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In this study, Artificial Intelligence was used to analyze a dataset containing the cortical
thickness from 1,100 healthy individuals. This dataset had the cortical thickness from 31
regions in the left hemisphere of the brain as well as from 31 regions in the right
hemisphere. Then, 62 artificial neural networks were trained and validated to estimate the
number of neurons in the hidden layer. These neural networks were used to create a
model for the cortical thickness through age for each region in the brain. Using the
artificial neural networks and kernels with seven points, numerical differentiation was
used to compute the derivative of the cortical thickness with respect to age. The
derivative was computed to estimate the cortical thickness speed. Finally, color
bands were created for each region in the brain to identify a positive derivative, that
is, a part of life with an increase in cortical thickness. Likewise, the color bands were used
to identify a negative derivative, that is, a lifetime period with a cortical thickness
reduction. Regions of the brain with similar derivatives were organized and displayed
in clusters. Computer simulations showed that some regions exhibit abrupt changes in
cortical thickness at specific periods of life. The simulations also illustrated that some
regions in the left hemisphere do not follow the pattern of the same region in the right
hemisphere. Finally, it was concluded that each region in the brain must be dynamically
modeled. One advantage of using artificial neural networks is that they can learn and
model non-linear and complex relationships. Also, artificial neural networks are immune
to noise in the samples and can handle unseen data. That is, the models based on
artificial neural networks can predict the behavior of samples that were not used for
training. Furthermore, several studies have shown that artificial neural networks are
capable of deriving information from imprecise data. Because of these advantages, the
results obtained in this study by the artificial neural networks provide valuable information
to analyze and model the cortical thickness.

Keywords: modeling, cortical thickness, artificial neural network, derivative, changes with age, adaptive models,
neuroimaging

1 BACKGROUND

In the last few years, machine learning techniques have been used in common applications
(Alpaydin, 2016). In this paper, we use one technique from Artificial Intelligence to analyze the
progress of the cortical thickness with age. This study includes data from 1,100 healthy individuals.
The cortical thickness was measured using FreeSurfer which is a fully automated software for
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measuring several parameters in the brain including
neuroanatomic volume and cortical thickness (McCarthy et al.,
2015).

Several studies illustrate the relevance of the analysis of the
cortical thickness through the life span. For instance, the authors
in (Steffener et al., 2016) indicate that brain aging can be analyzed
taking into consideration the inevitable and universal effects of
advancing age and the effects resulting from a lifetime of
exposures. These effects and a decreased cortical thickness in
some regions of the brain may be related to some mental
disorders or cognitive decline (Fouche et al., 2017; Razlighi
et al., 2017). Thus, some studies have indicated correlations
between disease states and cortical thickness, see the references
in (Scott et al., 2009).

In the state of the art, there are many studies about the
modeling of changes in the cortical thickness. The authors in
(Scott et al., 2009) propose a voxel-based method to measure the
cortical thickness utilizing inversion recovery anatomical
magnetic resonance images. Churchwell et al. use separate
hierarchical multiple regressions to analyze changes with age
in the cortex thickness in specific zones in the brain (Churchwell
and Yurgelun-Todd, 2013). Additionally, it has been suggested
that brain aging is a process influenced by degenerative and
restorative activities (Fjell et al., 2014). Consequently, the
resulting process can be linear and non-linear. Similarly, it has
been proposed that cortical thickness changes follow non-linear
patterns across childhood and adolescence, and these changes
vary to some degree by cortical region (Wierenga et al., 2014;
Piccolo et al., 2016; Sowell et al., 2007).

In this sense, the thinning of the cortical thickness has been
analyzed. For instance, Tamnes et al. describe the age-related
changes in cortical thickness, their findings revealed regional
age-related cortical thinning (Tamnes et al., 2010), see also
(Salat et al., 2004). The authors in (McGinnis et al., 2011)
analyze the thinning of the cerebral cortex in different
regions of the brain in the course of aging. Chen et al.
demonstrate age-related alterations in the modular
organization of the human brain structural networks using
regional cortical thickness measurements (Chen et al., 2011).
Lemaitre et al. use linear regressions of age, their studies indicate
an associated global age-related reduction in cortical thickness,
surface area and volume (Lemaitre et al., 2012). On the other
hand, it has been indicated that cortical surface area is an
increasingly used brain morphology metric that is
ontogenetically and phylogenetically distinct from the cortical
thickness and offers a separate index of neuro-development and
disease (Winkler et al., 2018).

2 ARTIFICIAL NEURAL NETWORKS

An artificial neural network is a computational technique
motivated by a specific behavior found in the brain (Marsland,
2015). A neural network is composed of basic units of processing
called neurons. Inside the network, the neurons are organized in
layers. Artificial neural networks are used for: image
classification, image processing, signal processing, prediction,

pattern recognition, function approximation, and other
applications (Jin et al., 2017; Jordan and Mitchell, 2015). From
a practical point of view, artificial neural networks can be used to
create a model using only a set of data samples (Russell and
Norvig, 2020; Masters, 2015). The main advantage of using an
artificial neural network to model the cortical thickness is that the
network creates the model that best fits the patterns in the data. In
other words, an artificial neural network is capable of learning
and modeling non-linear and complex relationships.
Additionally, the neural network is immune to noise in the
data samples and can infer unseen relationships on unseen
data. Therefore, the models obtained are able to generalize and
predict on unseen data. Furthermore, research has shown that
artificial neural networks have a great capability of deriving
information from complex or imprecise data.

3 DATASET DESCRIPTION

The simulations in this study were performed using a dataset with
information from approximately 1,100 healthy individuals. This
dataset was built by combining data from four different common
datasets: IXI, MMRR, NKI, and OASIS. Table 1 includes a sample
from one patient of the cortical thickness for each dataset. These
datasets are briefly discussed next.

3.1 IXI Dataset
This dataset contains approximately 600 magnetic resonance
images from normal and good health individuals. The data
was collected at three different hospitals in London:
Hammersmith hospital, Guy’s hospital and the Institute of
Psychiatry. The IXI dataset was prepared during the project
called Information eXtraction from Images, (Information
eXtraction from Images, 2019).

3.2 MMRR Dataset
TheMulti-Modal MRI Reproducibility Resource dataset was built
using information from 21 healthy volunteers. In the MMRR
dataset, all volunteers did not have a history of neurological
conditions, and therefore, all of themwere used in this study. This
dataset has 42 records and each record includes information from
a 1-h scan session (Landman et al., 2011).

3.3 NKl Dataset
The Nathan Klein Institute - Rockland Sample (NKI-RS) is an
attempt to create a large-scale community sample. This dataset
includes data from different types of assessments including
advanced neuroimaging. The dataset has 186 T1-weighted
images from 99 males and 87 females.

3.4 OASIS Dataset
The Open Access Series of Imaging Studies dataset is a set of
magnetic resonance images collected from 416 individuals
between the ages of 18–96 years (Marcus et al., 2007). This
dataset is public and can be used for research. As this study
focuses only on healthy individuals, data coming from patients
with a mental disease was discarded, and therefore, not used.
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Consequently, data from only 313 individuals were used for the
computer simulations and analysis performed in this work.

4 METHODOLOGY

In this study, the cortical thickness of the images provided in
(Tustison et al., 2014) was used for the training and validation of
62 artificial neural networks. The total number of records in this
dataset was approximately 1,100. Each record had the sex and age
of each individual. Additionally, each record included the values
of the cortical thickness in 31 regions in the left hemisphere of the
brain and 31 regions in the right hemisphere, see Fischl (2012)
and Klein and Tourville (2012).

To create the neural network models, several steps were
performed. First, the input data, the age of each person in the
dataset, was linearly scaled so that all the values at the input of the
network were in the range of −1 to 1. Second, the cortical thickness
values were also scaled using a linear transformation so that all target
values at the output of the network were in the range of −1 to 1.
Third, each neural network was trained in two steps. In the first step,
a non-greedy optimization method called simulated annealing was
used to find initial values of the weights connecting the neurons in

the network. Then, a gradient-based method was used to quickly
optimize the values of the weights by moving the weights in the
opposite direction of the gradient of the error. Once the networks
were trained, we validated the performance of the network by
measuring the mean squared error between the predicted value
and the observed data from the validation set.

4.1 Training and Validation of the Artificial
Neural Networks
Once the dataset was ready, 62 multilayer neural networks were
created using the Neural Lab software (Ledesma et al., 2017). All 62
networks had three layers: the input layer, the hidden layer, and the
output layer as shown in Figure 1. All neurons in the network were
designed to use the hyperbolic tangent as their activation functions.
The neurons were connected with weights, these are denoted by h
and w in Figure 1. Each network had one input, the age, and one
output, the cortical thickness of one specific region of the brain as in
Figure 1. Thus, each neural network had one neuron in the output
layer. The number of neurons in the hidden layer was iteratively
determined as follows. First, the complete dataset with the 1,100
cases was split into two datasets: the training set and the validation
set. Second, each network was trained with zero neurons in the

TABLE 1 | Cortical thickness in millimeters from one person in each database.

Database IXI MMRR NKI OASIS

Age (years) 39 25 41 74

Left Right Left Right Left Right Left Right

Caudal anterior cingulate 2.432 2.395 2.981 3.201 2.344 2.545 2.7 2.694
Caudal middle frontal 2.23 2.326 2.634 2.578 2.516 2.422 2.351 2.413
Cuneus 1.895 1.663 1.918 1.761 1.935 1.874 1.682 1.805
Entorhinal 3.356 3.728 4.093 3.868 2.808 2.958 2.876 3.053
Fusiform 2.486 2.558 2.657 2.67 2.457 2.538 2.274 2.199
Inferior parietal 2.426 2.356 2.307 2.303 2.338 2.413 2.221 2.267
Inferior temporal 2.892 2.751 2.777 2.832 2.509 2.519 2.57 2.205
Isthmus cingulate 2.214 2.086 2.702 2.38 2.222 2.356 2.031 2.35
Lateral occipital 2.017 2.097 1.863 1.962 2.005 2.066 2.085 2.001
Lateral orbitofrontal 2.522 2.795 3.085 2.95 2.679 2.497 2.538 2.604
Lingual 1.774 1.762 2.096 2.086 1.961 1.911 1.784 1.837
Medial orbitofrontal 2.53 2.444 2.701 2.628 2.633 2.414 2.159 2.553
Middle temporal 2.856 2.825 2.792 2.845 2.607 2.716 2.561 2.548
Parahippocampal 2.456 2.509 3.339 3.143 2.787 2.608 2.035 2.496
Paracentral 2.108 2 2.579 2.395 2.209 2.253 2.214 2.136
Pars opercularis 2.665 2.307 2.69 2.768 2.549 2.635 2.456 2.528
Pars orbitalis 2.464 2.529 2.893 2.771 2.45 2.332 2.308 2.612
Pars triangularis 2.243 2.4 2.533 2.431 2.287 2.364 2.077 2.243
Pericalcarine 1.441 1.308 1.528 1.642 1.58 1.554 1.482 1.454
Postcentral 1.98 1.901 2.349 2.262 2.144 2.127 2.094 2.039
Posterior cingulate 2.397 2.311 2.79 2.655 2.282 2.229 2.234 2.432
Precentral 2.28 2.339 2.248 2.344 2.574 2.449 2.317 2.231
Precuneus 2.28 2.231 2.625 2.438 2.309 2.22 2.285 2.126
Rostral anterior cingulate 2.69 2.899 3.118 3.406 2.894 2.531 3.041 2.908
Rostral middle frontal 2.224 2.34 2.383 2.356 2.373 2.266 2.283 2.15
Superior frontal 2.558 2.565 2.674 2.812 2.518 2.483 2.592 2.477
Superior parietal 2.135 1.978 2.198 2.084 2.311 2.201 2.128 2.168
Superior temporal 2.774 2.826 2.824 3.023 2.771 2.774 2.614 2.633
Supramarginal 2.482 2.414 2.577 2.577 2.545 2.478 2.302 2.309
Transverse temporal 1.893 1.968 2.713 2.628 2.332 2.364 2.621 2.285
Insula 3.072 2.749 3.169 3.242 3.01 2.915 2.942 3.049
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hidden layer. Both themean squared error for training and themean
squared error for validation were computed. Then, the number of
neurons in the hidden layer was increased by one. Again, the mean
squared error for training and the mean squared for validation were
computed. This iterative process was stopped when the mean
squared error during validation did not decrease. The main
conclusion obtained from this iterative process was that only two
neurons in the hidden layer were necessary to model the cortical
thickness.

In this case, 80% of the cases were included in the training set,
and the 20% remaining cases were used to build the validation set.
The training of the 62 artificial neural networks was performed in
two steps using the parameters shown in Table 2. The training of
each neural network began using simulated annealing. Then, the
method of Levenberg–Marquardt was used to improve the
training.

4.2 Derivative Computation
In the field of numerical differentiation, there are some methods
to estimate the numerical value of the derivative of a function.
One commonmethod to approximate the derivative of a function
is based on finite differences. There are three types of differences:
forward difference, backward difference, and central difference.
These differences are associated with a stencil or kernel. A stencil

s (or kernel) is a set of N points that are arranged in the vicinity of
a point of interest (Hassan et al., 2012). For instance, the stencil

s � [−1, 0, 1] (1)

is used to describe a stencil with three points (N � 3) in the
vicinity of the point of interest. The numbers in the stencil
indicate the time steps, 0 represents the current value, − 1
represents the previous value, and 1 represents the next value.
In general, a stencil with N points is represented as

s � [s1, s2, s3,/sN]. (2)

For instance, whenN � 5, the derivative is computed using five
points in the vicinity of the point of interest. Consequently, when
the value of N is increased, the accuracy of the derivative also
increases. However, when working in the upper or lower ends of
the data, it is important to use different stencils to compute the
derivative for each point. That is, the point of interest must be
dynamically located inside the stencil to compensate for the
missing data, see (Hassan et al., 2012). For the stencil s in
Equation 2, the finite difference coefficients c1, c2, /, cN, can
be obtained by solving the system of linear equations

(s1)0 (s2)0 / (sN)0
(s1)1 (s2)1 / (sN)1
« « 1 «

(s1)N−1 (s2)N−1 / (sN)N−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
c1
c2
«
cN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � d!

δ0,d
δ1,d
«

δN−1,d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

where d is the order of derivative and δi,j is the Kronecker delta,
see (Hassan et al., 2012). The main advantage of using this
method is that different stencils can be used to estimate the
derivative at different points of interest increasing the accuracy
of the computation. It is important to note that Equation 3
cannot be used to estimate the derivative in a non-differentiable
region. However, as it can be seen from databases in the state of
the art, changes in the cortical thickness are slow and non-
differentiable regions were not found in the four databases used
in this study.

FIGURE 1 | Structure of the artificial neural network used to model the cortical thickness.

TABLE 2 | Methods and parameters used for training.

Simulated annealing

Initial temperature 15
Final temperature 0.001
Number of temperatures 100
Iterations per temperature 100
Cooling schedule Linear

Levenberg-Marquardt
Number of iterations 1,000
Goal (mean squared error) 1 × 10–5
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5 COMPUTER SIMULATIONS AND
RESULTS

The computer simulations performed in Section 4.1 were used to
determine the proper number of neurons in the hidden layer and
to validate the performance of the models. However, once the
validation process was finished, it was convenient to create new
models by performing the training of the networks using all
samples in the data set. Therefore, all the 62 artificial neural
networks were again trained, but in this case, all the 1,100 cases
(instead of only 80% of the cases) were used. The training was
performed as before using the parameters in Table 2. According
to the results of the computer simulations performed in Section
4.1, all neural networks had two neurons in the hidden layer.

5.1 Cortical Thickness Progress With Age
As it is well known, artificial neural networks may be used to
create a model when there is not a mathematical equation to
represent the data (Kelleher et al., 2015; Goodfellow et al., 2016).
In this study, artificial neural networks were used to model the
changes in cortical thickness in the brain at different ages.
Specifically, for each region in the brain, one artificial neural
network was used to model the cortical thickness in that region.
Thus, a total of 62 artificial neural networks were trained and
validated to model the cortical thickness of the brain. There are
several approaches that can be used to model the different regions
of the brain. For instance, instead of using 62 neural networks, it
is possible to design a single neural network with 62 outputs.
However, computer simulations showed that the performance of
the single neural network was very similar to the performance of
the 62 neural networks.

The results of the computer simulations indicated that the
mean squared error during the training of the artificial neural
networks was from 0.016 to 0.031. During the validation of the
models, the computer simulations indicated that the variations
between the observed data and the predicted results had errors
from 0.016 to 0.033. Finally, to build the models, a new set of
artificial neural networks was trained using the whole dataset. In
this case, the mean squared error was in the range of 0.017–0.034.
To our knowledge, this is the first study to use this type of
approach to analyze changes in the cortical thickness.

To ease the presentation of the computer simulations, the
models obtained by the artificial neural networks were organized
manually in clusters. In this sense, each cluster included those
regions which exhibit similar behavior through age. A total of six
clusters were created based on the patterns observed in the
cortical thickness. We chose this number of clusters because
most of the patterns observed in the 62 regions of the brain were
represented using only six clusters. However, it is important to
mention that if more clusters are used, each cluster will include
very few regions. These clusters are described next.

5.1.1 Changes in Cortical Thickness Around 25 years
of Age
Figure 2 shows the behavior of the models created by the artificial
neural networks in twelve different regions in the brain. Each
graph was built using one artificial neural network. All networks

in this study had the configuration shown in Figure 1. However,
each network had a different set of weights, h and w. These
weights were adjusted during the training process to model one
single region of the brain, and thus, discover and learn hidden
patterns in the data. To build the graph, a set of uniformly
distributed values for the age was applied to the input of the
neural network. Then, an estimate for the cortical thickness in
millimeters was produced at the output of the artificial neural
network. Finally, the respective input and output values were used
to build each graph in Figures 2–7.

All regions in Figure 2 exhibit a similar pattern for the changes
in cortical thickness with age. Specifically, all these regions
present an abrupt change in the cortical thickness speed
around the age of 25 years. This abrupt change is observed by
a change in the direction (line slope) of the graph for each region.
As it was mentioned before, those regions of the brain with
similar behavior in their cortical thickness were manually
selected, and then presented in the same figure.

The first row in Figure 2 displays the cortical thickness in
millimeters for the left insula and the right insula as a function of
age. From this figure, it can be seen that the thickness of the left
insula constantly reduces during the first 20 years of life. A similar
behavior is also observed in the right insula. From age 20 to 30,
the cortical thickness remains almost constant in these two
regions. Then, starting at age 30, the thickness of the left and
right insula starts decreasing with age at a low rate. Thus, it can be
observed that both regions the left insula and the right insula
exhibit a somehow similar pattern for the changes in cortical
thickness with age. In the next row in Figure 2, the graphs show
the cortical thickness models created using the artificial neural
networks for the left superior parietal and the right superior
parietal. The next row shows the models for the left precentral
and right precentral. The next rows in the figure show the
behavior of the cortical thickness with age in other regions of
the brain; all these regions follow a similar pattern with age.
However, it is important to note that the left rostral anterior
cingulate and the right rostral anterior cingulate present a more
abrupt change at 25 years of age than the other regions in
Figure 2.

It is important to note that each artificial neural network was
trained separately without using data from the same region in
the other hemisphere of the brain. However, as it has been
concluded by other researchers, some regions in the brain did
not present the same behavior for the cortical thickness in both
hemispheres. Consequently, some of the graphs in the figures do
not present the results for the left hemisphere on the column on
the left, and the results for the right hemisphere on the column
on the right. For instance, the fifth row in Figure 2 shows the
results for the left transverse temporal and the right caudal
anterior cingulate.

5.1.2 Changes in Cortical Thickness Around 40 years
of Age
Figure 3 shows eight regions in the brain that have a special
behavior in cortical thickness around 40 years of age. The first
row in Figure 3 displays the cortical thickness for the left
poscentral and the right poscentral. Observe that both
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regions exhibit a constant reduction in cortical thickness during
the first 35 years of life. From 35 to 45 years of age, the cortical
thickness remains almost constant in both regions. Then,
starting at age 45, the cortical thickness begins to slowly

decrease. The second row in Figure 3 shows the model for
the left caudal middle frontal and the right caudal middle
frontal. For these two regions, it can be observed a sudden
and small increase in cortical thickness around age 35. In the

FIGURE 2 | Regions with changes in cortical thickness around 25 years of age.

FIGURE 3 | Regions with changes in cortical thickness around 40 years of age.
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same sense, an unexpected reduction around age 38 is present
in the right lateral orbitofrontal and the right medial
orbitofrontral. The last row in Figure 3 shows the
behavior of the cortical thickness in the left middle

temporal and the right lateral occipital. Observe that the
left middle temporal exhibits an abrupt transition around are
age 45, while the right lateral occipital exhibits a transition
around age 32.

FIGURE 4 | Regions with changes in cortical thickness around 50 years of age.

FIGURE 5 | Regions with changes in cortical thickness around 70 years of age.
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FIGURE 6 | Regions with multiple changes in cortical thickness through age.

FIGURE 7 | Regions with constant changes in cortical thickness.
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5.1.3 Changes in Cortical Thickness Around 50 years
of Age
Figure 4 shows 10 regions that have changes in cortical thickness
around 50 years of age. The first row in Figure 4 displays the
model for the cortical thickness in millimeters for the left inferior
parietal and the right inferior parietal. In these two regions, the
cortical thickness remains almost constant from age 25 to 50.
Then, these regions present a slow and constant reduction in
cortical starting at age 50. The graphs in the second row in
Figure 4 displays the cortical thickness for the left rostral middle
frontal and the right fusiform. From age 25 to 50 the cortical
thickness remains approximately constant in both regions. Then,
starting at age 50 there is slow a constant reduction in cortical
thickness. The third row in Figure 4 shows the cortical thickness
for the left cuneus and the right cuneus. Both regions present a
sudden cortical thickness reduction at age 30 and 50. The fourth
row in Figure 4 displays the cortical thickness behavior for the left
lingual and the right lingual. An abrupt change in cortical
thickness is clearly observed in both regions at age 50 years
old. The last row in Figure 4 illustrates the behavior of the
cortical thickness in the left pericalcarine and the right middle
temporal. Notice that both regions exhibit a sudden change in
cortical thickness in two different periods of life. The left
pericalcarine exhibits the first change in cortical thickness
around 20 years of age and the second change around 55 years
of age. On the other hand, the right middle temporal has the first
abrupt change at 20 years of age, while the second change is
present around 45 years of age.

5.1.4 Changes in Cortical Thickness Around 70 years
of Age
Figure 5 shows ten regions in the human brain that present
changes in cortical thickness around 70 years of age. The first row
in Figure 5 illustrates these changes for the left posterior cingulate
and the right posterior cingulate. These two regions exhibit a
steady and non-linear reduction in cortical thickness during all
stages of life. However, they have an abrupt reduction in cortical
thickness around 70 years of age. All regions of the brain in
Figure 5 present a very similar behavior as the ones in the first
row. They have a constant and slow reduction in cortical
thickness with age. They also have a sudden reduction in
cortical thickness around 70 years of age.

5.1.5 Regions With Changes at Multiple Ages
Figure 6 shows ten different regions that exhibit multiple cortical
changes during the human lifespan. The first row in Figure 6
shows the development of the left lateral orbitofrontal and the left
medial orbitofrontal. These two regions have a non-linear
relation with age, and they both have a sudden increase in
cortical thickness at 35 and 62 years of age. The second row in
Figure 6 shows the left inferior temporal and the right inferior
temporal. Again, these two regions present an abrupt increase in
cortical thickness around 35 and 62 years of age. The graphs in
the third row of Figure 6 include the left caudal anterior cingulate
and the right transverse temporal. Both regions have inflection
points at 20, 45 and 70 years of age. The graphs in the fourth row
in Figure 6 include the behavior in the left fusiform and the right

pericalcarine. The last row in Figure 6 shows the cortical
thickness development in the left entorhinal and the right
entorhinal. These are the only two regions in the brain that
have very big changes in cortical thickness through the lifespan.
The cortical thickness in these two regions reaches a maximum
value at ages 35 and 60.

5.1.6 Regions With a Constant Rate
All the regions in Figure 7 exhibit a mostly steady reduction in
cortical thickness through age. The first row in Figure 7 shows the
cortical thickness in millimeters for the left isthmus cingulate and
the right isthmus cingulate. With the exception at the beginning
of life, both of these two regions exhibit a mostly linear reduction
in cortical thickness through life. The second row in Figure 7
shows the cortical thickness in millimeters for the left pars
triangularis and the right pars triangularis. From the graph, it
can be observed that the left pars triangularis presents an abrupt
transition in cortical thickness around 50 years of age. While the
right pars triangularis exhibits a linear reduction in cortical
thickness for most of the human life span. The third row in
Figure 7 includes the left pars opercularis and the right pars
opercularis. Both of these two regions have an almost linear
reduction in cortical thickness. The fourth row in Figure 7 shows
the behavior of the cortical thickness in the left precuneus and the
right precuneus. The left precuneus exhibits a small transition
around 55 years of age, while the right precuneus exhibits a minor
transition in cortical thickness around 25 years of age. The fifth
row in Figure 7 shows the cortical thickness changes for the left
paracentral and the right paracentral. Both of these regions have
two inflection points, one at 30 of age and another at 75 years of
age. The last row in Figure 7 shows the models for the left
parahippocampal and the right parahippocampal. The cortical
thickness for both of these regions follows a non-linear reduction
through life.

5.2 Cortical Thickness Changes Through
Life
The study of changes in cortical thickness with age is very
important because it provides information about the
individual. For instance, a reduction in cortical thickness has
been associated with some neurodegenerative diseases (Oertel-
Knöchel et al., 2015). Additionally, it has been suggested that age-
related non-linear changes in cortical thickness are influenced by
family income and parental education (Piccolo et al., 2016). In the
same sense, Plessen et al. evaluated the connection between
measures of asymmetry in cortical thickness with age, sex, and
cognitive performance (Plessen et al., 2014).

In this section, we compute the derivative of the cortical
thickness using Equation 3 and the models created using the
artificial neural networks. The computer simulations were
performed using stencils (kernels) with seven points, N � 7 in
Equation 2. Additionally, the stencils were dynamically computed
at the beginning and at the end of the lifespan to improve accuracy,
see (Hassan et al., 2012). The computer simulations in Section 5.1
focused on the value and progress of the cortical thickness through
different ages. On the other hand, the simulations in this section
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focused on the speed of the cortical thickness during the life span.
Thus, when the derivative is positive, the speed is also positive and
this implies that there is an increase in the cortical thickness during
this part of life. When the derivative is negative the speed is also
negative implying that there is a reduction in cortical thickness for
that part of life. In the same sense, when the derivative is almost
zero, the speed is also close to zero, and therefore, the cortical
thickness does not change.

Figure 8 shows the cortical thickness derivative with respect to
age. Observe that the figure includes the results only for the left
hemisphere of the brain. Observe also that the results are
organized in clusters, that is, those brain regions with similar
derivatives are displayed next to each other. The thickness

derivative is represented using the color scale displayed on the
right part of Figure 8. Starting at the top of the scale, the blue dark
color is used to display a significant increase in cortical thickness.
In the middle of the scale, the green color is used to indicate no
changes in cortical thickness, 0.0. At the bottom of the scale, the
red color is used to indicate an important reduction in cortical
thickness.

Row one in Figure 8 shows the derivative for the caudal
middle frontal. As it can be seen this band is mostly green with a
blue band around 30. Therefore, this region exhibits a constant
derivative with an abrupt increase in the cortical thickness speed
around 30 years of age. The bands from row two (postcentral) to
row six (rostral middle frontal) in Figure 8 are mostly green with

FIGURE 8 | Cortical thickness derivative with respect to age, left hemisphere.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 54925510

Ledesma et al. AI to Analyze Cortical Thickness

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


some soft yellow zones. Thus, these brain regions exhibit an
almost constant cortical thickness derivative during the lifespan.
From row seven in Figure 8 (pars opercularis) to row twelve
(lateral occipital) all these bands have red and yellow zones at the
beginning of life. Thus, these brain regions lose cortical thickness
at high speed around the first 20 years of age. Row 13 in Figure 8
shows the behavior of the rostral anterior cingulate. There are red,
yellow and blue color bands in the first 20 years of life. This
implies that the cortical thickness speed considerably changes
during the first 2 decades of life. From row 15 (entorhinal) to row
21 (parahippocampal), all these brain regions present different
cortical thickness speeds at diverse parts of life. Both the
transverse temporal in row 22 and the precentral in row 23

have a red zone around 20 years of age. This implies that the
human brain presents a period with great reductions in cortical
thickness for these two regions at age 20.

All regions from row 24 (lingual) to row 26 (cuneus) exhibit a
red or yellow band around 20 and 50 years. This means that
during this age, the derivative is negative, and therefore, the
cortical thickness is quickly reduced during these two parts of life.
The last regions in Figure 8 starting in row 28 (posterior
cingulate) have a red band around 65 years of age. Thus, these
regions exhibit a fast reduction in cortical thickness at 65 years.

Figure 9 shows the derivative of the cortical thickness for the
right hemisphere. The regions in Figure 9 are organized in
clusters as in the regions in the left hemisphere.

FIGURE 9 | Cortical thickness derivative with respect to age, right hemisphere.
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The first six regions in Figure 9, from caudal middle frontal to
fusiform, have a constant cortical thickness speed for most of the
life. Regions from row 7 (supramarginal) to 11 (paracentral)
present a high cortical thickness reduction during the first
20 years of life. The regions located in the cluster in the
middle of Figure 9, from row 15 (entorhinal) to row 18 (pars
opercularis), have several abrupt changes in the cortical thickness
speed at different parts of life. Both the medial orbitofrontal in
row 19 and the lateral orbitofrontal in row 20 have a negative
cortical thickness speed around 33 years of age. The regions from
row 24 (lingual) to 26 (cuneus) have a negative cortical thickness
speed around 20 and 50 years of age. Finally, the regions from row
27 (rostral middle frontal) to 31 (superior temporal) present a
negative cortical thickness speed around 70 years of age.

Tables 3–5 show some of the main results from this study. The
first row inTable 3 indicates that the left pericalcarine is the region
with the lowest cortical thickness throughout all life. As it can be
seen from the third column in Table 3, the right entorhinal is the
region with the highest thickness throughout all life, after 40 years
of age, and after 60 years of age. However, the value in the second
column in the last row in Table 3 indicates that the right
pericalcarine is the region with the lowest thickness after
60 years of age.

Table 4 shows the variability of the cortical thickness.
Through all life, the region with the lowest variability is the
right caudal anterior cingulate, and the region with the highest
variability is the left parahippocampal. For a person 40 years and
older, the region with the lowest variability is again the right
caudal anterior cingulate, while the region with the highest
variability is the right transverse temporal. For a person
60 years and older, the left enthorhinal is the region with the
highest variability, and the left pericalcarine is the region with the
lowest variability.

Table 5 measures the linearity of the cortical thickness with
age. Throughout life, the left lateral occipital is the region that
exhibits the highest linearity. For an age of 40 years and older, the
right isthmus cingulate is the region with the highest linearity. For
an age of 60 years and older, the left pericalcarine is the region
with the highest linearity. In this sense, the cortical thickness in
those regions in the third column of Table 5 can be estimated
using a simple linear model. On the other hand, the cortical
thickness of those regions in the second column ofTable 5 cannot
be accurately predicted using a simple linear model. In summary,
the models created with artificial neural networks adapt to the
patterns in the data. Therefore, the performance of a neural
network model or a linear model is very similar in those regions
that exhibit a linear tendency in its cortical thickness with time.
For those regions that have a linear behavior, the mean squared
error was 0.016 for both models. However, the performance of the
neural network models was better than the performance of linear
models in those regions with complex patterns through age. For
those regions that do not have a linear behavior with time, the
mean squared error for the neural network models was 0.03 while
the mean squared error for the linear models was 3.0.

In this publication, we propose the use of artificial neural
networks to model the thickness of the cortical thickness through
life for different regions in the brain. Once the neural networks
are trained, it is possible to validate the performance of the model
using new datasets. One important feature of artificial neural
networks is their capacity to generalize. This means that a neural
network has been trained, it should be able to predict the cortical
thickness of data that the network has not seen before (Masters,
2015). Future work may include the study on how to utilize the
artificial neural network models to understand various cognitive
functions through life.

6 CONCLUSION

This work analyzes the progress of the cortical thickness with age
using Artificial Intelligence. A set of artificial neural networks was
trained and validated using a dataset with information from 1,100
healthy individuals. Each neural network was designed to model
one single region in the human brain. Thus, 31 artificial neural
networks were created to model the cortical thickness in each
region in the left hemisphere of the brain. Similarly, 31 networks
were created to model the cortical thickness for the regions in the
right hemisphere. Furthermore, computer simulations were used
to adjust the number of neurons in the hidden layer of the
artificial neural networks, and thus, obtain the best model given
the amount of data available.

The models created by the artificial neural networks were,
then, organized in clusters. Each cluster included those regions
that followed a similar pattern for the cortical thickness through
age. The results from the computer simulations show that the
models allow the detection of abrupt changes in cortical
thickness. The simulations also provide an age estimate of
when these changes may happen.

Additionally, the neural networks were used with numerical
differentiation techniques to estimate the derivative of the cortical

TABLE 3 | Modeling of the cortical thickness through life.

Lowest thickness Highest thickness

Through all life Left pericalcarine Right entorhinal
age ≥40 Left pericalcarine Right entorhinal
age ≥60 Right pericalcarine Right entorhinal

TABLE 4 | Variability of the cortical thickness through life.

Lowest variability Highest variability

Through all life Right caudal anterior cingulate Left parahippocampal
age ≥40 Right caudal anterior cingulate Right transverse temporal
age ≥60 Left pericalcarine Left enthorhinal

TABLE 5 | Linearity of the cortical thickness through life.

Lowest linearity Highest linearity

Through all life Right entorhinal Left lateral occipital
age ≥40 Right entorhinal Right isthmus cingulate
age ≥60 Left lateral orbitofrontal Left pericalcarine
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thickness with respect to age. Dynamic stencils were used to
improve the accuracy of the derivative at the beginning and the
end of life. Then, color bands were created to display the speed of
the cortical thickness. A color scale was designed to locate and
visualize those parts of life with a positive or a negative speed. A
positive speed is obtained when there is an increase in cortical
thickness. On the other hand, a negative speed is present when
there is a reduction in cortical thickness during that part of life.
Therefore, the color bands allowed the detection of those parts of
life with a reduction or an increase in cortical thickness. Finally,
these graphs were organized in clusters. Each cluster included
those regions with similar behavior through life.

After examining the results, it was concluded that some
regions in the left hemisphere do not present the same
progress with age as the counterpart regions in the right
hemisphere. Some regions in the brain exhibit very particular
patterns in their cortical thickness; one of these regions is the
entorhinal. One advantage of the methodology proposed in this
paper is that the models created using the artificial neural
networks do not assume a linear or non-linear model. Instead,
the artificial neural network is capable of dynamically adapt to the
required complexity of each region in the human brain.
Additionally, artificial neural networks are insensitive to noise
present in the data and learn the patterns relevant to the specific
application. Most importantly, neural networks are capable of
generalizing, that is, they are able to predict patterns that are
present in other datasets that were not used for training.
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