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As anyone who has witnessed firsthand knows, healthcare delivery in low-resource

settings is fundamentally different from more affluent settings. Artificial Intelligence,

including Machine Learning and more specifically Deep Learning, has made amazing

advances over the past decade. Significant resources are now dedicated to problems in

the field of medicine, but with the potential to further the digital divide by neglecting

underserved areas and their specific context. In the general case, Deep Learning

remains a complex technology requiring deep technical expertise. This paper explores

advances within the narrower field of deep learning image analysis that reduces barriers

to adoption and allows individuals with less specialized software skills to effectively

employ these techniques. This enables a next wave of innovation, driven largely by

problem domain expertise and the creative application of this technology to unaddressed

concerns in LMIC settings. The paper also explores the central role of NGOs in problem

identification, data acquisition and curation, and integration of new technologies into

healthcare systems.
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INTRODUCTION

Over the past few years, most of the authors had the opportunity to work closely with the late
Dr. Marc Mitchell (Marcus, 2019). Marc was one of the pioneers in digital health, recognizing how
smartphones (and earlier PDAs), when combined with decision support protocols, can empower
community healthcare workers, often with limited training, to effectively treat conditions such as
pediatric pneumonia. As his work advanced, Dr. Mitchell helped define new ways evolving digital
technologies can be deployed to strengthen healthcare systems.

As Dr. Mitchell advised, and as we later learned firsthand, healthcare delivery in Low and
Middle Income Countries is fundamentally different from high-income economies. Patients may
face challenging medical issues due to a complex interaction of lack of healthcare access, nutrition
insecurity and economic instability, exhibiting conditions rarely seen in more affluent settings.
Specifically, many common medical diagnostics and treatments are cost-prohibitive in LMIC
settings, and severe skills and staffing shortages exist at all levels of care. For example, in 2011,
it was reported that Malawi had roughly five OBGYNs providing care to a population of 14 million
(Thorp, 2011). While that number has grown, and the University of Malawi College of Medicine
now has an OBGYN residency program, an extreme skill shortage remains by developed world
standards. Similar skills shortages exist in Uganda, where an estimated 20 dermatologists serve a
population of 44 million (Health Volunteers Overseas, 2018).
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While the strategic importance of AI in high-income
economies is about improved quality of care and possibly
lower costs, the strategic importance of AI in LMICs is
about addressing critical medical skills and staff shortages,
providing access to specialized skills, and empowering nurses
and community healthcare workers (CHWs) to deliver services
previously requiring scarce medical officers.

TECHNICAL BACKGROUND

Artificial Intelligence, Machine Learning,
and Deep Learning
For the non-technologist, the terms Artificial Intelligence
(AI), Machine Learning (ML), and Deep Learning (DL) have
been widely used, sometimes interchangeably, often leading
to confusion.

Artificial Intelligence is the umbrella term for a broad,
longstanding (Wikimedia Foundation, 2020) and aspirational
field of research within Computer Science dealing with problems
related to machine intelligence, such as mimicking cognitive
functions, sensing environment, and taking independent action.
Current fields of study include Robotics, Vision, Natural
Languages, Learning, Planning, Reasoning, as well as others.

Machine Learning is a subfield of AI at the intersection
of statistics and data mining, where a decision model is
learned, rather than having been explicitly coded by a human.
For example, traditional tools for helping Community Health
Workers (CHWs) diagnose pediatric pneumonia may include
hand-coded rule sets based on age and respiration rate.
In a hypothetical tool using machine learning, it may be
possible to derive more sophisticated decision trees based on a
more complex and expanded set of features including weight,
demographics and other vitals.

Traditional techniques (e.g., decision trees, SVM) can handle
problems with hundreds or thousands of features. However,
extensive preprocessing work is often needed to prepare the
input data for the model, and for certain problems (e.g., image
classification), these techniques can be insufficiently powerful.

Deep Learning (a.k.a. Deep Neural Networks) is a branch of
Machine Learning where the mathematical models are inspired
by the biological brain and excel at pattern recognition. Deep
Learning has been successfully applied to problems such as
Vision, Natural Language, Speech Recognition, Time series (e.g.,
ECG), Tabular, and Collaborative Filtering.

Without diving into much detail, these networks are
composed of primitives call neurons, where a neuron is
essentially a set of input values scaled by a set of “learned”
weights, with an output based on some non-linear sum of these
weighted values. Networks are typically organized as a succession
of layers of neurons, with each layer providing input to the next.
Figure 1 shows a simplified example of a convolutional neural
network, a type of neural network commonly used for image
processing applications (Waldrop, 2019). For example, lower-
level maps might contain simple image features (e.g., corners,
angled lines, color gradients), whereas higher-level maps detect

increasingly complex features (e.g., branch-like objects, cloudy
region) and interesting combinations of these features.

The RESNET-34 (He, 2015) image analysis model, for
example, consists of 34 layers and >60,000 learned weight
parameters. It is this large scale that makes these Deep Neural
Models highly expressive.

For the lay person, an important aspect of deep learning is
that the model extracts its own features automatically, layer by
layer. This helps reduce or eliminate the complex preprocessing
task (known as feature engineering) and leads to a better
separation of concerns between those individuals focused on
the problem domain (problem identification, gathering and
labeling of data, and evaluation of overall suitability to task) and
the technologists involved in the actual training of the model.
Traditional drawbacks of deep learning are that development
of bespoke models can require a high degree of technical
sophistication, and training of these models can require large
qualities of sample data.

Transfer Learning (Bengio, 2012; Yosinski, 2014; Tan, 2018)
is based on a simple yet powerful observation that, for certain
classes of deep learning problems, a large portion of a complex
model is associated to feature extraction and that these extracted
features are sufficiently generic to be useful beyond the direct
problem at hand. This ability to build on the work of others
radically reduces the technical complexity of developing a deep
learning model and, from a strategic perspective, defines a
particular technology sweet spot for NGOs considering the
application of deep learning technology.

Transfer Learning is most effective for problems related to still
2D Images and Natural Language, where there is a significant
degree of feature commonality across problems. In addition to
still images, it is sometimes possible to transform other data
into synthetic images and then employ transfer learning to the
synthetic image. Potential examples of synthetic images include
(1) transforming audio into spectrograms images (e.g., voice or
cough), (2) creating cross-section images of video sequences [e.g.,
for detection of pleural sliding in lung point-of-care ultrasound
devices (POCUS)], and (3) transforming one-dimensional ECG
data into simple plot images of beat sequences.

Illustrative Example: Pneumonia Detection
The Chest X-Ray Image Dataset1 (Kermany, 2018) contains
5,863 X-ray images (anterior–posterior) of 1–5-year-old pediatric
patients categorized as Pneumonia/Normal, such as the sample
images shown in Figure 2.

Table 1 shows the results of using Transfer Learning with
a relatively small RESNET-18 model for various training set
sizes. Themodel was pretrained, meaning the convolutional layer
weights reuse values previously learned when RESNET18 was
trained using the standard ImageNet Database (Deng, 2009).
These pretrained values are provided as part of the fast.ai deep
learning framework (Howard, 2020). While prediction quality
generally improves with the number of training images2, it is

1https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.
2In certain instances, results improved at smaller training set size. This is most

likely due to noise related to variability in composition of these smaller datasets.
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FIGURE 1 | Typical 2D convolutional neural network. Image Source: By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=

45679374.

FIGURE 2 | Sample chest X-ray images. Image source: Kermany (2018).

TABLE 1 | Classifier performance vs. training set size.

Training set size (in images) Sensitivity Specificity Accuracy

1,000 Pneumonia/1,000 Normal 0.89 0.96 0.92

300 Pneumonia/300 Normal 0.97 0.81 0.89

200 Pneumonia/200 Normal 0.90 0.86 0.88

100 Pneumonia/100 Normal 0.90 0.88 0.89

50 Pneumonia/50 Normal 0.98 0.80 0.89

notable that classifiers trained with relatively small numbers of
images still deliver promising results.

For a relatively small global health NGO considering AI, the
above example shows the potential of starting small, delivering
an initial good-enough solution, then iteratively improving the
solution over time with additional data. Of course, “good-
enough” is a medical decision, not a technical one, and data
requirements for achieving an initial minimally viable solution
will vary by application space.

While the above results are for illustrative purposes and are
not a state of the art (Kaggle, 2019), they are indicative of what
may be achievable by non-specialists with a modest level of effort,
and no prior background in this medical domain.

As the technical aspects of producing high-quality prediction
models become increasingly turnkey, it is the availability of
relevant diagnostic image datasets that is the strategic enabler.
Medical domain expertise is essential to the gathering of these
datasets, providing ground-truth assessments, and evaluating
accuracy of predicted results. These datasets will need to be
actively curated, augmenting the dataset to address prediction
blind spots, such as situations where there are insufficient
examples for proper training, or in ensuring adequate diversity
of examples when patient demographics are an issue.

Much of the potential training data that are widely available,
such as the example above, naturally skew toward use-cases
most relevant to higher resource settings. While X-ray imaging
is ubiquitous in high-resource settings, basic x-ray capability
may not be present in many district level hospitals in LMIC
settings. Smartphone connected low-cost POCUS can be an
attractive alternative for pneumonia diagnosis (MSF, 2018).
Under these situations, the machine learning classifier would
be trained to detect A-Lines, B-Lines, and Pleural Sliding
as components of the overall diagnosis process (Nadimpalli,
2019). Similarly, CT is emerging as the technology-of-choice
for monitoring the progression of COVID-19 in high-resource
settings, whereas tools to assist in COVID-19 assessment using
POCUS (Buonsenso, 2020; Soldati, 2020) may be more relevant
in LMIC.

GLOBAL HEALTH IMPLICATIONS

Ministries of Health (MoHs) and
Non-Governmental Organizations (NGOs)
MoHs, supported by NGOs, have historically taken the lead
in providing and improving healthcare for populations. In
low-resource settings, there are multiple gaps—from qualified
Human Resources (as described above in Malawi and Uganda) to
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availability of field-relevant diagnostics. One solution to this has
been the concept of task-shifting, where non-specialists perform
the tasks of specialists through protocolized medicine. Examples
of task-shifting can be found in medical fields as diverse as
surgery (Falk, 2020) to dermatology (Brown, 2018). Artificial
Intelligence-based tools can provide improved support to ensure
that task-shifting is safe and effective for patients. Moreover,
because many diseases are unique to low-resource settings
where disease profiles and prevalence are unique (Kaplan, 2010),
targeted AI applications based on locally sourced data can
potentially improve the individualization of protocols to each
patient. However, before AI can be deployed in these settings,
MoHs and NGOs need to consider the potential uses, the risks
and also the stakeholders who may be affected.

As described above, AI and its subset of Transfer Learning can
help with the diagnosis of pneumonias based on chest x-rays in a
relatively straightforward manner. Other successful applications
of AI can be seen in helping diagnose tuberculosis in X-rays
(Qin, 2019) and finding signs of severe malaria on retinal images
(Joshi, 2012). Many more ideas can be considered—based solely
on the needs and imagination of clinicians and programmers
worldwide. Broadly speaking, there are three key areas in which
AI can assist in global health: (a) clinical decision support at both
health center and community levels, (b) population health, and
(c) direct patient support (USAID, 2019).

Medical Technology Companies and
Universities
Universities and (medical) technology companies are the
institutions that produce new theories, methods, and techniques
that can result in new solutions for healthcare delivery challenges.
This capacity comes with opportunities and responsibilities. We
have written about opportunities in the first part of this paper.
The responsibility of these institutions is to propose solutions
that solve local problems without introducing unintended
negative side effects. Global Health does not mean that solutions
developed in a lab setting or within a specific socio-economic
or cultural context work in different local settings. For example,
algorithms for diagnosing cancerous skin lesions need to be
sensitive to variations in presentations by skin color (Bradford,
2009; Kundu, 2013), and the application of amethod or technique
that works well in the lab or in a high-income-country setting
(Phillips, 2019) may require additional validation and potentially
supplemental training when used with substantially different
patient populations. Additionally, tools can fail due to differences
in clinical setting such as background noise or ambient light, or
technology that is too sensitive to user training and errors (e.g.,
Beede et al., 2020).

Applying “solutions” without considering the local context
can result in low acceptability or even introduce risks and harm
to people receiving care. Furthermore, besides the immediate
application of a solution, the solution’s long-term sustainability
and integration into an existing (digital) health system needs
to be considered to not cause negative effects. A technological
solution that does not consider health worker workflows or the
reality of patients might result in low acceptability, e.g., if the

local workflows require extra steps, if the technology makes
the healthcare worker look less competent, or if the technology
requires the patient to move to facilities where they experience
a high travel burden, long waiting times, etc. A predictive
algorithm for risk assessment might make a healthcare worker
focus on true and false positives and neglect true and false
negatives, which will result in negative individual and possibly
in negative public health outcomes.

To adequately consider the local context, a research or
technology institution needs to be rooted locally or have a
strong collaboration with local institutions. If a problem is
not trivial or truly universal, the assumption should be that
a “solution” not developed for a specific local context will
not work without adjustments, because the local problem
is substantially different from the original problem. Besides
local academic or industry rootedness or collaboration, locally
operating digital health NGOs or development partners can
play important roles: they understand the local context and can
thus identify which AI technologies and investments will be
effective; they can contribute to making data available in the right
format, adequately considering consent of the “data subjects,”
and guaranteeing that MoHs as public health data owners
understand and are part of the data value chain; they understand
and can propose incremental solutions where AI or machine
learning is introduced gradually (e.g., in telemedicine systems
where data are already captured and algorithmic solutions
can increasingly augment human diagnoses); they understand
that AI-enabled solutions require local skills and processes to
guarantee sustainability in terms of, e.g., lifecycle management
and integration into the local digital health system.

Smartphones as Machine Learning
Deployment Platform
One physical tool that has significant synergies with using AI
in low-resource settings is the smartphone. For the past two
decades, low-cost smartphones, and their PDA predecessors,
have played an important role in LMIC healthcare delivery. In
addition to integration with patient case management systems
(Ollis, 2016), these devices have hosted important decision
support tools for family planning (Agarwal, 2016), prenatal and
antenatal care (Hackett, 2018), intrapartum progression of labor
(Sanghvi, 2019), diagnosis of pediatric pneumonia (Mitchell,
2013), AIDS (Mitchell, 2009) treatment, and many others.

The combination of user interface, communications
capabilities, audio and video sensors, and local computational
capabilities (Ignatov, 2018) makes modern smartphones an
attractive platform, providing input for next-generation machine
learning-based applications. The included camera can be a
powerful tool for image capture, either when used directly or
when supplemented with an external device. For skin lesion
analysis, add-on external lenses with polarized light source are
available at relatively low cost3. Fundus images can be captured
using the native camera along with indirect condenser lens
(Tran, 2018), with potential applicability for diagnosis of diabetic
retinopathy and cerebral malaria (Bear, 2006).

3https://dermlite.com/products/dermlite-hud.
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In addition to a smartphone’s integrated camera, external
cameras can be used to enable additional use-cases. Two types
of low-cost (<$50) consumer devices of potential relevance
are digital otoscope/endoscope devices (for eye/ear/nose/mouth
exam) and digital microscopes (for lab specimen analysis). While
these devices may have much lower resolution than the native
smartphone camera, the device resolution may still be good-
enough formany tasks. Other peripherals, such as low-cost point-
of-care ultrasound discussed earlier, can significantly extend the
phone’s native capabilities.

General Advice on Implementing AI for
MoHs and NGOs
In implementing AI in low-resource settings, it would be best
to use iterative, field-based processes that are built into existing
systems and institutions rather than starting from scratch,
or hoping to replace existing systems, however broken—an
institution that cannot fix itself is unlikely to be able to support
and use a complex technology properly (Weber, 2010).Moreover,
there are inherent risks particular to AI. Four key ones are
the following:

1. Ground truth—as described above, Supervised Learning relies
on labeled data, which in turn relies on the both the quality of
the underlying data and the appropriate expert labeling—both
of which can be scarce in low-resource settings.

2. Generalizability—AI algorithms built on one dataset may not
necessarily be applicable to other datasets (Kelly, 2019). The
heterogeneity of populations in low-resource settings and the
variable prevalences of health indices such as malnutrition
and HIV can add complexity and decrease the transferability
of algorithms between populations. This may necessitate a
minimum portion of local data to be incorporated into
model training.

3. Data ownership and confidentiality—there is currently an
active debate about personal data ownership outside of
the medical field, especially involving large corporations
(McNamee, 2019). Similar arguments are starting to happen
with AI and the medical field (Lomas, 2016). In pursuing
AI for health-related issues, MoHs and NGOs should follow
the highest ethical standards, ensuring full transparency with
patients and anonymity where needed, creating clear data
transfer and ownership policies, and enabling creative ways
of ensuring that future algorithms are open and affordable
to all users, such as through open-prize competitions4 and
open-access database repositories5.

4https://stanfordmlgroup.github.io/.
5https://www.kaggle.com/datasets (accessed April 13, 2021).

4. Localization—if not already developed for a specific local
context, AI-enabled solutions need to be evaluated and
adapted to the local socio-environmental, technological, and
organizational reality. This process requires collaboration
with local government, academic, and potentially industry
partners. Locally active digital health NGOs can play a role as
facilitator or driver of this collaboration.

Fundamentally, there are significant benefits to using AI
to help patients and populations in low-resource settings.
AI is feasible and can be a powerful tool. However, every
organization should map the key stakeholders, including
patients, communities, policy makers, and healthcare providers,
to ensure that before deployment of AI, there are clear
expectations and objectives. These objectives should be
realistic and iterative within the context of existing structures
and should mitigate potential risks to patients through a
transparent process.

CONCLUSIONS

NGOs are uniquely positioned to help ensure that LMICs
benefit in the era of AI and are not left behind. While
non-trivial, AI technologies such as image classification have
sufficiently matured that it is now possible for even smaller
NGOs to engage AI projects without developing deep in-
house technical experience. As was learned during the earlier
generation of smartphone-based healthcare tools, it is critical
to consider local needs, demographics, customs, workforce
characteristics, existing/planned health system components, and
conditions on the ground. It is this simultaneous ability to
know what problems to solve, and how best to ultimate deploy
these solutions, where NGOs should add significant value.
Otherwise, the field will repeat mistakes made during previous
technological innovation iterations that led to fragmented
and unsustainable components that did not integrate into
existing systems. As discussed earlier, AI technology has
strong ethical considerations, and it is critical that NGOs
be mindful of these concerns, putting in place the proper
safeguards to ensure that this powerful technology is harnessed
for good.
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