
SYSTEMATIC REVIEW
published: 20 May 2021

doi: 10.3389/frai.2021.550030

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2021 | Volume 4 | Article 550030

Edited by:

Novi Quadrianto,

University of Sussex, United Kingdom

Reviewed by:

Mohan Sridharan,

University of Birmingham,

United Kingdom

Fabio Aurelio D’Asaro,

University of Milan, Italy

Arnaud Fadja Nguembang,

University of Ferrara, Italy

Elena Bellodi,

University of Ferrara, Italy

*Correspondence:

Tomasz Bednarz

t.bednarz@unsw.edu.au

Specialty section:

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

Received: 08 April 2020

Accepted: 09 April 2021

Published: 20 May 2021

Citation:

Wells L and Bednarz T (2021)

Explainable AI and Reinforcement

Learning—A Systematic Review of

Current Approaches and Trends.

Front. Artif. Intell. 4:550030.

doi: 10.3389/frai.2021.550030

Explainable AI and Reinforcement
Learning—A Systematic Review of
Current Approaches and Trends
Lindsay Wells 1 and Tomasz Bednarz 1,2*

1 Expanded Perception and Interaction Center, Faculty of Art and Design, University of New South Wales, Sydney, NSW,

Australia, 2Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia

Research into Explainable Artificial Intelligence (XAI) has been increasing in recent years

as a response to the need for increased transparency and trust in AI. This is particularly

important as AI is used in sensitive domains with societal, ethical, and safety implications.

Work in XAI has primarily focused on Machine Learning (ML) for classification, decision,

or action, with detailed systematic reviews already undertaken. This review looks

to explore current approaches and limitations for XAI in the area of Reinforcement

Learning (RL). From 520 search results, 25 studies (including 5 snowball sampled) are

reviewed, highlighting visualization, query-based explanations, policy summarization,

human-in-the-loop collaboration, and verification as trends in this area. Limitations in

the studies are presented, particularly a lack of user studies, and the prevalence of

toy-examples and difficulties providing understandable explanations. Areas for future

study are identified, including immersive visualization, and symbolic representation.

Keywords: explainable AI, reinforcement learning, artificial intelligence, visualization, machine learning

INTRODUCTION

Explainable Artificial Intelligence (XAI) is a growing area of research and is quickly becoming
one of the more pertinent sub-topics of Artificial Intelligence (AI). AI systems are being
used in increasingly sensitive domains with potentially large-scale social, ethical, and safety
implications, with systems for autonomous driving, weather simulations, medical diagnosis,
behavior recognition, digital twins, facial recognition, business optimization, and security just to
name a few. With this increased sensitivity and increased ubiquity comes inevitable questions of
trust, bias, accountability, and process—i.e., how did the machine come to a certain conclusion?
(Glass et al., 2008). These concerns arise from the fact that, generally, the most popular and
potentially most powerful part of AI—Machine Learning (ML)—is essentially a black-box, with
data input into a trained neural network, which then outputs a classification, decision, or action.
The inner workings of these algorithms are a completemystery to the lay-person (usually the person
interacting with the AI). The algorithms can even be difficult for data scientists to understand or
interpret. While the architecture and mathematics involved are well-defined, very little is known
about how to interpret (let alone explain), the inner state of the neural network. Interaction with
such systems are fraught with disuse (failure to rely on reliable automation), and misuse (over
reliance on unreliable automation) (Pynadath et al., 2018).

This black-box scenario makes it difficult for end-users to trust the system they are interacting
with. When an AI system produces an unexpected output, this lack of trust often results in
skepticism and possibly even rejection on the part of the end-user. It is not clear if the result
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is “correct” or as a result of some flaw or bias in the creation
of the AI system that led to the model being overfit on training
data not representative of wide range of examples in the real
world, or underfit, not sufficiently modeling the complexities
of the target environment. These errors may have considerable
side effects, such as unsafe resultant behaviors in factories due
to misclassification, unfair treatment of members of society,
unlawful actions, or financial impact on companies employing
AI solutions. Marcus and Davis (2019) describe a number of
these issues in their book Rebooting AI. They argue that current
approaches to AI are not “on a path to get us to AI that is safe,
smart, or reliable” (p. 23).

XAI research in the context of Machine Learning and
deep learning aims to look inside this black-box and extract
information or explanations as to why the algorithm came to the
conclusion or action that it did. In addition to providing tools to
assist with trust and accountability, XAI assists with debugging
and bias in Machine Learning. The inputs and outputs and
network design of Machine Learning algorithms are ultimately
still decided with human input (human-in-the loop), and as such
are often subject to human errors or bias. Explanations from
XAI enabled algorithms may uncover potential flaws or issues
with this design (e.g., are certain completely irrelevant features
in the input image becoming too much of a factor in outputs?).
XAI aims to tackle these problems, providing the end-user
with increased confidence, and increased trust in the machine.
Recent reviews into XAI have already been conducted, with the
most recent being Biran and Cotton (2017), and Miller et al.
(2017). These reviews focus on data-driven Machine Learning
explanations. Recently Anjomshoae et al. (2019) published a
systematic literature review on goal-driven explainable AI, which
encompassed Reinforcement Learning (RL), although the review
did not provide any specific commentary on approaches used
within that area. These reviews indicate that XAI is a growing
area of importance, and this is also reflected in a recent move by
Google to release a range of XAI tools.1 Furthering the need for
research in the area of XAI is the recent General Data Protection
Regulation in the EU, which has a provision for the right to
explanations (Carey, 2018).

In the broader ML space, the review of 23 articles by Miller
et al. (2017) determined that human behavioral experiments were
rare. Anjomshoae et al. (2019) reviewed 62 papers and found that
after text-style explanations, which were present in 47% of papers,
explanations in the form of visualization were the next most
common, seen in 21% of papers. Visualization presents a dynamic
and exploratory way of finding meaning from the ML black-box
algorithms. A considerable amount of work has already gone into
the concept of “saliency maps” which highlight areas of the input
image that were of importance to the outcome, see Adebayo et al.
(2018).

Following on from these previous reviews, the current work
aims to examine XAI within the scope of RL. RL agents
generally leverage a Markov Decision Process (MDP), whereby
at each timestep, an action is selected given a certain input
set of observations (state), to maximize a given reward. During

1Available online at: https://cloud.google.com/explainable-ai.

compute runs, the agent learns which actions result in higher
rewards (factoring in a discount factor for obtaining long-
term rewards, such as winning the game) through a carefully
moderated process of exploration and exploitation. Popularly, RL
has been used successfully by the DeepMind team to produce
agents capable of better than human-level performance in
complex games like GO (Silver et al., 2016), and a suite of Atari
games (Mnih et al., 2015).

In the next section, we will qualify the reasoning for selecting
RL as an area for further investigation in terms of XAI and
describe the guiding research questions of this work. Then, the
methodology used for the systematic literature review will be
described, and the results of the review will be presented.

BACKGROUND

This work investigates RL specifically due to the unique
challenges and potential benefits of XAI applied to the RL space.
The concept of XAI even in agent-based AI system has been
considered as early as 1994, in work by Johnson (1994) who
described an approach for querying an intelligent agent and
generating explanations. The system was domain-independent,
implemented for a simulated fighter-pilot agent. The agent
itself did not use for its approach, however there are several
similarities to current RL work, as the theory behind how an
explanation should be worded or generated remains the same.
The agent was able to explain a decision made by going back
to that point in time and “repeatedly and systematically” (p. 32)
modifying the situation state, and observing the different actions
the agent would take in order to form a mapping between states
and actions.

Benefits
As mentioned above, XAI aims to combat the issues of trust
and confidence in AI, a topic which is particularly important
when safety is a major factor. Applications such as autonomous
vehicles or robotics where the robot takes in observations of
the environment around it and performs actions where the
result could have an impact on safety are an area where trust
and accountability are pertinent (Araiza-Illan and Eder, 2019).
Determining why a robot took the action it did (and by extension
knowing what factors it considered) in a human-understandable
way plays a big part of building a trust that the robot is indeed
making intelligent and safe decisions. This could even lead to
building a rapport with the robot, making working with it
more efficient as their behaviors may become more predictable.
Diagnosing what went wrong when a robot or autonomous car
is involved in an incident would also benefit from XAI, where
we could query the machine about why it took actions in the
lead up to the incident, which would allow designers to not only
prevent further incidents, but help with accountability or possible
insurance or ethical claims (e.g., was the autonomous car at fault,
was there a fault in the decision making of the car, or was another
third party at fault?).

Another benefit is that RL agents often learn behaviors which
are unique and can identify new strategies or policies previously
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not thought of. A recent example of this was a game of hide-and-
seek where agents learned strategies to exploit the physics system
of the game to overcome what was intended by the developers to
be walls that could not be passed (Baker et al., 2019). Extracting
from the black box how these strategies were learned, or under
what circumstances these strategies were learned could result
in useful new knowledge for decision making or optimization.
As Stamper and Moore (2019) point out, analysis of agents
playing the Atari 2600 game Space Invaders exhibited similar
decision-making behaviors to expert human players (e.g., keeping
the invaders in a square formation, and destroying right-most
enemies first to slow down the rate of advancement), however in
other games investigated, the strategies varied more from human
play. Understanding and articulating these strategies may result
in new knowledge on how to optimally play these games, but
also enhance recommendation systems for informed decision
making. A quote by Zhuang et al. (2017) sums up the current
situation well: “[. . . ] people and computers can both play chess, it
is far from clear whether they do it the same way.”

Challenges
A challenge in providing XAI for RL is that it usually involves
a large number of decisions made over a period of time, often
aiming to provide the next action at real-time speeds. Compared
to standard ML techniques where decisions can happen in
isolation or are unrelated to each other, RL explanations generally
will need to encompass a set of actions that were related in some
way (e.g., outputting explanations such as “I did actions A,B,C to
avoid a penalty for Z”).

Another challenge is the fact that RL agents are generally
trained without using training data (with the exception of where
human-replay data is used, such as in Vinyals et al., 2017), and
instead learning is facilitated by a feedback loop (observations)
from performing actions within an environment. This makes
it challenging to generate human-readable explanations. While
the observation and action spaces may be labeled in sensible
ways, having no human-labeled training data linking actions and
observations makes it challenging to produce valid explanations.

Further adding to the difficulties in XAI, is that developing
an AI system that is explainable and transparent can be at odds
with companies that have explicit commercial interests which
they may not want exposed by overly verbose AI. It can also
raise issues around protecting their IP, maintaining a competitive
advantage, and the additional costs involved with implementing
XAI (Mohanty and Vyas, 2018).

METHODOLOGY AND RESEARCH
QUESTIONS

With XAI becoming increasingly important for a range of
reasons previously described, and work in this area beginning
to grow, it is important to take stock of the current approaches
in order to find similarities, themes, and avenues for further
research. As such, the guiding research questions for this
review are:

RQ1:What approaches exist for producing explainable output
for Reinforcement Learning?

RQ2: What are the limitations of studies in the area of XAI for
Reinforcement Learning?

It is worth taking a moment to clarify the meaning of
“explanation” and “explainability” in this paper. In the case
of a systematic literature review using these words as search
terms, search results will appear for a multitude of meanings
and interpretations of these words. For example, “explainability”
might refer to something whichmakes a systemmore transparent
or understandable. An “explanation” may refer to something
which describes the actions, decisions, or beliefs of an AI
system. “Explainablity” however may also refer to logging or
verifications, or an AI system that can be queried or visualized.
During the filtering process described in the next section,
no restrictions were placed on how the authors defined or
interpreted these terms.

Given these research questions, the following section describes
the methodology for searching the extant literature for
information to address them.

SELECTION OF LITERATURE

To examine the current state of the literature, a systematic
literature review using a methodology adapted from Kitchenham
et al. (2009) was performed. Searches were conducted on
the ACM, IEEExplorer, Science Direct, and Springer Link
digital libraries, using Boolean search queries, taking the term
“Reinforcement Learning” and combining it with the terms
“data visualization,” “information visualization,” “explanation,”
“explainable,” “explainable ai,” “XAI,” “black box,” “visual
analytics,” “hybrid analytics,” and “human in the loop.” The
full set of search term combinations can be found in
Supplementary Materials.

In addition, papers were filtered using the following criteria:

- recent paper: papers had to be published within the last 5 years
(i.e., since 2014 at time of writing);

- relevancy: papers had to be relevant to the topic of RL (papers
which spoke about general agent-based AI system or RL
from a human psychology perspective were excluded) and
explainability (i.e., papers which did not describe an approach
for explaining the actions or policy of an agent were excluded);

- accessibility: papers needed to be accessible via the portals
previously described;

- singularity: duplicate papers were excluded; and
- full paper: extended abstracts and other short papers

were excluded.

As Figure 1 illustrates, a total of 520 papers were gathered, which
was reduced to 404 after filtering out duplicate results using
the EndNote software “Find Duplicates” feature. The titles and
abstracts of these papers were reviewed for relevance to the
domain of RL and XAI, of which 69 were deemed relevant using
the relevancy measure described above. These papers were then
read fully to determine relevance to the domain. The remaining
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FIGURE 1 | Number of papers included in review after various stages of filtering.

FIGURE 2 | Categorization of papers by domain. Note that some papers were in multiple domains.

20 papers after this stage of filtering constitute the main analysis
of this paper.

The jump down from 69 to 20 may seem surprising, however
due to the search terms, a number of papers mentioned RL
in the body for purposes of describing AI systems generally
for the reader, or in some cases RL was used as the technique
for generating explanations for a different form of AI such as
classification. Such use of the term “Reinforcement Learning”
could not be determined until the full paper was examined.
Many filtered papers advertised frameworks or implementations
for XAI in ML in general and were picked up by the search
terms for RL as the papers described the broad spectrum of
Machine Learning which encompasses RL. However, these papers
ultimately just described typical classification problems instead.

In addition, 5 papers were added to the review, using a
snowball sampling technique (Greenhalgh and Peacock, 2005),
where if a relevant sounding paper was cited by a reviewed paper,
it was subsequently assessed, and if deemed relevant added to
the pool of papers for review (15 papers were examined during
this stage).

Before going into detail of some of the approaches for XAI in
RL, the following section explores at a high level the core themes
in the 25 papers reviewed in terms of domain and scope, in order
to paint a picture of the current state of the research space.

SUMMARY OF LITERATURE

Selected papers were categorized and analyzed based upon four
main topics: domain, publication type, year, and purpose. A full
summary table of the selected papers and information about each
is provided in Supplementary Materials.

Domain
Papers were categorized based upon the featured subject
domain(s) they focused on (either in their implementation,
or theoretical domain). It was possible for each paper to be
in multiple categories. The distribution of papers across the
categories is summarized in Figure 2, and expanded upon in
this section.

The majority of papers (16; 64.0%) focused their examples
on the domain of video games (particularly Atari games, given
recent popularity due to DeepMind’s success), however choice of
target game was generally quite broad spread, with the only game
utilized in more than one paper was Pac-Man, as illustrated in
Figure 3. Most common after this were examples using a basic
grid-world environment with a navigation task (5 papers), and
examples in robotics (4 papers).

The domain of networking tasks such as video bitrate
monitoring and cloud-based applications appeared in 2 papers.
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FIGURE 3 | Screenshots of the game-based applications in the studied papers. Where more than one paper used that game, the number of papers using the game

are shown in brackets.

An area that was expected to have greater representation was
autonomous vehicles (and this is validated by the mention of this
area of RL frequently in the reviewed papers), however this area
was the focus of only 2 papers.

Finally, one paper was written from a defense/military
perspective. It should be noted that only 6 papers attempted
to apply their implementation to multiple example situations,
however even in these cases, it was from within the same domain
(e.g., multiple types of games).

Publication Type
The primary outlet for the reviewed papers was conference
proceedings (16 papers), with only 3 papers published in journals.
Another 4 papers were from the open access repository arXiv,2

3 of which were found as part of the snowball sampling process

2Available online at: https://arxiv.org/.

described previously. One publication (Pynadath et al., 2018) was
a book chapter published in “Human and Machine Learning.”

Year
Themajority of papers found were published in 2019 (15 papers),
while only 6 were published in 2018, and 4 in 2017 (see Figure 4).
This indicates that research into attempting produce explainable
RL agents is an area of considerable growth. As we will see, given
the sudden increase in publications, there is a reasonable amount
of cross-over between some streams of research, and ideally these
researchers may consolidate their work and progress together,
rather than in parallel, into the future.

Purpose/Scope
The reviewed papers presented a mixture of papers attempting
to establish a theory or model (6 papers), while others primarily
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FIGURE 4 | Distribution of surveyed papers by year, indicating an increase of

academic interest in this area.

TABLE 1 | A summary of the papers reviewed, categorized by purpose.

Purpose Papers

Human collaboration Amir et al. (2019), Hayes and Shah (2017), Huang

et al. (2019), Pynadath et al. (2018), Tabrez et al.

(2019), Tabrez and Hayes (2019), Ehsan et al. (2019)

Visualization Dao et al. (2018), Dethise et al. (2019), Iyer et al.

(2018), Joo and Kim (2019), Mishra et al. (2018),

Pan et al. (2019), Wang et al. (2018), Greydanus

et al. (2018), Yang et al. (2018).

Policy summarization Amir et al. (2019), Fukuchi et al. (2017a,b), Hayes

and Shah (2017), Lage et al. (2019), Madumal et al.

(2020), Sridharan and Meadows (2019), Stamper

and Moore (2019), Lyu et al. (2019), Verma et al.

(2018)

Query-based explanations Amir et al. (2019), Hayes and Shah (2017), Kazak

et al. (2019), Sridharan and Meadows (2019)

Verification Kazak et al. (2019), Dethise et al. (2019)

Note that a paper could have multiple purposes.

focused on introducing a new method for explainable RL
(18 papers).

The primary purpose or focus of the reviewed papers was
coded down to 5 core topics as shown in 5 (it was possible for
a paper to be assigned to multiple topics): human collaboration
(7 papers); visualization (9 papers); policy summarization (10
papers); query-based explanations (5 papers); and verification
(1 paper). This distribution of purposes is consistent with the
findings in the Anjomshoae et al. (2019) review, which found a
high number of visualization-based explanation systems.

Table 1 summarizes which category was determined for each
paper, and the distribution of papers across different domains is
presented in Figure 5. These topics are used to help structure the
following discussion section.

DISCUSSION

The following sections address each of the defined research
questions for this work.

RQ1: What Approaches Exist for Producing
Explainable Output for Reinforcement
Learning?
Human Collaboration
Seven papers discussed approaches that were inherently human-
based in their approaches.

Pynadath et al. (2018) tested human interaction with an agent
while manipulating the perceived ability of the agent by altering
the explanations it gave. They explored the design of explanations
for Partially Observable Markov Decision Process (POMDP)-
based RL agents. The authors mapped different components of
the POMDP model to the Situational Awareness-based Agent
Transparency (SAT) model in order to determine a set of
“explanation content” to assist with situational awareness in a
military setting. The SAT was comprised of three levels:

• The agent’s actions and plans;
• The agent’s reasoning process, and;
• The agent’s predicated outcomes (optionally

including uncertainties).

The researchers were able to manipulate the ability of the agent
in their experiments for human-machine team missions. They
evaluated an explainable robot agent which would navigate
around an online 3D environment. The robot used a scanner
to recommend to the human team members what they should
do next (enter the building, put on armor etc.) Example
explanations for this agent included “I believe that there
are no threats in the market square” for beliefs about the
current state of the world, or “my image processing will fail
to detect armed gunmen 30% of the time” as an explanation
of the current state of the observation model the agent
was using.

The authors evaluated differing levels of explanation and
found that in general they could potentially “improve task
performance, build transparency, and foster trust relationships.”
Interestingly, the authors noted that explanations which resulted
in users being uncertain about what to do next were considered
just as ineffective as when no explanations were given. Ability
of the robot was tested as well. The high-ability robot
got predictions 100% correct, resulting in participants not
questioning the robots’ decisions (potentially leading those
participants to ignore some of the explanation content as the
robot “got it right anyway”). This is a prominent example of
overreliance, mentioned earlier.

In a similar vein as the work by Pynadath et al. (2018)
and Sridharan and Meadows (2019) contributed a theory of
how to enable robots to provide explanatory descriptions of its
decisions based upon its beliefs and experiences. Building upon
existing work into scientific explanation, the theory encompassed
3 core components:

1) How to represent, reason with, and learn knowledge to
support explanations.

2) How to characterize explanations in terms of axes of
abstraction, specificity, and verbosity.

3) How to construct explanations.
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FIGURE 5 | Categorization of papers by scope. Note that some papers were multi-faceted and covered multiple categories.

FIGURE 6 | Example visualizations from DQNVis, showing (a,b) episode duration, and (c) actions taken over time and how experts identified these as “hesitating” and

“repeating” behaviors which were non-optimal (from Wang et al., 2018, p. 294, reproduced with permission).

The authors went on to describe an architecture which
implemented this theory in a cross-domain manner. The
architecture itself operates on two levels, first reasoning using
commonsense domain knowledge at a high-level a plan of
actions. The system utilized RL for the actions, working
alongside Answer Set Prolog (ASP) reasoning of object
constants, domain attributes, and axioms based upon state-
action-reward combinations (Sridharan and Meadows, 2019).
The ASP reasoning was used for planning and diagnostics,

and to trigger the learning (using RL) of new concepts when
something unknown is encountered (Sridharan and Meadows,
2018). When producing explanations, the architecture extracted
words and phrases from a human querymatching a template, and
based upon human-controlled values effecting the abstraction,
specificity, and verbosity of the explanation, reasoned based
upon changes in beliefs about the environment. The two
evaluation tasks used weremoving objects to a target location and
following a recipe.
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Tabrez and Hayes (2019) described a framework called RARE
(Reward Augmentation and Repair through Explanation) which
also extended the POMDP model. Using this framework, the RL
agent was able to infer based upon a human’s behavior the most
likely reward function they were using and communicate to the
user important differences or missing information in the human’s
reward function. The agent autonomously provided “actionable
statements,” which the authors tested in a controlled experiment
on a Sudoku-style game. The control group were given an agent
who would alert users who were about to make a mistake, and
the treatment group had an agent which would indicate that a
move would result in failure, and explain to them which rules
of the game would be broken. Participants found the agent with
explanations to be more helpful, useful, and intelligent. The
authors however highlighted the fact that the approach does not
scale. Statements used a template in the form of: “If you perform
{describe action}, you will fail the task in state {describe state}
because of {describe reward function difference}.”

Looking at autonomous vehicles as an example, Pan et al.
(2019), contributed Semantic Predictive Control (SPC) which
learns to “predict the visual semantics of future states and
possible events based upon visual inputs and an inferred
sequence of future actions” (p. 3203). Visual semantics in this case
refers to object detection, and the authors suggested that these
predicted semantics can provide a visual explanation of the RL
process. The paper, however, provided little insight into how it
addresses the problem of XAI.

Another work in the autonomous driving domain, Huang
et al. (2019) compared approximate-inference and exact-
inference approaches in an attempt to leverage the way humans
make inferences about how a RL agent operates based upon
examples of optimal behavior. Their work compared different
approximate-inference models in a user study, where users were
shown example behaviors. Users were tasked with selecting from
a range of trajectories which one they thought the autonomous
driver was most likely to take. The authors’ findings suggested
that an approximate-inference model using a Euclidean-based
approach performed better than algorithmic teaching.

Finally, work by Ehsan et al. (2019) presented a novel
approach for generating rationales (the authors note a distinction
between this and explanations, indicating that rationales do
not need to explain the inner workings of the underlying
model). The method involves conducting a modified think-
aloud user study of the target application (in this case, the
game Frogger) where participants are prompted to verbally
indicate their rationale for each action they take. These
rationales (and the associated observation-action pairs in
the game) are then cleansed and parsed before being fed
through an encoder-decoder network to facilitate natural
language generation of actions taken by a RL agent. The
authors conducted user studies on the generated explanations
compared to random and compared to pre-prepared human
explanations. Generated explanations performed better than
randomly generated explanations in all factors tested (confidence,
human-likeness, adequate justification, and understandability),
and performed similarly to the pre-prepared explanations, but
did not beat it. A limitation of this work was that the system

was designed for turn-based or distinct-step environments, and
the authors are continuing their work to look at continuous
environments. A major challenge in this is that data collection of
rationales during the think-aloud stage is constrained to be after
each action taken and would be an arduous process for a human
for games larger than Frogger.

Visualization
Nine of the papers reviewed focused on graphical visualization of
the agent learning process. Some remarkable visualizations have
already been produced, however as discussed later, limitations
exist in the ability of these visualizations to fully explain an agent’s
behavior or policy.

Wang et al. (2018) provided a comprehensive yet highly
application-specific visualization tool for Deep-Q Reinforcement
Learning Networks called DQNViz, with the goal of identifying
and extracting typical action/movement/reward patterns of
agents. While DQNVis was scoped to the Atari Breakout game
and was focused primarily on objectives relating to improving
the training of an agent during development, the tool shows
the power of visualization techniques to gain insight into the
behaviors of an agent.

The system allowed behaviors to be identified and labeled
using tools, such as regular expressions, principal component
analysis, dynamic time warping, and hierarchical clustering.
Core behaviors in Breakout that the agent went through during
training included repeating, hesitating, digging, and bouncing (see
Figure 6). The tool allowed users to investigate certain moments
and see what the agent did at that time and highlight which
states in each layer of the convolutional neural network were
most activated. Coupled with video output surrounding certain
behaviors, experts were able to explore what caused bad behaviors
like repetition or hesitation.

Testing so far on DQNViz has been conducted only with deep
learning experts who were involved in the initial collaborative
process of building the system, and so the usability for non-
experts remains to be seen.

Region Sensitive Rainbow (RS-Rainbow) was a visualization
method contributed by Yang et al. (2018). RS-Rainbow used
a “region-sensitive module” (p. 1) added in after the standard
image convolution layers of a deep neural network, which
looks for distinctive patterns or objects, and this representation
replaces the original representation of the screen as the state
used by the deep Q network agent. The authors provided three
alternative approaches for visualizing the important regions: a
weights-overlay, a soft saliency mask, and a binary saliency mask.
Tested on a range of Atari games, the agent out-performed
state-of-the-art approaches for Deep RL. The authors have not
yet studied to what extent the visualization aids in human
understanding in non-experts and ability to debug agents.

Greydanus et al. (2018) also presented a visualization
technique tested on Atari games. They contributed perturbation-
based saliency, to artificially reduce the RL agent’s certainty about
specific features (e.g., the location of the ball in the Atari game
Pong), and its effect on the agent’s policy. Using this, the authors
could determine the regions of an image which had the most
effect. The authors used the visualization to understand “strong”
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policies where agents perform dominant strategies (such as
“tunneling” in Breakout), and to observe how attention changes
while the agent learns. The study found that the visualization
helped non-expert users with identify agents with overfitted
models. Finally, the study showed how visualization can aid
in debugging, showing examples of Atari games where human
performance was not yet attained. In MsPacman, it was found
that the agent was not tracking the ghosts, and in Frostbite,
the agent was only tracking the player and goal, and not the
destination platforms.

A similar approach to highlighting areas of an image that
were relevant to a decision was presented by Joo and Kim
(2019) who applied the Gradient-weighted Class Activation
Mapping (Grad-CAM) approach, to Asynchronous Advantage
Actor-Critic (A3C) deep RL in the context of Atari Games. The
result was effectively a heatmap indicating which parts of the
input image affected the predicted action.

A more complex approach to visualizing the focus of a RL
agent was presented by Iyer et al. (2018). The authors claimed
their system could “automatically produce visualization[s] of
their state and behavior that is intelligible to humans.” Developed
within the domain of Atari games, the authors used template

matching to detect objects in the screen input to produce a
number of “object channels” (one for each detected object), as
extra input into the convolutional neural network used by the
RL agent. The authors also described an approach to produce
a “pixel saliency map,” where pixels are ranked in terms of
their contribution toward the chosen action in that state (see
Figure 7). As the pixel map is generally not human intelligible
(i.e., it is difficult to interpret due to noise and other factors),
the approach was combined with the previously mentioned
object detection, to produce an “object saliency map” which is
easier for humans to understand. The authors tested the system
using human experiments, where participants were tasked with
generating explanations of the behavior of a Pacman agent, and
predict the next action. Participants assisted by the object salience
maps performed significantly better on the tasks.

Sparse Bayesian Reinforcement Learning (SBRL; Lee, 2017)
can explain which relevant data samples influenced the agent’s
learning. An extension to SBRL by Mishra et al. (2018) was V-
SBRL which was applied to vision-based RL agents. The system
maintains snapshot storage to store important past experiences.
The authors presented an approach to visualizing snapshots
at various important locations (as determined by the SBRL

FIGURE 7 | Screenshots (left) and their matching object saliency maps (right) in the game Ms Pacman (from Iyer et al., 2018, p. 148, reproduced with permission).
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FIGURE 8 | Summarized policies for Montezuma’s Revenge (left), and the “taxi” problem (right), (from Lyu et al. (2019), p. 2975, reproduced with permission).

algorithm), by showing state-action pairs. In the context of a
navigation task, an interesting visualization was provided by
overlaying the snapshots on a Q contour plot, allowing designers
to see where the agent had confidence in its actions and where
it did not. V-SBRL may prove to be useful in continuous
environments, where the number of important moments may
be high, but can be compressed down by finding similar state-
action pairs within the continuous space. In another paper from
the same authorship team, Dao et al. (2018) applied the approach
to the Atari games Pong and Ms Pacman.

Pan et al. (2019) as previously described provided visual
explanations in the form of object detection.

Policy Summarization
Ten papers provided approaches to in some way summarize the
policy that a RL agent has learned. While a policy summary
doesn’t explain an individual action, it can help provide context
for why an action was taken, and more broadly why an agent
makes the overall set of actions it makes.

Fukuchi et al. (2017a) described the Instruction-based
Behavior Explanation (IBE) approach which allows an agent to
announce their future behavior. To accomplish this, the agent
leveraged Interactive RL where experts provide instructions in
real-time to beginner agents. The instructions are then re-used
by the system to generate natural-language explanations. Further
work by Fukuchi et al. (2017b) then expanded on this to a
situation where an agent dynamically changed policy.

Hayes and Shah (2017) used code annotations to give human-
readable labels to functions representing actions and variables
representing state space, and then used a separate Markov
Decision Process (MDP) to construct a model of the domain and
policy of the control software itself. The approach is compatible
not only with RL, but also with hard-coded conditional logic
applications too.

The authors tested their approach on three different domains,
a grid-world delivery task, the traditional Cart Pole task, and an

FIGURE 9 | Plot of steering actions generated by standard DRL agent vs. the

summarized NDPS policy, which resulted in much smoother steering

movements (from Verma et al., 2018, p. 7, reproduced with permission).

inspection robot task. Generated policies were similar in nature
to the expert-written policies. The authors suggested that the
state space and action space of the learned domain model needs
to be constrained in order for the approach to be effective, and
to prevent combinatory explosion. It remains to be seen if the
approach will work on environments more complex than the
Cart Pole.

Amir et al. (2019) proposed a conceptual framework for
strategy summarization. The framework consisted of three
core components:

1) intelligent states extraction: which given the agent’s
strategy/policy as input, outputs a prioritized subset of
states to be included in the summary—the main challenge
being determining what the desirable characteristics of a state
are for use in a summary;
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2) world state representation: which involves the summarization
of potentially complex world states (i.e., an agent may consider
a large number of variables with different weights for certain
decisions); and

3) the strategy summary interface: which is concerned with
a usable and appropriate user interface for exploration of
the summary, which is guided by both the user and the
system itself.

For each of these components, the authors provided potential
research directions for addressing these problems in the RL
space, however this is the only paper reviewed which did
not include an implementation which was tested alongside the
theoretical framework.

Recent work by Madumal et al. (2020), implemented
explanations in a RL agent playing StarCraft II, under the premise
that humans would prefer causal models of explanation. The
agent was able to answer “counterfactual” levels of explanations,
i.e., “why” questions. The authors introduced an approach where
a causal graph was generated in the form of a directed acyclic
graph, where state variables and rewards were nodes, and actions
being edges (assuming that an action caused a transition between
different states). Using structural causal equations, on the causal
graph, an explanation was generated.

The explainable agent was tested on 120 participants. To
test participants understanding of the explanations, they were
tasked with first watching the agent play StarCraft II and
explain its actions, followed by watching an agent play and
predict its next action. The agent was found to have statistically
significantly higher levels of satisfaction and understanding
of actions taken than a non-explainable agent. Interestingly
however, no significant difference in levels of trust was found, a
fact that the author attributed to the short interaction time with
the agent.

A set of causal rules was also used in similar work
by Lyu et al. (2019) who proposed the Symbolic Deep
Reinforcement Learning (SDRL) framework, aimed at handling
high-dimensional sensory inputs. The system used symbolic
planning as a high-level technique for structuring the learning
with a symbolic representation provided by an expert. The
high-level symbolic planner had the goal of maximizing some
“intrinsic” reward of formulating the most optimal “plan”
(where a plan is a series of learned sub-tasks). DRL was used
at the “task/action” level to learn low-level control policies,
operating to maximize what the authors call an “extrinsic”
reward. The authors tested their new approach on the classic
“taxi” Hierarchical Reinforcement Learning (HRL) task, and
the Atari game Montezuma’s Revenge (see Figure 8). While the
system contributed gains in terms of data efficiency, of interest
to this paper is the use of symbolic representation and the high-
level planner. Such representation of the environment and action
space and abstraction at a high-level can be useful in the pursuit
of XAI as it may open up opportunities to (with careful design)
provide more interpretable systems.

Verma et al. (2018) described a framework for generating
agent policies called Programmatically Interpretable
Reinforcement Learning (PIRL), which used a high-level,

domain-specific programming language, similar to the symbolic
representations mentioned previously. The system used DRL
for initial learning, and then a novel search algorithm called
Neurally Directed Program Search (NDPS) to search over the
DRL with a technique inspired by imitation learning to produce
a model in the symbolic representation. The resulting model was
described by the authors as “human readable source code” (p.
9), however no tests have yet been conducted on how well users
can understand it, or how useful it is for debugging. The authors
indicated that the resulting policy was smoother than the one
generated by DRL—in the case of the test domain of a racing
game, the steering output was much smoother, albeit with slower
lap times (see Figure 9).

Lage et al. (2019) reported on different approaches for agent
policy summarization, using Inverse Reinforcement Learning
and Imitation learning approaches. Tested in three different
domains, the authors found that the policy of an agent was
most accurately reproduced when using the same model that was
used for extraction as was used for reconstruction. Stamper and
Moore (2019) compared policies generated by machines to those
of humans. Using post-hoc human inspection, they analyzed
data from a DQN RL agent, using t-SNE embedding. They
found that the agent playing Space Invaders exhibited similar
decision-making behaviors to expert human players (e.g., keeping
the invaders in a square formation, and destroying right-most
enemies first to slow down the rate of advancement). The work
is still in its early stages, and the authors plan to automate the
strategy identification process.

The previously described work by Sridharan and Meadows
(2019) also provided for a summary of learned policy in their
approach at different levels of abstraction. These summaries were
able to be queried by the user, as explained in the next section.

Query-Based Explanations
Five papers described an interactive query-based approach to
extracting explanations from a RL agent. Hayes and Shah (2017)
went into the most detail. Broadly, their system conducted 4
core actions:

1) identify the question based upon a template approach, e.g.,
“When do you do {action}?”;

2) resolve states [using the template from (1), determine the
states that are relevant to the question];

3) summarize attributes (determine common attributes across
the resolved states); and

4) compose a summary in a natural language form (using
“communicable predicates”).

These steps integrated with the code annotations previously
described for this system.

The work by Madumal et al. (2020) featured a query-based RL
agent playing Starcraft II. The agent focused on handling why?
and why not? questions. An example question was provided by
the author, “Why not build barracks?”, to which the agent replied,
“Because it is more desirable to do action build_supply_depot to
have more supply depots as the goal is to have more destroyed
units and destroyed buildings.” This is a great example of a RL
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agent being able to answer questions about its action, however it
remains to be seen how well this approach will scale.

Kazak et al. (2019) presented an approach which allowed
experts to query a RL agent in order to perform verification tasks.
In their tests, queries took over 40 s to complete. Their work is
described in more detail in the verification section, as that was
the primary purpose of that work.

Previously described work on policy summarization by
Amir et al. (2019) and Sridharan and Meadows (2019), both
highlighted the importance of being able to further query
summarized policies in order to prevent initial cognitive load on
the user by presenting a policy that was too complex or verbose.
The query functionality in Sridharan and Meadows (2019) was
able to be customized to different levels of abstraction, specificity,
and verbosity, but this was further guided by the ASP-based
architecture they used.

Verification
A theme which was found within two reviewed papers was that
of verification. Verification is an area of importance to RL for a
number of reasons, not least due to the impact on safety it can
have. As Fulton and Platzer (2018) point out, formal verification
allows us to detect discrepancies betweenmodels and the physical
system being controlled, which could lead to accidents.

Acknowledging the non-explainability of RL systems, Kazak
et al. (2019) suggested that verifying that systems adhere to
specific behaviors may be a good alternative to verifying that
they adhere to exact values from a model. They presented
an approach called Verily, which checks that the examined
system satisfies the pre-defined requirements for that system by
examining all possible states the agent could be in, and using
the formal verification approach Marabou. The system identifies
“undesirable” sequences using bounded model checking queries
of the state space. Of interest to this review is that when a
system is found to not meet the requirements, a counter example
is generated that explains a scenario in which the system fails.
The authors tested this approach on three case studies within a
networking/cloud computing domain, providing verification that
the RL systems employed were conducting desired behaviors and
avoiding poor outcomes (e.g., verifying that an adaptive video
streaming system was correctly choosing between high- or low-
quality video based upon network conditions). The impact of
Verily on the trust relationship between humans and the systems
remains to be tested, as does the scalability of this approach since
it operates on all possible states.

Similar to the Kazak et al. study was work by Dethise et al.
(2019), also in the domain of RL for networking problems.
They looked at using interpretability tools to identify unwanted
and anomalous behaviors in trained models. The system in
question was Pensieve, an adaptive bit rate selector, common in
video streaming services. The authors analyzed the relationship
between data throughput and decisions made by the agent.
Using simple visualization techniques, they showed that the
agent never chose certain bandwidths for users (despite there
being no bias present in the training data). Further analysis
revealed that the agent preferred to multiplex between higher
and lower bitrates when the average available bitrate was one of

the identified ignored bitrates. The authors also analyzed which
features contributed the most to decisions, finding that the most
highly weighted feature was the previous bit rate. This paper used
domain knowledge to lead a guided exploration of the inputs of a
relatively simple RL agent, however some of the approaches and
visualizations presented may be of use in other areas.

RQ2: What Are the Limitations of Studies in
the Area of XAI for Reinforcement
Learning?
In reviewing the collected papers, a number of common
limitations were identified, particularly in the use of “toy
examples,” a lack of new algorithms, lack of user testing,
complexity of explanations, basic visualizations, and lack of
open-sourced code. The following sections discuss in more detail
the various common limitations.

Use of Toy Examples, Specific Applications, and

Limited Scalability
Given the early stages of XAI for RL research, all papers reviewed
presented effectively “toy” examples, or case studies which were
deliberately scoped to smaller examples. In most cases this was
done to avoid the combinatory explosion problem in which
where state- and action-space grow, so do the number of possible
combinations of states and actions. An example of this was
Hayes and Shah (2017) who scoped their work to the basic Cart
Pole environment. Similarly the Tabrez and Hayes (2019) paper
focused on a grid-world example.

Many authors indicated limitations in scaling the approach
to more complex domains or explanations (with the exception
of Sridharan and Meadows, 2019, who indicated that a strong
contribution of their work was that their approach would scale).
Sixteen of the papers reviewed were either agents within video
games or were tested with video game problems, and surprisingly
few were on more real-world applications such as autonomous
driving or robotics. Examples of this include Ehsan et al. (2019)
who provide an interesting example but is highly scoped to
the Frogger game, and Madumal et al. (2020) who looked at
Starcraft II. While this is naturally following on from the success
of DeepMind, and video game problems provide for challenging
RL tasks, there is an opportunity for more work on applications
outside of this domain.

Focus on Modification of Existing Algorithms
Papers examined in this review described RL approaches or
visualization techniques to augment or accompany existing RL
algorithms. There is an opportunity in this area to design RL
algorithms with explainability in mind. Symbolic representation
can be a step toward allowing for inherently explainable and
verifiable agents.

Lack of User Testing
A major limitation of the studies presented in this review
is that many approaches were either not tested with users
(17 papers), or when they did, limited details of the testing
were published, failing to describe where the participants were
recruited from, how many were recruited, or if the participants
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were knowledgeable in Machine Learning (Pynadath et al., 2018;
Tabrez and Hayes, 2019; Tabrez et al., 2019). Participant counts
varied greatly, with one paper using 3 experts (Wang et al., 2018),
others with students (Iyer et al., 2018), n = 40; and Greydanus
et al. (2018), n = 31, and three recruiting using Amazon
Mechanical Turk3 (Huang et al., 2019, n = 191; Madumal et al.,
2020, n= 120; and Ehsan et al., 2019, n= 65 and n= 60).

This lack of user testing across the reviewed papers is
consistent with the findings in the Miller et al. (2017) review of
XAI in Machine Learning.

Explanation Presentation
In some cases, implementations provided too much information
for the human participant, or required significant additional
knowledge from the human team member, making these
approaches unsuitable for use by laypeople or even
knowledgeable domain experts. This finding is consistent
with the survey paper by Miller et al. (2017) who found that
there is very little research in the XAI space on leverages existing
work on how people “generate, select, present, and evaluate”
(p. 4) explanations, such as the work by Lombrozo (2007)
which describes how people prefer simpler and more general
explanations over specific and more likely explanations.

In the papers focusing on visualization, most expanded on
existing techniques of pixel saliency which have successfully been
used for image classification (e.g., Greydanus et al., 2018; Iyer
et al., 2018; Yang et al., 2018). RL problems happening over time
may need more complex visualization techniques to capture the
temporal dimension. Other forms of visualization presented were
primarily 2D graphs (e.g., DQNVis, Wang et al., 2018), however
these solutions may struggle to scale and to be interpretable in
more complex domains given the large amount of data involved
network design.

The majority of papers with user studies presented
explanations or visualizations palatable only to experts. Further
research could look at providing explainable systems targeted at
laypeople or people more likely to be working with the agent,
rather than those with a background in artificial intelligence.
Symbolic representation was present in a number of papers in
this review (e.g., Verma et al., 2018; Lyu et al., 2019). Future
research could consider alternatives to text representation of
these to provide more visceral explanations, such as annotations
in the virtual environment. Similarly, visualization techniques
presented in the papers in this review are a good start (e.g.,
DQNVis, Wang et al., 2018), however the toolkits provided
may be enhanced by the addition of visualization techniques
better designed for handling the temporal dimension of RL
(such as the Immersive Analytics Toolkit by Cordeil et al. (2019)
or TensorBoard graphs4), as well as multi-modal, immersive
forms of visualization such as virtual or augmented reality to
better explore the complex data structures of neural networks
(Marriott et al., 2018).

3Available online at: https://www.mturk.com/.
4Available online at: https://www.tensorflow.org/tensorboard/graphs.

Lack of Open-Source Code
Finally, only four papers provided the reader with a link to the
open-source repository of their code (Greydanus et al., 2018;
Yang et al., 2018; Dethise et al., 2019; Sridharan and Meadows,
2019). This lack of availability of code could be as the result of
many things, but we argue that given the toy example nature
of the work previously described, that some authors didn’t
find utility in providing code online. Additionally, intellectual
property issues can sometimes arise, making it not possible
to publish code in an open-source matter. This is despite the
potential benefits for the academic community of shared, open-
source code.

CONCLUSION

The area of XAI is of growing importance as Machine Learning
techniques become commonplace, and there are important
issues surrounding ethics, trust, transparency, and safety to be
considered. This review has explored the extant literature on XAI
within the scope of RL. We have shown that work in this area
is still in its early stages but growing in prevalence and impact
it can make. Clear trends are appearing in terms within the area
with researchers focusing on human collaboration, visualization
techniques, whole-of-policy summarization explanations, query-
based explanations, and verification approaches.

This paper has described current approaches, while also
identifying a range of limitations in this field of research,
primarily finding a lack of detail when describing human
experiments, limited outcomes in terms of scalability and level
of comprehension of explanations for non-expert users, and
under-use of more advanced visualization techniques such as
multi-modal displays and immersive visualization. To truly break
through the black box of RL, a strong combination of well-
articulated explanations coupled with advanced visualization
techniques will be essential tools for Machine Learning experts
and users alike.
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