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The future of work and workplace is very much in flux. A vast amount has been written
about artificial intelligence (AI) and its impact on work, with much of it focused on
automation and its impact in terms of potential job losses. This review will address one
area where AI is being added to creative and design practitioners’ toolbox to enhance their
creativity, productivity, and design horizons. A designer’s primary purpose is to create, or
generate, the most optimal artifact or prototype, given a set of constraints. We have seen
AI encroaching into this space with the advent of generative networks and generative
adversarial networks (GANs) in particular. This area has become one of the most active
research fields in machine learning over the past number of years, and a number of these
techniques, particularly those around plausible image generation, have garnered
considerable media attention. We will look beyond automatic techniques and solutions
and see how GANs are being incorporated into user pipelines for design practitioners. A
systematic review of publications indexed on ScienceDirect, SpringerLink, Web of
Science, Scopus, IEEExplore, and ACM DigitalLibrary was conducted from 2015 to
2020. Results are reported according to PRISMA statement. From 317 search results,
34 studies (including two snowball sampled) are reviewed, highlighting key trends in this
area. The studies’ limitations are presented, particularly a lack of user studies and the
prevalence of toy-examples or implementations that are unlikely to scale. Areas for future
study are also identified.

Keywords: machine learning, artificial intelligence, generative adversarial networks, GANs, human-in-the-loop,
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1 INTRODUCTION

The emergence of artificial intelligence (AI) and machine learning (ML) as a crucial tool in the
creative industries software toolbox has been staggering in scale. It is also one of the most active
research areas in computer science (Murphy, 2012). Recent progress in generative deep learning
(DL) techniques has led to a dearth of new solutions in the fields of computer graphics, vision, and
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user-aided design (Pan et al., 2019). ML applications that directly
interface with everyday users are increasingly pervasive.
However, these applications are still largely entirely designed
and deployed by ML engineers. Data collection, feature selection,
preprocessing, model development, parameter tuning, and final
assessment of the resulting model’s quality are all made without
consulting with end-users on how they will interact with the
resulting system. Typically, this has led to systems where the end-
user involvement consists of little more than providing some
input and hoping for a good result. In this survey, we look at
research where end-users’, specifically design practitioners’,
involvement is deeper and collaborative in nature. That is,
systems that function as design support tools rather than
simple automatic synthesis tools.

One of the main challenges facing DL today is its “black-box”
nature. Data are fed to a trained neural network, which then
outputs a classification, decision, action, sample, etc. Despite
recent advances in the field of explainable artificial intelligence
(XAI) (Biran and Cotton, 2017), these algorithms’ inner workings
often remain mysterious to the user and even to the model’s
engineers. While the architecture and mathematics involved are
well-defined, interpreting what is happening in the neural
network’s inner state remains a very challenging problem
(Zeiler and Fergus, 2013). This opaque nature can also lead to
a fundamental mistrust between end-users and the systems with
which they are interacting. The emergence of the family of
generative models has created another potential avenue for the
erosion of trust, with much-publicized examples such as systems
to hide from facial detection systems (Mirjalili et al., 2017;
Johnson, 2020) or the generation of highly realistic fake
images (Zhu et al., 2017a) having drawn mixed public
reaction. Exploring these issues is an essential and complex
research area. One way to address trust is to give the user
real-time or interactive feedback, allowing them to visually
explore and develop a relationship with the underlying system.
Finally, there is the ethical perspective (Whittle, 2019; Fjeld et al.,
2020). To minimize potential harm to society, there needs to be a
strong commitment from both government and society to

provide oversight and regulation concerning how and where
AI systems are used.

One of the most decisive steps forward in DL synthesis has
been the development of the family of algorithms known as
generative adversarial networks (GANs). First proposed by
Goodfellow et al. (2014) in 2014, GANs are a type of
generative model with a specific architecture in which two
networks, a generator and a discriminator, compete with one
another to produce increasingly plausible generated samples
(Figure 1 shows the original architecture). In practice, a GAN
is not dissimilar to any other convolutional neural network
(CNN). The discriminator’s core role in a GAN is similar to
an image classifier, and the generator also operates similarly to
other CNNs, just operating in reverse. GANs have several
advantages over other members of the deep generative model
family of algorithms. They produce higher quality output
(Goodfellow, 2017) than other models. When compared with
variational autoencoder (VAE), the images produced by GANs
tend to be far sharper and realistic (Goodfellow, 2017). Auto-
regressive models (van den Oord et al., 2016) have a very simple
and stable training process, but they are relatively inefficient
during sampling and do not easily provide simple low-
dimensional codes for images. The GAN framework is flexible
and can train any type of generator network. Other models have
constraints for the generator (e.g., the output layer of the
generator is Gaussian (Kodali et al., 2017)). There is no
restriction on the latent variable’s size. These advantages have
led to GANs leading performance in generating synthetic data,
especially image data (Wang et al., 2019).

An important step toward integrating GANs into design tools
was developing methods to add a level of control over the
generated outputs. Conditional GANs (Mirza and Osindero,
2014; Lee and Seok, 2017) allow the user to add additional
input values to the generator and discriminator for categorical
image generation. The InfoGAN (Chen et al., 2016) algorithm can
extract latent features in an unsupervised manner by introducing
a latent code, which is fed as an additional input to the generator.
The latent code can then capture the generated images’ structure

FIGURE 1 | The original GAN architecture as described by Goodfellow et al. (2014).
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by adding an additional regularization term to the loss function of
GAN between the latent code and the generated image. Research
into user control over generative networks is a very active area,
but still in early development (Carter and Nielsen, 2017) but
maturing rapidly (Pan et al., 2019).

A full breakdown of the current state of the art concerning
GANs is outside this study’s scope. There have, however, been
many excellent recent surveys on the state of the art (Alqahtani
et al., 2019; Hong et al., 2019; Pan et al., 2019; Khursheed et al.,
2020), performance (Kurach et al., 2018), advances in image
synthesis (Wu et al., 2017; Wang et al., 2019), and approaches to
improving stability (Wiatrak et al., 2019). These reviews showcase
the prevalence of GANs in research and indicate it as a growing
area of importance. While there have been individual case studies
into interactive systems that look at collaborative design with
generative models (Kato et al., 2019; Noyman and Larson, 2020),
there has not been a systematic review looking at the area more
broadly.

In the next section, we will qualify the reasoning for selecting
human–AI collaborative design with GANs as an area for further
investigation and describe the work’s guiding research questions.
Following this, the systematic literature review methodology will
be described, and the results of the review will be presented.

2 MOTIVATION

The families of generative models can be broadly categorized into
two distinct categories: explicit density and implicit density
models. Explicit density models are those models that assume
some kind of prior distribution about the data. Prevalent
examples of these approaches are those based around
recurrent neural networks (RNNs) (van den Oord et al., 2016),
autoencoders (VAEs) (Dayan et al., 1995), and their variants
(Kingma and Welling, 2013; Oord et al., 2016; Higgins et al.,
2017). These approaches have produced excellent results and are
widely studied (Zhai et al., 2018). However, they do have some
drawbacks that limit their current adoption in creative tools.
Models based around RNNs operate sequentially; therefore,
output generation is comparatively slow. Autoencoders do not
exhibit this problem but have not been shown to produce the
output quality of competing models. GANs are a very prevalent
example of an implicit density model, models that do not
explicitly define a density function. Despite the drawbacks
associated with GANs, such as training stability, they currently
exhibit several advantages over competing models. Most
importantly, they do not have the performance issues
exhibited by RNN-based models while generating best-in-class
output quality. For this reason, we focus on research that utilizes
GANs and investigate their increasing prevalence as a tool in the
process of design.

As mentioned previously, much of the current research
around GANs has focused on automatic synthesis (Wang
et al., 2019; Khursheed et al., 2020), where end-user
interaction with the system is minimal (e.g. image-to-image
translation). These systems have also been improving swiftly
and are now capable of some impressive results (Wu et al.,

2017). Despite this, however, interaction with AI technology as
a design tool is still a relatively immature and challenging
problem (Dove et al., 2017), so we take a more targeted look
at the current research that has a more collaborative approach to
human–AI interaction.

2.1 Benefits
Generative design has a broader history and scope beyond theML
space (Krish, 2011). Traditionally, these tools have been used by
engineers or design experts who input design goals and
parameters (e.g., performance, mass, spatial, and cost
requirements). From these inputs, these tools explore the
solution space, generating design options and alternatives. AI
technology has been making inroads in the area1 (Kazi et al.,
2017), and we are now beginning to see generative models coming
into the fold at research and application levels.

Figure 2 illustrates how Zeng et al. (2019) saw AI being
integrated into the design cycle. It shows how the human–AI
relationship can be collaborative; in this case, their system
generates design variety from user input, which can then be
explored by the user and incorporated into the next iteration.
Other examples we will discuss include systems that can generate
landscape paintings (Sun L. et al., 2019) or terrains (Guérin et al.,
2017) from quick sketches, thus allowing users to more efficiently
iterate over their designs than if they had to realize their design at
each step fully.

ML has been an active research area for a long time, but its
adoption as a mainstream technology in the creative/design space
is a relatively new phenomenon. Much of the research has been
directed into creating systems capable of performing tasks, and
while many powerful systems and applications have emerged, the
user experience has not kept pace (Dove et al., 2017; Yang, 2018).
Interaction design aims to create interfaces that are easy to use,
effective, and enjoyable. In designing user interfaces that interact
with AI systems, there has been a general lack of focus on the end-
user. This review will look at many examples where interaction
design and end-user needs have been considered to varying
degrees, highlighting good practice, current limitations, and
avenues of interest for further research.

2.2 Challenges
In the public mind, the use of AI and ML is seen as a new,
innovative technology. While this notion has some truth to it
(Cearley et al., 2019), it is also true that ML is quite a mature field.
ML has been around a long time (Samuel, 1959). There are
countless textbooks, academic courses, and online resources
dedicated to the topic. With this said, user experience design
for ML systems and human–AI collaboration remains relatively
rudimentary (Dove et al., 2017; Yang, 2018; Yang et al., 2020).
There may be several reasons for this, but one that stands out is
simply that ML is a fundamentally more difficult design material.
ML systems have a “black-box” quality to them that is
fundamentally different from heuristics driven systems. The
outputs of these systems are often not easily explained,

1www.autodeskresearch.com/projects/dreamcatcher
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particularly when errors occur. Therefore, designers have a
challenging task designing systems that bridge the ML–human
perspective, with deep collaboration with engineers being critical.

The research challenges associated with improving human–AI
collaboration in the generative space do not have the easily
digestible outcomes associated with the most well-known work
in the DL field. To evaluate the work, one asks the question: “Is
the technology helping humans think and create in new ways?”
rather than whether the technology outperforms previous
methods on a well-defined task. This can be a more difficult
question to ask.

There is an outstanding question as to whether creativity
might be limited by using tools based on GAN architecture.
An optimally trained GAN generator should recreate the training
distribution and therefore cannot directly generate an image
based on new governing principles because such an image
would not be similar to anything like it has seen in its training
data. Therefore, one must ask if users would be prevented or
discouraged from exploring more exciting directions. While
GANs show tremendous promise in allowing people to create
and explore, this fundamental question remains.

Aside from human–AI interaction challenges, many technical
challenges exist despite the powerful results demonstrated by
GANs. One issue is mode collapse, which is one of the most
common failures in GANs. It occurs when the generator maps
multiple distinct inputs to the same output, which means that the
generator produces samples with low diversity. There are many
proposed solutions (Arjovsky et al., 2017; Kurach et al., 2018) to
mitigate the problem, but it remains an area of research. Another
problem is training convergence. As the generator improves with
training, discriminator performance naturally decreases because
it becomes increasingly more difficult to distinguish between real
and fake. This progression poses a problem for convergence of the
GAN as a whole: The discriminator feedback gets less meaningful
over time. If the GAN continues training past the point when the
discriminator is giving completely random feedback, then the
generator starts to train on junk feedback, and its quality may
collapse. Finally, it is worth mentioning that the training of a
simple neural network takes some computational effort. There is
an added level of effort required in training GANs due to the
networks’ dueling nature, requiring both more time and
computational horsepower. While these technical challenges
are not the central focus of this paper, they represent a

significant factor in how the GAN-enabled user interfaces are
developed and deployed.

3 METHODOLOGY

With ML, more specifically GANs, becoming increasingly
important for a range of reasons previously described, and
work in this area beginning to grow, it is important to take
stock of the current approaches to find similarities, themes, and
avenues for further research. As such, the guiding research
questions for this review are as follows:

• What approaches exist around GAN-enabled human–AI
collaborative design tools?

• What are the limitations of studies and approaches around
GAN-enabled human–AI collaborative design tools?

• What subareas are understudied in the domain of GAN-
enabled human–AI collaborative design tools?

Given these research questions, the following section describes
the methodology for searching the extant literature for
information to address them.

4 LITERATURE SELECTION CRITERIA

A systematic literature review was performed using the PRISMA
(Shamseer et al., 2015) reporting methodology to examine the
current state of the literature. Searches were conducted on the
ScienceDirect, SpringerLink, Web of Science, Scopus,
IEEExplore, and ACM digital libraries, using the following
Boolean search queries:

• (“Generative Adversarial Network” OR “GAN”) AND (“Art
Design” OR “Sketch” OR “Computer Art” OR “Artist” OR
“Creative Arts” OR “Computer Aided Design”)

• (“Generative Adversarial Network” OR “GAN”) AND
(“Architecture” OR “Urban Design” OR “Urban Planning”)

• (“Generative Adversarial Network” OR “GAN”) AND
(“Design Process” OR “Computer Aided Design” OR
“Human Computer Interaction” OR “Human-AI” OR
“Collaboration”)

FIGURE 2 | The AI-augmented creative design cycle as described by Zeng et al. (2019). The authors describe how AI can be used to augment the design process
by introducing variety to the users’ input, allowing them to quickly expand their solution space. The core creative design cycle of continuous interaction between creation
and reflection remains unchanged.
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• (“Machine Learning”) AND (“Art Design” OR “Sketch” OR
“Computer Art” OR “Artist” OR “Creative Arts” OR
“Computer Aided Design”)

• (“Machine Learning”) AND (“Architecture” OR “Urban
Design” OR “Urban Planning”)

• (“Machine Learning”) AND (“Design Process” OR “Computer
Aided Design” OR “Human Computer Interaction” OR
“Human-AI” OR “Collaboration”)

In addition, articles were restricted using criteria common in
systematic reviews in the area of ML. The criteria used were as
follows:

• Recent article: articles had to be published within the last
5 years (i.e., since 2015 at the time of writing);

• Relevancy: articles had to be relevant to the topic of AI (articles
which spoke about general AI learning from a human
psychology perspective were excluded) and future of work
(i.e., articles which did not describe approaches or
techniques for advancing the future of work were excluded);

• Accessibility: articles needed to be accessible via the portals
previously described;

• Singularity: duplicate articles were excluded;
• Full paper: abstracts and other short papers were excluded
(extended abstracts were included).

Figure 3 illustrates the filtering process used to produce the
final set of literature. Using the above research parameters,
combined with a year filter (≥2014), a total of 317 articles
were gathered, which were reduced to 262 after filtering out
duplicate results using the JabRef software “Remove Duplicates”
feature. The titles and abstracts of these articles were reviewed for
relevance to the domain of generative networks and design, of
which 188 were deemed relevant using the relevancy measure
described above. These articles were then read in full to determine
relevance to the domain. The remaining 34 articles after this stage
of filtering constitute the primary analysis of this article.

The collapse from 317 to 34 works was due to the search terms’
broad scope. Many of the articles returned outlined automatic
methods or algorithms. The criteria for this survey require the
method to be user-guided or have iterative user involvement, so
these articles were excluded from the final literature. Second,
several articles simply mentioned the search terms for describing
AI systems generally for the reader. Such passive use of the search
terms could not be determined until the full paper was examined.

Additionally, two articles were added to the review, using a
snowball sampling technique (Greenhalgh and Peacock, 2005),
where if a reviewed article cited a relevant sounding article, it was

subsequently assessed, and if deemed relevant, added to the pool
of articles for review (14 articles were examined during this stage).

Before discussing the methodologies, the following section
explores at a high level the core themes in the 34 articles reviewed,
in terms of example domains and scope, to paint a picture of the
current state of the research space.

5 SUMMARY OF LITERATURE

Selected articles were categorized and analyzed based on domain
space, publication type, year, user-interface modality, and
operation method. A full list of selected articles and values for
each of these is provided in the appendix.

5.1 Publication Type
The reviewed articles’ largest outlet was conference proceedings
(18), with 15 articles published in journals. One extended abstract
(Noyman and Larson, 2020) was included due to its scope and
critical relevancy.

5.2 Year
In 2019, 13 articles were published. Eight were published in
2020 (so far), nine in 2018, three in 2017, and one in 2016
(Figure 4). This indicates that research into attempting to
incorporate GANs with user-guided design is an area that is
young and developing. The slight decrease in articles in 2020
may be due to the current difficulties in performing both
experiments and user testing. Given the sudden increase in
publications, there is a reasonable amount of cross-over
between some research streams. Ideally, these researchers
may consolidate their work and progress together, rather
than in parallel, into the future.

5.3 Domain Space
Articles were categorized based on the featured subject domain(s)
they focused on (either in their implementation or theoretical
domain). Work could exist across multiple categories. The
distribution of articles across the categories is summarized in
Figure 4 and expanded upon in this section.

The largest cohort of articles (17 articles) focused primarily on
art-design tasks (e.g., generating paintings, and terrains). Six
articles are situated in the fashion-design space. An area that
was expected to have greater representation was urban planning/
design; however, this area was the focus in only three articles
reviewed. There were four articles addressed in the graphic design
space and three in game design. Finally, one article addressed
sports-play design. This categorization helps understand the

FIGURE 3 | Number of articles included in the review after various stages of filtering.
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areas where this research is currently being deployed and aids in
identifying areas currently under-served.

5.4 Human–Computer Interface Modality
We are focused on researching how GANs are being integrated
into design support tools. One of the critical human–computer
interaction (HCI) considerations when creating these tools is how
the end-user will communicate or interact with the system. The
reviewed articles present various interface modalities, with the
most common being sketch-based interfaces (21 articles) and
what we choose to call “landmark-based,” which is where an area
or point of interest is marked by the user in some manner (12
articles). In addition, two works each featured node-graph,
parameter-based, and language-based interaction modalities,
respectively. Figure 5 illustrates the breakdown of the UI
modalities.

As most articles are situated within the art-design space, it is
somewhat unsurprising that most interface modalities were
sketch-based. Sketch-based UI systems are familiar,
comfortable, and intuitive to use for artists. There is some
cross-over between sketch and landmark modalities also, as

sketches can be used to provide information, or as commonly
referred to as “hints,” to the network to constrain or guide the
output. Node-based interfaces are another common feature of
modern digital content creation (DCC) tools. This type of
interface may become more prevalent in the future.

Natural-language user interfaces (NLUIs) have become a
feature of everyday life (Shneiderman et al., 2016). It remains
a challenging problem and a highly active research area. Despite
this, NLUIs represent a highly intuitive way to communicate with
a system. Two of the articles reviewed took this approach.

Disentangled representation learning (Locatello et al., 2019) is
an exciting, emerging research topic within the ML space. It is an
unsupervised learning approach that seeks to encode meaningful
feature representations in the learned space, with each dimension
representing a symmetrically invariant feature. In practical terms,
this allows for the extraction of parameters that correspond to
desirable features that facilitate control over the system. If we take
the example of a data set of simple shapes, the approach may
allow for the extraction of parameters such as rotation and color.
This is not a trivial task within the GAN space, as there is no
predefined distribution over which we can exercise control. Two
articles adopt current approaches (Chen et al., 2016) to the
problem to present users with controllable parameters to aid
in the design process.

5.5 Method of Operation
In examining the surveyed work, two fundamental modes of
operation became apparent: variation and beautification.

Design horizon expansion through variation is not a new
paradigm. Many interesting new tools have been coming online
to allow designers to explore machine-generated variations. The
basic workflow is that a designer provides a design, possibly
alongside a specified set of constraints (e.g., variance from
example and structural constraints). The machine then
generates a selection of design variants. The designer can then
examine the variants and select one or adapt their design, taking
inspiration from the generated examples. This process can be
iterated over until a final desired design is found. Seven articles
fall into this category.

FIGURE 4 | Left: Categorization of articles by domain. Right: Distribution of surveyed articles by year, indicating an increase of academic interest in this area.

FIGURE 5 | Left: Categorization of articles by UI modality. Note that
some articles were multifaceted and covered multiple categories. Right:
Categorization of articles by UI modality. Note that some articles were
multifaceted and covered multiple categories.
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The other primary mode of operation was “beatification,” or
elaboration based on course user input. This mode is perhaps the
most straightforward mode of operation, in that designers
provide the system with course level input (e.g., sketches,
graphs, and language-based instruction), and the system
outputs a more fully realized design (e.g., image, landscape,
and game level). This review outlines various examples of this
approach, and despite differences in interaction mode, inputs,
and so on, the basic principle remains the same. This category
represents the largest cohort of works, with 26 articles.

A single outlier, BaketballGAN (Hsieh et al., 2019), operates by
generating a predicted simulation result given a user design.

6 DISCUSSION

6.1 Research Question 1: What Approaches
Exist Around Generative Adversarial
Networks-Enabled Human–Artificial
Intelligence Collaborative Design Tools?
6.1.1 Architecture and Urban Planning
Graph editors are a common interface paradigm within the DCC
landscape,2,3 so it is somewhat interesting that the work by
Nauata et al. (2020) presented one of only two graph editor
interfaces in the reviewed literature. The work describes a
framework for a node-graph–based floor plan generation tool.
A user constructs a simple graph representing the rough desired
layout (Figure 6), with nodes representing rooms of various
categories and edges representing adjacency. Themethod uses the
Conv-MPN (convolutional message passing networks) (Zhang
et al., 2019) architecture, but here, the graph structure is explicitly
passed to the generator. The Conv-MPNs are used to update
feature volumes via message passing, which are later up-sampled
and propagated to a final CNN network that converts a feature
volume into segmentation masks. In this way, the generator

generates output that resembles a floor layout, a segmented
image with axis-aligned rectangles for each room and corridor.
The user can then select preferred outputs and manually adjust
them as required. The work notes some limitations to be
addressed in future work, such as the current requirement that
rooms be rectangular and allowing for further parameterization
(i.e., room size and corridor length).

The FrankenGAN (Kelly et al., 2018) framework allows users
to generate high-fidelity geometric details and textures for
buildings. The name is due to its nature as a patchwork of
networks rather than an end-to-end system. By adopting this
approach, intermediate regularization steps could be performed,
leading to higher quality results. In addition, it offers users the
chance to interact with the system at several stages. A user initially
provides a coarse building shape, and the geometry generation
network then adds high-fidelity details, such as doorways,
windows, and sills. At this stage, the user can edit the
generated geometry through a sketch-based system before
passing new geometry to the texture generation network. The
user can then specify the desired style for the resulting texture as
well as variance parameters. The authors present some impressive
results across a wide range of building styles, and a perceptual
study indicated that their system produced significantly better
results than competing models.

The DeepScope project (Noyman and Larson, 2020) presents a
real-time, generative platform for immersive urban-design
visualization. In this work, the authors used a tangible user
interface (TUI) to allow designers to iterate over urban
designs quickly and observe generated images of the emergent
street scene in real time (Figure 7: top left). The TUI takes the
form of a tabletop with a grid layout, with physical cell blocks of
varying colors representing different classes of tile (street, green
space, and construction) and an observer (a standard LEGO
figurine), from whose perspective the final street scene is
rendered. A scanner overlooks the tabletop and relays changes
being made to the grid-cell layout, which updates the system’s
internal virtual 3D layout. This 3D environment is procedurally
decorated with cityscape elements (e.g., lamppost and vegetation)
and then passed to the DC-GAN, which generates a street scene
from the observer’s perspective. The system was designed with

FIGURE 6 | Left: The interface for the HouseGAN system (Nauata et al., 2020). The user describes a node-graph, with nodes representing rooms and edges the
connections between them. The system outputs a variety of designs based on the graph and the user can then further iterate and design to reach a final floor plan.Right:
In the work by Sun T.-H. et al. (2019), the authors developed an interface to help designers develop digital icons. The user specifies a sketch and a style they would like to
follow. The system then outputs icons based on the input sketch and style in a variety of colors.

2www.sidefx.com/products/houdini
3www.foundry.com/products/nuke
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intuitiveness as a design principle, allowing experts and
nonprofessionals to experiment collaboratively with urban
design scenarios with real-time feedback. The platform can
augment the early stages of cityscape design with vivid street-
view visuals. Unlike traditional CAD tools, the complexity of
creating a 3D urban scene is carried out by the pretrained neural
network. Finally, the lack of high-resolution visual fidelity,
currently a drawback with GAN output, allows designers and
regulators to focus on the overall “Image of the City” instead of
undecided details.

6.1.2 Graphic Design
Sun T.-H. et al. (2019) presented a system that aids designers in
the creation of digital icons. The authors trained a dual-
conditional GAN (Yi et al., 2017) on a large database of icons.
In this case, rather than training a discriminator to recognize
whether an icon is man-made or machine-generated, two
discriminators determine whether paired images are similar in
structure and color style, respectively. With this system, humans
and machines cooperate to explore creative designs, with human
designers sketching contours to specify the structure of an icon,
then the system colorizing the contours according to the color
conditions. To improve usability and to not overwhelm the user
with all possible varieties, the user is asked to specify a “style.” The
system then randomly selects a selection of icons labeled with that
style which are fed to the network as the color condition. Even
giving for the fact that output are relatively simple icons, the
results of this method are quite impressive and a subjective
evaluation study conducted by authors confirmed that their
method performed best among a selection of other methods
representing the state of the art.

Content layout is a core skill of graphic designers, being a key
component in guiding attention, esthetics, etc. Zheng et al. ()
presented a system for generating user-guided high-quality
magazine layouts. The network was trained on a large data set
of fine-grained semantic magazine layout annotations with
associated keyword-based summaries of textual content. Users
can exercise control over the layout generation process by roughly

sketching out elements on the page to indicate approximate
positions and sizes of individual elements.

The work of (Zeng et al., 2019) investigated whether AI can be
used to augment design creativity. They based their approach on
fundamental design principles (Dorst and Cross, 2001; Preece
et al., 2015) and adapted the existing design cycle to incorporate
AI tools (Figure 2). Addressing a particularly difficult design
problem, that of typeface design for Chinese characters, the
authors noted the historically stylistically broad yet unified
nature of Chinese character design. Modern Chinese character
fonts do not exhibit this level of variation, and so the authors
attempt to use AI to augment typeface designers’ creative abilities.
The network was trained on a selected number of standardized
Chinese typefaces. The final model was then used to generate
many typefaces, and the designers examined the generated fonts
to find ones that matched their desired features. Input fonts that
adversely affected the resulting sets were then removed, and the
network was retrained. This cycle was repeated until the
designer’s criteria were met. The study shows how the design
cycle is not fundamentally altered, but simply augmented. Design
professionals are still responsible for putting forward questions,
formulating rules, and providing the starting point. The AI can
then take over some responsibility, to generate a more diverse set
of typeface forms than would be feasibly possible by a design
team. The study also demonstrates how this collaboration can
continue indefinitely to meet design goals.

Chen et al. (2019) presented a system to aid design ideation.
The framework consists of two separate networks: a semantic
ideation network and a visual concepts synthesis network. In the
initial design session, the users interact with a visual semantic
network graph (the network is based on ConceptNet, with a filter
to increase concept diversity). The users can choose how far they
would like to venture, conceptually, from the initial idea and also
view and filter the resulting network (i.e., in one example, a user
starts with the concept “spoon,” steps forward, and lands on
“straw” via “soup”: the participant then combined the two ideas to
develop a spoon that incorporated a straw into the handle). In the
second phase, the system uses a GAN to generate novel images

FIGURE 7 | Left: The TUI interface for the DeepScope system. Here, the designers move about physical objects representing urban tile classes and can view the
cityscape emerge in real time. Right: The user interface for BasketballGAN looks much like a traditional basketball clipboard sheet.

Frontiers in Artificial Intelligence | www.frontiersin.org April 2021 | Volume 4 | Article 6042348

Hughes et al. GANs and Human–AI Collaborative Applications

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


that attempt to synthesize a set of visual concepts. A case study
was performed, with participants developing some interesting
results, combining concepts together (e.g., one design team
blended a spoon with branching leaves, each of which had a
vessel for condiments shaped like seeds) in unusual and
interesting ways.

6.1.3 Game Design
In the field of content creation for game design, Volz et al. (2018)
presented a controllable level creator for the ever-popular Mario
Brothers video game. Many, including modern level descriptions
for tile-based 2D platformers, boil down to simple text files. In
this work, a DC-GAN was trained on a large set of text-based
Mario Brother levels. To provide designers a level of control over
the final levels, the space of levels encoded by the GAN is further
searched using the covariance matrix adaptation evolutionary
strategy (CMA-ES) (Hansen et al., 2003). This algorithmmakes it
easy to specify vectors that correspond to various desirable
features, such as the number of enemies and bonuses. One
issue that arose was that some of the generated levels were
unsolvable and unreachable by the player, given the control
restrictions. This was solved through a simulation approach.
An AI agent ran through each of the generated levels to
identify those levels that did not have a solution. In this way,
level elements with undesirable features were eliminated. The
authors note the fast speed of level generation and suggest that the
levels could be generated on the fly, dynamically adapting to play-
style, difficulty, or designer input.

Schrum et al. (2020) extended this work with a focus on
providing a set of design tools that would give level designers a
greater level of control over the finished levels. They again used a
GAN to generate a latent space, from where level segments can be
drawn. The designer can explore a series of level segments,
highlight segments they like and then apply a latent variable
evolution algorithm that presents them with the selected
segments and their offspring for further iteration. The
designer can also select an individual-level segment and alter
the individual latent vector values, allowing further control. The
designer can also select two segments and interpolate between
them by walking the line in high-dimensional space between the

two latent vectors (Figure 8). The authors then performed a user
study, with 22 participants, to evaluate their system. Three groups
participated, two with evolution controls and one with the full
feature set. The results showed that exploration controls were
preferred to evolution, but the full feature set was most desirable.

The work of Gutierrez and Schrum (2020) took this idea a step
further. They use a similar automatic GAN-based approach to the
generation of individual dungeon rooms, as the previously
described work, but combine this with designer-specified
graphs describing the high-level dungeon layout for the game
The Legend of Zelda. This work blends the abilities of GANs
nicely to generate level segments, whose parameters can be
controlled similarly to the two previous works, with an
interface that allows a game designer to easily specify the
desired high-level features.

6.1.4 Fashion
Several works centered around fashion design, with solutions
presented spanning across many different problems. The work of
Kato et al. (2019) examined whether GANs can be used to
generate novelty while preserving the inherent brand style.
Their training set consisted of samples of a single brand
design released over a 3-year span; this choice was made to
maximize style consistency. The progressive growing of GANs
(P-GAN) algorithm (Karras et al., 2017) was applied to produce a
set of generated designs of varying resolutions outputted at three
discrete training epochs. They then performed a user study and
evaluation with professional pattern makers. The professionals
were asked to evaluate the difficulty in creating a physical pattern
from each design they were presented to evaluate the importance
of both resolution and training time. Interestingly, neither factor
had a significant impact. Of far greater importance was the
professional’s experience with the underlying brand. Pattern
makers are quite familiar with elaborating designs from rough
sketches, but those designs are generally informed by brand
design philosophy and principles. The authors noted that the
professional’s impression of pattern-making difficulty was
reduced when given rough dimensions and material
suggestions and suggested that results could improve
dramatically with much higher quality images.

FIGURE 8 | The level design interface designed by Schrum et al. (2020). Left: The user can select any number of level segments with desired features and evolve
new segments. Right: The user can further refine segments through direct manipulation of latent vector values.
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Sbai et al. (2019) presented a system that generates novel
fashion designs while allowing a fair degree of user control over
several key features, importantly texture and color. The system
builds on existing approaches to the generation of novelty by
GANs (Elgammal et al., 2017) and facilitates a degree of fine
control over the output and the degree of novelty introduced. In
this way, the final tools are more useful to a potential designer
than being presented with a set of novel designs. The authors
performed some user studies to determine the degree to which
their system produced preferred designs over state-of-the-art
approaches and found a very significant improvement in
likability scores for the garments produced by their system.

Cui et al. (2018) presented a tool for designers to visualize
more complete fashion designs quickly. Users provide both an
input sketch and amaterial. The system then applies thematerial to
the sketch in an intelligent manner. In contrast to the previous
work, the training data were broadly sourced, containing diverse
designs, styles, and brands. The network architecture adapts
BicycleGAN (Zhu et al., 2017b) by using fabric pattern samples
to train the encoder so that only the material and color information
are contained within the latent vector. A user’s sketch constrains
the shape of the final generated image, and the color and material
are constrained by the input pattern. The final sketch-based UI is
straightforward to use, and one could imagine it being used in both
recreational and professional settings. From a professional’s
perspective, one could imagine the benefit of quickly visualizing
different patterns on the same design, saving valuable production
time. This work, unfortunately, omits a user study. A study may
have yielded interesting findings as the visual fidelity of the
produced designs is very impressive and among the best found
among all papers reviewed. As we saw from the previously
discussed paper, practitioners perceived difficulty in creating
physical patterns from the generated designs were mitigated
through material specification. Investigating how professionals
perceived this tool with material specification and improved
visual fidelity would be highly interesting.

Zhao and Ma (2018) described an in situ augmented reality
(AR)–enhanced fashion design system powered by AI. In this
case, the authors detailed the thought process behind their design

decisions. They consulted with design professionals in
determining the feature set for their interface and considered
their common practices and working habits. They determined
that modern fashion designers often look to street style, taking
inspiration from spontaneous urban fashion trends. The authors
decided on an AR system to empower designers to sketch and
design garments in situ quickly. One of the issues with generative
networks is that they are bound to the data set upon which they
are trained, but designers have different styles and techniques. To
compensate for this and create a more generalized system, the
authors decided on a two-step compensation method. The author
first marks up the captured images with familiar landmarks (e.g.,
hemline and sleeve end). These landmarks are then used as a
compensation signal for the second network to cater to sketch
styles that lay outside of the trained network’s representation.
While the system results lack the previous example’s visual
quality, the interface and design processes are much improved
(Figure 9: left). The authors kept the end-users in mind
throughout, and the building blocks are in place for a viable,
usable system. The AR component is a little limited where there is
little essential difference between the desktop and AR in practice.
However, a natural extension would be to use AR to dynamically
map the generated designs to the model.

Cheng et al. (2020) introduced a novel approach for language-
based interactive image editing. A database of image of fashion
items alongside textual description was created and used in
network training. During a session, a virtual agent takes
natural-language directions from the user as the input. Based
on the directions, the agent modifies the current image
accordingly. In this way, the user can arrive at their desired design.

Dong et al. (2020) presented a system very similar to the
method of Jo and Park (2019) (see section 6.1.5) but applied in
the fashion space. The authors conditioned their network on data
containing full-body models for better performance when
working on clothing.

6.1.5 Two-Dimensional Art
Considered a significant early work in the GAN space, the iGAN
system developed by Zhu et al. (2016) was among the first systems

FIGURE 9 | Left: The interface designed by Zhao andMa (2018) in action, an AR system for in situ fashion design.Right:When designing, it can be cumbersome to
iterate overall the possible material options. Cui et al. (2018) presented a system that attempts to optimize the process.
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that facilitated interactive feedback with a GAN-based model (it
also heavily influenced the architecture around which many of
the examples in this section are based). A user selects an image,
which is projected into a low-dimensional latent representation
using a GAN. The user then uses various brush tools to achieve
the rough desired shape and color requirements visualized in the
low-dimensional model in real time. At the final step, the same
series of transformations are applied to the original image to
generate a result. The system can also be used to design from
scratch as even from a few simple strokes, the generator will do its
best to generate a plausible result. The work of Chen et al. (2018)
presents a similar painting interface to the previous example, with
the intent this time to translate rough user sketches into more
esthetically pleasing results. Their work builds on the VAE-GAN
model (Larsen et al., 2016), generating far crisper images than
merely using an AE model while maintaining many of their
benefits.

Park et al. (2019) presented a system, commonly known as
GauGAN, capable of turning rough sketches into photorealistic
pictures (Figure 10: left). Their system is built on top of the
pix2pixHD (Wang et al., 2018) algorithm, introducing the
SPADE (SPatially ADaptivE Normalization) normalization
technique. Traditionally, normalization attempts to learn the
affine layers after the normalization step, and so semantic
information from the input tends to be “washed away.”
SPADE learns the affine layer directly from the semantic
segmentation map so that the input’s semantic information
can be kept and will act across all layer outputs. Users provide
the system with a sketch, in effect a semantic map, and a style
image. The resulting image is generated in real time and highly
responsive to user input. The SmartPaint system (Sun L. et al.,
2019) presents a system and interface that closely mirrors the
previous example. From an interface perspective, the main point
of difference is that the system recommends a set of reference
material from the dataset (representing the most similar examples
to the user input) based on the user’s input sketch. In this way, the
system attempts to guide the user toward more realistic, known
examples while still allowing a large degree of creative flexibility.

There has been a considerable amount of recent research
around image generation based on an input image and set of

controllable parameters (Lee and Seok, 2017; Alqahtani et al.,
2019). The recent work of Jo and Park (2019) builds upon this
research and presents a sketch-based image-editing tool that
allows users to alter images in a variety of ways (altering facial
geometry, adding makeup, changing eye-color, adding jewelry,
etc.). During an editing session, the user masks off, via sketch,
areas of the image they want to edit and then sketch in the
changes they want using their free-form artist license (Figure 10:
right). They can also use color brushes to sketch features of that
color (e.g., hair color). The system is highly performant, and the
generated image adapts in real time to user input. The system also
operates on relatively large images, 512 × 512 pixels, which
increases real-world usability, as does the feel of its interface,
which is much like any professional painting tool.

Ho et al. (2020) presented a novel sketch-based generation
network for full-body images of people. The authors used
semantic key points corresponding to essential human body
parts as a prior for sketch-image synthesis. The authors
demonstrate some impressive results, even given very course
input sketches.

The art of inking is a refining process that builds on artists’
sketches. Inking refines the sketch, drawing emphasis on certain
areas and lines of the sketch, and is a crucial tool in creating depth
and perspective. Several image-editing suites4 provide automatic
inking tools and features. Building upon their prior work, Simo-
Serra et al. (2018) presented a system that uses GANs to
transform a user sketch into an inked (a process the authors
refer to as sketch-simplification) image. The network was trained
jointly on both a supervised (a series of professionally drawn
sketches and corresponding inked image pairs) and unsupervised
(rough sketches and line drawings) datasets by employing an
auxiliary discriminator network. By combining supervised and
unsupervised data in this way, the system can more easily handle
a wide variety of artist styles. The human–AI collaborative loop is
not explored in depth, but the system does provide real-time
feedback, and a user study could further validate the impressive
results.

FIGURE 10 | Left: The interface for the GauGAN system (Park et al., 2019). The user can create realistic landscapes with just a few simple input strokes.Right: Jo
and Park (2019) developed a very familiar painting-based interface that allows users to alter photographs via sketches.

4helpx.adobe.com/au/illustrator/using/image-trace
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After inking, the next stage in developing a finished comic
artwork is coloring. Ci et al. (2018), Hati et al. (2019), and Ren
et al. (2020) all presented frameworks for user-guided line-art
colorization. Automatic colorization of line art is a challenging
task, as the colorization process must achieve a pleasing result
while keeping the texture and shading of the original work.
Line art, by its nature, does not provide any semantic
information. To overcome this problem, the authors
developed systems where the user sketches on the image
providing information to the system about desired colors,
location, etc. All articles used large datasets of colorized
anime images, corresponding line art, and a pixel hint mask
to train the network. One of the key improvements of the Hati
et al. work was stroke simulation rather than simple pixel
sampling to provide the color hints during training.
Unfortunately, the works did not perform end-user
evaluation studies, as the PaintsTorch system is one of the
most feature-rich among the reviewed literature.
Architecturally, the work presented by Zhang et al. (2017) is
quite similar. Here, the authors trained their network on gray-
scale photographs and their corresponding color images. The
collaborative system allows users to add color landmarks and
adjust them with real-time feedback to the gray image, and the
system generates plausibly colorized images. The authors note
that it is not always easy for users to select colors in an
esthetically pleasing or realistic manner. To mitigate this
problem, the system gives the user feedback about the
colors they may wish to use, based on a predicted co-
distribution, guiding them toward a good result. The
authors did perform a user study. A group of nonexpert
users was given 1 min to colorize a series of photographs,
and the results were then passed through a real vs. fake
Amazon Mechanical Turk (AMT) test.5 The automatic
colorization performed reasonably well, but with user input,
the number of images passing as real examples significantly
increased and increased again when user color
recommendations were used. While the user interface
presented by Ren et al. (2020) is similar to the previous
work, the internal architecture differs. An innovative two-
stage interactive colorization based on superpixel color
parsing was used to generate better results. The authors also
proposed metrics for quantitative result evaluation.

All the design tasks that we have covered till now have been
aimed at expert or semi-expert users. Zou et al. (2019) presented
an example of human–AI collaboration primarily designed for
children. The system is trained on a set of scene sketches and
cartoon-style color images with text descriptions. The system
allows users to progressively colorize an image, via simple natural
language-based instructions. Users can refine the result
interactively, specifying and colorizing specific foreground
objects to match their requirements. An extensive series of
validation experiments were run, looking at criteria such as
performance and generalization. A more in-depth look at how

children interacted with the system would be of real benefit, but
we acknowledge the difficulty in performing such studies.

6.1.6 3D Art
Normal maps are a commonly used tool in efficiently representing
complex 3D shapes, adding depth and lighting to otherwise flat
images. Su et al. (2018) presented a human–AI collaborative tool to
generate normal maps from user sketches in real time. The authors
used a slightly modified version of the popular pix2pix (Isola et al.,
2016) algorithm and trained the network on a database of sketches
with corresponding normal maps and a single-channel point-mask
(user-defined hints). At runtime, the user can sketch and watch in
real time as the normal map is generated. The user can select points
on the image and manually adjust as needed (this point is adjusted
in the point mask), allowing for fine-grain adjustment of the
normals as needed. The final system is intuitive, with simple
but responsive interactive controls, and the generated maps are
of high quality, superior to those achieved by a selection of the
other state-of-the-art algorithms. The authors conducted a small
pilot study to look at perceptual loss for the rendered normal maps
against several different methods, and their system performed
significantly better than the other algorithms.

One of the most impressive systems reviewed was the terrain
authoring tool presented by Guérin et al. (2017). The authors
trained several GANs, or terrain synthesizers, corresponding to
different sets of topological features. The training set was
assembled through automatic conversion of example patches
of the landscape into user-like sketches and contours. During
terrain authoring, the artist provides a rough sketch. The sketch
defines features such as rivers, ridges, some altitude cues, or a
combination of them. The input is given to the sketch-to-terrain
synthesizer that generates a plausible terrain from it in real time.
If the result is not satisfactory, the user can re-edit the sketch and
rerun the synthesis or remove parts of the terrain that will then be
completed by the eraser synthesizer. After the coarse sketch is
finished, the user can erode the terrain by running the erosion
synthesizer. It should be noted that this level of performance and
interactivity had not been seen before, even in professional tools.
To evaluate and validate their system, the authors conducted a
user study with both expert and nonexpert groups. After
generating a landscape with specified features, the participants
were asked to evaluate the system scale according to three criteria:
(1) Does the generated terrain follow the sketch? (2) Is the system
reactive? And finally, (3) is it easy to express one’s intent? The
system scored very highly on all criteria.

The work of Zhao et al. (2019) zoned in on the task of adding
high-fidelity detail to landscapes. Rather than outputting a
landscape from a sketch, it amplified detail on an existing
coarse landscape. A novel approach to embedding landscape
“themes” into a vector space is described, giving artists and
end-users control over the result’s look. The system is also
performant enough for interactive edition, a crucial criterion
for artists. The nature of the embedding space also allows for
interpolating between them, allowing for exploration of themes
outside the example space.

The system proposed by Liu et al. (2017) presents an
interactive 3D modeling tool, assisting users in designing real-5mturk.com
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world shapes using a simple voxel-based interface. The system
builds on the 3D-GAN model (Wu et al., 2016) by adding a
projection operator that maps a user-defined 3D voxel input to a
latent vector in the shape manifold of the generator that both
maintains similarity to the input shape but also avoids areas of the
latent space that generate unrealistic results. The training set
consisted of a collection of shapes within a broad object category
represented by voxel grids (the authors demonstrate results for
planes, chairs, and tables). The method attempts to avoid “bad” or
unrealistic areas of the latent space by training a projection model
that attempts to balance similarity of the input to output with
generating something very close to an existing sample. During a
session, the user quickly builds up a simple voxel shape
representing a rough approximation of the desired output in a
voxel editor. Once finalized, the user hits the “SNAP” button,
which triggers the generator and generates a result. In this way,
the user interacts with the system to finalize their design. The
system represents work in progress. The final output of a user
session would need significant editing before being used in a
production environment. However, the interaction between the
AI and the user is intuitive and straightforward, and a similar
approach may become more relevant as the quality of 3D-
generated results improves.

The work of Wu et al. (2018) presented a very novel system to
generate paint strokes using GANs. Traditionally, to generate
realistic brush and natural media behavior (e.g., watercolors and
oils), a fluid or physical simulation approach is adopted (Chen
et al., 2015). Here, the authors replaced the paint simulation with
a neural network (the brush strokes were still simulated). The
model was trained on data generated by a physically based oil
painting simulation engine (the inputs being corresponding
height fields, color fields, and stroke information). During a
live painting session, the network’s input consists of the
existing paint on the canvas and the new stroke drawn by the
user, and it outputs a predicted height map and color map of the
new stroke. The system is highly interactive, and examples of
some stunning user creations are presented. The system
significantly outperforms their previous, simulation-based
work and presents a new avenue for exploration with other
natural media painting simulations such as watercolor or pastels.

6.1.7 Sport
In BasketballGAN (Hsieh et al., 2019), the authors present a novel
approach to human–AI collaborative play design. Basketball has a
long history of coaches using clipboard sketches as a tool for play
design and to convey those plays to their players. One need only
turn on any high-level televised basketball game to see this in
practice. One of the drawbacks of this design methodology is that
it is static. It does not explicitly cater for how opposition players
may react. Having an instinct for how the opposition will behave
is purely down to the coach’s skill in understanding both the game
and the skill sets of the opposing players. BasketballGAN gives the
play designers the same primary tool they are used to and
augments it with AI. The network was trained on a player
movement dataset released by NBA. The system takes as input
a sketch from the designer and outputs a dynamic play simulation
(Figure 7: top right). To maintain the realism of the resulting

simulations, several loss functions were described for dribbling,
defending, passing, and player acceleration to guide the network.
These heuristics prevent abnormal player behaviors on the court.
The resulting system produces very plausible 2D simulations, and
in this way, a coach can analyze their play designs and get an
instant prediction on how the opposition may counter it. Using
this information, they can iterate over the play to improve it or
avoid passing to a player likely covered by a skillful defender, and
so on. A small user study was performed to examine the
plausibility of the generated results. Three groups, with
varying levels of basketball knowledge, were asked to answer
whether they thought a sample of generated and real plays was
real or fake. Only the most expert group could distinguish the
generated plays above the chance level, proving that the system
could prove a viable real-world tool with further refinements.

6.2 Research Question 2: What Are the
Limitations of Studies and Approaches in
Generative Adversarial Networks-Enabled
Human–Artificial Intelligence Collaborative
Design Tools?
Given the early stages of human–AI collaboration research in
the generative space, many of the articles reviewed presented
effectively “toy” examples or case studies that were deliberately
scoped to smaller examples to avoid the combinatory explosion
problem. The applicability of some of the examples presented in
this article will be tested as further research is conducted on
more complex examples, but as the work stands now, very few of
the systems described would be fit for a production
environment.

Due to the complexity of AI and ML, from an algorithmic and
architecture perspective, there is a gap in knowledge between
interaction/user-experience designers and ML engineers when it
comes to understanding ML’s limits, what it can and cannot
achieve (Yang, 2018; Yang et al., 2020). Barring two examples
(Guérin et al., 2017; Zhao and Ma, 2018), none of the other
reviewed works discussed the gathering of end-user
requirements, user experience design with any degree of detail.
This may reflect the fact that ML engineers are driving the
technology at this nascent stage. If AI technology is going to
bridge the gap between algorithmic and human concerns, then
HCI and UX designers have a vital role to play. From a research
perspective, having a stronger initial focus on requirements
gathering and human concerns would significantly improve
both the final system and ground them in real-world practical
problems.

Related to the previous point, the lack of systematic, robust
user studies presents a significant limitation of the studies
presented in this review. Close to half of the systems were not
tested with users (n � 10), or when they did, little details of the
testing were published (n � 6). Participant counts varied greatly,
from 6 to 26. Some studies used experts, and some used novice
users. Optimally, both groups’ performance would be examined
during a study, but only two articles adopted this approach.

We are currently living in a 4K, soon to be 8K, world when
considering consumers’ expected image resolution. Further to
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consumer displays, there has been increasing adoption of
immersive environments with massive resolutions (Lock et al.,
2018; Bourke and Bednarz, 2019). Due to the computational cost,
architecture complexity, and difficulty in training GAN models,
the current state of the art outputs images at 512 × 512 px. While
some of these results are very impressive and have garnered much
media attention, how much real-world value and penetration will
these systems achieve without a marked increase in visual fidelity?
There is no doubt that the quality of results will continue to
improve as architectures evolve, but right now, it remains a major
limiting factor.

6.3 Research Question 3: What Are the
Future Research Avenues and Directions in
the Domain of Generative Adversarial
Networks-Enabled Human–Artificial
Intelligence Collaborative Design Tools?
The “Double Diamond” design process model (UK, 2005) is
among the most well-known and cited extant design process
visualizations. It is referenced widely in the HCI/ML literature,
and authors have attempted to adapt it to cater to ML systems
(Yang et al., 2020). ML presents some fundamental problems
that make its incorporation into such a design process
challenging. First, rapid prototyping of ML systems can be
very difficult to achieve in practice. Networks can take a long
time to train and iterate over. Second, the results of the
developed system are fundamentally constrained by the
available data. Working with artists and designers to
investigate how current processes can be adapted to cater to
ML remains an essential avenue for research.

One fascinating piece of work was the BasketballGAN
framework (Hsieh et al., 2019). It was notable that it was the
only work that looked to visualize not simply a result, given a
proposed design, but also a visualization of how that result would
evolve over time. While this is not a genuinely novel concept,
many simulation-based approaches exist to solve similar
problems. It does represent a novel approach in the GAN
space. Taking crowd simulation as an example, we see several
GAN-based solutions for modeling behavior (Gupta et al., 2018;
Amirian et al., 2019), but these models only take current agent
states into account. A wide range of factors affect crowd behavior,
for example, cultural factors (Fridman et al., 2013), density
(Hughes et al., 2015), and group goals (Bruneau et al., 2014).
Combining a similar approach to BasketballGAN, current
methods could greatly improve crowd behavior and allow
exploration of semi-scripted scenarios. Similarly, this concept
could be extended to many problems and research fields.

One of the notable aspects of many of the works that we have
reviewed is that users get instantaneous visual feedback based on
their input (Keim et al., 2008). This allows the user to develop a
relationship with the system and understand its features and
limitations. As we mentioned in the previous section, ML
solutions can fail in highly unpredictable ways. These failures
can lead to a loss of user confidence and trust. One emerging
field of research that seeks to mitigate this problem is XAI (Biran
and Cotton, 2017; Hughes et al., 2020). XAI aims to look within

the black-box and extract information or explanations for the
algorithm’s output. In addition to providing tools to assist with
trust and accountability, XAI can assist with debugging and bias
in ML. The inputs and outputs and network design of ML
algorithms are ultimately still decided with human input
(human-in-the-loop) and, as such, are often subject to
human errors or bias. Explanations from XAI-enabled
algorithms may uncover potential flaws or issues with this
design. Bau et al. (2019) presented DissectionGAN, a
framework designed to examine the extent to which GANs
learn image composition. To train their system, the authors
first generated a series of images and then identified neurons
within those images that correlated with meaningful object
concepts. A user can switch these neurons on or off using
their system, and the corresponding objects will be added or
deleted. In this way, the system extracts meaning from the
network that it can relay to the user in a useful manner. The
LogicGAN system, presented by Graves et al. (2020), adapts
recent advances in XAI (Lundberg and Lee, 2017) to the GAN
space. Ordinarily, the discriminator network of a GAN simply
reports one real-numbered value of corrective feedback to the
generator network. LogicGAN incorporates an explanation
network that allows for additional information regarding
what features were important/unimportant in the
discriminator’s decision back to the generator, in effect
“explaining to the AI.” The explanations can also be explored
by a user or ML engineer. These recent examples represent
important steps forward in improving user trust and potential
avenues for further research.

There is a fundamental question around a generative model’s
ability to navigate outside its example space, generating more
than simply re-combinations of the input. In section 6.1.4, we
discussed some examples from the fashion field; one
nonacademic example of note was the work by the cross-
discipline team responsible for the Internet series of case
studies, “How to generate (almost) anything” (Cameron and
Yanardag, 2018). Their fashion design case study closely
matched the work of Kato et al. (2019), but they trained their
model on a database of cover art of vintage sewing patterns. Due
to the restricted training time, the authors noted that the AI made
some interesting mistakes, such as combining standard sleeves
and bell sleeves within the same dress. Also, it tended to blend in
elements from the background into the final design. These
“mistakes” were inspirational for the pattern makers and led
to final patterns that would probably not exist but for the training
restrictions. In essence, this poses a critical question around the
power of generative models. Often, the model is merely
generating re-combinations of existing ideas. This is a
limitation of an ideal GAN, since a perfectly trained GAN
generator will reproduce the training distribution. Such a
model cannot directly generate an image based on new
fundamental principles because such an image would not look
anything like it has seen in its training data. Other artists are
explicitly exploring this idea (Olszewska, 2020), using GANs to
create interesting new artworks. It may be the case that an
imperfect GAN can be more artistically interesting than its
ideal counterpart.
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7 LIMITATIONS

Due to the criteria we imposed, the final sample size of articles
is relatively small, limiting what broad conclusions or models
can be elaborated at this point. However, it does represent the
state of the research in the area at the moment. This would
indicate that there is a large space for researchers to examine
and exploit.

8 CONCLUSION

Leveraging the power of generative networks to create interfaces
and systems that add to the creative toolbox of design
practitioners is still in its early stages. This review has
explored the current literature in human–AI collaboration
involving GANs in the design space. We have shown that
while the work in the area is still nascent, some powerful tools
are starting to emerge. Trends are beginning to appear in terms of
areas that researchers are focusing on, sketch-based interfaces, in
situ design, and end-user–driven interface design.

This article has described current approaches, while also
identifying a range of limitations in this field of research,
primarily finding a lack of focus on the end-user when
developing training sets and designing interfaces, and limited
outcomes in terms of scalability or professional usability. If this
technology is going to make the break-through to mainstream
adoption, a stronger focus on collaboration and the end-user is
needed.
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