then over the remaining six.

However, for this particular problem, the coarse version
of conditional BDM proved inadequate for approximating
the universal algorithmic distance K(xi

∣∣∣∣M(yi)), for which
reason we opted to use the stronger version. For the stronger
version of conditional BDM we approximated the local
algorithmic distance CTM(x|s), where x is a binary matrix
of size 6 × 4 and s is a binary vector of length 6, in the
following way.

• First, we computed all the outputs of all possible 12-bit
binary strings for each of the first 128 ECA for a total of
528,384 pairs of 12 bit binary vectors and 12 × 4 binary
matrices, forming the set of pairs (s, x) ∈ P.

• Then, by considering only the inner 6 bits of the vectors
(discarding the 3 bits on the left and the 3 bits on the right)
and, similarly, the inner 6 × 4 submatrix, we defined

CTM(x|s) � log2⎛⎝ ∑
(s,x)∈P

1

|P|
⎞⎠

FIGURE 3 | The evolution of the center for the four steps of the greedy algorithmic information optimization method used to train the model in the first experiment.
This classifier center corresponds to class 11.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735610

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

• where |P| is the cardinality of P. This cropping was done to
solve the Frontier issue of finite space ECA.

• If a particular pair (s, x) was not present in the database,
then considering that −log2(1/528, 384) � 19.01, we defined
CTM(x|s) � 20. This means that the algorithmic complexity
of x given s is at least 20 bits.

• In the end we obtained a database of the algorithmic
distance between all 6 bit vectors and their respective 6 ×
4 possible outputs.

The previous procedure might at first seem to be too
computationally costly. However, just as with Turing Machine
based CTM (Soler-Toscano et al., 2014; Zenil et al., 2018), this
computation only needs to be done once, with the data obtained
being reusable in various applications.

The trained model M consisted of 10 binary vectors that, as
expected, corresponded to the binary expansion of each of the
classes. The accuracy of the classifier was 95.5% on the test set.

6.4 Classifying NK Networks
An NK network is a dynamical system that consists of a binary
Boolean network where the parameter n specifies the number of
nodes or vertices and k defines the number of incoming
connections that each vertex has (Kauffman, 1969; Aldana
et al., 2003; Dubrova et al., 2005). Each node has an associated
k-ary Boolean function which uses the states of the nodes
corresponding to the incoming connections to determine the
new state of the nodes over a discrete time scale. The number of
incoming connections k defines the stability (or lack thereof) of
the network.

Given the extensive computational resources it would require
to compute a CTM database, such as the one used in section 6.4,
for Boolean networks of 24 nodes we opted to do a classification
based only on the algorithmic complexity of the samples as
approximated by BDM. This approach is justified, considering
that according to the definition 2, an algorithmic information
model for the classifier can consist of three sets. Each of these sets
is composed of all possible algorithmic relations, including the
adjacency matrix and related binary operations, corresponding to
the number of incoming connections per node (the parameter k).
Therefore, given the combinatorial order of growth of these sets,
we can expect the quantity of information required to specify the
members of each class to increase as a function of k.

Specifically, the number of possible Boolean operations of
degree k is 22

k
and the number of possible adjacency matrices is

n × (n
k

). It follows that the total number of possible network

topologies is n2 × 22
k × (n

k
), and the expected number of bits

required to specify a member of this set is log(n2 × 22
k × (n

k
)).

Therefore, the expected algorithmic complexity of the members
of each class increases with k and n. With n fixed at 24 we can do a
coarse algorithmic classification simply according to the
algorithmic complexity of the samples, as approximated by BDM.

Following this idea we defined a classifier where the model M
consisted of the mean BDM value for each of the classes in the
training set M � {1→ 2671.46, 2→ 4937.35, 3→ 6837.64} The
prediction function measures the BDM of the sample and

assigns it to the class center that is the closest. This classifier
achieved an accuracy of 71%. Alternatively, we employed a
nearest neighbor classifier using the BDM values of the
training set, which yielded virtually identical results. For
completeness sake, we recreated the last classifier using
entropy to approximate the algorithmic information theory K.
The accuracy of this classifier was 37.66%.

For classifying according to the Boolean rules assigned to each
node, we used 10 randomly generated (ordered) lists of 4 binary
Boolean rules. These rules were randomly chosen (with repetitions)
from And, Or, Nand and XOr, with the only limitation being that
Nand had to be among the rules. Since the initial state for the
network was the vector {0, 0, 0, 0}, at least one XOr was needed in
order to generate an evolution other than forty 0s. Then, to
generate the samples, each list of binary rules was associated
with a number of random topologies (with k � 2). The training
and validation sets were composed of 20 samples for each class
(200 samples in total) while the test set contained 2000 samples.

To classify according to network topology we used 10
randomly generated topologies consisting of 10 binary
matrices of size 10 × 10, which represented the adjacency
matrices of the chosen topologies. The random matrices had
the limitation that each column had to contain two and only two
1s, so the number of incoming connections corresponds to
k � 2. Then, to generate a sample we associated one of the
chosen topologies with a random list of rules. This list of rules
was, again, randomly chosen from the same 4 Boolean functions
and with the limitation that XOr had to be a member. The
training and validation sets were composed of 20 samples for
each class (200 samples in total) while the test set contained
2000 samples.

6.5 Classifying Kauffman Networks
Kauffman networks are a special case of Boolean NK networks
where the number of incoming connections for each node is two,
that is, k � 2 (Atlan et al., 1981). This distinction is important
because when k � 2 we have a critical point that “exhibits self-
organized critical behavior”; below that (k � 1) we have too much
regularity, a (frozen state) and beyond it (K ≥ 3) we have chaos.

6.5.1 Algorithmic-Probability Classifier Based on
Conditional CTM
For this problem we used a different type of algorithmic cluster
center. For the Boolean rules classifier, the model M consisted of
ten lists of Boolean operators. More precisely, the model consisted
of binary strings that codified a list composed of each of the four
Boolean functions used (And, Or, Nand and XOr) as encoded by
the Wolfram Language. For the topology classifier, the model
consisted of 10 binary matrices representing the possible network
topologies.

The use of different kinds of models for this task showcases
another layer of abstraction that can be used within the wider
framework of algorithmic probability classification: context.
Rather than using binary tensors, we can use a structured
object that has meaning for the underlying problem. Yet, as
we will show next, the underlying mechanics will remain virtually
unchanged.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735611

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Let’s go back to the definition 2, which states that to train both
models we have to minimize the cost function

J(X̂,M) � ∑
xi∈ test set

K(xi∣∣∣∣M(yi)).
So far we have approximated K by means of conditional BDM.

However, given that at the time of writing this article a sufficiently
complete conditional CTM database has yet to be computed, we
have estimated the CTM function by using instances of the
computable objects, as previously shown in Section 6.3.1.
Moreover, owing to the non-local nature of NK networks and
the abstraction layer that the models themselves are working at,
rather than using BDM, we have opted to use a context dependent
version of CTM directly. In the last task we will show that BDM
can be used to classify a similar, yet more general problem.

Following similar steps to the ones used in Section 6.3.1, by
computing all the 331,776 possible NK networks with n � 4 and
k � 2, we compiled two lists of pairs P1 and P2 that contained,
respectively, the pairs (t, x) and (r, x), where t is the topology and
r is the list of rules that generated the 40-bit vector x, which
represents the evolution to ten steps of the respective networks.
Next, we defined the CTM(x|s) as:

CTM(x|s) � log2⎛⎝ ∑
(s,x)∈Pi

1

|Pi|
⎞⎠,

or as 19 if the pair is not present on either of the lists. Then we
approximated K by using the defined CTM function directly.

6.6 Hybrid Machine Learning
So far we have presented supervised learning techniques that, in a
way, diverge. In this section we will introduce one of the ways in
which the two paradigms can coexist and complement each other,
combining statistical machine learning with an algorithmic-
probability approach.

6.6.1 Algorithmic Information Regularization
The choice of an appropriate level of model complexity that
avoids both under- and over-fitting is a key hyperparameter in
machine learning. Indeed, on the one hand, if the model is too
complex, it will fit the data used to construct the model very well
but generalize poorly to unseen data. On the other hand, if the
complexity is too low, the model will not capture all the
information in the data. This is often referred to as the bias-
variance trade-off, because a complex model will exhibit large
variance, while an overly simple one will be strongly biased. Most
traditional methods feature this choice in the form of a free
hyperparameter via, eg, what is known as regularization.

A family of mathematical techniques or processes that has
been developed to control over-fitting of a model goes under the
rubric “regularization”, which can be summarized as the
introduction of information from the model to the training
process in order to prevent over-fitting of the data. A widely
used method is the Tikhonov regularization (Tikhonov, 1963;
Press et al., 2007), also known as ridge regression or weight decay,
which consists in adding a penalty term to the cost function of a

model, which increases in direct proportion to the norms of the
variables of the model. This method of regularization can be
formalized in the following way: Let J be the cost function
associated with the model M trained over the data set x̂, p a
model weighting function of the form p : M1μ, where μ ∈ R+,
and λ a positive real number. The (hyper) parameter λ is called a
regularization parameter; the product λp(M) is known as the
regularization term and the regulated cost function J ′ is
defined as

J ′(x̂,M, λ) � J(x̂,M) + λp(M). (3)

The core premise of the previous function is that we are
disincentivizing fitting toward certain parameters of the model by
assigning them a higher cost in proportion to λ, which is a
hyperparameter that is learned empirically from the data. In
current machine learning processes, the most commonly used
weighting functions are the sum of the L1, L2 norms of the linear
coefficients of the model, such as in ridge regressions (Hoerl &
Kennard, 1970).

We can employ the basic form of Eq. 3 and define a
regularization term based on the algorithmic complexity of the
model and, in that way, disincentivize training toward
algorithmically complex models, thus increasing their
algorithmic plausibility. Formally:

Definition 8. Let J be the cost function associated with the
model M trained over the data set x̂, K the universal algorithmic
complexity function, and λ a positive real number. We define the
algorithmic regularization as the function

JK(x̂,M, λ) � J(x̂,M) + λK(M).
The justification of the previous definition follows from

algorithmic probability and the coding theorem: Assuming an
underlying computable structure, the most probable model that
fits the data is the least complex one. Given the universality of
algorithmic probability, we argue that the stated definition is
general enough to improve the plausibility of the model of any
machine learning algorithm with an associated cost function.
Furthermore, the stated definition is compatible with other
regularization schemes.

Just as with the algorithmic loss function (Def. 2), the resulting
function is not smooth, and therefore cannot be optimized by
means of gradient-based methods. One option for minimizing
this class of functions is by means of algorithmic parameter
optimization (Def 7). It is important to recall that computing
approximations to the algorithmic probability and complexity of
objects is a recent development, and we hope to promote the
development of more powerful techniques.

6.7 Algorithmic-Probability Weighting
Another, perhaps more direct way to introduce algorithmic
probability into the current field of machine learning, is the
following. Given that in the field of machine learning all model
inference methods must be computable, the following inequality
holds for any fixed training methodology:

K(M*)≤K(X̂) + K(MI) + O(1), (4)

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735612

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

where M* is the fitted model, X̂ is the training data, MI is the
model with the parameters during its initialization and O(1)
corresponds to the length of the program implementing the
training procedure. Now, using common initialization
conventions, MI either has very low algorithmic complexity or
very high (it’s random), in order to not induce a bias in the model.
Thus the only parameter on the right side of the inequality that
can be optimized is K(X̂). It follows that increasing the
algorithmic plausibility of a model can be achieved by
reducing the algorithmic complexity of training set X̂, which
can be achieved by preprocessing the data and weighting each
sample using its algorithmic information content, thus
optimizing in the direction of samples with lower algorithmic
complexity.

Accordingly, the heuristic for our definition of algorithmic
probability weighting is that, to each training sample, we assign
an importance factor (weight) according to its algorithmic
complexity value, in order to increase or diminish the loss
incurred by the sample. Formally:

Definition 9. Let J be a cost function of the form

J(X̂,M) � g(L(y1, y′1), . . . , L(yi, y′i), . . . , L(yn, y′n)).
We define the weighted approximation to the algorithmic

complexity regularization of J or algorithmic probability
weighting as

Jw,k(X̂,M, f) � g(f (K(x1)) · L(y1, y′1), . . . , f (K(xi))
· L(yi, y′i), . . . , f (K(xn)) · L(yn, y′n)),

where f (K(xi)) is a function that weights the algorithmic
complexity of each sample of the training data set in a way
that is constructive with respect to the goals of the model.

We have opted for flexibility regarding the specification of the
function f. However taking into account the noncontinuous
nature of K, we have recommended a discrete definition for f.
The following characterization has worked well with our trials
and we hold that it is general enough to be used in a wide number
of application domains:

f (xi,X, 〈ck〉, 〈φk〉) �
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c1 if K(xi) ∈ Q(φ1,K(C(xi)))
c2 if K(xi) ∈ Q(φ2,K(C(xi)))
. . .
ck if K(xi) ∈ Q(φk,K(C(xi)))
. . .
cj if K(xi) ∈ Q(φj,K(C(xi)))

where ck and φk are hyperparameters and
K(xi) ∈ Q(φk,K(C(xi))) denotes that K(xi) belongs to the
φk-ith quantile of the distribution of algorithmic complexities
of all the samples belonging to the same class as xi.

As its names implies, the previous Def. 9 can be considered
analogous to sample weighting, which is normally used as a
means to confer predominance or diminished importance on
certain samples in the data set according to specific statistical
criteria, such as survey weights and inverse variance weight
(Hartung & Sinha, 2008). However, a key difference of our
definition is that traditional weighting strategies rely on

statistical methods to infer values from the population, while
with algorithmic probability weighting we use the universal
distribution for this purpose. This makes algorithmic
probability weighting a natural extension or universal
generalization of the concept of sample weighting, and given
its universality, it is domain independent.

Now, given that the output of f and its parameters are constant
from the point of view of the parameters of the model M, it is easy
to see that if the original cost function J is continuous,
differentiable, convex and smooth, so is the weighted version
Jw,k. Furthermore, the stated definition is compatible with other
regularization techniques, including other weighting techniques,
while the algorithmic complexity of the samples can be computed
by numerical approximation methods such as the Block
Decomposition Method.

7 RESULTS

7.1 Estimating ODE Parameters
A key step to enabling progress between a fundamentally discrete
theory such as computability and algorithmic probability, and a
fundamentally continuous theory such as that of differential
equations and dynamical systems, is to find ways to combine
both worlds. As shown in Section 5.1, optimizing the parameters
with respect to the algorithmic cost function is a challenge
(Figure 4). Following algorithmic optimization, we note that
parameters (5 and 1) have low algorithmic complexity due to
their functional relation. This is confirmed by BDM, which
assigns the unknown solution to the ODE a value of 153.719
when the expected complexity is approximately 162.658, which
means that the number of more complex parameter candidates
than [θ1 θ2] � [51] must be on the order of 28. Within the

FIGURE 4 | A visualization of the algorithmic cost function, as
approximated by coarse BDM, corresponding to the parameter
approximation of an ordinary differential Eq. 2. From the surface obtained we
can see the complexity of finding the optimal parameters for this
problem. Gradient based methods are not optimal for optimizing algorithmic
information based functions.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735613

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

parameter space, the solution is at the position 5,093 out of
65,536. Therefore the exact ODE solution can be found within
less than 6 thousand iterations following the simple algorithmic
parameter optimization (Def. 7) by consulting the function Ev.
Furthermore, for the training set of size 10 composed of the pairs
z1(t), z2(t) corresponding to the list

t � 0.1, 0.2, . . . , 0.8, 0.9, 1.0,

we need only 2 samples to identify the solution, supporting the
expectation that algorithmic parameter optimization ensures
a solution with high probability, despite a low number of
samples as long as the solution has low complexity in a
relatively low number of iterations. This is proof-of-
principle that our search technique can not only be used to
identify parameters for an ODE problem, but also affords the
advantage of faster convergence (fewer iterations), requiring
less data to solve the parameter identification problem. In
Figure 5, equivalent to the pixel attacks for discrete objects,
we show that the parameter identification is robust to even
more than 25% of additive noise. Operating in a low
complexity regime—as above—is compatible with a
principal of parsimony such as Ockham’s razor, which is
empirically found to be able to explain data simplicity bias
(Zenil & Delahaye, 2010; Dingle et al., 2018; Zenil et al., 2018),
suggesting that the best explanation is the simplest, but also
that what is modeled is not algorithmically random (Zenil,
2020).

7.2 Finding Generative Rules of Elementary
Cellular Automata
Following optimization, a classification function was defined to
assign a new object to the class corresponding to the center mj to
which it is the closest according to the algorithmic distance
BDM(x∣∣∣∣mj). The classifier obtained reaches an accuracy of
98.1% on the test set and of 99.27% on the training set (Table 1).

From the data we can see that the algorithmic classifier
outperformed the four naive (or simple) neural networks, but
it was outperformed slightly by the Fernandes classifier, built
expressly for the purpose. But as we will show over the following
sections, this last classifier is less robust and is domain specific.

Last but not least, we have tested the robustness of the
classifiers by measuring how good they are at resisting one-
pixel attacks ((Su et al., 2019)). A one-pixel attack occurs
when a classifier can be fooled into misclassifying an object by
changing just a small portion of its information (one pixel).
Intuitively, such small changes should not affect the classification
of the object in most cases, yet it has recently been shown that
deep neural network classifiers present just such vulnerabilities.

Algorithmic information theory tells us that algorithmic
probability classifier models should have a relatively high degree
of resilience in the face of such attacks: if an object belongs to a class
according to a classifier it means that it is algorithmically close to a
center defining that class. A one-pixel attack constitutes a relatively
small information change in an object. Therefore there is a relatively
high probability that a one-pixel attack would not alter the
information content of an image enough to increase the distance
to the center in a significant way. In order to test this hypothesis, we
systematically and exhaustively searched for vulnerabilities in the
following way: a) One by one, we flipped (from 0 to 1 or vice versa)
each of the 32 × 32 pixels of the samples contained in the test data.
b) If a flip was enough to change the assigned classification for the
sample, then it was counted as a vulnerability. c) Finally, we divided
the total number of vulnerabilities found by the total number of
samples in order to obtain an expected number of vulnerabilities per
sample. The results obtained are shown in Table ref.

FIGURE 5 | The average Euclidean distance between the solution
inferred by algorithmic optimization and the hidden parameters of the ODE in
Section 6.1 when a number of bits of the binary representation of the labeled
data has been randomly corrupted (flipped), from 1 to 8 bits. The binary
representation of the states z1 and z2 has an accuracy of 8 bits each, or 16 bits
for the pair. At the maximum corruption level, 50% of the bits that represent a
pair of outputs in the sample set are being flipped, destroying any kind of
information within each sample. The average was taken from ten random
sample sets of size 5, 7, and 10. Each set was computed by randomly
selecting times t between 0 and 1 in intervals of size 0.05, then corrupting the
corresponding output by the specified number of bits (y axis). From the results
it can be seen that algorithmic optimization is resilient up to corruptions of 4–5
bits, or >25% percent of the data, even when using relatively small training
data sets.

TABLE 1 | The accuracy of the Tested Classifiers.

Classifier Test Set Training Set

Naive Networks
1 38.88 95.63%
2 39.70 95.63
3 40.36 100%
4 39.05 100%
Fernandes’ 98.8 99.63%
Algorithmic Class 98.1 99.27%

TABLE 2 | Expected number of vulnerability per sample.

Classifier Total Vulnerabilities Per Sample Percentage
of Pixels (%)

Fernandes’ (DNN) 190,850 138.88 13.56
Algorithmic Classifier 15,125 11 1

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735614

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

From the results we can see that for the DNN, 13.56% of the
pixels are vulnerable to one-pixel attacks, and that only 1% of the
pixelsmanifest that vulnerability for the algorithmic classifier. These
results confirm our hypothesis that the algorithmic classifier is
significantly more robust in the face of small perturbations
compared to the deep network classifier designed without a
specific purpose in mind. It is important to clarify that we are
not stating that it is not possible to increase the robustness of a
neural network, but rather pointing out that algorithmic
classification has a high degree of robustness naturally.

7.3 Finding Initial Conditions
The accuracy obtained using the different classifiers is
represented in Supplementary Appendix Table A1. Based on
these results we can see that the algorithmic classifier performed
significantly better than the neural networks tested. Furthermore,
the first two naive topologies have enough variance present to
have a good fit vis-a-vis the training set, in an obvious case of
over-fitting. The domain specific Fernandes topology maintained
a considerably high error rate—exceeding 80%—over 3,135
ADAM training rounds. It is important to note that in this
case collisions, that is, two samples that belong to two
different classes, can exist. Therefore it is impossible to obtain
100% perfect accuracy. An exhaustive search classifier that
searches through the space for the corresponding initialization
string reached an accuracy of 97.75% over the test set.

In order to test the generalization of the CTM database
computed for this experiment, we tested our algorithmic
classifying scheme on a different instance of the same basic
premise: binary images of size 24 × 4 that correspond to the
output of twenty randomly selected binary strings of 24 bits each
for a randomly chosen ECA. The number of samples per class
remains at 20 for the training, validation and test sets. The results
are shown in the following table. For this case the algorithmic
classifier increased its accuracy to 96.56%. Thanks to the
additional data, the neural networks also increased their

accuracy to 64.11% and 61.74% for the first and second
topology, respectively.

7.3.1 Network Topology Algorithmic-Information
Classifier
The results are summarized in Supplementary Appendix Table
S2. Here we can see that only the coarse BDM algorithmic
information classifier—with 70% accuracy—managed to reach
an accuracy that is significantly better than random choice,
validating our method.

Furthermore, by analyzing the confusion matrix plot
(Figure 6) we can see that the algorithmic classifier performs
(relatively) well at classifying the frozen and chaotic networks,
while the deep learning classifier seems to be random in its
predictions. The fact that the critical stage was harder to classify is
evidence of its rich dynamics, accounting for more varied
algorithmic behaviors.

A second task was to classify a set of binary vectors of size 40
that represent the evolution of an NK network of four nodes
(n � 4) and two incoming connections (k � 2). Given that an NK
network is defined by two causal features, the topology of the
network and the Boolean function of each node, we divided the
second task in two: classifying according to its topology and
according to the underlying Boolean rules.

7.4 Classifying Kauffman Networks
The task was to determine whenever a random Boolean network
belonged to the frozen, critical or chaotic phase by determining
when k � 1, 2 or 3. Furthermore, we used the full range of possible
unary, binary and tertiary Boolean operations corresponding to
each of the functions associated with a node. The objects to
classify were binary vectors of size 240 bits that represented the
evolution of networks of 24 nodes to ten steps with incoming
connections of degree 1, 2 or 3. The training, validation and test
sets were all of size 300, with 100 corresponding to each class. For
this more general, therefore harder classification task, we used

FIGURE 6 | The confusion matrix for the neural network (left) and the algorithmic information classifier (right) while classifying binary vectors representing the degree
of connection (parameter k) of 300 randomly generated Boolean NK networks. From the plots we can see that the algorithmic classifier can predict with relatively high
accuracy the elements belonging to class k � 1 and k � 3. The neural network used is considerably more random in its predictions.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735615

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

larger objects and data sets. The objects to classify were binary
vectors of size 240 bits that represented the evolution of networks
of 24 nodes to ten steps with incoming connections of degree 1, 2
or 3. The training, validation and test sets were all of size 300, with
100 corresponding to each class.

For the task at hand we trained the following classifiers: a neural
network, gradient boosted trees and a convolutional neural network.
The first neural network had a naive classifier that consisted of a
ReLU layer, followed by a Dropout layer, a linear layer and a final
softmax unit for classification. For the convolutional model we used

FIGURE 7 | At left we have an image representing a binarized version of a randomly chosen sample. At right we have the salted version of the same sample, with
30% of its pixels randomly shuffled.

FIGURE 8 | The first two (upper) plots show the difference between the mean and maximum accuracy obtained through the training of each of the models. The last
two (lower) plots show the evolution of accuracy through training for the data sets. The data sets used are (training, test and validation), with data from theMNIST dataset.
The (training and validation) data sets were salted with %40 of the data randomly corrupted while the test set was not. From the first two plots we can see that the
accuracy of the models trained with algorithmic sample weights is consistently higher than the models trained without them, and this effect increases with the
variance of the models. The drops observed after 4 ReLU layers are because, until depth 10, the number of training rounds was constant, with more training rounds
therefore needed to achieve a minimum in the cost function. When directly comparing the training history of the models of depth 6 and 10 we can see that the stated
effect is consistent. Furthermore, at 10 rectilinear units, we can see significant overfitting, while for the unweighted model, using the algorithmic weights still leaves room
for improvement.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735616

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

prior knowledge of the problem and used a specialized topology that
consisted of 10 convolutional layers with a kernel of size 24, each
kernel representing a stage of the evolution, with a ReLU, a pooling
layer of kernel size 24, a flattened layer, a fully connected linear layer
and a final softmax layer. The tree-based classifier manages an
accuracy of 35% on the test set, while the naive and convolutional
neural networks managed an accuracy of 43% and 31% percent
respectively. Two of the three classifiers are nearly indistinguishable
from random classification, while the naive neural network is barely
above it.

For comparison purposes, we trained a neural network and a
logistic regression classifier on the data. The neural network
consisted of a naive topology consisting of a ReLU layer,

followed by a dropout layer, a linear layer and a softmax unit.
The results are shown in Supplementary Appendix Table A3.

From the results obtained we can see that the neural network,
with 92.50% accuracy, performed slightly better than the
algorithmic classifier (91.35%) on the test set. The logistic
regression accuracy is a bit further behind, at 82.35%.

However, the difference in the performance of the topology
test set is much greater, with both the logistic regression and the
neural network reaching very high error rates. In contrast, our
algorithmic classifier reaches an accuracy of 72.4%.

7.5 A First Experiment and Proof of Concept
of Algorithmic-Probability Weighting
As a first experiment in algorithmic weighing, we designed an
experiment using the MNIST dataset of hand written digits
(Deng, 2012). This dataset, which consists of a training set of
60,000 labeled images representing hand written digits from 0 to 9
and a test set with 10,000 examples, was chosen given its historical
importance for the field and also because it offered a direct way to
deploy the existing tools for measuring algorithmic complexity
via binarization without compromising the integrity of the data.

The binarization was performed by using a simple mask: if the
value of a (gray scale) pixel was above 0.5 then the value of the
pixel was set to one, using zero in the other case. This
transformation did not affect the performance of any of the
deep learning models tested, including the LeNet-5 topology
(LeCun et al., 1998), in a significant way.

Next we salted or corrupted 40% of the training samples by
randomly shuffling 30% of their pixels. An example of these
corrupted samples can be seen in Figure 7. With this second
transformation we are reducing the useful information within a
random selected subset of samples by a random amount, thus
simulating a case where the expected amount of incidental
information is high, as in the case of data loss or corruption.

Finally, we trained 10 neural networks with increasing depth,
setting aside 20% of the training data as a verification set, thereby
obtaining neural networks of increasing depth and, more

FIGURE 9 | On the left are shown the differences between the slopes of
the linear approximation to the evolution of the loss function for the first six
weighted and unweighted models. The linear approximation was computed
using linear regression over the first 20 training rounds. On the right we
have the loss function of the models with 10 ReLU units. From both plots we
can see that training toward the minimum of the loss function is consistently
faster on the models with the algorithmic complexity sample weights, and that
this difference increases with the variance of the model.

FIGURE 10 | The difference in accuracy with respect to the percentage of corrupted pixels and samples in the data set for the weighing function 5 for a neural
network of depth 4 (four rectilinear units). A positive value indicates that the network trained on the weighted samples reached greater accuracy. Themaximum difference
was reached for 70% of the samples with 40% of pixels corrupted. From the plot we can see that the networks trained over the weighed samples steadily gained in
accuracy until the maximum point was reached. The values shown are the average differences over five networks trained over the same data.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735617

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

importantly, variance. The topology of these networks consisted
of a flattened layer, followed by an increasing number of fully
connected linear layers with rectified linear (ReLU) activation
functions, and a final softmax layer for classification. In order to
highlight the effect of our regularization proposal, we abstained
from using other regularization techniques and large batch sizes.
For instance, optimizing using variable learning rates such as
RMSProp along with small stochastic batches is an alternative
way of steering the samples away from the salted samples.

For purposes of comparison, the neural networks were trained
with and without weighting, using the option sample_weight for
the train_on_batch on Keras.The training parameters for the
networks, which were trained using Keras on Python 3, were the
following:

• Stochastic gradient descent with batch size of 5,000 samples.
• 40 epochs, (therefore 80 training stages), with the exception

of the last model with 10 ReLU layers, which was trained for
150 training stages.

• Categorical crossentropy as loss function.
• ADAM optimizer.

The hyperparameters for the algorithmic weighting function
used were:

f (xi) �
⎧⎪⎨⎪⎩

0.01 if BDM(xi) ∈ Q(75,BDM(C(xi)))
0.5 if BDM(xi) ∈ Q(50,BDM(C(xi)))
2 if BDM(xi) ∈ Q(0,BDM(C(xi))),

(5)

which means that if the BDM value for the ith sample was in the
75th quantile of the algorithmic complexity within its class, then
it was assigned a weight of 0.01; the assigned weight was 0.5 if it
was in the 50th quantile, and 2 if it was among the lower half in
terms of algorithmic complexity within its class. The value for
these hyperparameters was found by random search. That is, we
tried various candidates for the function on the validation set and
we are reporting the one that worked best. Although not resorted
to for this particular experiment, more efficient hyperparameter
optimization methods such as grid search can be used.

Following the theoretical properties of algorithmic
regularization, by introducing algorithmic probability
weighting we expected to steer the fitting of the target
parameters away from random noise and toward the
regularities found in the training set. Furthermore, the
convergence toward the minimum of the loss function is
expected to be significantly faster, in another instance of
algorithmic probability speed-up (Hernández-Orozco et al.,
2018). We expected the positive effects of the algorithmic
probability weighting to increase with the variance of the
model to which it was applied. This expectation confirms the
hypothesis of the next numerical experiment.

The differences in the accuracy of the models observed
through the experiments as a function of variance (number of
ReLU layers) are summarized in Figure 8. The upper plots show
the difference between the mean accuracy and the maximum
accuracy obtained through the optimization of the network
parameters for networks of varying depth. A positive value
indicates that the networks trained with the algorithmic

weights showed a higher accuracy than the unweighted ones.
The difference in the steepness of the loss function between the
models is shown in the left plot of Figure 9, which is also
presented as a function of the number of ReLU layers. A
positive value indicates that a linear approximation to the loss
function had a steeper gradient for the weighted models when
compared to the unweighted ones. In Figure 10, we can see the
evolution of this difference with respect to the percentages of
corrupted samples and the corrupted pixels within these samples.

As the data show (Figure 8), the networks trained with the
algorithmic weights are more accurate at classifying all three sets:
the salted training set, the (unsalted) test set and the (salted)
validation set. This is shown when the difference of the mean
accuracy (over all the training epochs) and the maximum
accuracy attained by each of the networks is positive. Also, as
predicted, this difference increases with the variance of the
networks: at higher variance, the difference between the
accuracy of the data sets increases. Moreover, as shown in
Figure 9, the weighted models reach the minimum of the loss
function in a lower number of iterations, exemplified when the
linear approximation to the evolution of the cost is steeper for the
weighted models. This difference also increases the variance of
the model.

8 CONCLUSION

Here we have presented a mathematical foundation within which
to solve supervised machine learning tasks using algorithmic
information and algorithmic probability theories in discrete
spaces. We think this is the first time that a symbolic
inference engine is integrated to more traditional machine
learning approaches constituting not only a path toward
putting both symbolic computation and statistical machine
learning together but allowing a state-to-state and cause-and-
effect correspondence between model and data and therefore a
powerful interpretable white-box approach to machine learning.
This framework is applicable to any supervised learning task, does
not require differentiability, and is naturally biased against
complex models, hence inherently designed against over-
fitting, robust in the face of adversarial attacks and more
tolerant to noise in continuous identification problems.

We have shown specific examples of its application to different
problems. These problems included the estimation of the
parameters of an ODE system, the classification of the
evolution of elementary cellular automata according to their
underlying generative rules; the classification of binary
matrices with respect to 10 initial conditions that evolved
according to a random elementary cellular automaton; and the
classification of the evolution of a Boolean NK network with
respect to 10 associated binary rules or ten different network
topologies, and the classification of the evolution of a randomly
chosen network according to its connectivity (the parameter k).
These tasks were chosen to highlight different approaches that
can be taken to applying our model. We also assert that for these
tasks it is generally hard for non-specialized classifiers to get
accurate results with the amount of data given.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735618

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

While simple, the ODE parameter estimation example
illustrates the range of applications even in the context of a
simple set of equations where the unknown parameters are those
explored above in the context of a neural network (Dua & Dua,
2011), [θ1 θ2] � [51]. These parameters correspond to a low
algorithmic complexity model. Given the way that algorithmic
parameter optimization works, the optimization time, as
measured by the number of iterations, will converge faster if
the optimal parameters have low algorithmic complexity, and
therefore are more plausible in the algorithmic sense. These low
complexity assumptions are compatible with a principle of
parsimony such as Ockham’s razor, empirically found to be
able to explain data simplicity bias (Zenil & Delahaye, 2010;
Dingle et al., 2018; Zenil et al., 2018), and suggesting that the best
explanation is also the simplest, but also that what is modeled is
not algorithmically random (Zenil, 2020). The advantage of our
approach is that it offers a means to reveal a set of candidate
generative models.

From the results obtained from the first classification task
(6.2), we can conclude that our vanilla algorithmic classification
scheme performed significantly better than the non-specialized
vanilla neural network tested. For the second task (Section 6.3),
our algorithmic classifier achieved an accuracy of 95.5%, which
was considerably higher than the 60.11% achieved by the best
performing neural network tested.

For finding the underlying topology and the Boolean
functions associated with each node, the naive neural
network achieved a performance of 92.50%, compared to
91.35% for our algorithmic classifier. However, when
classifying with respect to the topology, our algorithmic
classifier showed a significant difference in performance, with
over 39.75% greater accuracy. There was also a significant
difference in performance on the fourth task, with the
algorithmic classifier reaching an accuracy of 70%, compared
to the 43% of the best neural network tested.

We also discussed some of the limitations and challenges of
our approach, but also how to combine and complement other
more traditional statistical approaches in machine learning. Chief
among them is the current lack of a comprehensive Turing
machine based conditional CTM database required for the
strong version of conditional BDM. We expect to address this
limitation in the future.

It is important to emphasize that we are not stating that there
is no neural network that is able to obtain similar, or even better,
results than our algorithms. Neither do we affirm that algorithmic
probability classification in its current form is better on any
metric than the existing extensive methods developed for deep
learning classification. However, we have introduced a completely
different view, with a new set of strengths and weaknesses, that
with further development could represent a better grounded
alternative suited to a subset of tasks beyond statistical
classification, where finding generative mechanisms or first
principles are the main goals, with all its attendant difficulties
and challenges.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.nist.gov/srd/nist-special-
database-19.

AUTHOR CONTRIBUTIONS

SH-O designed and executed experiments, HZ conceived and
designed experiments. HZ, JR, NK, and JT contributed to
experiments and supervision. SH-O, HZ, JR, AU, and NK
contributed to interpreting results and conceiving experiments.
SH-O and HZ wrote the paper. All authors revised the paper.

FUNDING

SH-O was supported by grant SECTEI/137/2019 awarded by
Subsecretaría de Ciencia, Tecnología e Innovación de la Ciudad
de México (SECTEI).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2020.567356/
full#supplementary-material.

REFERENCES

Aldana, M., Coppersmith, S., and Kadanoff, L. (2003). Boolean dynamics with
random couplings perspectives and problems in nonlinear science: a celebratory
volume in honor of lawrence sirovich. (Berlin, Germany: Springer-Verlag).
doi:10.1007/978-0-387-21789-5

Antunes, L., and Fortnow, L. (2009). Sophistication revisited. Theor. Comput. Syst.
45 (1), 150–161. doi:10.1007/s00224-007-9095-5

Armijo, L. (1966). Minimization of functions having lipschitz continuous first
partial derivatives. Pac. J. Math. 16 (1), 1–3.

Atlan, H., Fogelman-Soulie, F., Salomon, J., and Weisbuch, G. (1981). Random
boolean networks. Cybern. Syst. 12 (1–2), 103–121. doi:10.1080/
01969728108927667

Bishop, C. M., et al. (1995). Neural networks for pattern recognition. Oxford, UK:
Oxford University Press.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. in
Proceedings of COMPSTAT’2010. Editor Y. Lechevallier (Berlin, Germany:
Springer, 177–186.

Chaitin, G. J. (1969). On the length of programs for computing finite binary
sequences: statistical considerations. J. ACM. 16 (1), 145–159. doi:10.1142/
9789814434058_0020

Chaitin, G. J. (1982). Algorithmic information theory. in Encyclopedia of Statistical
Sciences., Vol. 1. (Hoboken, NJ: Wiley), 38–41.

Chaitin, G. J. (2009). Evolution of mutating software. Bulletin of the EATCS. 97,
157–164.

Chaitin, G. J. (2013). Proving Darwin: Making Biology Mathematical. New York,
NY: Vintage.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735619

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://www.nist.gov/srd/nist-special-database-19
https://www.nist.gov/srd/nist-special-database-19
https://www.frontiersin.org/articles/10.3389/frai.2020.567356/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2020.567356/full#supplementary-material
https://doi.org/10.1007/978-0-387-21789-5
https://doi.org/10.1007/s00224-007-9095-5
https://doi.org/10.1080/01969728108927667
https://doi.org/10.1080/01969728108927667
https://doi.org/10.1142/9789814434058_0020
https://doi.org/10.1142/9789814434058_0020
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Cilibrasi, R., and Vitányi, P. M. (2005). Clustering by compression. IEEE Trans. Inf.
Theor. 51 (4), 1523–1545. doi:10.1109/TIT.2005.844059

Delahaye, J.-P., and Zenil, H. (2012). Numerical evaluation of algorithmic complexity
for short strings: a glance into the innermost structure of randomness. Appl. Math.
Comput. 219 (1), 63–77. doi:10.1016/j.amc.2011.10.006

Deng, L. (2012). The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Process. Mag. 29 (6), 141–142.
doi:10.1109/MSP.2012.2211477

Dingle, K., Camargo, C., and Louis, A. (2018). Input-output maps are strongly
biased towards simple outputs. Nat. Commun. 9 (761), 761. doi:10.1038/
s41467-018-03101-6

Dua, V., and Dua, P. (2011). A simultaneous approach for parameter estimation
of a system of ordinary differential equations, using artificial neural network
approximation. Ind. Eng. Chem. Res. 51 (4), 1809–1814. doi:10.1021/
ie200617d

Dubrova, E., Teslenko, M., andMartinelli, A. (2005). “Kauffman networks: analysis
and applications,” in Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design, San Jose, CA, November 6–10, 2005.
(Washington, DC: IEEE Computer Society), 479–484.

Fernandes, T. (2018). Cellular automaton neural network classification.
(Champaign, IL: Wolfram).

Hartung, J., and Sinha, G. K. B. K. (2008). Statistical meta-analysis with
applications. Hoboken, NJ: John Wiley & Sons.

Hernández-Orozco, S., Kiani, N. A., and Zenil, H. (2018). Algorithmically probable
mutations reproduce aspects of evolution, such as convergence rate, genetic
memory and modularity. Royal Society Open Science. 5 (8), 180399. doi:10.
1098/rsos.180399

Hoerl, A. E., and Kennard, R. W. (1970). Ridge regression: biased estimation for
nonorthogonal problems. Technometrics. 12 (1), 55–67. doi:10.1080/00401706.
1970.10488634

Hutter, M., Legg, S., and Vitanyi, P. M. (2007). Algorithmic probability.
Scholarpedia. 2 (8), 2572. doi:10.4249/scholarpedia.2572

Hutter, M. (2001). “Towards a universal theory of artificial intelligence based on
algorithmic probability and sequential decisions,” in Proceedings of the
European conference on machine learning, Freiburg, Germany, September
2001. (Berlin, Germany: Springer), 226–238.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol. 22 (3), 437–67. doi:10.1016/0022-5193(69)90015-0

Kingma, D. P., and Adam, J. Ba. (2014). A method for stochastic optimization.
Available at: https://arxiv.org/abs/1412.6980.

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of
information. Probl. Inf. Transm. 1 (1), 1–7. doi:10.1080/00207166808803030

Koppel, M., and Atlan, H. (1991). An almost machine-independent theory of
program-length complexity, sophistication, and induction. Inf. Sci. 56 (1–3),
23–33. doi:10.1016/0020-0255(91)90021-L

Koppel, M. (1991). Learning to predict non-deterministically generated strings.
Mach. Learn. 7 (1), 85–99. doi:10.1023/A:1022671126433

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE. 86 (11), 2278–2324. doi:10.1109/
5.726791

Levin, L. A. (1974). Laws of information conservation (nongrowth) and aspects of
the foundation of probability theory. Probl. Peredachi Inf. 10 (3), 30–35.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Trans. Inf. Theor. 28 (2),
129–137. doi:10.1109/TIT.1982.1056489

Minsky, M. (2014). Panel discussion on the limits of understanding. (New York,
NY: World Science Festival).

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (2007). Linear
Regularization Methods. 3rd Edn. (Cambridge, UK: Cambridge University
Press). 1006–1016.

Soler-Toscano, F., Zenil, H., Delahaye, J. P., and Gauvrit, N. (2014). Calculating
Kolmogorov complexity from the output frequency distributions of small

turing machines. PLoS One. 9 (5), e96223–18. doi:10.1371/journal.pone.
0096223

Soler-Toscano, F., Zenil, H., Delahaye, J. P., and Gauvrit, N. (2014). Calculating
Kolmogorov complexity from the output frequency distributions of small
turing machines. PLoS One. 9 (5), e96223. doi:10.1371/journal.pone.0096223

Solomonoff, R. (1960). A preliminary report on a general theory of inductive
inference. Technical report. Cambridge, UK: Zator Co.

Solomonoff, R. J. (1964). A formal theory of inductive inference: parts 1 and 2. Inf.
Control. 7 (1), 1–22. doi:10.1016/S0019-9958(64)90223-2

Solomonoff, R. (1986). “The application of algorithmic probability to problems in
artificial intelligence,” in Machine Intelligence and Pattern Recognition.,
(Amsterdam, Netherlands: Elsevier), Vol. 4. 473–491.

Solomonoff, R. J. (2003). The Kolmogorov lecture the universal distribution and
machine learning. Comput. J. 46 (6), 598–601. doi:10.1093/comjnl/46.6.598

Su, J., Vargas, D. V., and Sakurai, K. (2019). One pixel attack for fooling deep neural
networks. IEEE Transactions on Evolutionary Computation. 23 (5), 828–841.
doi:10.1109/TEVC.2019.2890858

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the
regularization method. Soviet Math. Dokl. 4, 1035–1038.

Uppada, S. K. (2014). Centroid based clustering algorithms—a clarion study. Int.
J. Comput. Sci. Inf. Technol. 5 (6), 7309–7313. doi:10.5772/intechopen.75433

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.
Zenil, H., and Delahaye, J.-P. On the algorithmic nature of the world. in

Information and Computation. Editors G. dodig-crnkovic and M. burgin
(Singapore: World Scientific Publishing Company), (2010).

Zenil, H., Soler-Toscano, F., Delahaye, J.-P., and Gauvrit, N. (2015). Two-
dimensional Kolmogorov complexity and an empirical validation of the
coding theorem method by compressibility. PeerJ Computer Science. 1, e23.
doi:10.7717/peerj-cs.23

Zenil, H., Badillo, L., Hernádez-Orozco, S., and Hernádez-Quiroz, F. (2018).
Coding-theorem like behaviour and emergence of the universal distribution
from resource-bounded algorithmic probability. Int. J. Parallel, Emergent
Distributed Syst. 34 (2), 161–180. doi:10.1080/17445760.2018.1448932

Zenil, H., Hernández-Orozco, S., Kiani, N., Soler-Toscano, F., Rueda-Toicen, A.,
and Tegnér, J. (2018). A decomposition method for global evaluation of
shannon entropy and local estimations of algorithmic complexity. Entropy.
20 (8), 605. doi:10.3390/e20080605

Zenil, H., Kiani, N., Zea, A., and Tegnér, J. (2019). Causal deconvolution by
algorithmic generative models. Nature Machine Intelligence. 1, 58–66. doi:10.
1038/S42256-018-0005-0

Zenil, H. (2011). Une approche expérimentale à la théorie algorithmique de la
complexité. PhD thesis. Villeneuve-d’Ascq (France): Université de Lille 1.

Zenil, H. (volume forthcoming 2020). “Compression is comprehension, and the
unreasonable effectiveness of digital computation in the natural world,” in
Taming Complexity: Life and work of Gregory Chaitin. Editors F.A. Doria and
S. Wuppuluri (Singapore: World Scientific Publishing Co.).

Conflict of Interest: Authors HZ, SH-O, and JR are employed by the company
Oxford Immune Algorithmics Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Hernández-Orozco, Zenil, Riedel, Uccello, Kiani and Tegnér. This
is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2021 | Volume 3 | Article 56735620

Hernández-Orozco et al. Algorithmic Probability-Guided Machine Learning

https://doi.org/10.1109/TIT.2005.844059
https://doi.org/10.1016/j.amc.2011.10.006
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1038/s41467-018-03101-6
https://doi.org/10.1038/s41467-018-03101-6
https://doi.org/10.1021/ie200617d
https://doi.org/10.1021/ie200617d
https://doi.org/10.1098/rsos.180399
https://doi.org/10.1098/rsos.180399
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.4249/scholarpedia.2572
https://doi.org/10.1016/0022-5193(69)90015-0
https://arxiv.org/abs/1412.6980
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1016/0020-0255(91)90021-L
https://doi.org/10.1023/A:1022671126433
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1371/journal.pone.0096223
https://doi.org/10.1371/journal.pone.0096223
https://doi.org/10.1371/journal.pone.0096223
https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/10.1093/comjnl/46.6.598
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.5772/intechopen.75433
https://doi.org/10.7717/peerj-cs.23
https://doi.org/10.1080/17445760.2018.1448932
https://doi.org/10.3390/e20080605
https://doi.org/10.1038/S42256-018-0005-0
https://doi.org/10.1038/S42256-018-0005-0
https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Algorithmic Probability-Guided Machine Learning on Non-Differentiable Spaces
	1 Introduction
	2 An Algorithmic Probability Loss Function
	3 Categorical Algorithmic Probability Classification
	4 Approximating the Algorithmic Similarity Function
	4.1 Conditional CTM and Domain Specific CTM
	4.2 Coarse Conditional BDM
	4.3 Strong Conditional BDM
	4.3.1 The Relationship Between CTM, Coarse and Strong Conditional BDM

	5 Algorithmic Optimization Methodology
	5.1 The Non-smooth Nature of the Algorithmic Space
	5.2 Algorithmic Parameter Optimization
	5.2.1 On the Expected Optimization Time

	6 Methods
	6.1 Traversing Non-smooth Algorithmic Surfaces for Solving Ordinary Differential Equations
	6.2 Finding Computable Generative Mechanisms
	6.2.1 Algorithmic-Probability Classifier Based on Coarse Conditional BDM

	6.3 Finding the Initial Conditions for Cellular Automata
	6.3.1 Algorithmic-Probability Classifier Based on Strong Conditional BDM

	6.4 Classifying NK Networks
	6.5 Classifying Kauffman Networks
	6.5.1 Algorithmic-Probability Classifier Based on Conditional CTM

	6.6 Hybrid Machine Learning
	6.6.1 Algorithmic Information Regularization

	6.7 Algorithmic-Probability Weighting

	7 Results
	7.1 Estimating ODE Parameters
	7.2 Finding Generative Rules of Elementary Cellular Automata
	7.3 Finding Initial Conditions
	7.3.1 Network Topology Algorithmic-Information Classifier

	7.4 Classifying Kauffman Networks
	7.5 A First Experiment and Proof of Concept of Algorithmic-Probability Weighting

	8 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

