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The use of machine learning and other sophisticated models to aid in prediction and

decision making has become widely popular across a breadth of disciplines. Within

the greater diagnostic radiology, radiation oncology, and medical physics communities

promising work is being performed in tissue classification and cancer staging, outcome

prediction, automated segmentation, treatment planning, and quality assurance as well

as other areas. In this article, machine learning approaches are explored, highlighting

specific applications in machine and patient-specific quality assurance (QA). Machine

learning can analyze multiple elements of a delivery system on its performance over

time including the multileaf collimator (MLC), imaging system, mechanical and dosimetric

parameters. Virtual Intensity-Modulated Radiation Therapy (IMRT) QA can predict

passing rates using different measurement techniques, different treatment planning

systems, and different treatment delivery machines acrossmultiple institutions. Prediction

of QA passing rates and other metrics can have profound implications on the current

IMRT process. Here we cover general concepts of machine learning in dosimetry and

various methods used in virtual IMRT QA, as well as their clinical applications.
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INTRODUCTION

Machine learning (ML) has the potential to revolutionize the field of radiation oncology in many
processes and workflows to improve the quality and efficiency of patient care (Feng et al., 2018).
The delivery of radiotherapy is complex and each step in the integrated process requires quality
assurance (QA) to prevent errors and to ensure patients receive the prescribed treatment correctly.
The recent research in machine learning efforts in the QA has produced a variety of proofs-of-
concept, many with promising results (Kalet et al., 2020). In this article, we review the machine
learning applications in radiotherapy QA.

The first question we seek to answer is why we want to integrate ML in radiotherapy QA. The
term, machine learning, refers to the automated detection of meaningful patterns in data. In the
past few years, it has become a major area of research and a common tool in many processes in
radiotherapy (Feng et al., 2018). In this review paper, we will focus onmachine learning applications
to QA. As medical physicists, we perform an increasing number of QA tasks in our daily work, and
prioritizing those that will help deliver the safest treatment is of paramount importance as stated
in the American Association of Physicists in Medicine (AAPM) Task Group (TG) 100 (Huq et al.,
2016). As such, learning from our QA data to choose those tasks that need early intervention is
essential for our profession as more complex treatments are adopted. Currently, most of the data
acquired during QA is utilized only as a one-time evaluation measurement but there is a lot of
QA data available from which we can “learn” using machine learning methods and utilize past
experience as knowledge.
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This review will begin by introducing some general machine
learning concepts for those who are not as familiar with this field.
We will then combine these descriptions with explanations of
their direct applications to QA.We also provide a non-exhaustive
analysis of the literature on the applications of ML to QA data.
This article hopes to demonstrate the power of machine learning
and the advantages it offers to our QA programs.

Artificial Intelligence and Machine Learning
Machine Learning maybe somewhat misleadingly referred as
Artificial intelligence (AI), is already part of our everyday lives.
The easiest way to explain the relationship of AI and ML is
to visualize them as concentric circles with AI - the idea that
came first, the largest; then ML - which blossomed later. In
AI a general purpose algorithm that can reason about different
problems is sought while in ML this idea is abandoned to search
for a specific model that maps an input to an output using
statistical learning techniques. Many classes of algorithms exist
within ML that fit different functions, such as linear models
like Lasso and Ridge regression (Hastie et al., 2009), Decision
Trees (Luna et al., 2019); ensembles like Random Forrest and
Gradient Boosting (Hastie et al., 2009), and Neural Networks
(Rumelhart et al., 1986). All these algorithms are needed because
one cannot guarantee a priori that an algorithm will be better
than another in a random problem, a theorem knows as a no
free lunch theorem (Wolpert, 1996). In practice, certain classes
of algorithms work better than others in classes of problems.
For instance, for the analysis of images, Convolutional Neural
Network (CNN), a deep learning network, excels while for the
analysis of tabular data Gradient Boosting has the lead. In the
majority of problems. CNN uses convolution filters to extract
general concepts that are later combined with other concepts
that resemble how the visual cortex in animals works and puts
emphasis in the local importance of each pixel (Le Cun and
Bengio, 2002). Additionally, max pooling layers that take average
of pixel and data augmentation techniques make it somewhat
independent of translation and rotations of the images, all
important part of their success. For the analysis of tabular data,
however, this customization is not needed and an algorithm
that is better at handling missing values, performs automatic
feature selection, does not depend onmonotonic transformations
of the input variables and it is easy to train and regularize
is more important. This is the case for Gradient Boosting
(Friedman, 2001).

Types of Learning
Machine learning algorithms use computational methods to
“learn” information directly from data. There are two main
types of learning: unsupervised learning and supervised learning.
In unsupervised learning, the training data does not include
label responses or desired outputs and the objective is to model
the probability distribution of the given inputs. On the other
hand, in supervised learning the training data does include labels
or desired outputs and allows for the learning of a mapping
between the input variables and the output (e.g., classification,
regression, etc.).

Unsupervised Learning
Unsupervised learning is a type of machine learning algorithm
used to draw inferences from datasets consisting of input data
without labeled responses. The most common unsupervised
learning method is cluster analysis, which is used for exploratory
data analysis to find hidden patterns or grouping in data.
The clusters are modeled using a measure of similarity
(MathWorks.com, 2020). Li et al. utilized unsupervised learning
tools of K-means and hierarchical clustering algorithms
to analyze patients’ breathing curves extracted from 4D
radiotherapy data (Li et al., 2017). The authors classified
patients’ breathing patterns into sub-groups, such as perfect,
regular, and irregular breathers. The breathing signals and
frequency spectrum were extracted from 341 real-time position
management (RPM) datasets. Correlation plots of 6 features
(frequency, amplitude, standard deviation of amplitude, spread
of frequency spectrum) were chosen for the clustering task. Two
clustering algorithms were used by the authors: hierarchical
clustering and k-means. Hierarchical clustering generates more
consistent results than k-means but requires a more (and usually
prohibiting) training time than k-means (Li et al., 2017). This
could lead to inefficiency in large datasets. K-means is extremely
sensitive to cluster center initialization; therefore, some degrees
of prior knowledge about the data is required for its effective
usage. We will also demonstrate that the same RPM data could
be used for both unsupervised and supervised learning to achieve
different goals, although this topic might not be directly related
to radiotherapy QA.

Supervised Learning
Supervised learning is the machine learning task of learning a
function that maps an input to an output based on example
input-output pairs (Russell and Norvig, 2010). A supervised
learning algorithm takes a known set of input data and responses
(output) to learn the regression/classification model. A learning
algorithm is then used to train a model and generate a prediction
for the response to new data or the test dataset. When statistical
learning algorithms are used (e.g., Random Forest, Gradient
Boosting, Decision Trees) features that are expected to describe
the output need to be defined and calculated (Shobha and
Rangaswamy, 2018). Therefore, for each observation features are
extracted and associated with the label sought to be predicted.We
can then use these features and output to learn a mapping from
one to the other using ML algorithms. Thus, when a new IMRT
plan is generated, the same features can be extracted to be used
in the trained predictive model to show the expected label such
as pass/fail (classification) or passing rate (regression). This is the
approach first proposed in Virtual IMRT QA (Valdes et al., 2016)
and further validated (Valdes et al., 2017).

Supervised learning was also used with the same RPM data
described in section Unsupervised Learning above (Lin et al.,
2019). With over 1,700 RPM data from 3 institutions, a Long
short-term memory (LSTM) model was built by Lin et al. to
predict different types of patients’ respiratory motions in real-
time (Lin et al., 2019). LSTM is a recurrent neural network (RNN)
recently designed to alleviate the issues with vanishing gradients
seen in earlier RNN. LSTM is specifically useful for the analysis
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of sequence data like text or this RPM data (Lin et al., 2019).
In this study, the authors used a sliding window technique to
partition the RPM data into the input and supervised output.
This study demonstrates the potential of using deep learning
models in respiratory signal prediction and incorporating the
motion into treatments. This example, though slightly removed
from radiotherapy QA, is chosen to emphasize the fact that
applying different learning algorithms on the same dataset could
serve different purposes.

Semi-supervised Learning
Semi-supervised learning falls between unsupervised learning
and supervised learning. In semi-supervised learning, part of the
training data does not contain a label. However, by leveraging
the correlation structure of the input variables, a model that
explains the label portion is obtained. Naqa et al. performed a
multi-institutional study with data from eight Linacs and seven
institutions (El Naqa et al., 2019). The authors investigated
the use of machine learning methods for the automation of
machine QA. A total of 119 EPID (electronic portal imaging
device) images of a special QA phantom were fed into the
support vector data description (SVDD) clustering algorithm
(unsupervised learning). QA test data was first mapped to a
higher dimensional space to identify the minimal enclosing
sphere. This sphere was then mapped back to the input space
to detect outliers. The separate clusters generated were further
used to evaluate the tolerance boundaries and limits as indicated
in the AAPM TG-142. The prediction tests included gantry
sag, radiation field shift, and multileaf collimator (MLC) offset
data. This study demonstrated that machine learning methods
with SVDD clustering are promising for developing automated
QA tools.

Validation of ML Models
Inmachine learning, model validation is referred to as the process
where a trained model is evaluated with a testing data set. The
test data set should be a separate portion of the same data set
from which the training set is derived. The main purpose of
using the testing data set is to validate the generalizability of a
trained model (Alpaydin, 2010). Validation of a predictive model
is an essential part of the model building process, and is used
to assess the quality of a model. When conducting a machine
learning study, commonly used validation methods include: (1)
using different machine learning algorithms on the same data to
compare the results, (2) using cross-validation to obtain an error
estimation on out of sample data, (3) using a hold-out sample
for testing, (4) comparing with other well-establishedmodels that
are not necessary machine-learning models, (5) validating using
a sample not from the training period but acquired at a later time,
(6) validating using a sample that is selected from a different
population than that used to build the model (e.g., different
clinic). Model validation is usually carried out after model
training to find the optimalmodel with the best performance. The
two most popular types of validation methods used in predictive
models of radiotherapy QA are splitting training/test/holdout
datasets and k-fold cross-validation. There are multiple ways
to split the data. One method is to split the data pool into

roughly 70% used for training the model and 30% for testing the
model, and another method splits the data into three with, for
example, 60% for training, 30% for testing, and the remaining
10% for holdout. Validating on the holdout set is done to check
if the model suffers from overfitting due to optimization of the
model hyperparameters. Instead of the data splitting as described
above, k-fold cross-validation splits the data into k folds, then
trains the data on k-1 folds and tests on the remaining fold to
evaluate the model (Alpaydin, 2010; Russell and Norvig, 2010).
The procedure is repeated k times with a different group of
observations treated as a validation set each time. The most
frequently used in radiotherapy QA applications is either 5- or
10-fold cross-validation. The model accuracy can be evaluated
using a variety of metrics including, but not limited to, the mean
squared error (MSE), root mean square error (RMSE), mean
absolute error (MAE), receiver operating characteristic (ROC),
correlation coefficient, regression plot, residual error histogram,
sensitivity and specificity.

MACHINE LEARNING APPLICATIONS IN
MACHINE QA

In this section, we will focus on the general applications of ML
to Linac QA before discussing IMRT QA. There have been many
studies of machine learning applications in Linac QA including
prediction of machine dosimetry as well as discrepancies of MLC
positioning and their impact on the actual dose delivery.

ML Model Built From Dosimetric QA or
Beam Data
Another application, Li and Chan developed a model to predict
the performance of Linac over time (Li and Chan, 2017). The
study applied Artificial Neural Networks (ANNs) time-series
prediction modeling to the longitudinal data of 5-years of daily
Linac QA. A set of one hidden layer, six hidden neurons, and two
input delays were chosen after a trial-and-error process to form
the network architecture. The predictive model was compared
with a well-established model, autoregressive integrated moving
average (ARIMA). The ANN time-series mode was found to be
more accurate than the ARIMA techniques to predict the Linac
beam symmetry accurately (Li and Chan, 2017). Zhao et al. (in
press) utilized 43 sets of commissioning and annual QA beam
data from water tank measurements to build a machine learning
model that could predict the percent depth doses (PDD) and
profiles of other field sizes such as 4 × 4 cm2, 30 × 30 cm2

accurately within 1% accuracy with 10× 10 cm2 data input. This
application would potentially streamline the data acquisition for
the entire commissioning process in TPS as well as optimize
periodic QA of Linacs to a minimum set of measurements.

ML Model Built From Delivery Log Files
Carlson et al. were the first to use machine learning techniques to
train models to predict these discrepancies (Carlson et al., 2016).
Predictive leaf motion parameters such as leaf position and speed
were calculated for the models. Differences in positions between
synchronized DICOM-RT files and Dynalog files from 74 VMAT
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plans were used as a target response for training the models.
Threemachine learning algorithms were used—linear regression,
random forest, and a cubist model. They found that the cubist
model outperformed all other models in terms of accuracy to
predict MLC position errors. The objective of these predictions
was to incorporate them into the TPS and provide clinicians
with a more realistic view of the dose distribution as it will truly
be delivered to the patient. Osman et al. (2020) collected 400
delivery log files and trained a model with feed-forward ANN
architecture mapping the input parameters with the output to
predict the MLC leaf positional deviations with a train/test split
of 70 and 30%. The ANN model achieved a maximum MSE
of 0.0001 mm2 in predicting the leaf positions for each leaf in
the test data. The results of the study could be extended to
utilizing this information in the dose calculation/optimization
algorithm. Chuang et al. developed a machine learning model
using prior trajectory log files generated from 116 IMRT and 125
VMAT plans to predict the MLC discrepancies during delivery
and provide feedback of dosimetry (Chuang et al., in press). A
workflow was developed to extract discrepancies and mechanical
parameters from trajectory logs and use the proposed machine
learning algorithm to predict discrepancy. The authors used
multiple machine learning models including linear regression,
decision tree, and ensemble methods.

ML Model Built From Proton Fields
Sun et al. used 1,754 proton fields with various range and
modulation width combinations to train an output factor (OF)
model in three different algorithms (Random Forest, XGBoost,
and Cubist) with a train/test split of 81 and 19% (Sun et al.,
2018). They found that the Cubist—based solution outperformed
all other models with a mean absolute discrepancy of 0.62%
and maximum discrepancy of 3.17% between the measured
and predicted OF. They concluded that machine learning
methods can be used for a sanity check of output measurements
and has the potential to eliminate time-consuming patient-
specific measurements. Similarly, Grewal et al. utilized 4,231
QA measurements with a train/test split of 90 and 10% to
build models to predict OF and MU for uniform scanning
proton beams with two learning algorithms—Gaussian process
regression and shallow neural network (Grewal et al., 2020). They
found that the prediction accuracy of machine and deep learning
algorithms is higher than the empirical model currently used
in the clinic. They have used these models in the clinic as a
secondary check of MU or OF.

Table 1 lists the studies on radiotherapy machine QA using
machine learning techniques. All of these studies showed that
machine learning techniques can give physicists insights into
past QA data and to predict potential machine failures. This
would alert physicists to take proactive actions and make
informed decisions.

MACHINE LEARNING APPLICATIONS IN
IMRT/VMAT QA

This section will now focus on describing the applications of
Machine Learning to IMRT QA. Features can be extracted

from each IMRT plan and compute multiple complexity metrics
associated with passing rates. These features can be used to build
a model that can predict the passing rate for any new IMRT plan.

ML Applied to IMRT QA
Early ML Models
Valdes et al. developed the first virtual IMRT QA using a
Poisson regression machine learning model to predict passing
rates (Valdes et al., 2016). The initial dataset contained 498
clinical IMRT plans from the University of Pennsylvania, with
QA results from a MapCHECK (Sun Nuclear Corporation,
Melbourne, FL) QA device. An additional dataset was obtained
containing 203 clinical IMRT beams also planned from Eclipse
(Varian Medical Systems, Palo Alto, CA) but QA results were
obtained using portal dosimetry. The plans from the University
of Pennsylvania were used to identify 78 important features.
Additionally, 10 further features were added to take into account
the specific characteristics of portal dosimetry (Valdes et al.,
2017). All parameters of each IMRT beam were automatically
extracted from Eclipse with SQL queries and scripts were written
to read the MLC positions and collimation rotation from the
files. Matlab (The MathWorks Inc., Natick, MA) functions
were developed to calculate the features for each beam. For
MapCHECK, the important features extracted included the
fraction of area delivered outside a circle with a 20 cm radius
(to capture symmetry disagreements), duty cycle, the fraction
of opposed MLCs with an aperture smaller than 5mm (to
quantify the effects of rounded leaves in the MLC), etc. For portal
dosimetry, the important features included the CIAO (Complete
Irradiated Area Outline) area, the fraction of MLC leaves with
gaps smaller than 20 or 5mm, the fraction of area receiving<50%
of the total calibrated MUs, etc. (Valdes et al., 2017).

A machine learning algorithm was trained to learn the
relationship between the plan characteristics and the passing
rates. There are 80 complexity metrics being used in the
calculation in the initial modeling with Penn data using the
MapCHECK QA data. A learning curve for the initial model was
established to show that around 200 composite plans are needed
to adequately train the model. A strong correlation between the
MapCHECK measurement and virtual IMRT predicted passing
rates for data that the algorithm had not seen was obtained. All
predictions of passing rates were within±3% error.

For the portal dosimetry model, a learning curve was also
performed to estimate the number of IMRT fields needed, and
it was shown that close to 100 individual IMRT fields are
sufficient to build a reliable predictive model. In total there
were 90 continuous variables used for the virtual IMRT QA
model which predicted EPID panel passing rates. The authors
presented the residual errors of the passing rates prediction
for the two institutions (the University of Pennsylvania and
Memorial Sloan Kettering Cancer Center). Although the passing
rates are site-dependent, different models were not built for
each site because, conditional on the plan characteristics, this
dependency disappears.

In order to implement virtual IMRT QA in a clinic the
following workflow should be followed: (1) collect or access
IMRT QA data, (2) extract all the parameters of the IMRT fields
from plan files, (3) extract the features for the calculation of all
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TABLE 1 | Summary of studies on machine QA using machine learning techniques in a chronological order.

References QA Source Data Source ML Model Task

Carlson et al. (2016) DICOM_RT, Dynalog

files

74 VMAT plans Regression, Random Forest,

Cubist

MLC Position Errors

Detection

Li and Chan (2017) Daily QA Device 5-year Daily QA Data ANN Time-Series, ARIMA

Models

Symmetry Prediction

Sun et al. (2018) Ion Chamber 1,754 Proton Fields Random Forrest, XGBoost,

Cubist

Output for Compact Proton

Machine

El Naqa et al. (2019) EPID 119 Images from 8 Linacs Support Vector Data

Description, Clustering

Gantry Sag, Radiation Field

Shift, MLC Offset

Grewal et al. (2020) Ion Chamber 4,231 Proton Fields Gaussian Processes, Shallow

NN

Output and Patient QA

Proton Machine

Osman et al. (2020) log files 400 machine delivery log

files

ANN MLC Discrepancies during

Delivery & Feedback

Chuang et al. (in

press)

Trajectory log files 116 IMRT plans, 125 VMAT

plans

Boosted Tree Outperformed LR MLC Discrepancies during

Delivery & Feedback

Zhao et al. (in press) Water Tank

Measurement

43 Truebeam PDD, Profiles Multivariate Regression (Ridge) Modeling of Beam Data

Linac Commissioning

complexity metrics affecting the passing rates, (4) use a machine
learning algorithm to build a virtual IMRT QA model. During
this process, we identify the most impactful features that affect
the passing rate.

Deep Learning Models
The process described in the previous section Early ML
Models requires carefully designing features that describe the
correlation between plan characteristics and passing rates. Using
an algorithm capable of designing their own features, Dr. Valdes
and his group compared a Deep Neural Network against their
own Poisson regression model using the same patient QA data
previously described (Interian et al., 2018). The input to the
CNN, a special type of neural network designed to analyze
images, was the fluence map for each plan without the need
of expert designed features. The models were trained to predict
IMRTQA gamma passing rates using TensorFlow andKeras. The
authors concluded that CNNs with transfer learning can predict
IMRT QA passing rates by automatically designing features
from the fluence maps without human expert supervision. The
predictions from the CNNs were comparable to the virtual IMRT
QA system described above which was carefully designed by
physicist experts.

Tomori et al. built a prediction model for gamma evaluation
of IMRT QA based on deep learning (Tomori et al., 2018) using
sixty IMRT QA plans. Fifteen-layer CNN were developed to
learn the planar dose distributions from a QA phantom. The
gamma passing rate was measured using EBT3 film. The input
training data also included the volume of PTV, rectum, and
overlapping region, and the monitor unit for each field. The
network produced predicted gamma passing rates at four criteria:
2%/2mm, 3%/2mm, 2%/3mm, and 3%/3mm. Five-fold cross-
validation was applied to validate the performance. A linear
relationship was found between the measured and predicted
values for all criteria. These results also suggested that deep

learning methods may provide a useful prediction model for
gamma evaluation of patient-specific QA.

Lam et al. applied 3 tree-based machine learning algorithms
(AdaBoost, Random Forest, and XGBoost) to train the models
and predict gamma passing rates using a total of 1,497 IMRT
beams delivered with portal dosiemtry (Lam et al., 2019). They
reported that both AdaBoost and Random Forest had 98± 3% of
predictions within 3% of the measured 2%/2mm gamma passing
rates with a maximum error < 4% and a MAE < 1%. XGBoost
showed a slightly worse prediction accuracy with 95% of the
predictions < 3% of the measured gamma passing rates and a
maximum error of 4.5%. The three models identified the same
nine features in the top 10 most important ones that are related
to plan complexity and maximum aperture displacement from
the central axis or the maximum jaw size in a beam. Their results
demonstrated that portal dosimetry IMRT QA gamma passing
rates can be accurately predicted using tree-based ensemble
learning models.

Nyflot et al. investigated a deep learning approach to
classify potential treatment delivery errors and predict QA
results using image and texture features from 186 EPID
images (Nyflot et al., 2019). Three sets of planar doses
were exported from each QA plan corresponding to (a) the
error-free case, (b) a random MLC error case, and (c) a
systematic MLC error case. Each plan was delivered to an
EPID panel and gamma analysis was performed using the
EPID dosimetry software. Two radiomic approaches (image
and texture features) were used. The resulting metrics from
both approaches were used as input into four machine learning
classifiers in order to determine whether images contained the
introduced errors. After training, a single extractor is used as
a feature extractor for classification. The performance of the
deep learning network was superior to the texture features
approach, and both radiomic approaches were better than
using gamma passing rates in order to predict the clinically
relevant errors.
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ML Applied to VMAT QA
ML applications have been extended to volumetric modulated
arc therapy (VMAT) QA. Granville et al. built a ML model
with 1620 VMAT plans (Elekta) to predict the results of VMAT
QA measurements using not only treatment plan characteristics
but also Linac performance metrics (Granville et al., 2019).
They trained a linear Support Vector Classifier (SVC) to
classify the results of VMAT QA. The outputs in this model
were simple classes representing the median dose difference
(±1%) between measured and expected dose distributions
rather than passing rates. In the model development phase, a
recursive feature elimination (RFE) cross-validation technique
was used to eliminate unimportant features. Of the ten features
found to be most predictive of VMAT QA measurement
results, half were derived from treatment plan characteristics
and a half from Linac QA metrics. Such a model has the
potential to provide more timely failure detection for patient-
specific QA. Ono et al. utilized 600 VMAT plans and their
corresponding ArcCHECK measurements to build prediction
models using three machine learning algorithms—regression
tree analysis, multiple regression analysis, and neural network.
They found that the neural networks model achieved slightly
better results among the 3 models in terms of prediction error
(Ono et al., 2019).

Li et al. investigated the impact of delivery characteristics
on the dose accuracy of VMAT (Li et al., 2019a). Ten metrics
reflecting VMAT delivery characteristics were extracted from
344 QA plans. The study found that leaf speed is the most
important factor affecting the accuracy of gynecologic, rectal, and

head and neck plans, while the field complexity, small aperture
score, and MU are the most important factors influencing the
accuracy of prostate plans. Li et al. also studied the accuracy
of prediction using machine learning for VMAT QA (Li et al.,
2019b). The authors presented the workflows for two prediction
models; the classic Poisson regression model, and the newly
constructed Random Forest classification model. To test the
prediction accuracy, 255 VMAT plans (Varian) with 10-fold
cross-validation were used to explore the model performance
under different gamma criteria and action limits. In clinical
validation, independent 48 VMAT plans without cross-validation
were used to further validate the reliability ofmodels. The authors
also showed the absolute prediction error with both technical and
clinical validations. The prediction accuracy was greatly affected
by the absolute value of the measured gamma passing rates and
gamma criteria. The regression model was able to accurately
predict those passing rates for the majority VMAT plans, but the
classification model had a much better sensitivity to accurately
detect failed QA plans. Later the same group further improved
their prediction model using autoencoder based classification-
regression (ACLR) to generate gamma passing rates predictions
for three different gamma criteria from 54 complexity metrics
as input (Wang et al., in Press). With an additional 150 VMAT
plans available for clinical validation to evaluate the generalized
performance of the model, the group reported that such a hybrid
model significantly improved prediction accuracy over their early
model, Poisson Lasso regression.

Wall and Fontenot used 500 VMAT and MapCHECK2 data
to build predictive models using four different machine learning

TABLE 2 | Summary of studies on patient-specific QA using machine learning techniques.

Group TPS/Delivery QA Source Data Source ML Model Research Highlight

Valdes et al. (2016) Eclipse/Varian MapCHECK2 498 IMRT Plans Poisson Regression Founding Paper

Valdes et al. (2017) Eclipse/Varian Portal Dosimetry 203 IMRT Beams Poisson Regression Multi-sites Validation

Interian et al. (2018) Eclipse/Varian MapCHECK2 498 IMRT Plans Convolutional Neural

Network

Fluence Maps as Input

Tomori et al. (2018) iPlan/Varian EBT3 film 60 IMRT Plans Convolutional Neural

Network

Planar Dose, Volumes,

MU

Lam et al. (2019) Eclipse/Varian Portal Dosimetry 1,497 IMRT Beams AdaBoost, Random

Forest, XGBoost

Tree-based High

Accuracy

Nyflot et al. (2019) Pinnacle/Elekta EPID 186 IMRT Beams Convolutional Neural

Network

Image, Texture

Features

Granville et al. (2019) Monaco/Elekta Delta4 1,620 VMAT Beams Support Vector

Classifier

1st VMAT & w/ QC

Metrics

Ono et al. (2019) RayStation,

Eclipse/Vero, Varian

ArcCHECK 600 VMAT Plans Regression Tree,

Multiple Regression,

Neural Network

ML Models

Comparison

Li et al. (2019b) Eclipse/Varian MatriXX 255 VMAT Beams Poisson Lasso &

Random Forest

Specificity & Sensitivity

Wang et al. (in Press) Eclipse/Varian MatriXX 576 VMAT Beams Hybrid Model

ACLR

High Prediction

Accuracy

Wall and Fontenot

(2020)

Pinnacle/Elekta MapCHECK2 500 VMAT Plans Linear Regression,

SVM, Tree-based, ANN

ML Models

Comparison

Hirashima et al.

(2020)

RayStation, Eclipse/

Vero, Varian

ArcCHECK 1,255 VMAT Plans Hybrid Model

XGBoost

Plan Complexity &

Dosiomics
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algorithms and then compared their performance (Wall and
Fontenot, 2020). They found that the SVM model, trained
using the 100 most important features selected using the linear
regression method, gave the lowest cross-validated testing MAE
of 3.75% as compared to linear models, tree-based models, and
neural networks. More recently, Hirashima et al. (2020) used
Gradient Boosting, the most accurate algorithm up to date for the
analysis of tabular data, to create a model to predict ArcCHECK
measurements using plan complexity and dosiomic features
extracted from 1,255 VMAT plans, also showing the validity of
virtual VMAT QA.

Table 2 lists the studies on virtual IMRT/VMAT QA. In short,
there have been multiple studies that all find similar conclusions
independent of the brand of Linac, TPS, and QA tool used: QA
results can be predicted accurately using machine learning.

SUMMARY AND FUTURE DIRECTIONS

Since the early ML models applied to machine and patient-
specific QA were reported in early 2016, a significant
improvements have been seen in more recent models as
machine learning techniques in radiotherapy QA matured. The
models grew from simple Poisson regressions to deep learning
classification models, and then to complex hybrid models which
improved prediction accuracy. Therefore, it is expected that
future ML models built on the foundation of existing knowledge
can continue to be refined. With deep learning models, there
is a greater potential to make QA processes more efficient and
effective in clinical settings. In the meantime, it is very important
to fully understand the limitations of virtual QA. Kalet et al. has
highlighted some of the unique challenges of ML applications
in radiotherapy QA including data quality, model adaptability,
and model limitations (Kalet et al., 2020). Data quality is by
far the most basic and essential requirement for building an
accurate prediction model. Not only can incomplete data, such
as small sample size, lead to wrong conclusions, but “true” QA
data from detectors, especially for extremely small/large field size
or large low dose regions, can also lead to imperfect prediction

models due to detector system limitations (Valdes et al., 2017).
Multi-institutional validation is often helpful to validate and
generalize the ML models. In addition to the challenges of data
integrity, Kearney et al. raised awareness of some persistent
misuse of deep learning in the field (Kearney et al., 2018).

To date, many applications of ML to radiotherapy QA have
focused on predicting machine performance and IMRT/VMAT
QA results. Fully understanding and dissecting all factors that
govern delivery accuracy is extremely important for clinical
physicists to be able to implement a risk-based program as
suggested in the AAPM TG-100 report. Further developments
could lead to QA predictions being included in the treatment
planning optimizer so that all QA could pass. We could also
know ahead of time that we need to run a clinically-relevant QA
on those plans with the lowest expected passing rates. It is clear
that prediction of QA results could have profound implications
on the current radiotherapy process. Before implementing in-
house or commercial MLmodels to perform sanity check, second
check, and automated or virtual QA in any clinical setting, we
should carefully assess and address the limitations of both data
and ML models.
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