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Drift-diffusion models or DDMs are becoming a standard in the field of computational
neuroscience. They extend models from signal detection theory by proposing a simple
mechanistic explanation for the observed relationship between decision outcomes and
reaction times (RT). In brief, they assume that decisions are triggered once the
accumulated evidence in favor of a particular alternative option has reached a
predefined threshold. Fitting a DDM to empirical data then allows one to interpret
observed group or condition differences in terms of a change in the underlying model
parameters. However, current approaches only yield reliable parameter estimates in
specific situations (c.f. fixed drift rates vs drift rates varying over trials). In addition, they
become computationally unfeasible whenmore general DDM variants are considered (e.g.,
with collapsing bounds). In this note, we propose a fast and efficient approach to
parameter estimation that relies on fitting a “self-consistency” equation that RT fulfill
under the DDM. This effectively bypasses the computational bottleneck of standard
DDM parameter estimation approaches, at the cost of estimating the trial-specific
neural noise variables that perturb the underlying evidence accumulation process. For
the purpose of behavioral data analysis, these act as nuisance variables and render the
model “overcomplete,” which is finessed using a variational Bayesian system identification
scheme. However, for the purpose of neural data analysis, estimates of neural noise
perturbation terms are a desirable (and unique) feature of the approach. Using numerical
simulations, we show that this “overcomplete” approach matches the performance of
current parameter estimation approaches for simple DDM variants, and outperforms them
for more complex DDM variants. Finally, we demonstrate the added-value of the approach,
when applied to a recent value-based decision making experiment.

Keywords: DDM, decision making, computational modeling, variational bayes, neural noise

INTRODUCTION

Over the past two decades, neurocognitive processes of decision making have been extensively
studied under the framework of so-called drift-diffusion models or DDMs. These models tie together
decision outcomes and response times (RT) by assuming that decisions are triggered once the
accumulated evidence in favor of a particular alternative option has reached a predefined threshold
(Ratcliff and McKoon, 2008; Ratcliff et al., 2016). They owe their popularity both to experimental
successes in capturing observed data in a broad set of behavioral studies (Gold and Shadlen, 2007;
Resulaj et al., 2009; Milosavljevic et al., 2010; De Martino et al., 2012; Hanks et al., 2014; Pedersen
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et al., 2017), and to theoretical work showing that DDMs can be
thought of as optimal decision problem solvers (Bogacz et al.,
2006; Balci et al., 2011; Drugowitsch et al., 2012; Zhang, 2012;
Tajima et al., 2016). Critically, mathematical analyses of the DDM
soon demonstrated that it suffers from inherent non-
identifiability issues, e.g., predicted choices and RTs are
invariant under any arbitrary rescaling of DDM parameters
(Ratcliff and Tuerlinckx, 2002; Ratcliff et al., 2016). This is
important because, in principle, this precludes proper,
quantitative, DDM-based data analysis. Nevertheless, over the
past decade, many statistical approaches to DDM parameter
estimation have been proposed, which yield efficient parameter
estimation under simplifying assumptions (Voss and Voss, 2007;
Wagenmakers et al., 2007, 2008; Vandekerckhove and
Tuerlinckx, 2008; Grasman et al., 2009; Zhang, 2012; Wiecki
et al., 2013; Zhang et al., 2014; Hawkins et al., 2015; Voskuilen
et al., 2016; Pedersen and Frank, 2020). Typically, these
techniques essentially fit the choice-conditional distribution of
observed RT (or moments thereof), having arbitrarily fixed at
least one of the DDM parameters. They are now established
statistical tools for experimental designs where the observed RT
variability is mostly induced by internal (e.g., neural) stochasticity
in the decision process (Boehm et al., 2018).

Now current decision making experiments typically consider
situations in which decision-relevant variables are manipulated
on a trial-by-trial basis. For example, the reliability of perceptual
evidence (e.g., the psychophysical contrast in a perceptual
decision) may be systematically varied from one trial to the
next. Under current applications of the DDM, this implies
that some internal model variables (e.g., the drift rate)
effectively vary over trials. Classical DDM parameter
estimation approaches do not optimally handle this kind of
experimental designs, because these lack the trial repetitions
that would be necessary to provide empirical estimates of RT
moments in each condition. In turn, alternative statistical
approaches to parameter estimation have been proposed,
which can exploit predictable inter-trial variations of DDM
variables to fit the model to RT data (Wabersich and
Vandekerckhove, 2014; Moens and Zenon, 2017; Pedersen
et al., 2017; Fontanesi et al., 2019a; Fontanesi et al., 2019b;
Gluth and Meiran, 2019). In brief, they directly compare raw
RT data with expected RTs, which vary over trials in response to
known variations in internal variables. Although close to optimal
from a statistical perspective, they suffer from a challenging
computational bottleneck that lies in the trial-by-trial
derivation of RT first-order moments. This is why they are
typically constrained to simple DDM variants, for which
analytical solutions exist (Navarro and Fuss, 2009; Srivastava
et al., 2016; Fengler et al., 2020; Shinn et al., 2020).

This note is concerned with the issue of obtaining reliable
DDM parameter estimates from concurrent trial-by-trial choice
and response time data, for a broad class of DDM variants. We
propose a fast and efficient approach that relies on fitting a self-
consistency equation, which RTs necessarily fulfill under the
DDM. This provides a simple and elegant way to bypassing the
common computational bottleneck of existing approaches, at
the cost of considering additional trial-specific nuisance model

variables. These are the cumulated “neural” noise that perturbs
the evidence accumulation process at the corresponding trial.
Including these variables in the model makes it “overcomplete,”
the identification of which is finessed with a dedicated
variational Bayesian scheme. In turn, the ensuing
overcomplete approach generalizes to a large class of DDM
model variants, without any additional computational and/or
implementational burden.

InModel Formulation and Impact of DDM Parameters section
of this document, we briefly recall the derivation of the DDM, and
summarize the impact of DDM parameters onto the conditional
RT distributions. In A Self-Consistency Equation for DDMs and
An Overcomplete Likelihood Approach to DDM Inversion
sections, we derive the DDM’s self-consistency equation and
describe the ensuing overcomplete approach to DDM-based
data analysis. In Parameter Recovery Analysis section, we
perform parameter recovery analyses for standard DDM fitting
procedures and the overcomplete approach. In Application to a
Value-Based Decision Making Experiment section, we
demonstrate the added-value of the overcomplete approach,
when applied to a value-based decision making experiment.
Finally, in Discussion section, we discuss our results in the
context of the existing literature. In particular, we comment
on the potential utility of neural noise perturbation estimates
for concurrent neuroimaging data analysis.

MODEL FORMULATION AND IMPACT OF
DDM PARAMETERS

First, let us recall the simplest form of a drift-diffusion decision
model or DDM (in what follows, we will refer to this variant as the
“vanilla” DDM). Let x(t) be a decision variable that captures the
accumulated evidence (up to time t) in favor of a given option in a
binary choice set. Under the vanilla DDM, a decision is triggered
whenever x(t) hits either of two bounds, which are positioned at
x � b and x � −b, respectively. When a bound hit occurs defines
the decision time, and which bound is hit determines the (binary)
decision outcome o. By assumption, the decision variable x(t) is
supposed to follow the following stochastic differential equation:

dx � v
� × dt + σ

� × dη (1)

where v is the drift rate, dη ∼ N(0, dt) is a standard Wiener
process, and σ

�
is the standard deviation of the stochastic

(diffusion) perturbation term.
Equation 1 can be discretized using an Euler-Maruyma

scheme (Kloeden and Platen, 1992), yielding the following
discrete form of the decision variable dynamics:

xt+1 � xt + v + σηt (2)

where t indexes time on a temporal grid with resolution Δt, v �
v
�Δt is the discrete-time drift rate, σ � σ

� ��
Δt

√
is the discrete-time

standard deviation of the perturbation term and ηt ∼ N(0, 1) is a
standard normal random variable. By convention, the system’s
initial condition is denoted as x0, which we refer to as the “initial
bias”.
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The joint distribution of response times and decision
outcomes depends upon the DDM parameters, which include:
the drift rate v, the bound’s height b, the noise’s standard
deviation σ and the initial condition x0. DDMs also typically
include a so-called “non-decision” time parameter TND, which
captures systematic latencies between covert bound hit times and
overt response times. Under such simple DDMvariant, variability
in response times and decision outcomes derive from stochastic
terms η. These are typically thought of as neural noise that
perturb the evidence accumulation process within the brain’s
decision system (Gold and Shadlen, 2007; Turner et al., 2015;
Guevara Erra et al., 2019).

Under such simple DDM variant, analytical expressions exist
for the first two moments of RT distributions (Srivastava et al.,
2016). Higher-order moments can also be derived from efficient
semi-analytical solutions to the issue of deriving the joint choice/
RT distribution (Navarro and Fuss, 2009). However, more
complex variants of the DDM (including, e.g., collapsing
bounds) are much more difficult to simulate, and require
either sampling schemes or numerical solvers of the
underlying Fokker-Planck equation (Fengler et al., 2020; Shinn
et al., 2020).

Figures 1–4 below demonstrate the impact of model
parameters on the decision outcome ratios P(o|v, x0, b, σ) and
the first three moments of conditional hitting time (HT)
distributions, namely: their mean E[HT|o, v, x0, b, σ], variance
V[HT|o, v, x0, b, σ] and skewness Sk[HT|o, v, x0, b, σ]. As we will
see, each DDM parameter has a specific signature, in terms of its
joint impact on these seven quantities. This does not imply

however, that different parameter settings necessarily yield
distinct moments. In fact, there are changes in the DDM
parameters that leave the predicted moments unchanged. This
will induce parameter recovery issues, which we will
demonstrate later.

But let first us summarize the impact of DDM parameters. To
do this, we first set model parameters to the following “default”
values: v � 1/2, x0 � 1, b � 10 and σ � 4. This parameter setting
yields about 30% decision errors, which we take as a valid
reference point for typical studies of decision making. In what
follows, we vary each model parameter one by one, keeping the
other ones at their default value.

Figure 1 below shows the impact of initial bias x0.
One can see that increasing the initial bias accelerates decision

times for “up” decisions, and decelerates decision times for
“down” decisions. This is because increasing x0 mechanically
increases the probability of an early upper bound hit, and
decreases the probability of an early lower bound hit.
Increasing x0 also decreases (resp., increases) the variance for
“up” (resp., “down”) decisions, and increases (resp., decreases)
the skewness for “up” (resp., “down”) decisions. Finally,
increasing the initial bias increases the ratio of “up” decisions.
These are corollary consequences of increasing (resp. decreasing)
the probability of an early upper (resp., lower) bound hit. This is
because when an increasing proportion of stochastic paths
eventually hit a bound very early, this squeezes the
distribution of hitting times just above null hitting times. Note
that the outcome ratios are not equal to 1/2 when x0 � 0. This is
because the default drift rate v is positive, and therefore favors

FIGURE 1 | Impact of initial bias x0. In all panels, the color code indicates the decision outcomes (green: “up” decisions, red: “down” decisions). The black dotted
line indicates the default parameter value (for ease of comparison with other figures below). Upper-left panel: mean hitting times (y-axis) as a function of initial bias (x-axis).
Upper-right panel: hitting times’ variance (y-axis) as a function of initial bias (x-axis). Lower-left panel: hitting times’ skewness (y-axis) as a function of initial bias (x-axis).
Lower-right panel: outcome ratios (y-axis) as a function of initial bias (x-axis).
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“up” decisions. Most importantly, the initial bias is the only DDM
parameter that has opposite effects on mean HT for “up” and
“down” decision outcomes.

Figure 2 below shows the impact of drift rate v.
One can see that the mean and variance of decision times are

maximal when the drift rate is null. This is because the probability
of an early (upper or lower) bound hit decreases as v→ 0. Also,

the drift rate has little impact on the HT skewness. Note that, in
contrast to the initial bias, the impact of the drift rate onmean HT
is identical for both “up” and “down” decisions. Finally, and as
expected, increasing the drift rate increases the ratio of “up”
decisions.

Figure 3 below shows the impact of the noise’s standard
deviation σ.

FIGURE 2 | Impact of drift rate v. Same format as Figure 1.

FIGURE 3 | Impact of the perturbation’ standard deviation σ. Same format as Figure 1 (but the x-axis is now in log-scale).
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One can see that increasing the standard deviation decreases the
mean HT, and increases its skewness. This is, again, because
increasing σ increases the probability of an early bound hit. Its
impact on the variance, however, is less trivial. When the standard
deviation σ is very low, increasing σ first increases the hitting times’
variance. This is because it progressively frees the system from its
deterministic fate, therefore enabling HT variability around the
mean. Then, it reaches a critical point above which increasing it
further now decreases the variance. This is again a consequence of
increasing the probability of an early bound hit. The associated HT
squeezing effect can be seen on the skewness, which steadily
increases beyond the critical point. Note that the standard
deviation has the same impact on mean HT for “up” and
“down” decisions. Finally, increasing the standard deviation
eventually maximizes the entropy of the decision outcomes,
i.e., P(o)→ 1/2 when σ→∞. This is because the relative
contribution of the diffusion term eventually masks the drift.

Figure 4 below shows the impact of the bound’s height b.
One can see that increasing the bound’s height increases both

the mean and the variance of HT, and decreases its skewness,
identically for “up” and “down” decisions. Finally, increasing the
threshold’s height decreases the entropy of the decision
outcomes, i.e., P(o)→ 0 or 1 when b→∞. This directly
derives from the fact that increasing b decreases the
probability of an early bound hit. This effect basically
competes with the effect of the standard deviation σ, which
accelerates HTs. This is why one may say that increasing the
threshold’s height effectively increases the demand for evidence
strength in favor of one of the decision outcomes.

Note that the impact of the “non-decision” time TND simply
reduces to shifting the mean of the RT distribution, without any
effect on other moments.

In brief, DDM parameters have distinct impacts on the
sufficient statistics of response times. This means that they
could, in principle, be discriminated from each other. Standard
DDM fitting procedures rely on adjusting the DDM parameters
so that the RT moments (e.g., up to third order) match model
predictions. In what follows, we refer to this as the “method of
moments” (see Supplementary Appendix S2). However, we will
see below that the DDM is not perfectly identifiable. One can also
see that changing any of these parameters from trial to trial will
most likely induce non-trivial variations in RT data. Here, the
method of moments may not be optimal, because predictable
trial-by-trial variations in DDM parameters will be lumped
together with stochastic perturbation-induced variations. One
may thus rather attempt to match the trial-by-trial series of raw
response times directly with their corresponding first-order
moments. In what follows, we refer to this as the “method of
trial means” (see Supplementary Appendix S3). Given the
computational cost of deriving expected response times for
each trial, this type of approach is typically restricted to the
vanilla DDM, since there is no known analytical expression for
response time moments under more complex DDM variants.

Below, we suggest a simple and efficient way of performing
DDMparameter estimation, which applies to a broad class of DDM
variants without significant additional computational burden. This
follows from fitting a self-consistency equation that, under a broad
class of DDM variants, response times have to obey.

A SELF-CONSISTENCY EQUATION FOR
DDMS

First, note that Eq. 2 can be rewritten as follows:

FIGURE 4 | Impact of the threshold’s height b. Same format as Figure 1.
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xt � x0 + tv + σ∑t−1
t′�0

ηt′

� x0 + tv + σ
�
t

√
~ηt

(3)

where we coin ~ηtb1/
�
t

√ ∑t−1
t′�0ηt′ the “normalized cumulative

perturbation”. Now let τi be the decision time of the ith trial.
Note that decision times are trivially related to cumulative
perturbations because, by definition,

∣∣∣∣xτi∣∣∣∣ � b. This implies that:

b �
∣∣∣∣∣x0 + τiv + σ

��
τi

√
~ητi

∣∣∣∣∣ (4)

where ~ητi denotes the (unknown) cumulative perturbation term
of the ith trial.

Information regarding the binary decision outcome
oi ∈ {−1, 1} further disambiguates Eq. 4 as follows:

b � { x0 + τiv + σ
��
τi

√
~ητi if oi � 1 (’up’ decision)

−x0 − τiv − σ
��
τi

√
~ητi if oi � −1 (’down’ decision)

� oi(x0 + τiv + σ
��
τi

√
~ητi) (5)

where oi can only take two possible values (−1 or 1). Eq. 5 can
then be used to relate decision times directly to DDM model
parameters (and cumulative perturbations):

τi � oib − x0
v

− σ
��
τi

√
v

~ητi (6)

From Eq. 6, one can express observed trial-by-trial empirical
response times yi as follows:

yi ≈
oib − x0

v
− σ

�������
yi − TND

√
v

~ητi + TND + εi (7)

where εi are unknown i. i.d. model residuals.
Note that decision times effectively appear on both the left-

hand and the right-hand side of Eqs 6, 7. This is a slightly
unorthodox feature, but, as we will see, this has effectively no
consequence from the perspective of model inversion. In fact, one
can think of Eq. 7 as a “self-consistency” constraint that response
times have to fulfill under the DDM. This is why we refer to Eq. 7
as the self-consistency equation of DDMs. This, however, prevents
us from using Eq. 7 to generate data under the DDM. In other
terms, Eq. 7 is only useful when analyzing empirical RT data.

Figure 5 below exemplifies the accuracy of DDM’s self-
consistency equation, using a Monte-Carlo simulation of 200
trials under the vanilla DDM.

One can see that the DDM’s self-consistency equation is valid,
i.e., simulated response times almost always equate their

FIGURE 5 | Self-consistency equation. Monte-Carlo simulation of 200 trials of a DDM, with arbitrary parameters (in this example, the drift rate is positive). In all
panels, the color code indicates the decision outcomes, which depends upon the sign of the drift rate (green: correct decisions, red: incorrect decisions). Upper-left
panel: simulated trajectories of the decision variable (y-axis) as a function of time (x-axis). Upper-right panel: response times’ distribution for both correct and incorrect
choice outcomes over the 200 Monte-Carlo simulations. Lower-left panel: outcome ratios. Lower-right panel: the left-hand side of Eq. 7 (y-axis) is plotted against
the right-hand side of Eq. 7 (x-axis), for each of the 200 trials.
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theoretical prediction. The few (small) deviations that can be
eyeballed on the lower-right panel of Figure 5 actually
correspond to simulation artifacts where the decision variable
exceeds the bound by some relatively small amount. This happen
when the discretization step Δt (cf. Eq. 2) is too large when
compared to the relative magnitude of the stochastic component
of the system’s dynamics. In effect, these artifactual errors grow
when σ/] increases. Nevertheless, in principle, these and other
errors would be absorbed in the model residuals εi of Eq. 7.

Now recall that recent extensions of vanilla DDMs include e.g.,
collapsing bounds (Hawkins et al., 2015; Voskuilen et al., 2016)
and/or nonlinear transformations of the state-space (Tajima et al.,
2016). As the astute reader may have already guessed, the self-
consistency equation can be generalized to such DDM variants.
Let us assume that Eqs 2, 3 still hold, i.e., the decision process is
still somehow based upon a gaussian random walk. However, we
now assume that the decision is triggered when an arbitrary
transformation z : x→ z(x) of the base random walk xt has
reached a predefined threshold b

�(t) that can vary over time
(e.g., a collapsing bound). Eq. 5 now becomes:

b
�(τi) � oiz(x0 + τiv + σ

��
τi

√
~ηi) (8)

If the transformation z : x→ z(x) is invertible (i.e., if z−1 exists
and is unique), then the self-consistency equation for reaction
times yi now generalizes as follows:

yi ≈
z−1[oib�(yi − TND)] − x0

v
− σ

�������
yi − TND

√
v

~ηi︸�����������������︷︷�����������������︸ + TND

g(v,x0 ,σ,TND ,~ηi)
+ εi (9)

where g(v, x0, σ,TND, ~ηi) is the “expected” (or rather, “self-
consistent”) response time at trial i, which depends
nonlinearly on DDM parameters (and on response times).
Note that one recovers the self-consistency equation of
“vanilla” DDM (Eq. 7) when setting z(x) � z−1(x) � x and
b
�(t) � b ∀t.

Importantly, inverting Eq. 9 can be used to estimate
parameters c and ω that control the transformation zc :
x →

c
zc(x) or the collapsing bounds b

�

ω : t →
ω
b
�

ω(t),
respectively. We will see examples of this in the Results
section below. This implies that the self-consistency equation
can be used, in conjunction with adequate statistical parameter
estimation approaches (see below), for estimating DDM
parameters under many different variants of DDM, including
those for which no analytical result exists for the response time
distribution.

AN OVERCOMPLETE LIKELIHOOD
APPROACH TO DDM INVERSION

Fitting Eq. 9 to response time data reduces to finding the set of
parameters that renders the DDM self-consistent. In doing so,
normalized cumulative perturbation terms ~η are treated as
nuisance model parameters, but model parameters
nonetheless. This means that there are more model parameters

than there are data points. In other words, Eq. 9 induces an
“overcomplete” likelihood function p(y∣∣∣∣v, x0, σ,ω, c,TND, ~η, λ):

p(y∣∣∣∣v, x0, σ,ω, c,TND, ~η, λ) �∏n
i�1

p(yi∣∣∣∣v, x0, σ,ω, c,TND, ~ηi, λ)
�∏n

i�1
N(g(v, x0, σ,ω, c,TND, ~ηi), λ)

(10)

where λ is the variance of the model residuals εi of Eq. 9, g(·) is
the “self-consistent” response time given in Eq. 9, and we have
used the (convenient but slightly abusive) notation ~ηi to reference
cumulative perturbations w.r.t. to their corresponding trial index.

Dealing with such overcomplete likelihood function requires
additional constraints on model parameters: this is easily done
within a Bayesian framework. Therefore, we rely on the
variational Laplace approach (Friston et al., 2007; Daunizeau,
2017), which was developed to perform approximate bayesian
inference on nonlinear generative models (see Supplementary
Appendix S1 for mathematical details). In what follows, we
propose a simple set of prior constraints that help regularizing
the inference.

a. Prior moments of the cumulative perturbations: the “no
barrier” approximation

Recall that, under the DDM framework, errors can only be
due to the stochastic perturbation noise. More precisely,
errors are due to those perturbations that are strong
enough to deviate the system’s trajectory and make it hit
the “wrong” bound (e.g., the lower bound if the drift rate is
positive). Let Q� be the proportion of correct responses. For
example, if the drift rate is positive, then Q� corresponds to
responses that hit the upper bound. Now let ~η� be the critical
value of ~η such that P(~η≥ ~η�) � Q� (see Figure 6 below). Then,
we know that errors correspond to those perturbations ~ηi that
are smaller than ~η�. But what do we know about the
distribution of perturbations? Importantly, if the DDM’s
stochastic evidence accumulation process had no decision
bound, then the distribution of normalized cumulative
perturbations would be invariant over time and such that
~ηt ∼ N(0, 1) ∀t. This, in fact, is the very reason why we
introduced normalized cumulative perturbations in Eq. 3.
Under this “no barrier” approximation, one can now derive
the conditional expectations ~μ� and ~μ≠ of the perturbation ~ηi,
given that the decision outcome oi is correct or erroneous,
respectively:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

~μ�bE[~ηi|oi � 1] � E[~ηi∣∣∣∣~ηi > ~η�] � 1

(1 − Q�)
���
2π

√ exp( − 1
2
~η2�)

~μ≠bE[~ηi|oi � −1] � E[~ηi∣∣∣∣~ηi < ~η�] � − 1
Q�

���
2π

√ exp( − 1
2
~η2�)

(11)

Equation 11 is obtained from the known expression of first-
order moments of a truncated normal density N(0, 1). Critically,
Eq. 11 does not depend upon DDM parameters. Of course, the
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same logic extends to conditional variances ~Σ� and ~Σ≠ , whose
analytical expressions are given by:

{ ~Σ�bV[~ηi|oi � 1] � V[~ηi∣∣∣∣~ηi > ~η�] � 1 + ~η�~μ� − ~μ2�
~Σ≠bV[~ηi|oi � −1] � V[~ηi∣∣∣∣~ηi < ~η�] � 1 + ~η�~μ≠ − ~μ2≠

(12)

A simple moment-matching approach thus suggests to
approximate the conditional distribution p(~ηi|oi) of
normalized cumulative perturbations as follows:

p(~ηi|oi) � ⎧⎨⎩ N(~μ�, ~Σ�) if oi � correct

N(~μ≠ , ~Σ≠ ) if oi � error
(13)

where the correct/error label depends on the sign of the drift rate.
This concludes the derivation of our simple “no barrier”
approximation to the conditional moments of cumulative
perturbations.

Note that we derived this approximation without accounting
for the (only) mathematical subtlety of the DDM: namely, the fact
that decision bounds formally act as “absorbing barriers” for the
system (Broderick et al., 2009). Critically, absorbing barriers

induce some non-trivial forms of dynamical degeneracy. In
particular, they eventually favor paths that are made of
extreme samples of the perturbation noise. This is because
these have a higher chance of crossing the boundary, despite
being comparatively less likely than near-zero samples under the
corresponding “no barrier” distribution. One may thus wonder
whether ignoring absorbing barriers may invalidate the moment-
matching approximation given in Eqs 11–13. To address this
concern, we conducted a series of 1000 Monte-Carlo simulations,
where DDM parameters were randomly drawn (each simulation
consisted of 200 trials of the same decision system). We use these
to compare the sample estimates of first- and second-order
moments of normalized cumulative perturbations and their
analytical approximations (as given in Eqs. 11, 12). The
results are given in Figure 6 below.

One can see on the upper-right panel of Figure 6 that the
distribution of normalized cumulative perturbations may
strongly deviate from the standard normal density. In
particular, this distribution clearly exhibits two modes,
which correspond to correct and incorrect decisions,
respectively. We have observed this bimodal shape across

FIGURE 6 | Approximate conditional distributions of the normalized cumulative perturbations. Upper-left panel: The black line shows the “no barrier” standard
normal distribution of normalized cumulative perturbations. The shaded gray area has size Q�, and its left bound (dashed black line) is the critical value ~η� below which
cumulative perturbations eventually induce errors. The green and red lines depict the ensuing approximate conditional distributions given in Eq. 13. Upper-right panel: a
Representative monte-carlo simulation. The green and red bars show the sample histogram of normalized cumulative perturbations for correct and erroneous
decisions, respectively (over 200 trials, same simulation as in Figure 5). The green and red lines depict the corresponding approximate conditional normal distributions
(cf. Eq. 13). Lower-left panel: The sample mean estimates of conditional perturbations (y-axis) are plotted against their “no barrier” approximation (x-axis, Eq. 11). Monte-
carlo simulations are split according to the sign of the drift rate, and then binned according to deciles of approximate conditional means of normalized cumulative
perturbations (green: Correct, red: error, errorbars: Within-decile means ± standard deviations). The black dotted line shows the identity mapping (perfect
approximation). Lower-right panel: The sample variance estimates of normalized cumulative perturbations (y-axis) are plotted against their “no barrier” approximation
(x-axis, Eq. 12). Same format as lower-left panel.
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almost all Monte-Carlo simulations. This means that bound
hits are less likely to be caused by perturbations of small
magnitude than expected under the “no-barrier” distribution
(cf. lack of probability mass around zero). Nevertheless, the
ensuing approximate conditional distributions seem to be
reasonably matched with their sample estimates. In fact,
lower panels of Figure 6 demonstrate that sample means
and variances of normalized cumulative perturbations are
well approximated by Eqs 11, 12 for a broad range of DDM
parameters. We note that the “no-barrier” approximation tends
to slightly underestimate first-order moments, and
overestimate second-order moments. This bias is negligible
however, when compared to the overall range of variations of
conditional moments. In brief, the effect of absorbing barriers
on system dynamics has little impact on the conditional
moments of normalized cumulative perturbations.

When fitting the DDM to empirical RT data, one thus wants to
enforce the distributional constraint in Eqs 11–13 onto the
perturbation term in Eq. 9. This can be done using a change
of variable ~ηi � h(ςi), where ς are non-constrained dummy
variables and h : ςi → h(ςi) is the following moment-enforcing
mapping:

h(ςi) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

~μ� +⎛⎝ςi − 1
nQ�

∑
i∈ I�

ςi⎞⎠ �����������������
nQ�~Σ�∑

i∈ I�

⎛⎝ςi − 1
nQ� ∑

i′∈ I�
ςi′⎞⎠2

√√√√ if i ∈ I�

~μ≠ +⎛⎝ςi − 1
n(1 − Q�) ∑i∈ I≠ ςi⎞⎠

��������������������
n(1 − Q�)~Σ≠∑

i∈ I≠

⎛⎝ςi − 1
n(1−Q�) ∑

i′∈ I≠

ςi′⎞⎠2

√√√√ if i ∈ I≠

(14)

where I� and I≠ are the indices of correct and incorrect trials,
respectively (and n is the total number of trials). Eq. 14 ensures
that the sample moments of the estimated normalized cumulative
perturbations ~ηi � h(ςi) match Eqs 11, 12, irrespective of the
dummy variable ς. This also implies that the effective degrees of
freedom of the constrained model are in fact lower than what the
native self-consistency function would suggest.

b. Prior constraints on native DDM parameters.

In addition, one may want to introduce the following prior
constraints on the native DDM parameters:

• The bound’s height b is necessarily positive. This positivity
constraint can be enforced by replacing b with a non-bounded
parameter φ1, which relates to the bound’s height through the
following mapping: b � exp(φ1). We note that parameters ω of
collapsing bounds b

�

ω(t) may not have to obey such positivity
constraint.
• The standard deviation σ is necessarily positive. Again, this
can be enforced by replacing it with the following mapped
parameter φ2: σ � exp(φ2).
• The non-decision time TND is necessarily positive and smaller
than the minimum observed reaction time. This can be
enforced by replacing the native non-decision time with the

following mapped parameter φ3: TND � min(RT)s(φ3), where
s(·) is the standard sigmoid mapping.
• The initial bias x0 is necessarily constrained between −b and b.
This can be enforced by replacing the native initial conditionwith
the following mapped parameter φ4: x0 � exp(φ1)[2s(φ4) − 1].
• In principle, the drift rate v can be either positive or negative.
However, its magnitude is necessarily smaller than b+|x0|

min(RT)−TND
,

which corresponds to its “ballistic” limit (see Supplementary
Appendix S6 for more details). This can be enforced by
replacing the native drift rate with the following mapped
parameter φ5: v � [1+|2s(φ4)−1|]exp(φ1)

min(RT)[1−s(φ3)] [2s(φ5) − 1].

Here again, we use the set of dummy variables φ1:5 in lieu of
native DDM parameters.

The statistical efficiency of the ensuing overcomplete approach
can be evaluated by simulating RT and choice data under
different settings of the DDM parameters, and then comparing
estimated and simulated parameters. Below, we use such recovery
analysis to compare the overcomplete approach with standard
DDM fitting procedures.

c. Accounting for predictable trial-by-trial RT variability.

Critically, the above overcomplete approach can be extended
to ask whether trial-by-trial variations in DDM parameters
explain trial-by-trial variations in observed RT, above and
beyond the impact of the random perturbation term in Eq.
7. For example, one may want to assess whether predictable
variations in e.g., the drift term, accurately predict variations in
RT data. This kind of questions underlies many recent empirical
studies of human and/or animal decision making. In the context
of perceptual decision making, the drift rate is assumed to derive
from the strength of momentary evidence, which is controlled
experimentally and varies in a trial-by-trial fashion (Huk and
Shadlen, 2005; Bitzer et al., 2014). A straightforward extension
of this logic to value-based decisions implies that the drift rate
should vary in proportion to the value difference between
alternative options (Krajbich et al., 2010; De Martino et al.,
2012; Lopez-Persem et al., 2016). In both cases, a prediction for
drift rate variations across trials is available, which is likely to
induce trial-by-trial variations in choice and RT data. Let D be a
known predictor variable, which is expected to capture trial-by-
trial variations in some DDM parameter (e.g., the drift rate).
One may then alter the self-consistency equation such that
DDM parameters are treated as affine functions of trial-by-
trial predictors (e.g., vibv0 + v1Di), and exploit trial-by-trial
variations in response times to fit the ensuing offset and slope
parameters (here, v0 and v1). Alternatively, one can simply set
the drift rate to the predictor variable (i.e., assume a priori v0 � 0
and v1 � 1), which is currently the favorite approach in the field.
As we will see below, this significantly improves model
identifiability for the remaining parameters. This is because
trial-by-trial variations in the drift rate will only accurately
predict trial-by-trial variations in response time data if the
remaining parameters are correctly set. This is just an
example of course, and one can see how easily any prior
dependency to a predictor variable could be accounted for.
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The critical point here is that the overcomplete approach can
exploit predictable trial-by-trial variations in RT data to
improve the inference on model parameters.

PARAMETER RECOVERY ANALYSIS

In what follows, we use numerical simulations to evaluate the
approach’s ability to recover DDM parameters. Our parameter
recovery analyses proceed as follows. First, we sample 1,000 sets
of model parameters φ1:5 under some arbitrary distribution.
Second, for each of these parameter, we simulate a series of N
� 200 DDM trials according to Eq. 2 above. Third, we fit the
DDM to each series of simulated reaction times (200 data points)
and extract parameter estimates. Last, we compare simulated and
estimated parameters to each other. In particular, we measure the
relative estimation error for each DDM parameter. We also
quantify potential non-identifiability issues using so-called
recovery matrices and the ensuing identifiability index. We
note that details regarding parameter recovery analyses can be
found in Supplementary Appendix S4 of this manuscript (along
with definitions of the relative estimation error REE, recovery
matrices and identifiability index ΔV).

To begin with, we will focus on “vanilla” DDMs, because they
provide a fair benchmark for parameter estimation methods. In
this context, we will compare the overcomplete approach with
two established methods (Moens and Zenon, 2017; Boehm et al.,
2018), namely: the “method of moments” and the “method of trial
means”. These methods are summarized in Supplementary
Appendixes S2, S3, respectively. In brief, the former attempts
to match empirical and theoretical moments of RT data. We
expect this method to perform best when DDM parameters are
fixed across trials. The latter rather attempts to match raw trial-
by-trial RT data to trial-by-trial theoretical RTmeans. This will be
most reliable when DDM parameters (e.g., the drift rate) vary
over trials. Note that, in all cases, we inserted the prior constraints
on DDM parameters given in An Overcomplete Likelihood
Approach to DDM Inversion (section b) above, along with
standard normal priors on unmapped parameters φ1:5. We will
therefore compare the ability of these methods to recover DDM
parameters (i) when no parameter is fixed (full parameter set), (ii)
when the drift rate is fixed, and (iii) when drift rates vary over trials.

Finally, we perform a parameter recovery analysis in the
context of a generalized DDM, which includes collapsing
bounds. This will serve to demonstrate the flexibility and
robustness of the overcomplete approach.

a. Vanilla DDM: recovery analysis for the full parameter set.

First, we compare the three approaches when all DDM
parameters have to be estimated. This essentially serves as a
reference point for the other recovery analyses. The ensuing
recovery analysis is summarized in Figure 7 below, in terms
of the comparison between simulated and estimated parameters.

Unsurprisingly, parameter estimates depend on the chosen
estimation method, i.e. different methods exhibit distinct
estimation errors structures. In addition, estimated and

simulated parameters vary with similar magnitudes, and no
systematic estimation bias is noticeable. It turns out that, in
this setting, estimation error is minimal for the method of
moments, which exhibits lower error than both the
overcomplete approach (mean error difference:
Δ log(REE) � 0.27 ± 0.03, p < 10–4, two-sided F-test) and the
method of moments (mean error difference:
Δ log(REE) � 0.26 ± 0.02, p < 10–4, two-sided F-test).
However, the overcomplete approach and the method of trial
means yield comparable estimation errors (mean error difference:
Δ log(REE) � 0.006 ± 0.04, p � 0.88, two-sided F-test).

Now, although estimation errors enable a coarse comparison
of methods, it does not provide any quantitative insight regarding
potential non-identifiability issues. We address this using
recovery matrices (see Supplementary Appendix S4), which
are shown on Figure 8 below.

None of the estimation methods is capable of perfectly
identifying DDM parameters (except TND), i.e., all methods
exhibit strong non-identifiability issues. In particular,
variations in the perturbations’ standard deviation σ are
partially confused with variations in the bound’s height b, and
reciprocally. This is because increasing both at the same time
leaves RT trial-by-trial variability unchanged. Therefore, RT
produced under strong neural perturbations can be equally
well explained with a small bound height (and reciprocally).
Interestingly, drift rate estimates are the least reliable: though
their amount of “correct variability” is decent for the method of
moments (45.3%), it is very low for both the overcomplete
approach (5.3%) and the method of trial means (7.5%). If
anything, non-identifiability issues are strongest for the
overcomplete approach, which also exhibits weak “correct
variability” for initial conditions (5.1%).

b. Vanilla DDM: recovery analysis with a fixed drift rate.

In fact, we expect non-identifiability issues of this sort, which
were already highlighted in early DDM studies (Ratcliff, 1978).
Note that this basic form of non-identifiability is easily disclosed
from the self-consistency equation, which is invariant to a
rescaling of all DDM parameters (except TND). In other terms,
response times are left unchanged if all these parameters are
rescaled by the same amount. Although this problematic
invariance would disappear if a single DDM parameter was
fixed rather than fitted, other non-identifiability issues may
still hamper DDM parameter recovery. To test this, we re-
performed the above parameter recovery analysis, but this
time informing estimation methods about the drift rate, which
was set to its simulated value. We note that such arbitrary
reduction of the parameter space is routinely performed, as it
was already suggested in seminal empirical applications of the
DDM (Ratcliff, 1978). Figure 9 below summarizes the ensuing
comparison between simulated and estimated parameters.

Comparing Figures 7, 9 provides a clear insight regarding the
impact of reducing the DDM’s parameter space. In brief,
estimation errors decrease for all methods, which seem to
provide much more reliable parameter estimates. The method
of moments still yields the most reliable parameter estimates,
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FIGURE 7 | Comparison of simulated and estimated DDM parameters (full parameter set). Left panel: Estimated parameters using the overcomplete approach
(y-axis) are plotted against simulated parameters (x-axis). Each dot is a monte-carlo simulation and different colors indicate distinct parameters (blue: σ, red: v, yellow: b,
purple: x0, green: TND). The black dotted line indicate the identity line (perfect estimation). Middle panel: Method of moments, same format as left panel. Right panel:
Method of trial means, same format as left panel.

FIGURE 8 | DDM parameter recovery matrices (full parameter set). Left panel: overcomplete approach. Middle panel: method of moments. Right panel: Method of
trial means. Each line shows the squared partial correlation coefficient between a given estimated parameter and each simulated parameter (across 1000 Monte-Carlo
simulations). Note that perfect recovery would exhibit a diagonal structure, where variations in each estimated parameter is only due to variations in the corresponding
simulated parameter. Diagonal elements of the recovery matrix measure “correct estimation variability”, i.e., variations in the estimated parameters that are due to
variations in the corresponding simulated parameter. In contrast, non-diagonal elements of the recovery matrix measure “incorrect estimation variability”, i.e., variations in
the estimated parameters that are due to variations in other parameters. Strong non-diagonal elements in recovery matrices thus signal pairwise non-identifiability issues.

FIGURE 9 | Comparison of simulated and estimated DDM parameters (fixed drift rates). Same format as Figure 7, except for the color code in upper panels (blue:
σ, red: b, yellow: x0, purple: TND ).
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eventually exhibiting lower error than the overcomplete approach
(mean error difference: Δ log(REE) � 0.21 ± 0.03, p � 0.04, two-
sided F-test) and the method of trial means (mean error
difference: Δ log(REE) � 0.53 ± 0.03, p < 10–4, two-sided
F-test). In addition, the overcomplete approach yields lower
estimation error than the method of trial means (mean error
difference: Δ log(REE) � 0.33 ± 0.04, p < 10–4, two-sided F-test).
The reason why themethods of trial means performs worst here is
that it is blind to trial-by-trial variability in the data (beyond
mean RT differences between the two decision outcomes). This is
not the case however, for the two other methods.

We then evaluated non-identifiability issues using recovery
matrices, which are summarized in Figure 10 below.

Figure 10 clearly demonstrates an overall improvement in
parameter identifiability (compare to Figure 8). In brief, most
parameters are now identifiable, at least for the method of
moments (which clearly performs best) and the overcomplete
approach. Nevertheless, some weaker non-identifiability issues
still remain, even when fixing the drift rate to its simulated value.
For example, the overcomplete approach and the method of trial
means still somehow confuse bound’s heights with perturbations’
standard deviations. More precisely, σ̂ shows unacceptably weak
“correct variations” (overcomplete approach: 12.3%, method of
trial means: 2.7%), when compared to “incorrect variations” due
to the bound’s height (overcomplete approach: 12.4%, method of
trial means: 14.3%). Note that this does not hold for the method
of moments, for which σ̂ shows strong “correct variations”
(30.2%). Having said this, even the method of moments
exhibit partial non-identifiability issues, in particular between
perturbations’ standard deviations and drift rates (incorrect
variations: 4.1%).

We note that fixing another DDM parameter, e.g., the noise’s
standard deviation σ (instead of ]), would not change the relative
merits of estimation methods in terms of parameter recovery. In
other words, the above results are representative of the impact of
fixing any DDM parameter. But situations where the drift rate is
fixed can be directly compared with situations where one is
attempting to exploit predictable drift rates trial-by-trial
variations, which is the focus of the next section.

c. Vanilla DDM: recovery analysis with varying drift rates.

Now, accounting for predictable trial-by-trial variations in
model parameters may, in principle, improve model
identifiability. This is due to the fact that the net effect of each
DDM parameter depends upon the setting of other parameters.
Let us assume, for example, that the drift rate varies across trials
according to some predictor variable (e.g., the relative evidence
strength of alternative options in the context of perceptual
decision making). The impact of other DDM parameters will
not be the same, depending on whether the drift rate is high or
low. In turn, there are fewer settings of these parameters that can
predict trial-by-trial variations in RT data from variations in drift
rate. To test this, we re-performed the recovery analysis, this time
setting the drift rate according to a varying predictor variable,
which is supposed to be known. The ensuing comparison between
simulated and estimated parameters is summarized in
Figure 11 below.

On the one hand, the estimation error has now been strongly
reduced, at least for the overcomplete approach and the method
of trial means. On the other hand, estimation error has increased
for the method of moments. This is because the method of
moments confuses trial-by-trial variations that are caused by
variations in drift rates with those that arise from the DDM’s
stochastic “neural” perturbation term. This is not the case for the
overcomplete approach and the method of trial means. In turn,
the method of moments now showsmuch higher estimation error
than the overcomplete approach (mean error difference:
Δ log(REE) � 0.55 ± 0.03, p < 10–4, two-sided F-test) or the
method of trial means (mean error difference:
Δ log(REE) � 0.83 ± 0.04, p < 10–4, two-sided F-test). Note
that the latter eventually performs slightly better than the
overcomplete approach (mean error difference:
Δ log(REE) � 0.28 ± 0.03, p � 0.04, two-sided F-test).

Figure 12 below then summarizes the evaluation of non-
identifiability issues, in terms of recovery matrices.

For the overcomplete approach and the method of trial means,
Figure 12 shows a further improvement in parameter
identifiability (compare to Figures 8, 10). For these two
methods, all parameters are now well identifiable (“correct
variations” are always greater than 67.2% for all parameters),
and no parameter estimate is strongly influenced by other
simulated parameters. This is a simple example of the gain in

FIGURE 10 | DDM parameter recovery matrices (fixed drift rates). Same format as Figure 8, except that recovery matrices do not include the line that corresponds
to the drift rate estimates. Note, however, that we still account for variations in the remaining estimated parameters that are attributable to variations in simulated
drift rates.
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statistical efficiency that result from exploiting known trial-by-
trial variations in DDM model parameters. The situation is quite
different for the method of moments, which exhibits clear non-
identifiability issues for all parameters except the non-decision
time. In particular, the bound’s height is frequently confused with
the perturbations’ standard deviation (20.3% of “incorrect
variations”), the estimate of which has become unreliable
(only 17.6% of “correct variations”).

We note that the gain in parameter recovery that obtains from
exploiting predictable trial-by-trial variations in drift rates (with
either the method of trial means or the overcomplete approach)
does not generalize to situations where drift rates are defined in
term of an affine transformation of some predictor variable (see
An Overcomplete Likelihood Approach to DDM Inversion section.
c above). This is because the ensuing offset and slope parameters
would then need to be estimated along with other native DDM
parameters. In turn, this would reintroduce identifiability issues
similar or worse than when the full set of parameters have to be
estimated (cf. An Overcomplete Likelihood Approach to DDM
Inversion section.a). This is why people then typically fix another
DDM parameter, e.g., the standard deviation σ (Ratcliff et al.,
2016). But the risk of drawing erroneous conclusions, e.g., blindly
interpreting differences due to σ in terms of differences in other
DDM parameters, should invite modelers to be cautious with this
kind of strategy.

d. Generalized DDM: recovery analysis with collapsing
bounds.

We now consider generalized DDMs that include collapsing
bounds. More precisely, we will consider a DDM where the
bound b

�

ω(t) is exponentially decaying in time, i.e.:
b
�

ω(t) � exp(ω0 − ω1t), where ω0 and ω1 control the bound’s
initial height and decay rate, respectively. This DDM variant
reduces to the vanilla DDM when ω1 ≈ 0, in which case the
parameter ω0 is formally identical to the vanilla bound’s height b.
When ω1 ≠ 0 however, collapsing bounds induce a causal
dependency between choice accuracy and response times that
cannot be captured by the vanilla DDM (Zhang, 2012; Zhang
et al., 2014; Hawkins et al., 2015; Tajima et al., 2016; Voskuilen
et al., 2016).

In what follows, we report the results of a recovery analysis, in
which data was simulated under the above generalized DDM
(with drift rates varying across trials). We note that, under such
generalized DDM variant, no analytical solution is available to
derive RT moments. Applying the method of moments or the
method of trial means to such generalized DDM variant thus
involves either sampling schemes or numerical solvers for the
underlying Fokker-Planck equation (Shinn et al., 2020). However,
the computational cost of deriving trial-by-estimates of RT
moments precludes routine data analysis using these methods,

FIGURE 11 | Comparison of simulated and estimated DDM parameters (varying drift rates). Same format as Figure 9.

FIGURE 12 | DDM parameter recovery matrices (varying drift rates). Same format as Figure 10, except that fixed drift rates are replaced by their average across
DDM trials.
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which is why most model-based studies are currently restricted to
the vanilla DDM (Fengler et al., 2020). In turn, we do not consider
here such computationally intensive extensions of the method of
moments and/or method of trial means. In this setting, they thus
do not rely on the correct generative model. The ensuing
estimation errors and related potential identifiability issues
should thus be interpreted in terms of the (lack of) robustness
against simplifying modeling assumptions. This is not the case for
the overcomplete approach, which bypasses this computational
bottleneck and hence generalizes without computational harm to
such DDM variants.

Figure 13 below summarizes the ensuing comparison between
simulated and estimated parameters.

In brief, the overcomplete approach seems to perform as well
as for non-collapsing bounds (see Figure 11). Expectedly
however, the method of moments and the method of trial
means do incur some reliability loss. Quantitatively, the
overcomplete approach shows much smaller estimation error
than the method of moments (mean error difference:
Δ log(REE) � 0.88 ± 0.05, p < 10–4, two-sided F-test) or the
method of trial means (mean error difference:
Δ log(REE) � 0.61 ± 0.05, p < 10–4, two-sided F-test).

Figure 14 below then summarizes the ensuing evaluation of
non-identifiability issues, in terms of recovery matrices.

For the overcomplete approach, Figure 14 shows a similar
parameter identifiability than Figure 12. In brief, all parameters
of the generalized DDM are identifiable from each other (the
amount of “correct variations” is 33.8% for the bound’s decay
parameter, and greater than 75.5% for all other parameters). This
implies that including collapsing bounds does not impact
parameter recovery with this method. This is not the case for
the two other methods, however. In particular, the method of
moments confuses the perturbations’ standard deviation with the
bound’s decay rate (7.2% “correct variations” against 20.8%
“incorrect variations”). This is also true, though to a lesser
extent, for the method of trial means (31.6% “correct
variations” against 5.4% “incorrect variations”). Again, these
identifiability issues are expected, given that neither the
method of moments nor the method of trial means (or, more
properly, the variant that we use here) rely on the correct
generative model. Maybe more surprising is the fact that these
methods now exhibit non-identifiability issues w.r.t. parameters
that they can, in principle, estimate. This exemplifies the sorts of
interpretation issues that arise when relying on methods that
neglect decision-relevant mechanisms. We will comment on this
and related issues further in the Discussion section below.

e. Summary of recovery analyses.

FIGURE 13 | Comparison of simulated and estimated DDM parameters (collapsing bounds). Same format as Figure 9, except that the left panel includes an
additional parameter (w1: green color), which controls the decay rate of DDM bounds.

FIGURE 14 | DDM parameter recovery matrices (collapsing bounds). Same format as Figure 12, except that recovery matrices now also include the bound’s
decay rate parameter (w1), in addition to the bound’s initial height (w0).
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Figure 15 below summarizes all our recovery analyses above,
in terms of the average (log-) relative estimation error REE and
the parameter identifiability index ΔV (cf. Supplementary
Appendix S4).

Figure 15 enables a visual comparison of the impact of
simulation series on parameter estimation methods. As
expected, for the method of moments and the method of trial
means, the most favorable situation (in terms of estimation error
and identifiability) is when the drift rate is fixed and varying over
trials, respectively. This is also when these methods perform best
in relation to each other. All other situations are detrimental, and
eventually yield estimation error and identifiability issues similar
or worse than when the full parameter set has to be estimated.
This is not the case for the overcomplete approach, which exhibits
comparable estimation error and/or identifiability than the best
method in all situations, except for collapsing bounds, where it
strongly outperforms the two other methods. Here again, we note
that parameter recovery for generalized DDMs may, in principle,
be improved for the method of moments and/or the method of
trial means. But extending these methods to generalized DDMs is
beyond the scope of the current work.

APPLICATION TO A VALUE-BASED
DECISION MAKING EXPERIMENT

To demonstrate the above overcomplete likelihood approach, we
apply it to data acquired in the context of a value-based decision
making experiment (Lopez-Persem et al., 2016). This experiment
was designed to understand how option values are compared
when making a choice. In particular, it tested whether agents may
have prior preferences that create default policies and shape the
neural comparison process.

Prior to the choice session, participants (n � 24) rated the
likeability of 432 items belonging to three different domains
(food, music, magazines). Each domain included four
categories of 36 items. At that time, participants were unaware
of these categories. During the choice session, subjects performed

series of choices between two items, knowing that one choice in
each domain would be randomly selected at the end of the
experiment and that they would stay in the lab for another
15 min to enjoy their reward (listening to the selected music,
eating the selected food and reading the selectedmagazine). Trials
were blocked in a series of nine choices between items belonging
to the same two categories within a same domain. The two
categories were announced at the beginning of the block, such
that subjects could form a prior or "default" preference (although
they were not explicitly asked to do so). We quantified this prior
preference as the difference between mean likeability ratings
(across all items within each of the two categories). In what
follows, we refer to the "default" option as the choice options that
belonged to the favored category. Each choice can then be
described in terms of choosing between the default and the
alternative option.

Figure 16 below summarizes the main effects of a bias toward
the default option (i.e., the option belonging to the favored
category) in both choice and response time, above and beyond
the effect of individual item values.

A simple random effect analysis based upon logistic regression
shows that the probability of choosing the default option
significantly increases with decision value, i.e. the difference
Vdef-Valt between the default and alternative option values
(t � 8.4, dof � 23, p < 10–4). In addition, choice bias is
significant at the group-level (t � 8.7, dof � 23, p < 10–4).
Similarly, RT significantly decreases with absolute decision
value |Vdef-Valt| (t � 8.7, dof � 23, p < 10–4), and RT bias is
significant at the group-level (t � 7.4, dof � 23, p < 10–4).

To interpret these results, we fitted the DDM using the above
overcomplete approach, when encoding the choice either (i) in
terms of default versus alternative option (i.e., as is implicit on
Figure 10) or (ii) in terms of right option versus left option. In
what follows, we refer to the former choice frame as the “default/
alternative” frame, and to the latter as the “native” frame. In both
cases, the drift rate of each choice trial was set to the
corresponding decision value (either Vdef-Valt or Vright-Vleft). It
turns out that within-subject estimates of σ, b and TND do not

FIGURE 15 | Summary of DDM parameter recovery analyses. Left panel: The mean log relative estimation error RRE (y-axis) is shown for all methods (OcA:
Overcomplete approach, MoM: Method of moments, MoTM: Method of trial means), and all simulation series (black: Full parameter set, blue: fixed drift rate, red: varying
drift rates, green: Collapsing bounds). Right panel: The mean identifiability index ΔV (y-axis) is shown for all methods and all simulation series (same format as left panel).
Note that the situation in which the full parameter set has to be estimated serves as a References point. To enable a fair comparison, both the estimation error and
the identifiability index are computed for the parameter subset that is common to all simulation series (i.e.: The perturbations ‘standard deviation σ, the bound’s height b,
the initial condition x0, and the non-decision time TND).
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depend upon the choice frame. More precisely, the cross-subjects
correlation of these estimates between the two choice frames is
significant in all three cases (σ: r � 0.76, p < 10–4; b: r � 0.82, p <
10–4; TND: r � 0.94, p < 10–4). This implies that inter-individual
differences in σ, b and TND can be robustly identified, irrespective
of the choice frame. However, the between-frame correlation is
not significant for the initial bias x0 (r � 0.29, p � 0.17). In
addition, the initial bias is significant at the group level for the
default/alternative frame (F � 45.2, dof � [1,23], p < 10–4) but not
for the native frame (F � 2.36, dof � [1,23], p � 0.14). In brief, the
two choice frames only differ in terms of the underlying initial
bias, which is only revealed in the default/alternative frame.

Now, we expect, from model simulations, that the presence of
an initial bias induces both a choice bias, and a reduction of
response times for default choices when compared to alternative
choices (cf. upper-left and lower-right panels in Figure 1). The
fact that x̂0 is significant in the default/alternative frame thus
explains the observed choice and RT biases shown on Figure 10.
But do inter-individual differences in x̂0 predict inter-individual
differences in observed choice and RT biases? The corresponding
statistical relationships are summarized on Figure 17 below.

One can see that both pairs of variables are statistically related
(choice bias: r � 0.70, p < 10–4; RT bias: r � 0.44, p � 0.03). This is
important, because this provides further evidence in favor of the
hypothesis that people’s covert decision frame facilitates the
default option. Note that this could not be shown using the
method of moments or the method of trial means, which were not
able to capture these inter-individual differences (see
Supplementary Appendix S7 for details).

Finally, can we exploit model fits to provide a normative
argument for why the brain favors a biased choice frame? Recall
that, if properly set, the DDM can implement the optimal speed-
accuracy tradeoff inherent in making online value-based
decisions (Tajima et al., 2016). Here, it may seem that the
presence of an initial bias would induce a gain in decision
speed that would be overcompensated by the ensuing loss of
accuracy. But in fact, the net tradeoff between decision speed and
accuracy depends upon how the system sets the bound’s height b.
This is because b determines the demand for evidence before the
system commits to a decision. More precisely, the system can
favor decision accuracy by increasing b, or improve decision
speed by decreasing b. We thus defined a measure e

�
of the

FIGURE 16 | Evidence for choice and RT biases in the default/alternative frame. Left: Probability of choosing the default option (y-axis) is plotted as a function of
decision value Vdef-Valt (x-axis), divided into 10 bins. Values correspond to likeability ratings given by the subject prior to choice session. For each participant, the choice
bias was defined as the difference between chance level (50%) and the observed probability of choosing the default option for a null decision value (i.e., when Vdef � Valt).
Right: Response time RT (y-axis) is plotted as a function of the absolute decision value |Vdef-Valt| (x-axis) divided into 10 bins, separately for trials in which the default
option was chosen (black) or not (red). For each participant, the RT bias was defined as the difference between the RT intercepts (when Vdef � Valt) observed for each
choice outcome.

FIGURE 17 | Model-based analyses of choice and RT data. Left: For each participant, the observed choice bias (y-axis) is plotted as a function of the initial bias
estimate x̂0 in the default/alternative frame (x-axis). Right: Same for the observed RT bias.
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optimality of each participant’s decisions, by comparing the
speed-accuracy efficiency of her estimated DDM and the
maximum speed-accuracy efficiency that can be achieved over
alternative bound heights b (see Supplementary Appendix SA5
below). This measure of optimality can be obtained either under
the default-alternative frame or under the native frame. It turns
out that the measured optimality of participants’ decisions is
significantly higher under the default/alternative frame than
under the native frame (Δe� � 0.007 ± 0.003, t � 2.2, dof � 23,
p � 0.02). In other words, participants’ decisions appear more
optimal under the default/alternative frame than under the native
frame. We comment on possible interpretations of this result in
the Discussion section below.

DISCUSSION

In this note, we have described an overcomplete approach to
fitting the DDM to trial-by-trial RT data. This approach is based
upon a self-consistency equation that response times obey under
DDM models. It bypasses the computational bottleneck of
existing DDM parameter estimation approaches, at the cost of
augmenting the model with stochastic neural noise variables that
perturb the underlying decision process. This makes it suitable for
generalized variants of the DDM, which would not otherwise be
considered for behavioral data analysis.

Strictly speaking, the DDM predicts the RT distribution
conditional on choice outcomes. This is why variants of the
method of moments are not optimal when empirical design
parameters (e.g., evidence strength) are varied on a trial-by-
trial basis. More precisely, one would need a few trial
repetitions of empirical conditions (e.g., at least a few tens of
trials per evidence strength) to estimate the underlying DDM
parameters from the observed moments of associated RT
distributions (Boehm et al., 2018; Ratcliff, 2008; Srivastava
et al., 2016). Alternatively, one could rely on variants of the
method of trial means to find the DDM parameters that best
match expected and observed RTs (Fontanesi et al., 2019a;
Fontanesi et al., 2019b; Gluth and Meiran, 2019; Moens and
Zenon, 2017; Pedersen et al., 2017; Wabersich and
Vandekerckhove, 2014). But this becomes computationally
cumbersome when the number of trials is high and one
wishes to use generalized variants of the DDM. This however,
is not the case for the overcomplete approach. As with the method
of trial means, its statistical power is maximal when design
parameters are varied on a trial-by-trial basis. But the
overcomplete approach does not suffer from the same
computational bottleneck. This is because evaluating the
underlying self-consistency equation (Eqs. 7–9) is much
simpler than deriving moments of the conditional RT
distributions (Broderick et al., 2009; Navarro and Fuss, 2009).
In turn, the statistical added-value of the overcomplete approach
is probably highest for analyzing data acquired with such designs,
under generalized DDM variants.

We note that this feature of the overcomplete approach makes
it particularly suited for learning experiments, where sequential
decisions are based upon beliefs that are updated on a trial-by-

trial basis from systematically varying pieces of evidence. In such
contexts, existing modeling studies restrict the number of DDM
parameters to deal with parameter recovery issues (Frank et al.,
2015; Pedersen et al., 2017). This is problematic, since reducing
the set of free DDM parameters can lead to systematic
interpretation errors. In contrast, it would be trivial to extend
the overcomplete approach to learning experiments without
having to simplify the parameter space. We will pursue this in
forthcoming publications.

Now what are the limitations of the overcomplete approach?
In brief, the overcomplete approach effectively reduces to

adjusting DDM parameters such that RT become self-
consistent. Interestingly, we derived the self-consistency
equation without regard to the subtle dynamical degeneracies
that (absorbing) bounds induce on stochastic processes
(Broderick et al., 2009). It simply follows from noting that if a
decision is triggered at time τ, then the underlying stochastic
process has reached the bound (i.e., xτ � ± b). This serves to
identify the cumulative perturbation that eventually drove the
system toward the bound. But a bound hit event at time τ is more
informative about the history of the stochastic process than just
its fate: it also tells us that the path did not cross the barrier before
(i.e., |xt |< b ∀t < τ). This disqualifies those sample paths whose
first-passage time happens sooner, even though all barrier
crossings are (by definition) “self-consistent”. In retrospect,
one may thus wonder whether the self-consistency equation
may be suboptimal, in the sense of incurring some loss of
information. Critically however, no information is lost about
cumulative perturbations (or about DDM parameters). Although
these are not sufficient to discriminate between the many sample
paths that are compatible with a given RT, this is essentially
irrelevant to the objective of the overcomplete approach. In turn,
the existing limitations of the overcomplete approach lie
elsewhere.

First and foremost, the self-consistency equation cannot be
used to simulate data (recall that RTs appear on both the left- and
right-hand sides of the equation). This restricts the utility of the
approach to data analysis. Note however, that data simulations
can still be performed using Eq. 2, once the model parameters
have been identified. This enables all forms of posterior predictive
checks and/or other types of model fit diagnostics (Palminteri
et al., 2017). Second, the accuracy of the method depends upon
the reliability of response time data. In particular, the recovery of
the noise’s standard deviation depends upon the accuracy of the
empirical proxy for decision times (cf. second term in Eq. 7). In
addition, the method inherits the potential limitations of its
underlying parameter estimation technique: namely, the
variational Laplace approach (Friston et al., 2007; Daunizeau,
2017). In particular, and as is the case for any numerical
optimization scheme, it is not immune to multimodal
likelihood landscapes. We note that this may result in non-
identifiability issues of the sort that we have demonstrated
here (cf., e.g., Figures 8, 10). One cannot guarantee that this
will not happen for some generalized DDM variant of interest. A
possible diagnostic to this problem is to perform a systematic fit/
sample/refit analysis to evaluate the stability of parameter
estimates. In any case, we would advise to re-evaluate (and
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report) parameter recovery for any novel DDM variant. Third,
the computational cost of model inversion scales with the number
of trials. This is because each trial has its own nuisance
perturbation parameter. Note however, that the ensuing
computational cost is many orders of magnitude lower than
that of standard methods for generalized DDM variants.
Fourth, proper bayesian model comparison may be more
difficult. In particular, simulations show that a chance model
always has a higher model evidence than the overcomplete model.
This is another consequence of the overcompleteness of the
likelihood function, which eventually pays a high complexity
penalty cost in the context of Bayesian model comparison.
Whether different DDM variants can be discriminated using
the overcomplete approach is beyond the scope of the current
work.

Let us now discuss the results of our model-based data analysis
from the value-based decision making experiment (Lopez-
Persem et al., 2016). Recall that we eventually provided
evidence that peoples’ decisions are more optimal under the
default/alternative frame than under the native frame. Recall
that this efficiency gain is inherited from the initial condition
parameter x0, which turns out be significant under the default/
alternative frame. The implicit interpretation here is that the
brain’s decision system starts with a prior bias toward the default
option. Critically however, we would have obtained the exact
same results, would we have fixed the initial condition to zero but
allowed upper and lower decision bounds to be asymmetrical.
This is interesting, because it highlights a slightly different
interpretation of our results. Under this alternative scenario,
one would state that the brain’s decision system is
comparatively less demanding regarding the evidence that is
required for committing to the default option. In turn, the
benefit of lowering the bound for the default option may
simply be to speed up decisions when evidence is congruent
with default preferences, at the expense of slowing down
incongruent decisions. Importantly, this strategy does not
compromise decision accuracy if the incongruent decisions are
rarer than the congruent ones (as is effectively the case in this
experiment).

At this point, we would like to discuss potential neuroscientific
applications of trial-by-trial estimates of “neural” perturbation
terms. Recall that the self-consistency equation makes it possible
to infer these neural noise variables from response times (cf. Eq. 7
or 9). For the purpose of behavioral data analysis, where one is
mostly interested in native DDM parameters, these are treated as
nuisance variables. However, should one acquire neuroimaging
data concurrently with behavioral data, one may want to exploit
this unique feature of the overcomplete approach. In brief,
estimates of “neural” perturbation terms moves the DDM one
step closer to neural data. This is because DDM-based analysis of
behavioral data now provides quantitative trial-by-trial
predictions of an underlying neural variable. This becomes
particularly interesting when internal variables (e.g., drift rates)
are systematically varied over trials, hence de-correlating the
neural predictor from response times. For example, in the
context of fMRI investigations of value-based decisions, one
may search for brain regions whose activity eventually

perturbs the computation and/or comparison of options’
values. This would extend the portfolio of recent empirical
studies of neural noise perturbations to learning-relevant
computations (Drugowitsch et al., 2016; Wyart and Koechlin,
2016; Findling et al., 2019). Reciprocally, using some variant of
mediation analysis (MacKinnon et al., 2007; Lindquist, 2012;
Brochard and Daunizeau, 2020), one may extract neuroimaging
estimates of neural noise that can inform DDM-based behavioral
data analysis. Alternatively, one maymodel neural and behavioral
data in a joint and symmetrical manner, with the purpose of
testing some predefined DDM variant (Rigoux and Daunizeau,
2015; Turner et al., 2015).

Finally, one may ask how generalizable the overcomplete
approach is? Strictly speaking, one can evaluate the self-
consistency equation under any DDM variant, as long as the
mapping z : x→ z(x) from the base random walk to the bound
subspace is invertible (cf. Eqs. 8, 9). No such formal constraint
exists for the dynamical form of the collapsing bound. This spans
a family of DDM variants that is much broader than what is
currently being used in the field (Fengler et al., 2020; Shinn et al.,
2020). For example, this family includes decision models that
trigger a decision when decision confidence reaches a bound
(Tajima et al., 2016; Lee and Daunizeau, 2020). To the best of
our knowledge, there is not a single example of existing DDM
variants that does not belong to this class. Having said this,
future extensions of the DDM framework may render the
current overcomplete approach obsolete. Our guess is that
such DDM improvements may then need to be informed
with additional behavioral data, such as decision confidence
(De Martino et al., 2012) and/or mental effort (Lee and
Daunizeau, 2020), for which other kinds of self-consistency
equations may be derived.

To conclude, we note that the code that is required to perform a
DDM-based data analysis under the overcomplete approachwill be
made available soon from the VBA academic freeware https://
mbb-team.github.io/VBA-toolbox/(Daunizeau et al., 2014).
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