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Subtype and Stage Inference (SuStaIn) is an unsupervised learning algorithm that uniquely
enables the identification of subgroups of individuals with distinct pseudo-temporal
disease progression patterns from cross-sectional datasets. SuStaIn has been used to
identify data-driven subgroups and perform patient stratification in neurodegenerative
diseases and in lung diseases from continuous biomarker measurements predominantly
obtained from imaging. However, the SuStaIn algorithm is not currently applicable to
discrete ordinal data, such as visual ratings of images, neuropathological ratings, and
clinical and neuropsychological test scores, restricting the applicability of SuStaIn to a
narrower range of settings. Here we propose ‘Ordinal SuStaIn’, an ordinal version of the
SuStaIn algorithm that uses a scored events model of disease progression to enable the
application of SuStaIn to ordinal data. We demonstrate the validity of Ordinal SuStaIn by
benchmarking the performance of the algorithm on simulated data. We further
demonstrate that Ordinal SuStaIn out-performs the existing continuous version of
SuStaIn (Z-score SuStaIn) on discrete scored data, providing much more accurate
subtype progression patterns, better subtyping and staging of individuals, and
accurate uncertainty estimates. We then apply Ordinal SuStaIn to six different sub-
scales of the Clinical Dementia Rating scale (CDR) using data from the Alzheimer’s
disease Neuroimaging Initiative (ADNI) study to identify individuals with distinct patterns
of functional decline. Using data from 819 ADNI1 participants we identified three distinct
CDR subtype progression patterns, which were independently verified using data from
790 ADNI2 participants. Our results provide insight into patterns of decline in daily activities
in Alzheimer’s disease and a mechanism for stratifying individuals into groups with
difficulties in different domains. Ordinal SuStaIn is broadly applicable across different
types of ratings data, including visual ratings from imaging, neuropathological ratings and
clinical or behavioural ratings data.
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INTRODUCTION

Characterisation of disease progression patterns and
heterogeneity among individuals can provide fundamental
insights into the biology of a disease and is key to developing
tools for patient stratification that can support precision medicine
and healthcare. Disease progression models (Fonteijn et al., 2012;
Jedynak et al., 2012; Donohue et al., 2014; Oxtoby et al., 2014;
Young et al., 2014; Bilgel et al., 2016; Iturria-Medina et al., 2016;
Schiratti, 2017; Koval et al., 2018; Li et al., 2018; Marinescu et al.,
2019; Venkatraghavan et al., 2019; Firth et al., 2020) reconstruct
the long-term temporal evolution of disease biomarkers from
cross-sectional or short-term longitudinal data, enabling
diagnosis, prognosis and stratification from biomarker
measurements. In contrast to supervised machine learning
techniques such as classification, which focus on a single
disease stage, disease progression models infer fine-grained
temporal patterns, providing the ability to generalise across
disease stages and quantify disease trajectories in previously
unseen detail. Disease progression models were primarily
developed for use in Alzheimer’s disease, where the decades-
long disease process prevents the collection of long-term
datasets that span the full disease time course, but they are
increasingly being applied in other neurodegenerative diseases,
such as Multiple Sclerosis (Eshaghi et al., 2018) and
Huntington’s disease (Wijeratne et al., 2018) and other long-
term chronic conditions, such as respiratory diseases (Young
et al., 2020b). However, the majority of disease progression
modelling techniques rely on the assumption that all individuals
follow a single common disease progression pattern, and so are
unable to model disease subtypes which are prevalent in many
diseases, and particularly in neurodegenerative diseases.
Clustering identifies disease subgroups (Whitwell et al., 2009;
Nettiksimmons et al., 2010, 2013, 2014; Noh et al., 2014; Racine
et al., 2016; Zhang et al., 2016; Ferreira et al., 2020; Habes et al.,
2020), providing new insights into disease heterogeneity, but
lacks the ability to generalise across different disease stages, and
so is unable to distinguish heterogeneity arising from differences
in disease stage from heterogeneity due to the presence of
disease subtypes.

The Subtype and Stage Inference (SuStaIn) algorithm (Young
et al., 2018) allows disease progression modelling to be used in
combination with clustering to identify subgroups of individuals
with distinct disease trajectories. SuStaIn simultaneously clusters
individuals into subgroups and characterises the trajectory that
best defines each subgroup, thus capturing heterogeneity in both
disease subtype and disease stage. The SuStaIn algorithm has been
applied in a range of conditions including Alzheimer’s disease
(Young et al., 2018; Aksman et al., 2020; Garcia et al., 2020; Vogel
et al., 2021), frontotemporal dementia (Young et al., 2018; Young
et al., 2020a), Multiple Sclerosis (Eshaghi et al., 2020) and
Chronic Obstructive Pulmonary disease (Young et al., 2020b).
From a mathematical perspective any disease progression model
can be used in combination with SuStaIn, but in practice some
disease progression models may be unfeasibly computationally
intensive. Two disease progression models have been used with
SuStaIn to date: the event-based model (Fonteijn et al., 2012;

Young et al., 2014; Firth et al., 2020) and the piecewise linear
z-score model (Young et al., 2018). The event-based model
describes disease progression as a series of events, where each
event corresponds to a new biomarker becoming abnormal. The
piecewise linear z-score model describes disease progression as a
series of stages, with each stage corresponding to a biomarker
linearly increasing to a new z-score relative to a control
population. The advantage of each of these two models is that
they are not too computationally intensive and work with purely
cross-sectional data, enabling SuStaIn to perform stratification
based on a single visit.

As is the case with most disease progression models, the
disease progression models used in combination with SuStaIn
to date are designed to take continuous biomarker
measurements as input, for example those derived from
blood or fluid samples or medical imaging. Whilst
continuous measures offer fine-scaled resolution and so can
provide high precision, discrete ordinal data, such as visual
ratings of images, neuropathological ratings, and clinical and
neuropsychological test scores can provide unique and
complementary information. Clinical and cognitive test
scores, for example, are widely collected in clinical settings
and directly measure skills and symptoms that affect an
individual’s quality of life and reflect the severity of their
disability. Meanwhile, neuropathological ratings offer direct
measurement of disease pathologies, and thus can provide
unique insights into the disease biology not possible with other
techniques. Where imaging is used in a clinical setting, visual
ratings of images are often already integrated into the clinical
workflow, and thus can underpin diagnostic, prognostic and
stratification tools that are more readily integrated into clinical
practice. However, such measurements are not readily
analysable by the majority of disease progression models,
and neither of the disease progression models currently
available for use with SuStaIn accommodate discrete ordinal
data. The event-based model (Fonteijn et al., 2012; Young
et al., 2014; Firth et al., 2020) doesn’t model different severity
levels, instead assuming each event is a transition from
‘normal’ to ‘abnormal’. The piecewise linear z-score model
(Young et al., 2018) doesn’t allow for discrete data as it
describes continuous biomarker trajectories with gaussian
noise. There is a need for the development of disease
progression modelling techniques that can be used on
discrete ordinal data to enable a broader range of analyses
to be carried out on these data types, in line with the techniques
already available for continuous data.

Here we introduce the scored events model, allowing SuStaIn
to be used with ordinal data. The scored events model describes
disease progression as a series of events, where each event
corresponds to a biomarker transitioning to a new score. We
term the resulting algorithm ‘Ordinal SuStaIn’. We verify the
validity of Ordinal SuStaIn on simulated data, and that it out-
performs the alternative option of using the existing piecewise
linear z-score model (‘Z-score SuStaIn’) on ordinal data. We then
demonstrate Ordinal SuStaIn by characterising heterogeneous
trajectories of decline in subcategories of the Clinical Dementia
Rating (CDR) scale.
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MATERIALS AND METHODS

The Scored Events Model
We propose a scored events model to describe disease
progression in Ordinal SuStaIn. The scored events model
describes disease progression as a series of events, where
each event corresponds to the transition of a biomarker to a
new score. The occurrence of an event Eiw in biomarker i for
score w is informed by the measurements xij of biomarker i in
subject j, where each biomarker has its own set of scores
wir � wi1 . . . wiWi, and starts from a minimum score wi0.
The whole data set X � {xij

∣∣∣∣i � 1 . . . I, j � 1 . . . J} is the set
of measurements of each biomarker in each subject. The most
likely ordering of the scored events is the sequence S that
maximises the data likelihood

P (X|S) � ∏J
j�1

⎡⎣∑K
k�0

P(k)∏I
i�1

P(xij∣∣∣∣Eiw)⎤⎦ ,
where w � s(i, k) is the score reached by biomarker i at stage k in
the sequence S; at stage 0, w � wi0 for all biomarkers. The
number of stages K is defined by the number of scored events

included in the model, K � 1 + ∑I
i�1 Wi, i.e., the total number of

scores included across all biomarkers. The form of the

distribution P(xij
∣∣∣∣Eiw) is fully flexible and can be chosen by

the user. The scored events model simply takes as input the
probability each datapoint has each score: for each
measurement xij of biomarker i in subject j the user specifies
the probability P(xij

∣∣∣∣Eiw) that the ‘true’ score of measurement xij
is Eiw for each score w as a matrix with dimensions J ×Wi for
each biomarker i. Here we use a categorical distribution (see
Figure 1 for a visualisation) where

P(xij|Eiw) �
⎧⎪⎪⎨⎪⎪⎩

p if xij � w

1 − p
Wi

if xij ≠w

thus p indicates the proportion of correctly scored individuals for
each biomarker, and all other scores are assumed to be equally
probable.

Ordinal SuStaIn
The SuStaIn algorithm (Young et al., 2018) assumes a dataset
consists of c clusters of individuals (subtypes) that undergo a
common disease progression pattern, Sc. Each individual is a
sample of an unknown subtype c at an unknown stage k along the
disease progression pattern for that subtype. SuStaIn
simultaneously optimises subtype membership and subtype
progression patterns (which describe the stages of the disease).
SuStaIn fits an increasing number of clusters up to a user-defined
maximum, using Markov Chain Monte Carlo (MCMC) sampling
to obtain samples of the progression pattern for each subtype,
providing an estimate of the posterior distribution of each
subtype progression pattern. Information criterion can be used
to choose the optimal number of clusters by evaluating the
number of clusters that best balances accuracy and complexity,
such as the Cross-Validation Information Criterion used in
(Young et al., 2018). Our proposed Ordinal SuStaIn algorithm
uses the scored events model detailed above to describe the
evolution of biomarkers at different stages. To this end,
Ordinal SuStaIn uses the same implementation of the SuStaIn
algorithm as in (Young et al., 2018), but replaces the data
likelihood P(X|Sc) for each subtype c with that of the scored
events model described above.

Simulated Data
We generated a series of simulated datasets to test the
performance of Ordinal SuStaIn. To generate each dataset we
randomly chose C subtype progression patterns, each described
by a sequence S in which a set of scored events occur. We fixed the
expected proportion πc of individuals belonging to each subtype c
to be

πc � C − c + 2

∑C
c�1 [C − c + 2],

or equivalently,

πC−c+1 � c + 1

∑C
c�1 [c + 1],

such that the proportion of individuals in each subtype decreased
from the most prevalent subtype c � 1 to the least prevalent

FIGURE 1 | Illustration of simulation settings. Subfigure (A) shows P(xij
∣∣∣∣Eiw) for the default proportion of correctly scored individuals p � 0.9. Subfigure (B) shows

P(xij
∣∣∣∣Eiw) for the setting p � 0.75. P(xij

∣∣∣∣Eiw) can also be set to vary for each biomarker i and/or subject j. Subfigure (C) shows the expected number of datapoints for each
stage of each subtype for each simulation setting.
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subtype c � C. We then randomly assigned j � 1 . . . J individuals to
c � 1 . . .C subtypes and k � 0 . . .K stages, using a weighted
random sampling of subtype membership cj based on the
proportion πc of individuals belonging to each subtype, and a
uniform random sampling of stage kj. The set of expected
biomarker scores for each individual Wj � {wi ∀ i where wi �
s(i, kj) if kj > 0 and wi � wi0 if kj � 0} was then evaluated and
each individual’s biomarker data Xj was then sampled according
to the categorical distributionP(xij � wij) � p and P(xij ≠wij) � 1−p

Wi
,

such that P(xij
∣∣∣∣Eiw) follows the categorical distribution described

above, as illustrated in Figures 1A,B. In our experiments we varied
the number of biomarkers I, number of subjects J , number of
subtypes C, proportion of correctly scored individuals p and a
proportion of misdiagnosed individuals f who followed random
subtype progression patterns not included in the simulated set of
sequences S. By default we fixed the simulation settings to I � 10,
J � 250, C � 2, p � 0.9, and f � 0, varying each setting in turn to
test settings of I � [5, 10, 15], J � [100, 250, 500],
C � [1, 2, 3, 5], p � [0.75, 0.9], and f � [0, 0.05, 0.1]. We
fixed the number of scored events to Wi � 3 for all biomarkers i.
Each experiment was performed three times for different randomly
chosen subtype progression patterns and simulated datasets. The
expected number of datapoints for each stage of each subtype varies
across the different simulation settings, as illustrated in Figure 1C.

Comparison With Z-Score SuStaIn
We performed one further simulation in which we used the
default settings to generate simulated data but used Z-score
SuStaIn rather than Ordinal SuStaIn to estimate the subtype
progression patterns and subtypes and stages of individuals.
Z-score SuStaIn uses a piecewise linear z-score model of
disease progression, which describes disease progression as a
series of events, where each event corresponds to a biomarker
reaching a new z-score relative to a control population. The data
in the control population is assumed to be normally distributed
and the data is z-scored using this control population such that
the control population has a mean of 0 and standard deviation of
1. In the piecewise linear z-score model, the biomarkers start at 0
(at stage 0), accumulating linearly between z-score events (each of
which corresponds to a new stage) and accumulate to a final
maximum z-score (reached at the last stage). The z-score events
and the maximum z-score are specified by the user. To apply
Z-score SuStaIn we z-scored the data using a control population
consisting of individuals assigned to stage 0 in each experiment.
The z-score events in Z-score SuStaIn were set to be the same as
those in Ordinal SuStaIn by z-score transforming the score
corresponding to each scored event. The maximum z-score
was set to be the same as the maximum score of the scored
event model by z-score transforming the maximum scores.

Performance Evaluation: Progression
Pattern Estimation
We estimated the most probable progression pattern Sc from the
MCMC samples of the progression pattern by ordering the scored
events according to their mean position in the sequence across
samples. We measured the accuracy of the subtype progression

patterns by calculating the average Kendall rank correlation τ
(Kendall, 1945) between the most probable subtype progression
patterns Sc estimated by SuStaIn and the ground truth subtype
progression patterns Ŝc in each simulation. This is computed as

τ � P − Q��������������������(P + Q + T)(P + Q + U)√ ,

where P is the number of concordant pairs, Q is the number of
discordant pairs, T is the number of ties in Sc, and U is the number of
ties in Ŝc. Correspondence between the ground truth and simulated
subtypes was achieved by matching each simulated subtype
progression pattern Sc with the most similar ground truth subtype
progression pattern Ŝc. In nearly all experiments this was equivalent to
matching the ground truth and simulated subtype progression
patterns based on the proportion of individuals belonging to each
subtype. The exception was for experiments with C � 5 subtypes in
which the fraction would sometimes be swapped between subtypes of
similar sizes, and so matching the subtype progression patterns based
on their correspondence with the ground truth ensured that
correspondence was achieved between subtypes of similar sizes. We
estimated the confidence in the position assigned to each scored event
by evaluating the proportion of MCMC samples in which each scored
event appeared in the same position as in the most probable
progression pattern. We evaluated the accuracy of the confidence
estimate by determining whether the ground truth position of each
scored event fell within the 95% confidence estimates output by
SuStaIn. To do this we tested whether the ground truth position of
each scored event was within two standard deviations of the estimated
mean position of each scored event across MCMC samples.

Performance Evaluation: Subtyping and
Staging
We computed the probability each individual belonged to each
subtype and stage by computing the probability they belonged to
each subtype (summed over stage) and stage (summed over subtype)
for each MCMC sample and then averaging over MCMC samples,
thus taking into account the uncertainty in the progression pattern of
each subtype. We then assigned each individual to their most
probable subtype and most probable stage. We estimated the
confidence of the subtype and stage assignments by evaluating
the probability of the subtype and stage that each individual had
been assigned to. We evaluated the accuracy of the confidence
estimates by determining whether the ground truth subtype and
stage of each individual fell within the 95% confidence estimates
output by SuStaIn. To do this we tested whether the ground truth
subtype of each individual was assigned an average probability of at
least 0.05, and whether the ground truth stage of each individual had
a cumulative probability of more than 0.025 and less than 0.975.

Performance Evaluation: Number of
Subtypes
When comparing the estimated subtype progression patterns and
subtype and stage assignments with the ground truth, we fixed the
number of subtypes to be the same as the ground truth number of
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subtypes to enable a direct comparison. To give an indication of
the accuracy of the number of subtypes estimated by SuStaIn we
fitted up to C + 1 subtypes in each experiment. We then evaluated
whether the 95% confidence intervals of the overall model
likelihood (obtained from the MCMC samples of the model
likelihood) for the ground truth number of subtypes C
overlapped with the 95% confidence intervals of the overall
model likelihood for one less (C − 1) subtype and one more
(C + 1) subtype than the ground truth number of subtypes. We
considered SuStaIn to underestimate the number of subtypes if
the 95% confidence intervals of the C subtypes model likelihood
overlapped the confidence intervals for C − 1 subtypes, or if the
average model likelihood was greater for C − 1 subtypes. We
considered SuStaIn to overestimate the number of subtypes if the
average model likelihood was greater for C + 1 subtypes than C
subtypes, and the 95% confidence intervals of the model
likelihood for C + 1 subtypes didn’t overlap the confidence
intervals for C subtypes.

Alzheimer’s Disease Neuroimaging
Initiative Data
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). The ADNI was launched in 2003 by the
National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical
companies and non-profit organisations, as a $60 million,
5 years public-private partnership. For up-to-date information,
see http://www.adni-info.org. Written consent was obtained from
all participants, and the study was approved by the Institutional
Review Board at each participating institution.

CDR sub-scores (Hughes et al., 1982; Morris, 1993) from 819
participants in ADNI1 and 790 participants in ADNI2 were
collated to obtain two independent datasets measuring sub-
scores of memory, orientation, judgement, community, home
and personal care. Each CDR sub-score can be assigned a score of
0 (no impairment), 0.5 (questionable impairment), 1 (mild
impairment), 2 (moderate impairment) or 3 (severe
impairment). Of the 819 ADNI1 participants, 229 were
cognitively normal, 397 had mild cognitive impairment and
193 had a dementia diagnosis. Of the 790 ADNI2 participants,
293 were cognitively normal, 349 had mild cognitive impairment
and 148 had a dementia diagnosis. We further collated follow-up
CDR sub-scores at 6, 12, 18, 24 and 36 months follow-up visits to
test the longitudinal consistency of the subtypes and stages
assigned by Ordinal SuStaIn.

We ran Ordinal SuStaIn separately on baseline data from each
of the ADNI1 and ADNI2 studies to obtain two independent
estimates of CDR subtype progression patterns. We set the
proportion p in P(xij|Eiw) with an accurate score to 0.75 for
each sub-score, based on the inter-rater reliability of CDR scores
in the literature (Schafer et al., 2004). None of the ADNI
participants had a score of three on any CDR sub-scale and so
this score was excluded from the scored events model. We
selected the optimal number of subtypes by performing three-

fold cross-validation in each dataset and evaluating the Cross-
Validation Information Criterion (Gelman et al., 2014; Young
et al., 2018).

Individuals were assigned to subtypes and stages at baseline
and at follow-up visits using Ordinal SuStaIn, with the subtyping
and staging being performed independently in each dataset
(i.e., using the subtype progression patterns estimated from
the baseline data in each dataset separately). Subtypes were
considered to be longitudinally consistent between a pair of
visits if both visits were labelled as the same subtype. Stages
were considered to be longitudinally consistent between a pair of
visits if the stage either remained the same or increased at the later
of the two visits.

RESULTS

Simulated Data: Progression Pattern
Figure 2A shows the accuracy of SuStaIn for estimating subtype
progression patterns under different simulation settings. In
general, Ordinal SuStaIn gave a good accuracy across all
settings, with a Kendall rank correlation between the estimated
subtype progressions and the ground truth of >0.63 for all
settings. When comparing Ordinal SuStaIn and Z-score
SuStaIn under the default settings, the Kendall rank
correlation using Z-score SuStaIn was only 0.33, compared to
0.95 for Ordinal SuStaIn. The confidence estimates of the position
of each scored event provided by Ordinal SuStaIn (Figure 2B)
gave a good indication of the true accuracy of the estimated
progression patterns measured against the ground truth
(Figure 2B reflects the trend in Figure 2A). Likewise,
Figure 2C shows that the ground truth position of each
scored event was generally within the 95% confidence intervals
estimated by Ordinal SuStaIn for at least 95% of scored events
(minimum of 94%, maximum of 100%). The confidence intervals
obtained using Z-score SuStaIn were much less accurate with only
69% of the ground truth positions of the scored events being
within the 95% confidence intervals estimated by Z-score
SuStaIn.

The Kendall rank correlation between the estimated
progression patterns and the ground truth varied substantially
with different simulation settings. The Kendall rank correlation
decreased substantially when the number of biomarkers was set to
I � 15 compared with I � 5 and I � 10, when the number of
subjects was set to J � 100 rather than J � 250 and J � 500, when
the number of clusters was set to C � 3 or C � 5 rather than C � 1
or C � 2, and when the proportion of correctly scored individuals
was set to p � 0.75 compared to p � 0.9. As shown in Figure 3A,
increasing the number of biomarkers, decreasing the number of
subjects and increasing the number of clusters all reduce the
number of datapoints per subtype and stage combination, with
this decrease in sample size correlating with the decrease in the
accuracy of the progression pattern. Figure 3A also shows that
decreasing the proportion p of individuals that are scored
correctly from p � 0.9 to p � 0.75, which makes the data
noisier, further decreases the accuracy of the estimated
progression patterns in addition to the effect of sample size.
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FIGURE 2 | Performance of SuStaIn for recovering progression patterns. (A) Accuracy of Ordinal SuStaIn for recovering the ground truth subtype progression
patterns, (B) the confidence SuStaIn assigned to the estimated subtype progression patterns, and (C) the accuracy of the confidence intervals SuStaIn assigned to the
estimated subtype progression patterns. The x-axis shows the experiments in which we varied the simulated number of biomarkers I (orange), number of subjects J (red),
number of subtypes C (purple), proportion p with an accurate score (i.e., the categorical probability each test score is accurate; blue), the proportion f of
misdiagnosis (i.e., the proportion of individuals that follow randomly chosen alternative progression patterns; green), and the choice of algorithm (either the proposed
Ordinal SuStaIn algorithm or the existing Z-score SuStaIn algorithm). The default value for each simulation setting is indicated with an asterisk on the x-axis.

FIGURE 3 |Relationship between sample size and accuracy. Each subfigure shows a scatter plot comparing the expected number of datapoints per stage for each
simulation and the accuracy of Ordinal SuStaIn for (A) estimating subtype progression patterns, (B) subtyping individuals, and (C) staging individuals. Each simulation
setting is plotted using the same colours used in Figures 2, 4, 5, except the default setting, which is shown in grey. The simulation using Z-score SuStaIn was excluded
from these figures.

FIGURE 4 | Performance of SuStaIn for subtyping individuals. (A) Accuracy of Ordinal SuStaIn for recovering the ground truth subtypes of individuals, (B) the
confidence SuStaIn assigned to the estimated subtypes, and (C) the accuracy of the confidence intervals SuStaIn assigned to the estimated subtypes. As in Figure 2,
the x-axis shows the experiments in which we varied the simulated number of biomarkers I (orange), number of subjects J (red), number of subtypes C (purple),
proportion p with an accurate score (i.e., the categorical probability each test score is accurate; blue), the proportion f of misdiagnosis (i.e., the proportion of
individuals that follow randomly chosen alternative progression patterns; green), and the choice of algorithm (either the proposed Ordinal SuStaIn algorithm or the
existing Z-score SuStaIn algorithm). The default value for each simulation setting is indicated with an asterisk on the x-axis.
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Simulated Data: Subtyping
Figure 4A shows how the accuracy of SuStaIn for subtyping
individuals varies with different simulation settings. SuStaIn
was able to subtype individuals with high accuracy, with more
than 92% of individuals being subtyped correctly for all
simulation settings. Figure 4B shows that the confidence
was a good reflection of the subtyping accuracy, following
the same trend as Figure 4A. Figure 4C shows that all
simulation settings gave 95% confidence intervals that were
correct in at least 95% of subjects (minimum of 97%,
maximum 100%). Figure 3B shows that the accuracy of the
subtyping was not particularly related to the sample size.
However, the sample size does remain reasonably large for
each subtype across all simulation settings: the last subtype in
the C � 5 experiment was the smallest, but still had an expected
sample size of 25 subjects.

Simulated Data: Staging
Figure 5A shows the accuracy of the SuStaIn stages of
individuals for different simulation settings. The SuStaIn
stages were around 80% accurate for most simulation
settings. There were two notable exceptions. The first was
when the proportion of correctly scored individuals was set to
p � 0.75, introducing more noise in the data and reducing the
staging accuracy to 53%. The second was when Z-score
SuStaIn was used rather than Ordinal SuStaIn, which
staged only 6% of individuals correctly. Figure 5B shows
that Z-score SuStaIn also has a lower confidence in the
stages assigned to each individual, but that the stages are
not within the 95% confidence interval estimated by Z-score
SuStaIn, with only 40% of individual’s stages falling within the
95% confidence interval. For all other settings the confidence
assigned by SuStaIn was a good reflection of the accuracy of
the stages (Figure 5B follows the same trend as Figure 5A),
and the confidence intervals were a good reflection of the
confidence in each individuals stage assignment (Figure 5C),

with at least the expected 95% of individuals ground truth
stages falling within the 95% confidence intervals estimated by
SuStaIn (minimum of 91% and maximum of 97%). Figure 3C
shows that the staging accuracy increases slightly with sample
size, but that the effect of noisy data (reducing the proportion
of correctly scored individuals from p � 0.9 to p � 0.75) is
much greater. Figure 6 shows the relationship between the
ground truth stage and the stage assigned by Z-score SuStaIn.
Z-score SuStaIn systematically underestimates the stage of
each individual, as well as being less accurate than Ordinal
SuStaIn.

Simulated Data: Number of Subtypes
The number of subtypes was estimated accurately for all
simulation settings, except when a proportion of
misdiagnosed individuals f were included, or when Z-score
SuStaIn was used instead of Ordinal SuStaIn. For f � 0.05,
SuStaIn over-estimated the number of subtypes in two out of
three experiments and for f � 0.10, SuStaIn over-estimated the
number of subtypes in all three experiments. Z-score SuStaIn
over-estimated the number of subtypes in two out of three
experiments.

Application to Clinical Dementia Rating
Sub-scores
Figure 7 shows the subtype progression patterns estimated
from applying Ordinal SuStaIn to CDR sub-scores in ADNI1
and ADNI2 separately. Three subtypes with distinct
progression patterns were identified independently in each
dataset, which we describe as 1) ‘typical’—the most numerous
group, with memory problems at early SuStaIn stages,
followed by difficulties with orientation and judgement and
problem solving, and then difficulties with home life and
community affairs, 2) ‘orientation-spared’—remaining
relatively well-oriented until later SuStaIn stages, and 3)

FIGURE 5 | Performance of SuStaIn for staging individuals. (A) Accuracy of Ordinal SuStaIn for recovering the ground truth stages of individuals, (B) the confidence
SuStaIn assigned to the estimated stages, and (C) the accuracy of the confidence intervals SuStaIn assigned to the estimated stages. As in Figures 2, 3, the x-axis
shows the experiments in which we varied the simulated number of biomarkers I (orange), number of subjects J (red), number of subtypes C (purple), proportion p with an
accurate score (i.e., the categorical probability each test score is accurate; blue), the proportion f of misdiagnosis (i.e., the proportion of individuals that follow
randomly chosen alternative progression patterns; green), and the choice of algorithm (either the proposed Ordinal SuStaIn algorithm or the existing Z-score SuStaIn
algorithm). The default value for each simulation setting is indicated with an asterisk on the x-axis.
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‘outliers’—not following the ‘typical’ or ‘orientation-spared’
CDR sub-score progression pattern. The progression patterns
were consistent between the two datasets, supporting the
existence of three Alzheimer’s subgroups with distinct
clinical progression.

Subtyping and Staging Using Clinical
Dementia Rating Sub-scores
Figures 8A,B show the distribution of the stages assigned to
individuals by Ordinal SuStaIn at the baseline visit in ADNI1 and
ADNI2. As expected, cognitively normal individuals had the

FIGURE 6 |Comparison of staging performance using Ordinal SuStaIn and Z-score SuStaIn. The top row shows scatter plots comparing the ground truth stage in
simulation and the estimated SuStaIn stage obtained from (A) Ordinal SuStaIn and (B) Z-score SuStaIn across three simulations (shown in different colours) performed
using the default settings. The bottom row shows histograms of the difference between the ground truth stage and the stage estimated by (C) Ordinal SuStaIn and (D)
Z-score SuStaIn across the three simulations.

FIGURE 7 | Clinical subtypes of Alzheimer’s disease based on CDR sub-scores. Subtypes of CDR ratings subtypes identified by applying Ordinal SuStaIn to (A)
ADNI1 and (B)ADNI2. Each entry in the diagram represents the proportion of MCMC samples in which a particular scored event appears at a particular position along the
progression pattern, with CDR � 0.5 shown in red, CDR � 1 in magenta and CDR � 2 in blue.
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lowest stages, followed by individuals with mild cognitive
impairment, whilst individuals with Alzheimer’s disease had
the highest stages. There was a clear separation between
cognitively normal and Alzheimer’s disease subjects, with all
cognitively normal subjects being assigned to stage 0 and all
Alzheimer’s disease subjects being assigned to stage 2 or above.
Figures 8C,D compare the stages assigned to individuals by
Ordinal SuStaIn at baseline and at follow-up. The follow-up
visits were generally longitudinally consistent, i.e., at follow-up
individuals either remained at the same stage or advanced in
stage compared to baseline. In ADNI 1, 2113 of 2456 follow-up
visits (86%) were longitudinally consistent, and in ADNI2,
1606 of 1885 follow-up visits (85%) were longitudinally
consistent.

The subtypes assigned to individuals by Ordinal SuStaIn
generally remained consistent at follow-up visits. Assigning
individuals to subtypes using CDR scores is difficult as several
of the stages are predicted to give the same CDR values across
more than one subtype. For example, at stage 5 of all subtypes,
CDR values are predicted to be 0 for the personal care rating
and 0.5 for all the other sub-scales. Likewise, at stage 6 of all
subtypes, CDR values are predicted to be 0 for the personal care
rating, one for the memory score, and 0.5 for all the other sub-
scales. Naively comparing each pair of visits that had CDR

scores available at both visits (excluding individuals assigned to
SuStaIn stage 0 at either visit and therefore unable to be
subtyped), we found that the same subtype was assigned at
both visits in 3,017 of 5,129 pairs of visits (59%) from ADNI1,
and 2035 of 2,728 pairs of visits (75%) from ADNI2.
Performing the same analysis but instead considering only
individuals confidently assigned to subtypes (probability
greater than or equal to 0.75), and thus removing
individuals who were at stages where the subtypes are
indistinguishable, we found that the same subtype was
assigned at both visits in 143 of 190 pairs of visits (75%)
from ADNI1, and in 157 of 169 pairs of visits (93%) from
ADNI2.

DISCUSSION

In this study we developed Ordinal SuStaIn, an extension of
the SuStaIn algorithm to allow SuStaIn to be used with
discrete scored data. We demonstrated strong performance
of Ordinal SuStaIn on simulated data and much better
performance than using Z-score SuStaIn, which is designed
for continuous data only. We applied Ordinal SuStaIn to
CDR scores to identify three CDR subtypes that were

FIGURE 8 | Staging individuals using CDR sub-scores. The top row shows histograms of the SuStaIn stages of individuals in (A) ADNI1 and (B) ADNI2. The bottom
row shows scatter plots comparing the SuStaIn stages of individuals at baseline and follow-up in (C) ADNI1 and (D) ADNI2. The size of each point represents the number
of individuals. CN � cognitively normal; MCI � mild cognirive impairment; AD � Alzheimer’s dsease.
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longitudinally consistent and replicable across independent
data from ADNI1 and ADNI2.

The simulation results highlight the scenarios in which
Ordinal SuStaIn performs best. In particular, the progression
patterns are more accurately estimated when the average number
of data points is more than three per stage. However, the
confidence estimates still provided accurate information about
the range of possible progression patterns and subtypes and
stages of individuals, regardless of the simulation setting. The
accuracy of the progression patterns also does not hugely impact
on the subtyping and staging accuracy. In general, noise in the
data has the largest effect of all settings, adversely affecting the
ability to estimate the progression patterns and the stages of
individuals. We also found that the number of subtypes is likely to
be overestimated when a proportion of misdiagnosed individuals
are included in the dataset. Misdiagnosed individuals are typically
grouped into an outlier cluster with no distinct progression
pattern.

We therefore propose the following guidelines for using
Ordinal SuStaIn:

• Report the uncertainty in the progression patterns and the
subtypes and stages of individuals by showing the positional
variance diagrams or other visual representations of the
uncertainty.

• In cases where there is low confidence take uncertainty into
account in any subsequent analysis and reporting of results
by clearly presenting the caveat that there is low confidence
in a particular progression pattern.

• Small clusters with high uncertainty (proportion of
individuals belonging to the cluster less than 10% and
high uncertainty in the progression patterns illustrated by
the positional variance diagrams) in the progression pattern
should be reported as possibly being groups of outliers
rather than subtypes.

• Where possible choose datasets and scored events to have an
average of more than three data points per stage.

• Where possible choose biomarkers with a good signal to
noise ratio.

Ordinal SuStaIn requires the user to input the probability
P(xij

∣∣∣∣Eiw) that the ‘true’ score of measurement xij is Eiw. This
allows complete flexibility in the probability distributions of the
scores, which can vary by biomarker, score, and even by
individual if desired. This allows the user to model, for
example, some scores being difficult to distinguish from one
another, whilst others are easily distinguished, or individualised
confidence ratings for each score. P(xij

∣∣∣∣Eiw) would ideally be
estimated by comparing assigned scores for each biomarker with
a ground truth, in which the scorer is blinded to the ground truth
score. In the absence of a ground truth, P(xij

∣∣∣∣Eiw) can be
approximated by looking at test-retest reliability.

Z-score SuStaIn performed poorly at estimating progression
patterns and stages of individuals for discrete data. Z-score
SuStaIn uses a piecewise linear z-score model, which assumes
that each biomarker transitions linearly between scores. This
alters the expected value of each biomarker at each stage, with the

majority of stages modelling biomarker values that don’t exist in
the data, leading to inaccuracy in the estimation of the subtype
progression patterns and the stages of individuals. Z-score
SuStaIn further assumes the errors on the data are normally
distributed, which means that there are predicted to be more
individuals with lower and higher scores than exist in the data.
This causes a systematic overestimation of the stages of
individuals at early stages and an underestimation of the
stages of individuals at late stages. In this case the overall
trend is to underestimate the stages of individuals as there are
more stages representing scored events that have a positively
skewed distribution than a negatively skewed distribution.
Z-score SuStaIn also tends to overestimate the number of
subtypes in the data to account for poor modelling of the
subtype progression patterns.

Ordinal SuStaIn identified three clinical Alzheimer’s
subgroups with distinct patterns of decline in CDR sub-scores.
The subgroups were independently identified in ADNI1 and
ADNI2 and the subtypes and stages were longitudinally
consistent at follow-up visits taken over a 3 year time frame.
These subgroups may simply illustrate different cognitive
trajectories experienced by individuals, there may be different
underlying biological disease processes (Mukherjee et al., 2018),
or there may be a proportion of individuals with other
neurodegenerative diseases or atypical variants (Scheltens
et al., 2017). Further work will be required to validate these
subtypes in a wider range of clinical settings, and to test whether
the subtypes correspond to distinct biological subgroups.

There are now three forms of SuStaIn that can be used in
different settings: the new Ordinal SuStaIn algorithm proposed
here, Z-score SuStaIn and Event-based SuStaIn. Ordinal
SuStaIn uses a scored events model to describe discrete
scored data, Z-score SuStaIn uses a piecewise linear z-score
model to describe continuous data with normally distributed
noise, and Event-based SuStaIn uses an event-based model to
describe discrete or continuous biomarkers transitioning from
normal to abnormal. Future work will explore whether it is
possible to develop an integrated version of SuStaIn that can
allow different types of data to be modelled simultaneously.
Extensions to model subtypes conditioned on different
variables would also be a valuable addition, for example
modelling how genetics, demographics, lifestyle factors,
multi-morbidity, and electronic health records are related to
subtype assignment or how subtype assignment alters the
probability of different outcomes, such as developing a
particular condition or long-term health outcomes. Another
important avenue for future work is incorporating
longitudinal data to estimate the time between different stages.

All forms of the SuStaIn algorithm rely on several
assumptions to infer temporal subtype progression patterns
from cross-sectional data. One assumption is that biomarker
trajectories increase monotonically with disease progression,
enabling identifiability of the progression patterns. This
monotonicity assumption is made at the population level
rather than at an individual level, which enables SuStaIn to
allow for reversion in disease stage; individuals who revert will
be assigned a lower stage at follow-up than at baseline. In
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future work there may be possibilities to relax this assumption
by allowing a subset of biomarkers to be non-monotonic or
incorporating longitudinal data to establish the time
directionality. Another design choice in the SuStaIn
algorithm is that the number of stages is fixed based on the
number of biomarkers and scores. This simplifies the discrete
optimisation procedure underlying SuStaIn by reducing the
number of dimensions of the search space but can lead to
redundant model complexity. Future versions will test whether
it is possible to optimise the number of stages to enable more
compact subtype progression patterns. However, under the
current version of the SuStaIn algorithm, stages of a subtype
progression pattern that are under-represented by samples
can be identified by looking at the uncertainty in the
positional variance diagrams. In addition, the model
complexity can be reduced pre-emptively by limiting the
number of features for small datasets, for example by using
the rule of thumb described earlier of ensuring at least three
subjects per stage. Another assumption that leads to
redundancy in the subtype progression patterns is that
each subtype progression pattern is unique; in fact, some
subtypes may merge or split at some points in the
progression. Future versions of the SuStaIn algorithm will
explore whether merging and splitting of subtype
progression patterns can be incorporated.

We proposed Ordinal SuStaIn, a variant of the SuStaIn
algorithm for use with discrete scored data. We demonstrated
that Ordinal SuStaIn out-performs available versions of SuStaIn
in this setting and provides good performance in simulation.
Ordinal SuStaIn is applicable to any discrete scored data. Here we
applied Ordinal SuStaIn to CDR scores to reveal three distinct
CDR subtypes in Alzheimer’s disease, however Ordinal SuStaIn is
readily applicable to visual ratings data, such as from
neuropathology or imaging, other clinical, neuropsychological
or behavioural scores, and across a wide range of conditions,
including other neurodegenerative diseases and respiratory
diseases.
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