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It is currently estimated that 67% of malaria deaths occur in children under-five years (WHO,
2020). To improve the identification of children at clinical risk for malaria, theWHOdeveloped
community (iCCM) and clinic-based (IMCI) protocols for frontline health workers using
paper-based forms or digital mobile health (mHealth) platforms. To investigate improving the
accuracy of these point-of-care clinical risk assessment protocols for malaria in febrile
children, we embedded a malaria rapid diagnostic test (mRDT) workflow into THINKMD’s
(IMCI) mHealth clinical risk assessment platform. This allowed us to perform a comparative
analysis of THINKMD-generated malaria risk assessments with mRDT truth data to guide
modification of THINKMD algorithms, as well as develop new supervised machine learning
(ML) malaria risk algorithms. We utilized paired clinical data and malaria risk assessments
acquired from over 555 children presenting to five health clinics in Kano, Nigeria to train ML
algorithms to identify malaria cases using symptom and location data, as well as
confirmatory mRDT results. Supervised ML random forest algorithms were generated
using 80% of our field-based data as the ML training set and 20% to test our new ML
logic. New ML-based malaria algorithms showed an increased sensitivity and specificity of
60 and 79%, and PPV and NPV of 76 and 65%, respectively over THINKD initial IMCI-based
algorithms. These results demonstrate that combining mRDT “truth” data with digital
mHealth platform clinical assessments and clinical data can improve identification of
children with malaria/non-malaria attributable febrile illnesses.
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INTRODUCTION

Globally, it is currently estimated that every two minutes a child under the age of five years dies from
malaria. In Nigeria, where the prevalence of malaria is extremely high, malaria accounts for 9.8% of
all deaths of children under-five and has prevalence close to 50% in the South West, North Central,
and North West regions of Nigeria (Observatory, 2017; Organization, 2019; UNICEF, 2019).
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A multiple indicator cluster Nigeria survey revealed that only
63.4% of children with a history of fever sought care from a health
facility or provider. Of those who presented for care, only 13.8%
received a malaria diagnostic test, with only 36.8% receiving
antimalarial treatment, 20.6% being artemisinin-based
combinations therapies (ACTs). In the Kano State region it
was observed that 25% percent of children with fever sought
care from a public facility, 14% from private facility and 1.9%
from community health workers. Only 11.3% of these children
received a malaria blood test. For children testing positive for
malaria, only 9.1% were given ACT treatment, while 29.4% were
given an antibiotic (Fund, 2017). These findings indicate that to
improve mortality and morbidity of febrile children with malaria,
there needs to be a significant increase in quality clinical risk
assessment screening of children with fever linked with diagnostic
testing and improved appropriate therapeutic intervention for
children with positive malaria diagnostic tests.

Over 20 years ago, the WHO and UNICEF introduced
community (iCCM) and clinic-based (IMCI) protocols for
frontline health workers (FHWs), currently being used in
paper-based forms or digital mobile health (mHealth)
platforms, to reduce child mortality and morbidity in
developing countries and in particular for malaria (Gera et al.,
2016). Unfortunately in Nigeria, less than 25% of first level
facilities, and 60% of health workers who care for sick
children were trained in IMCI protocols since being
introduced in 1997 (Fund, 2017). Identifying febrile children
who are at specific risk for malaria is very challenging, especially
in resource poor countries. As an acute febrile illness, malaria
presents similarly to most other febrile illnesses (fever, headache,
vomiting, respiratory symptoms, and cold chills, etc.). A study
investigating severe malaria indicated identification of malaria
risk using only IMCI protocol was correct less than 30% of the
time (Unitaid, 2018). This led to the WHO recommending that
all suspected cases of malaria, identified using IMCI protocol,
have a parasitological confirmation [blood smear, DNA
amplification, and/or malaria rapid diagnostic test (mRDTs)]
before treatment, to promote rational use of ACTs and
antimicrobials.

Malaria rapid diagnostic tests (mRDT) are a simple and cost-
efficient method for screening for malaria by FHWs (Mokuolu
et al., 2016). A limitation of the current IMCI/ICCM algorithms is
the limited access to alternative treatment and diagnostic tools
beyond the mRDT. This contributes to poor linkage of clinical
risk assessments, adherence to mRDT administration,
inappropriate use of ACTs, as well as inappropriate
prescription of antibiotics. Health workers also expressed
uncertainty about how to manage non-malaria fevers because
of a fear of making the wrong decision and losing patients to
follow-up, that could ultimately lead to death, which would
further decrease caregiver’s trust in their effectiveness
(Johansson et al., 2016).

As such, there is a significant need for improved approaches
for assessing and treating children with acute febrile illnesses that
provide a more standardized approach leading to increased
certainty about the causes of fever and the proper treatment
and follow-up of patients. The ability to modify digital mHealth

platform algorithms based on data driven analysis and testing, as
well as using such data with diagnostic field-based diagnostic data
to develop supervised Machine Learning (ML) algorithms, could
prove to be a valuable approach to improve the accuracy of
malaria assessment in children with malaria by FHWs.

Current ML studies have demonstrated their utility in
identifying risk for various diseases including diabetes,
tuberculosis, and cancer (Shinde and Rajeswari, 2018). To
date, there is no evidence demonstrating the utility of ML-
based malaria assessment algorithms as part of a digital
mHealth tool leading to improved malaria risk assessments by
FHWs. Using ML to accurately identify risk of specific illnesses
based on current and historical datasets can be invaluable for the
creation of specific clinical assessment algorithms for various
febrile illnesses such as malaria (Obermeyer and Emanuel, 2016;
Rajkomar et al., 2018).

In this study, we demonstrate the development and testing of
new supervised ML malaria-risk algorithms, using field-based
malaria-risk assessments, clinical data, and mRDT diagnostic
data generated via the use of THINKMD’s IMCI compliant
mHealth platform, that could improve the identification of
malaria in children with febrile illnesses by FHWs.

MATERIALS AND METHODS

Study Design
From July to August 2018, THINKMD’s application was utilized by
seven Community Health Workers (CHWs) for four weeks in five
primary health care facilities in Local Government Areas (LGA) of
Kano State, Nigeria.

Assessments using the THINKMD mHealth tool with
embedded malaria rapid diagnostic test (mRDT) were
performed by CHWs on all children 2–59 months who
presented with fever or history of fever over a four-week
period to five participating clinics. Integrated Management of
Childhood Illness (IMCI) designation of malaria risk for children
were based on Nigeria’s standard IMCI protocol for febrile illness
assessment, specifically any child presenting with a history of
fever OR having a current fever (>37.5°C) based on a
thermometer-based measurement would be determined to be
at risk for malaria and receive an mRDT. As such,
recommendations of mRDT testing had the lowest possible
IMCI recommended threshold. The data collected during the
study were compared with historic data collected from the last
12 months from the DHIS2 Kano State region dataset provided
by the Ministry of Health. For children not presenting with
history of fever or with an axillary temperature, the mRDT
test was not recommended. As a result, there were no
individuals included in the data set deemed to not be at risk
due to those criteria. All children were referred and/or treated as
recommended by WHO and IMCI guidelines. Figure 1, Study
Design.

Technology
For this study we utilized THINKMD’s IMCI compliant mHealth
platform (Finette et al., 2019), with embedded mRDT workflow
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and result capture capability. This tool obligates FHW users to
acquire over 94% of all recommended IMCI data points to
generate integrated clinical risk assessments for the most
important clinical conditions affecting children from 2 months
to 5 years, including malaria (Finette et al., 2019). Previous
validation results demonstrate that clinical assessments
completed by FHW using THINKMD’s mHealth tool had a
specificity correlation between 84 and 99% to local health
professionals performing blind assessments of the same child
(Finette et al., 2019). In addition, results from a separate study
have demonstrated that utilization of the THINKMD mHealth
tool resulted in a mean increase inWHO-IMCI adherence of 41%
(from 30.6 to 71.4%) when observed, a WHO-IMCI adherence
mean increase of 50.4% (from 30.6 to 81.0%) when captured
through the THINKMD mHealth platform, as well as increased
acquisition of IMCI key danger signs by >40%. This paper is
currently in preparation.

Embedded Malaria Rapid Diagnostic Test
Workflow for Community Health Workers
Nigeria’s standard IMCI workflow for febrile illness assessment
specifies that any child presenting with a history of fever or having
a current fever based on a thermometer measurement is at risk of
malaria and should receive an mRDT, as mentioned above. In
accordance with this policy, the THINKMD platform was
modified to include a diagnostic step in the fever management
branch whereby children presenting with a history of fever or a
recorded axillary temperature of >37.5°C were recommended an
mRDT. For children not presenting with history of fever or with
an axillary temperature <37.5°C the mRDT test was not
recommended.

Workflow for acquiring and documentation of mRDT results
were embedded into the THINKMDmHealth tool to standardize

and ensure consistency of mRDT testing and results acquisition
by CHWs. mRDT workflow panels included an automatically
generated lab ID number, an embedded timer set appropriately
for the specific mRDT test, and a panel for test results input.
Figure 2. To improve accuracy of mRDT results, CHWs were
only able to record mRDT results within the 15–20-min
manufacturer recommended time frame. If this time window
was missed, they were required to repeat the mRDT.

Study Sites and Participants
This study was conducted for 4 weeks in 5 primary health care
facilities in Local Government Areas (LGA) of Kano State,
Nigeria. These included 2 health clinics (Alfindinki and Tudun
Murtala) and 3 health posts (Kantudu, Unguwa Jakada and
Hotoro Danmarke). Study participants were children aged
2–59 months presenting with fever or a history of fever at the
health care facilities.

Seven CHWs were trained for 1 day to use the THINKMD
mHealth platform with the additional malaria diagnostic step.
Nigerian CHWs in Kano State already conduct mRDTs in their
regular routine as per Nigerian IMCI guidelines, therefore
training emphasized following the manufacturer’s instructions
on test processing, and time window to read and input results.

This study was approved by the Committee on Human
Research in the Medical Sciences at the University of Vermont
Center, Vermont, United States, as well the Ministry of Health,
Kano State, Nigeria.

Statistical Methods
THINKMD utilized two independent approaches to clinical logic
refinement and testing: one that focused on modifications of its
current “physician based” core logic by changing logic parameters
of specific clinical data elements and the tolerance scores used to
determine clinical risk for malaria; the other being the

FIGURE 1 | Patient flow.
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development of ML logic initially developed from our current
logic algorithms and testing using field-based truth data.

The main goals of our analysis were to:

• Refine THINKMD mHealth malaria “physician
assessment” logic based on field-based data acquired in
this study and compare the new logic assessments using
the field-based datasets.

• Improve malaria risk assessment logic to improve
identification of acute febrile patients who should receive
mRDT screening and reduce the number where it is not
indicated.

• Develop ML based malaria assessment logic using a
supervised ML approach using field-based THINKMD
malaria assessment data and algorithms, as well as
current field-based data elements and mRDT truth data.

For this study, we initially tested THINKMD malaria risk
assessment algorithms for field-based screening that had a
higher criterion for generating a risk assessment for malaria
than the IMCI based guidelines, the latter requiring that
children had history or actual fever at presentation. This
THINKMD malaria algorithm set was called, “original
malaria algorithms.” These original malaria algorithms
required children to have evidence of fever, as above, as
well as some evidence of a systemic infection/sepsis utilizing

additional specific malaria presenting symptoms, vital signs,
and physical findings.

Specifically:

Fever + evidence of sepsis + 1 malaria specific symptom

� Risk of Malaria

To test whether we could modify these algorithms and test them
using the same field-based clinical encounter data, we decreased
the stringency of our assessment logic to more align with IMCI
malaria risk assessment. These algorithms were called “modified
malaria algorithms” which includes fever as a mandatory
criterion as well as 1 additional key malaria symptom/clinical
finding, such as headache or vomiting, for example.

Fever + 1 malaria specific symptom � Risk of Malaria

Malaria Specific Symptoms:

• Fever
• Aching
• Cold chills
• Headache
• Sepsis
• Pain when moving neck
• Pale eyelids
• Vomiting

FIGURE 2 | Embedded mRDT workflow panels for acquiring and reporting mRDT results by CHWs.
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Our interest in testing more stringent original malaria
assessment logic was to gain insights whether we could
accurately identify who presented with fever from a non-
malaria etiology, and to identify malaria more accurately in
children with history of fever. We then utilized the field-based
encounter data acquired in this study to manually test the
accuracy of the alternative less stringent modified malaria
algorithms.

Using paired mRDT results with clinical health data and
THINKMD generated malaria risk assessments, we were able
to perform a correlative analysis of the accuracy for our original
and modified malaria risk algorithms compared to Nigeria’s
paper-based adaptation of standard IMCI identification of
malaria risk. Comparative analysis of mRDT findings provided
insights into the accuracy of both THINKMD malaria risk
assessment algorithms with the goal of distinguishing patient’s
presenting with febrile illness symptoms to ensure appropriate
diagnostic testing and therapeutic intervention.

We initially performed a comparative statistical analysis
between THINKMD malaria risk assessment to Nigeria’s IMCI
paper-based approach and mRDT results using historical DHIS2
data collected within Local Government Area clinics in Kano
State and reported monthly to the regional/national DHIS2
system throughout the year 2017. We then compared these
data sets with the original malaria algorithms, as well as with
an alternative modified malaria algorithm, comparing each to
historical and current IMCI malaria-risk assessments.

To generate ML based algorithms using the mRDT results,
we used random forest models to predict mRDT results using
clinical data captured in THINKMD’s mHealth platform as
implemented in the R package random Forest v4.6-14 (Liaw
and Wiener, 2002). Briefly, we trained an ensemble of
classification trees by generating 1,000 bootstrapped
samples from our data with size equal to the total
number of patients. This was done using the clinical data
sets acquired by using the THINKMD risk assessment
algorithms and the acquired mRDT results. Then, at each
node in the tree, we randomly selected 50 predictors and
chose the best subset of predictors to keep at each node
using binary recursive splitting evaluated with a Gini index
over our two classes (positive vs. negative mRDT result)
(Breiman, 2001). The resulting trees are not pruned. To
classify patients, i.e., predict the mRDT result, patient data
are evaluated by each of the 1,000 resulting trees. The most
estimated class over all the trees, i.e., mRDT result with the
most vote, is the final prediction. Variable importance was
assessed based on the percentage of time each case in the out-
of-sample data set was misclassified when a given variable was
excluded from the predictor set. For more detailed
information, see Breiman (2001).

Random forest ML-based development is considered a
supervised ML approach compared to other methodologies
and provides several advantages to other ML approaches in
that the path to the endpoint ML is known, and it allows for the
analysis of each data point and its importance in the generated
ML logic. This can ultimately allow for platform modifications,
importantly, the prioritization of data point acquisition to get

to the ultimate appropriate assessment, thus streamlining
platform design and data acquisition while maintaining
accuracy. For ML accuracy confirmation, the new clinical
ML-based random forest algorithms can then be tested
against a specific set of field-based testing sets that were not
used to train the ML decision trees. The ML algorithm had
access to the same information as the THINKMD risk
assessment. The specific variables available for the machine
learning algorithm are listed in Supplementary Table S1.

To assess the generalizability of our results, we performed
n-fold cross validation by iteratively holding out 10% of the
data, fitting the random forest on the remaining 90% and
evaluating the results on the held-out set and performed leave-
one-out cross validation by iteratively holding out all data from
each of the five clinics, training on data from the remaining four
and evaluating on the held-out set. Models were compared using
sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and the F1 score (a composite of precision
and recall).

To evaluate how many patient encounters are needed to
effectively “train” the random forest model, data were
incremented by subsampling 5% of the total data set in
each simulation (5, 10, 20 ... 90%). For each subsample
size, 1,000 training and testing (90/10 splits) loops were
generated.

Malaria Rapid Diagnostic Test
SD Bioline Malaria Ag Pf/Pan RDTs (Standard Diagnostics
Inc., Republic of South Korea) were provided to all study
sites throughout the duration of the study and performed
based on manufacturer’s instructions and guided by the
app. This mRDT detects HRP-2 antigen specific to
Plasmodium falciparum and pLDH exhibited by all
Plasmodium species.

Data Safety and Storage
Data were protected and stored on International Business
Machines Cloudant Database as a Service. All access to cloud
and data based is encrypted via HTTPS and passed through a
REST full application programming interface with full
authentication. There were nightly backups and replication of
databases.

TABLE 1 | Summary of clinical malaria assessments and malaria RDT (mRDT)
results.

Total children seen during the study period 555
Total children with identified malaria risk as per IMCI 480
Total excluded based on no identified malaria risk as per IMCI 72
Total children with THINKMD positive malaria risk (original algorithm) 205
Total children with THINKMD negative malaria risk (original algorithm) 350
Total mRDTs administered 480
Total negative mRDT tests 160
Total positive mRDT for malaria (combination of the below) 320
Total positive for mRDT for Plasmodium falciparum (Pf) malaria 280
Total positive mRDT for mixed malaria parasites 33
Total positive for other malaria parasites 7
Total timed-out mRDTs 3
Total inconclusive mRDTs 0
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Datasets are available on request. Due to the sensitivity of the
information collected, partners require all appropriate approvals
by participating parties prior to sharing of data for any reason.

RESULTS

A total of 555 children were assessed by seven CHW at five sites
during this one-month study. Among 480 children identified as at
risk of malaria following IMCI guidelines, 66.7% had positive
mRDT results and 33.3% had negative mRDT results. Table 1
summarizes the total assessments and RDT results for all children
presenting to clinics for evaluations.

Comparison Between Paper Based IMCI
Malaria Guidelines to THINKMD’s Malaria
Risk Assessment Algorithms
A comparison of positive predictive values (PPV) for malaria
assessments was performed between historical IMCI malaria
assessment data from DHIS2, Table 2, current IMCI data and
for THINKMD original malaria algorithm, Table 3. When
calculating the measures presented in Table 3, we used the
mRDT result, i.e., positive or negative for malaria, as the ground
truth.We expand on the potential implications of our decision to use
the mRDT results as the comparator in the discussion.

One limitation of this analysis was that we were not able to
determine Negative Predictive Values (NPV) for the IMCI data
sets, as assessments identified as “nomalaria risk” did not have an
mRDT performed. Comparative analysis for PPV for malaria risk
assessment between current and historic IMCI and original risk
algorithms are summarized in Table 3.

Despite the PPV being similar between the current IMCI and
original risk assessment algorithms the IMCI assessment
captured more children with malaria than the original risk
algorithm since the latter had more stringent criteria for
generating a positive malaria risk assessment which is reflected
with a low sensitivity. The observed improvement in the current
IMCI assessment could be related to improved training and/or
the variability in malaria risk assessment during the entire year,

which is seen in the historic IMCI data. Thus, when IMCI
screening for high risk is used during low malaria risk season,
PPV will decrease.

Of clinical importance is that many children who present for
an acute illness health evaluation are found to have more than one
clinical condition requiring therapeutic intervention. To see if we
observed this in our sample, we looked at the distribution of other
key integrated THINKMD clinical assessments and their
associations with mRDT results. Interestingly, sepsis, a clinical
condition indicative of infection, directly associated with fever,
and highly correlated with malaria, was presenting quite evenly
across both negative and positive mRDT results, Table 4.

Following this analysis, we wanted to evaluate our ability to
manually modify THINKMD’s malaria logic to increase its
sensitivity by decreasing the stringencies to generate a malaria
risk assessment, specifically the modified malaria risk algorithms.
This algorithm would then be tested using the original field-based
dataset and compared to the newly generated malaria risk
assessments with the acquired mRDT truth data. The main
change to this modified algorithm was to eliminate the criterion
for evidence of sepsis in the malaria assessment as described above.
A summary of these findings is summarized in Table 5.

For this analysis, using the same inputted data elements and the
associated mRDT results for each patient we observed a significant
increase in PPV for (+) mRDT for the modified vs the original
malaria risk algorithms; a significant increase in NPV for (−)
mRDT for themodified vs the original malaria risk algorithms; and
an expected increase in sensitivity and decrease in specificity in the
modified vs. the original malaria risk assessment logic. This
analysis shows that using this approach, we can make
modifications in the THINKMD malaria risk assessment
algorithms and perform a statistical comparison using the same
clinical data set and confirmatory mRDT data. This an important
new approach for logic development that did not require new sets
of field-studies to initially test.

Validation and Comparison of ML
Generated Malaria Risk Assessment
Algorithms With Manually Developed
Malaria Risk Algorithms Using mRDT
Field-Truth Data
Table 6 summarizes a comparative analysis of ML based
algorithms using both training sets and separate raw ML data
sets vs field-based mRDT data sets. A standard random forest
approach was employed, using 80% of our field-based data as our
ML training set and 20% raw data to test newly generated ML

TABLE 2 | Historical DHIS2 data for malaria in Kano State, Nigeria 2017.

Total number of children with fever 4,621
Total number of mRDTs performed 4,595
Total number of (+) mRDTs 2,305 (True positives)
Total number of (−) mRDTs 2,290 (False positives)

TABLE 3 | Dichotomized statistical analysis between historical and current IMCI and original THINKMD malaria risk assessments algorithms.

Statistical analysis IMCI-historic IMCI-current Original THINKMD malaria algorithm

Sensitivity, (%) NA NA 43
Specificity, (%) NA NA 64
PPV, (%) 50.1 67 71
NPV, (%) NA NA 36

Abbreviations: IMCI, Integrated Management of Childhood Illness; mRDT, malaria rapid diagnostic test; PPV positive predictive value; NPV, negative predictive value.
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logic. We observed a 98–99% correlation of our ML algorithms
with our training data sets from field based clinical data vs mRDT
results and between 70–99% correlation between ML generated
malaria risk algorithms with the raw clinical field-based data sets
and mRDT results that were not used for ML training.

A statistical comparison between THINKMD’s original
malaria risk algorithms and the newly generated ML malaria
risk algorithms vs. mRDTs is shown in Table 7. Performance for
both THINKMD and the ML malaria risk algorithm was

quantified separately on both the training (80%) and testing
(20%) portions of the data set.

These data reveal that the newly generated THINKMD ML
based malaria risk assessment algorithms overall improved point of
care assessment of malaria risk compared to the original THINKMD
malaria risk assessment algorithms used for the field-based study.
Specifically, we were able to demonstrate that for falciparum malaria,
even with only 280 “positive” patient encounters and 160 “negative”
patient encounters, new ML algorithms can be generated and tested
with prior study data that improve upon the current THINKMD
malaria risk assessment algorithms. For positive mRDTs, ML
significantly improved THINKMD malaria risk assessment
specificity (36–64%) and PPV (43–67%) with a minimal increase
in both sensitivity and NPV. For negative mRDTs, ML significantly
improved THINKMD malaria risk assessments for specificity
(70–98%), PPV (63–87%) and NPV (43–75%) with a decrease in
sensitivity from (36–29%).

For diseases with non-specific symptomology, location as it
pertained to temperature assessment could be identified as an
important predictor during the development of new ML based
malaria risk algorithms. Combining the location and symptom

TABLE 4 | Distribution of clinical conditions and severity variables identified by THINKMD’s malaria risk algorithm compared to mRDT findings.

Clinical condition/Severity Positive mRDT (n = 320) Negative mRDT (n = 160) Not administered (n = 72)

Sepsis

None/Mild 47% 52% 83%
Moderate 53% 48% 16%
Severe — — —

Dehydration

Mild 88% 91% 94%
Moderate 10% 7% 4%
Severe 1% 2% 1%

Malnutrition

Mild 65% 73% 64%
Moderate 34% 26% 35%
Severe 1% >1% 1% (inconclusive)a

Respiratory Distress

Mild 86% 84% 87.5%
Moderate 14% 16% 12.5%
Severe — — —

aNo weight or MUAC acquired for these assessments.

TABLE 5 | Performance statistics of modified vs. original malaria risk assessment algorithm compared to mRDT result.

Statistical analysis Original malaria risk assessment algorithm Modified malaria risk assessment algorithm

— (−) mRDT n � 160 (+) mRDT n � 320 (−) mRDT n � 160 (+) mRDT n � 320
Sensitivity, % 0.36 0.70 0.47 0.69
CI 0.30–0.41 0.63–0.76 0.36–0.57 0.65–0.74
Specificity, % 0.70 0.36 0.69 0.47
CI 0.63–0.76 0.30–0.41 0.65–0.74 0.36–0.58
PPV, % 0.63 0.43 0.23 0.87
CI 0.55–0.70 0.38–0.49 0.17–0.30 0.83–0.90
NPV, % 0.43 0.63 0.87 0.23
CI 0.38–0.49 0.55–0.70 0.83–0.90 0.17–0.30

Abbreviations: CI, Confidence interval; mRDT, malaria rapid diagnostic test; PPV, positive predictive value; NPV, negative predictive value.

TABLE 6 | Confusion matrix for THINKMD ML malaria assessment.

mRDT result ML training set malaria
assessment

correlation (%)

ML raw test data
set malaria assessment

correlation (%)

(−) mRDT 0.98 0.74
(+) mRDT (Pf) 0.99 0.70
(+) mRDT (mixed) 0.99 0.95
(+) mRDT (other) 0.99 0.99

Abbreviations: ML, machine learning; mRDT, malaria rapid diagnostic test; Pf,
Plasmodium falciparum.
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data resulted in the best performing random forest models as
measured by out-of-sample F1 scores. The sensitivities and F1
scores increased consistently as more training data were added,
indicating that the random forest models continue to benefit from
“seeing”more patient encounters. THINKMDmalaria risk algorithms
had significantly higher specificity, but significantly lower sensitivity
than the random forest model. Nevertheless, the resulting F1 scores
were significantly higher for the random forest model.

Reviewing overall numbers of thermometer use in standard IMCI
workflow consultations where temperature was recorded using a
thermometer, 67 and 29% of children had positive and negative
mRDT results, respectively, compared with 61 and 30%, respectively,
in consultations with a history of fever but no temperature recorded.
In THINKMD consultations with temperature taken with a
thermometer, 38 and 16% of children had positive and negative
mRDT results, respectively, and 44% had no mRDT performed. In
THINKMDconsultations with no thermometer readings, 64 and 33%
of children had positive and negative mRDT results, respectively, and
2% had no mRDT performed.

To further assess the use of a thermometer on the
assessment of malaria risk, data from a CHW with no
thermometer was compared with data from a CHW with a
thermometer. When using the standard workflow, 40% of
consultations with a thermometer received an mRDT compared
with 97% of consultations without a thermometer, Table 8.

THINKMD’s platform data showed that fever was associated
with both malaria positive and negative mRDT results, and that
vomiting, and headache were common in both groups.

DISCUSSION

There is currently a rapid evolution of digital mHealth platforms and
their utilization for increasing health care capacity and access. The
value of such platforms is that they can play a key role in accelerating
scaling of primary healthcare delivery programs utilizing frontline
community health workers while maintaining consistent quality.

Performing clinical risk assessment for acute febrile illnesses,
specifically malaria, is important for population-based screening
to determine patients at high risk, where diagnostic testing is
indicated. In 2018, 412 million RDTS were sold globally
(Organization, 2019). Therefore, the importance in obtaining
these diagnostic tests and incorporating them into malaria risk
assessments is critical for improving the delivery of appropriate

treatment to those in need, while also decreasing the
inappropriate utilization of other treatments such as antibiotics.

In this study, we were able to demonstrate that the utilization
of embedded mRDT result acquisition resulted in a better
understanding of the need for febrile-illness specific protocols,
as well as consistent provision and use of necessary tools, like
thermometers and RDTs, to rely more on factual evidence of
disease, and less on self-reporting. This helps in two ways, first, to
help FHW provide higher quality of care, and second, to improve
algorithms to identify specific febrile illness using either manually
modified or machine-learning algorithms based on measured
symptomologies, geography, and other risks, more efficiently.

A potential key value of digital “physician-based” Bayesian
integrated clinical risk assessment algorithms as developed and
used in THINKMD’s mHealth platform is that they allow for
continuous assessment of their accuracy when compared to field-
based truth data. We were able to rapidly modify and test two
different malaria specific logic approaches following initial use and
analysis of assessment data that was confirmed with diagnostic
mRDT testing, our current physician-based logic approach, and a
new ML specific malaria logic using “prior” field-based data sets
captured during this study. In each case, we were able to show
significant improvements over the original THINKMD malaria
assessment logic used for this study. This allows for continuous
assessment and determination of required algorithm modifications
as needed and allows for subsequent retesting using the same field-
based data sets to assess if the modified algorithms have improved
outcomes.

The importance of this approach is that these modifications can
be improved quickly based on real field-data and tested immediately
without the need for a new field-study.We were able to demonstrate
this by making modifications to the original malaria risk algorithms
into a modified malaria risk algorithm and testing and comparing
the latter to the original algorithms using the same field-based
clinical data sets and associated mRDT truth data sets. This
provides the best approach to performing side by side algorithm
modifications that can be rapid and avoid the delay and expense of a
new field-based study to test the modified algorithms. IMCI and
THINKMD malaria risk assessment algorithms both had strengths
and weaknesses associated with their ability to identify children with
and without malaria at an appropriate accuracy that would lead to
capturing those children at high risk who should receive mRDT
testing, and at a level that is both financially and logistically feasible
for frontline healthcare delivery programs.

TABLE 7 | Performance statistics of THINKMD’s original malaria risk algorithms and the ML malaria risk algorithms vs performed mRDTs.

Statistical analysis Original malaria risk assessment algorithms ML malaria risk assessment algorithms

— (−) mRDT n � 160 (+) mRDT n � 320 (−) mRDT n � 160 (+) mRDT n � 320
Sensitivity, % 0.36 0.70 0.29 0.73
CI 0.30–0.41 0.63–0.76 0.15–0.44 0.61–0.84
Specificity, % 0.70 0.36 0.98 0.64
CI 0.63–0.76 0.30–0.41 0.95–1.0 0.52–0.76
PPV, % 0.63 0.43 0.87 0.67
CI 0.55–0.70 0.38–0.49 0.69–1.0 0.55–0.78
NPV, % 0.43 0.63 0.75 0.70
CI 0.38–0.49 0.55–0.70 0.66–0.83 0.58–0.82

Abbreviations: CI, Confidence Interval; ML, machine learning; mRDT, malaria rapid diagnostic test; PPV, positive predictive value; NPV, negative predictive value.
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The development of ML based clinical risk assessment
algorithms has significant potential with respect to discerning
different disease risk for acute febrile illnesses where clinical data
elements have a high degree of overlap, and diagnostic testing for
all the possible etiologies is expensive and not universally
available. It is critical to utilize an approach that can
incorporate supervised ML statistical learning methods that
have as its foundation proven clinical validated algorithms that
can utilize field-based clinical data, assessment data and field-
truth confirmatory diagnostic data. The current THINKMD
integrated clinical assessment algorithms were designed to be
modified as described above as well as to be utilized for
developing new ML based clinical assessment algorithms. In
this study, we were able to develop new supervised ML
malaria risk assessment algorithms using this approach that in
many respects significantly improved the quality of the clinical
assessments. The additional value of this approach is that each
assessment can be analyzed specifically on how each was
generated and how each clinical data element contributed.
This allows for specific clinical review of the new ML based
algorithms and how they differ from the ones that were used for
training. Of importance for this study was that this was
accomplished using a small data set of 555 clinical assessments
and 480 administered mRDTs.

One major challenge in the approach to febrile illness is that the
presentation of fever, whether self-reported ormeasured, is expected
to result in antimicrobial prescription, by both health workers and
caregivers, even if it is not appropriate. As IMCI is not clear in
identifying those who do not need antibiotics, health workers are
deferring to provide antibiotics independent ofmRDT results. In one
study, artemisinin-based combination therapies (ACTs) prescribed
singly or in combinationwith an antibiotic occurred in 98.7, 18.5 and
25.8% of patients with a positive test, negative test and those not
tested, respectively (Unitaid, 2018). The improvement of frontline
acute febrile risk assessments, such as malaria, have the potential to
reduce antimicrobial resistance throughmore accurate diagnosis and
appropriate antimicrobial stewardship. Consistent with WHO
recommendation, in 2011, Nigeria updated the National Malaria
Treatment Guidelines to reflect WHO’s test-and-treat policy for
malaria. While this resulted in more targeted use of ACTs
inadvertently, in many countries an overuse of antibiotics could
be observed in malaria negative patients (Hopkins et al., 2017).

The current work suggests that even during access shortages to
mRDTs, using the improved malaria risk assessment algorithm,

health workers will be able to complete a more accurate
assessment and provide more appropriate treatment.

LIMITATIONS

There were confounding variables to the analysis of malaria risk
assessment and mRDT analysis that may influence the results. First,
not all CHWwere equipped with thermometers (n� 2 of 7). As fever
was the driving data point for IMCI malaria-risk, this fact had great
influence on PPV/NPV of both IMCI and THINKMD malaria risk
assessments and subsequent mRDT administration. Secondly, IMCI
thresholds for “malaria risk” were used in the THINKMDmHealth
platform to trigger the mRDT panels and determine if an mRDT
would be administered (history of fever, axillary temperature above
37.5°C); children whowere deemed by IMCI guidelines to not have a
“risk of malaria” did not receive an mRDT to confirm this
assessment. Additionally, as with all diagnostic tests, mRDTs
have false positives and false negatives. Given the increased
reliance on mRDTs for making clinical decisions, we chose to
use them as the ground truth for evaluating the various
diagnostic approaches considered in our analysis. However,
future work should focus on the agreement (or lack thereof)
between mRDT, symptom-based assessment, PCR, and blood-
smear-microscopy-based diagnoses.

Of note is that our current malaria logic was tested in
predominately low risk regions with physicians as the gold
standard in 1,000 patient encounter in five different countries
and correlated 90% of the time with a local physician’s
assessment (Finette et al., 2019). The data shown above
provides evidence that physician/frontline health professionals
and worker assessments for malaria, without the support of
mRDTs has significant limitations. For this study, we cannot
conclude that if physicians were assessing malaria and using
mRDTs that they would correlate with THINKMD’s
malaria risk assessment, as this portion of the study was not
performed. As a result of the malaria risk assessment and
mRDT data acquired in this study, THINKMD can review
these findings and make modifications to its malaria specific
logic in order to improve all the key clinical assessment
parameters, based on the Who’s 2010 high and low malaria risk
guidelines stating the need to “improve the rational use of ACTs, all
suspected cases of malaria should have a parasitological
confirmation before treatment.

TABLE 8 | Comparison of THINKMD predictive statistics for a Community Health Worker (CHW) with dominant use and a CHW with low use of a thermometer.

No thermometer assessment,
n = 64

Thermometer assessments,
n = 90

PPV 66% 50%
NPV 55% 91%
Sensitivity 88% 65%
Specificity 23% 53%
Total (+) mRDT 40 assessments, 62% 20 assessments, 15%
Total (−) mRDT 22 assessments, 34% 16 assessments, 10%
Total Not Administered 2 assessments, 3% 54 assessments, 75%

Abbreviations: CHW, community health worker; mRDT, malaria rapid diagnostic test; PPV, positive predictive value; NPV, negative predictive value.
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CONCLUSION

This study demonstrates that integrated clinical digital algorithms
such as those used in the THINKMD mHealth platform can be
modified and quickly tested using previously acquired field-based
clinical data elements and diagnostic truth data such as mRDTs.
The ability to rapidly develop better mHealth logic, without
requiring new large-scale field-based study testing is novel and
could prove extremely valuable for developing high quality
frontline point-of-care clinical assessment platform for complex
clinical conditions and disease. This approach can also be used to
develop new supervised ML based clinical risk assessment
algorithms as well, which in the long-term will likely prove to
be much more valuable in performing population risk assessments
for complex diseases such as respiratory distress/pneumonia, sepsis
and differentiating risk potential for a wide variety of acute febrile
illnesses.
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