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Late intrauterine growth restriction (IUGR) is a fetal pathological condition characterized by
chronic hypoxia secondary to placental insufficiency, resulting in an abnormal rate of fetal
growth. This pathology has been associated with increased fetal and neonatal morbidity
and mortality. In standard clinical practice, late IUGR diagnosis can only be suspected in
the third trimester and ultimately confirmed at birth. This study presents a radial basis
function support vector machine (RBF-SVM) classification based on quantitative features
extracted from fetal heart rate (FHR) signals acquired using routine cardiotocography
(CTG) in a population of 160 healthy and 102 late IUGR fetuses. First, the individual
performance of each time, frequency, and nonlinear feature was tested. To improve the
unsatisfactory results of univariate analysis we firstly adopted a Recursive Feature
Elimination approach to select the best subset of FHR-based parameters contributing
to the discrimination of healthy vs. late IUGR fetuses. A fine tuning of the RBF-SVM model
parameters resulted in a satisfactory classification performance in the training set
(accuracy 0.93, sensitivity 0.93, specificity 0.84). Comparable results were obtained
when applying the model on a totally independent testing set. This investigation
supports the use of a multivariate approach for the in utero identification of late IUGR
condition based on quantitative FHR features encompassing different domains. The
proposed model allows describing the relationships among features beyond the
traditional linear approaches, thus improving the classification performance. This
framework has the potential to be proposed as a screening tool for the identification of
late IUGR fetuses.

Keywords: late intrauterine growth restriction, machine learning, perinatal medicine, predictive monitoring, support
vector machines

INTRODUCTION

Antenatal fetal heart rate (FHR) is a widely used tool to monitor fetal wellbeing (Chen et al., 2011).
The assessment of fetal heart rate variability (HRV) has been reported to inform on the functional
state of the autonomic nervous system (ANS), thus providing an indication on the fetal development
throughout pregnancy. In the context of fetal pathological states, intrauterine growth restriction
(IUGR) is one of the most relevant complications of pregnancy and it has been reported to alter HRV
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(Huhn et al., 2011; Signorini et al., 2020b). IUGR is associated
with a decreased rate of fetal growth, which is the result of an
abnormal supply of maternal nutrients and placental transfer to
the fetus. IUGR is a pathological fetal state characterized by an
increased mortality and/or morbidity (Rosenberg, 2008; Smith
et al., 2013; Sharma et al., 2016). The two phenotypes of IUGR
(early and late) can be identified based on onset, evolution,
Doppler parameters modifications, and postnatal outcome
(Esposito et al., 2019).

In this paper we will focus on a population of late IUGR which
is a condition with substantial increased prevalence if compared
to early IUGR (Villar et al., 2014; Gordijn et al., 2016). The main
cause for the insurgence of late IUGR is fetal hypoxemia/hypoxia
secondary to placental insufficiency. Moreover, it is often
associated with multiple placental anomalies that by contrast
have less influence on placental resistance. Therefore, the
umbilical Doppler indices are often unaffected, thus making
the diagnosis of late IUGR more difficult, due to the large
variability of fetal parameters on growth charts in the third
trimester (Mureşan et al., 2016). Late IUGR is suspected when
the fetal growth curve slows down or does not physiologically
increase as a function of gestational age. Undetected IUGR in the
third trimester of pregnancy represents the main cause of
unexplained stillbirths in low-risk pregnancies, thus better
antenatal diagnosis and treatment and timely delivery could
diminish the risks significantly (Warland and Mitchell, 2014).
In order to investigate identification of late IUGR through FHR
analysis, we used the cardiotocography (CTG), which combines
the measure of FHR through a Doppler ultrasound probe with the
detection of uterine contractions using a pressure sensor.
Although CTG analysis is still performed visually in the
majority of Ob-Gyn clinical settings [following guidelines
edited by national and international scientific societies, such as
the International Federation of Gynecology and Obstetrics
(FIGO) (FIGO, 1986)], a progressive transition to
computerized approaches has been reported in recent years.
Computerized systems are able to extract FHR parameters
from multiple domains [time domain and frequency domain,
complexity/nonlinear methodologies (Task Force of The
European Society of Cardiology and The North American
Society of Pacing and Electrophysiology, 1996)] and represent
the initial step toward multiparametric and multidimensional
FHR analyses able to benefit from machine learning algorithms.
As a matter of fact, the FHR regulation is the result of multiple
and diverse neurological feedback loops, hormones, and various
external factors, thus resulting into complex temporal dynamics,
which are usually missed by the simple visual inspection.
Additionally, previous studies have shown the strength of a
multivariate framework in detecting fetal acidemia (Spilka
et al., 2017) and a previous paper from our group used
machine learning approaches to diagnose IUGR, but mainly
focusing on the early phenotype (Signorini et al., 2020b).

In this study, classical FHR features were complemented with
advanced nonlinear features and subsequently employed to train
several machine learning algorithms for the detection of late
IUGR in a database of 262 fetuses. Results highlighted the
enhanced performance of nonlinear features over traditional

parameters and the significant improvement in specificity and
sensitivity of multiparametric machine learning approaches over
univariate analysis. Furthermore, by utilizing an interpretable
variant of support vector machines, we were able to identify the
features that contributed the most to classification accuracy. This
implementation provided meaningful and interpretable results
with the potential of their translation into clinical practice.

MATERIAL: DATABASE AND
PREPROCESSING

Dataset
Antepartum FHR recordings were collected at the Azienda
Ospedaliera Universitaria—Federico II (Napoli, Italy). Data
analyzed in the investigation were collected as part of the
routine clinical examinations administered to pregnant women
by the Italian healthcare system. Pregnant women signed
informed consent for the utilization of their data for research
purposes. The ethical committee and the IRB of Azienda
Ospedaliera Universitaria—Federico II, Napoli, Italy, approved
the enrollment of pregnant women as participants in the study
and the utilization of the routine examination for research
purposes. Traces were recorded in a controlled clinical
environment, with participants lying supine on a bed
undergoing a standard nonstress test protocol. Data were
acquired using Philips cardiotocography (CTG) fetal monitor
Avalon FM30 connected to a computer. The device employs an
autocorrelation technique to compare the demodulated Doppler
signal of a given heartbeat and the subsequent one. The resulting
resolution for beat detection is below 2 ms. The derived CTG
signal consists of a series of FHR values sampled at 2 Hz and
expressed in beats per minute (bpm). Additionally, each FHR
sample is accompanied by an indication of signal quality: optimal,
acceptable, or insufficient based on the results of autocorrelation
technique. We excluded pregnant women with maternal health
conditions known to affect FHR regulation (gestational diabetes,
preeclampsia, and hypertension), psychiatric medication use
during pregnancy (SSRIs, antidepressants, classic
antipsychotics, atypical antipsychotics, mood stabilizers,
stimulants, antianxiety medications, or anticonvulsants), any
recreational drug use during pregnancy, and congenital heart
anomalies. Fetuses with congenital heart anomalies and genetic
disorders were also excluded. The cohort analyzed in this work
comprised 102 late intrauterine growth restriction (IUGR) fetuses
and 160 healthy fetuses matched for GA at the first CTG
examination. Fetuses in both groups underwent a routine
ultrasound examination at approximately 34 weeks GA which
did not exhibit any alteration in fetal growth or abnormalities in
neither the middle cerebral artery nor the ductus venosus
Doppler velocimetry. Once subsequently admitted for a CTG
recording at 37.54 ± 0.77 (mean ± std) weeks, fetuses in the
healthy group did not show any abnormality in the FHR trace,
whereas IUGR fetuses (admitted at 36.94 ± 0.59 weeks) did
present irregularities in their CTG recordings. A concurrent
ultrasound examination showed alteration in both growth and
Doppler profiles in this group of fetuses. The clinical definition of
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late IUGR adopted in this work reflects the guidelines reported in
Gordijn et al. (2016). The adopted classification combines
standalone information from multiple domains—gestational
age, congenital abnormalities, absolute size measurements, and
functional parameters—as well as their interactions (Gordijn
et al., 2016). Each prenatal fetal condition was verified after
delivery to confirm group membership previously suspected at
the CTG timepoint. The length of the CTG recordings considered
in this study is 40 min in both populations. This guaranteed that
FHR data were acquired during both activity and quiet periods for
any given fetus included in the study. Participants were not
included in the analysis if their associated recordings were of
insufficient duration and/or with <30 usable 1-min epochs and/or
<10 3-min epochs (see next section for definition of epochs).
Clinical data of the analyzed populations are reported in Table 1.
Fetuses in the healthy group were characterized by higher
birthweight, Apgar score 1 min, and rate of spontaneous
vaginal delivery compared to the considered IUGR population.
Similar results have been reported in other populations of early
(Stampalija et al., 2015) and late (Esposito et al., 2019) IUGR
fetuses.

Fetal Heart Rate Time Series and
Preprocessing
The equipment used to record the data under investigation
provides each FHR sample with an indication of signal quality:
optimal (green), acceptable (yellow), or insufficient/absent (red)
based on the results of the embedded autocorrelation procedure
utilized to extract the signal itself (Lawson et al., 1983; Signorini
et al., 2003). The first preprocessing step toward the computerized
analysis of the acquired traces consisted in subdividing each FHR
recording in shorter segments of length 120 points (60 s) or 360
points (180 s). The choice of 1-min or 3-min subintervals is
related to the different time scales on which CTG-derived features
are computed, whose procedure will be described in the following
sections. Subsequently, segments including more than five
consecutive red-quality points or more than 5% of red-quality
samples (6 FHR values out of 120 points per subinterval or 18
FHR values out of 360 points per subinterval) were discarded in
further analysis. Lastly, isolated insufficient-quality points were
substituted, through a moving average procedure, with the

average of the nearest five FHR points. For an in-depth
description of the preprocessing steps adopted in this
investigation, see previous publications by our group (Arduini
et al., 1993; Signorini et al., 2003; Magenes et al., 2007).

METHODS: FEATURES AND RADIAL BASIS
FUNCTION SUPPORT VECTOR MACHINES

Features
The present contribution focuses on building a machine learning-
based screener of late IUGR pathology fed with a set of FHR
features rather than a single feature design-oriented approach.
Thus, the employed features were selected on the basis of the a
priori knowledge on various quantifiers of fetal ANS dynamics in
different domains, complemented by fetal and maternal
information. Figure 1 reports a schematic workflow for the
framework implemented in this work.

Morphological and Time Domains
Morphological and time domain features represent the
computerized and automated extraction of FIGO guidelines
from FHR recordings, in terms of baseline evolution,
accelerations/decelerations, and variability. Starting from the
identification of FHR baseline [by means of Mantel’s approach
(Mantel et al., 1990)], it is possible to derive the automatic counts
of large accelerations (more than 15 beats per minute over the
baseline lasting 15 s or more) (#acc_large), small accelerations
(fewer than 15 beats per minute) (#acc_small), decelerations
(#dec), and contractions (#contr) (Rabinowitz et al., 1983;
FIGO, 1986). FHR variability features are derived from FHR
signal excluding events of accelerations and decelerations.
Specifically, the overall variability is quantified by the mean
and standard deviation of entire FHR signal (FHR_mean and
FHR_std). Short Term Variability (STV), Interval Index (II), and
Delta provide estimates of short term FHR variability considering
1-min FHR intervals. Long Term Irregularity (LTI) quantifies
variability on a longer time scale (3-min FHR intervals). A more
comprehensive description and characterization of the employed
FHR variability features can be found in previous publications by
our group (Arduini et al., 1993; Signorini et al., 2003; Magenes
et al., 2007).

Frequency Domain
Power Spectral Density (PSD) is a largely exploited method for
HRV frequency analysis. It decomposes the signal power in
oscillatory components which are an indirect measure of ANS
modulation over the cardiac system. PSD is computed employing
autoregressive (AR) modeling, specifically by Levinson-Durbin
algorithm. Based on previous findings, three specific frequency
bands of interest can be identified, namely, low frequency (LF)
(0.03–0.15) Hz; movement frequency MF (0.15–0.5) Hz; high
frequency HF (0.5–1 Hz), which quantifies the different branches
of ANS modulation (Signorini et al., 2003; Faes et al., 2015; Spilka
et al., 2017). The FHR signal undergoes an automatic
decomposition into a sum of sinusoidal contributions
identified by their central frequencies and the associated

TABLE 1 | Clinical data for the healthy and IUGR populations.

Healthy n = 160 IUGR n = 102

GA at CTG (weeks)† 37.54 ± 0.77 36.94 ± 0.59
Maternal age (years) 32.23 ± 5.16 32.36 ± 5.82
Birthweight (g)† 3,311.62 ± 373.87 2,038.40 ± 348.15
Umbilical cord pH† 7.28 ± 0.08 7.32 ± 0.06
Fetal sex (male) 55.00% 46.08%
Apgar score 1 min >7† 91.88% 78.43%
Apgar score 5 min >7 100.00% 98.04%
Mode of delivery† 59.38% vaginal 28.43% vaginal

40.62% caesarean 71.57% caesarean

Expressed asmean ± standard deviation or number (%). †denotes a significant difference
between healthy and IUGR fetuses, p < 0.05.
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amount of power, thus obtaining the power in the LF band
(LF_pow), MF band (MF_pow), and HF band (HF_pow) for each
3-min FHR segment.

Complexity Domain
The application of nonlinear methodologies to investigate FHR
variability has demonstrated its usefulness in predicting fetal
wellbeing in several investigations (Signorini et al., 2003;
Spilka et al., 2012; Gonçalves et al., 2018). In the context of
early IUGR detection, Lempel Ziv Complexity (LZC) (Lempel
and Ziv, 1976) has been previously reported to have enhanced
discriminative power in both univariate (Ferrario et al., 2007) and
multivariate (Signorini et al., 2020b) approaches, considering
binary (LZC_bin) and ternary (LZC_ter) alphabets. Additional
measures of complexity such as Approximate Entropy (ApEn)
(Pincus and Viscarello, 1992) and Sample Entropy (SampEn)
(Lake et al., 2002) have been employed for the quantification of
ANS profiles in the perinatal period. The above described features
are computed for each 3-min FHR segment. The last nonlinear
technique is Phase Rectified Signal Averaging (PRSA) (Bauer
et al., 2006). Average Acceleration and Deceleration Capacities
(AC and DC) are among the various parameters which can be
derived from the PRSA curve (Fanelli et al., 2013). More recently,
Deceleration Reserve (DR) (Rivolta et al., 2019) was defined as the
simple summation of AC and DC and it has been shown to
achieve enhanced performance in detecting fetal hypoxia
compared to AC and DC standalone parameters in the context
of intrapartum FHR recordings. Regarding the specific
implementation of these methodologies in this work, for the

computation of LZC_bin and LZC_ter the factor value (p) was set
to zero, whereas for entropy computation the length of the
pattern (m) and tolerance (r) were set equal 1 and 0.1,
respectively, accordingly with the prior knowledge on their
application for fetal investigations (Faes et al., 2015; Gonçalves
et al., 2018; Signorini et al., 2020b). On the other hand, a technical
aspect that complicates the physiological understanding of PRSA-
derived features is their dependence on three parameters, namely,
T, s, and L. Different combinations of the former parameters
allow gaining insight about the ANS branches separately. In this
work, AC, DC, and DR were computed considering T � 1 and s �
2, T � 5 and s � 5, T � 9 and s � 9, T � 40 and s � 1, and L was
constant and equal 100.

Fetal and Maternal Domain
The evolution of fetal ANS regulation throughout pregnancy has
been extensively investigated in regard to GA, sex, and various
aspects (Giuliano et al., 2017; Gonçalves et al., 2017, 2018). This
evidence is consistently reported among MTd, Fd, and Cd
features. To address this issue, GA at the recording
(GA_CTG), fetal sex (fetal_sex), and maternal age (mat_age)
are included in the machine learning analyses.

Feature Preprocessing
The time series of each parameter was averaged throughout the
recording to derive a single set of features for each subject. At this
step, features were preprocessed for outliers [Winsorization in the
interval (Q1 – 3IQR, Q3 + 3IQR), where Qi is defined as the ith
quartile and IQR � Q3 – Q1]. Lastly, features were standardized

FIGURE 1 | A schematic depiction of the machine learning framework to monitor the emergence of late intrauterine growth restriction. The starting point was the
extraction of fetal heart rate physiology features. Morphological and Time Domains (MTd) –mean, standard deviation of entire FHR signal (FHR_mean, FHR_std); Short
Term Variability (STV); Interval Index (II); Delta; Long Term Irregularity (LTI); large accelerations (more than 15 beats per minute over the baseline lasting 15 s or more,
indicated by green arrows) (#acc_large); small accelerations (fewer than 15 beats per minute) (#acc_small); decelerations (#dec, indicated by red arrows);
contractions (#contr). Frequency domain (Fd) – power in the low frequency (LF) band (LF_pow); power in the movement frequency (MF) band (MF_pow); power in the
high frequency (HF) band (HF_pow). Complexity domain (Cd)—Approximate Entropy (ApEn); Sample Entropy (SampEn); binary, ternary Lempel Ziv Complexity
(LZC_bin, LZC_ter); Average Acceleration, Deceleration Capacities (AC_T_s, DC_T_s); Deceleration Reserve (DR_T_s). Fetal and Maternal domain (FMd) – GA at the
recording (GA_CTG); fetal sex (fetal_sex); maternal age (mat_age). Radial basis function support vector machine (RBF-SVM) model was developed to discriminate
between healthy and late IUGR fetuses. The ensemble of previously described features was reduced by means of Recursive Feature Elimination technique (RBF-SVM-
RFE). The optimization of RBF-SVM parameters C and c aimed at maximizing sensitivity is shown in the bottom graph of the Machine Learning Framework panel.
Performance was assessed by splitting the database of 160 healthy and 102 late IUGR fetuses in a training (60%) and independent testing set (40%). Several figures of
merit were computed. Additionally, the proposed implementation of RBF-SVM allowed deriving interpretable feature importance ranking and standalone feature
contribution to accuracy, sensitivity, and specificity (left and right (only sensitivity shown) graphs in the Performance Assessment panel).
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across the entire population to obtain zero mean and unitary
variance distributions.

Radial Basis Function Support-Vector
Machines
From Linear to Radial Basis Function Support Vector
Machines
Support Vector Machines (SVM) are a class of machine learning
algorithms highly exploited for the purposes of data classification
and regression. As a general consideration, SVM aim to derive a
model learned on the training data, which is able to predict the
target values contained in the test data (Cortes and Vapnik, 1995;
Guyon et al., 2002; Hsu, Chang and Lin, 2003). Given a training
set of labeled instance pairs (xi, yi), i � 1,. . .,l, where xi ∈ Rn and
y ∈ {1,−1}l, l is equal to the number of observed pairs, n is the
dimensionality of the feature space, and y corresponds to healthy/
late IUGR binary classification assigned to each participant. SVM
searches for the optimal hyperplane wTϕ (xi) + b, which
maximizes the separation margin between the two classes by
solving an optimization problem. In the context of classical SVM,
such function is linear; thus the corresponding term reads wTxi +
b, which translates into a linear separating hyperplane.C > 0 is the
so-called penalty parameter of the error term. C controls the
tradeoff between misclassification and data sparsity. Large values
of C constrain the optimization procedure to derived smaller-
margin hyperplane if such boundary contributes to the training
points classified correctly. Conversely, a smaller value of C causes
the optimizer to search for larger margins, even if the derived
hyperplane misclassifies more observations. Classical SVM
promote data sparsity given only few subjects contribute to
the margin determination at the expenses of involving all the
features, thus being affected by the curse of dimensionality (Hsu
et al., 2003). To address the described issues, we propose to
employ a more efficient kernel function: Radial Basis Function
SVM (RBF-SVM) (Hsu et al., 2003), and a novel feature
elimination algorithm, namely, RBF-SVM Recursive Feature
Elimination (RBF-SVM-RFE) (Liu et al., 2011). The main
shortcoming of classical SVM is the constraint of describing
the relationship between the class labels and the features as
linear. On the opposite, the kernel of RFB-SVM maps
observations into a higher dimensional space, thus allowing
for a nonlinear relationship between observations and
attributes. In this scenario, the function ϕ can be expressed
according to (Eq. 1):

K(xi, xj) � e−cxi−x
2
j , c> 0 , (1)

where K is called kernel function, and the parameter c defines
the radius of influence of a given training example. Specifically,
low values of c code for far influence and a very broad decision
region, whereas high values of c result in the opposite.
Furthermore, it can be shown that RFB kernel is equivalent
to the linear one for some combinations of (C, c) (Lin and Lin,
2003). RBF-SVM are suitable to be employed in the presented
study given the well-documented nonlinear relationship
between several features and the target binary outcomes:

healthy or IUGR fetuses (Signorini et al., 2003; Spilka et al.,
2017; Gonçalves et al., 2018).

Radial Basis Function Support Vector Machine
Recursive Feature Elimination
Linear SVM Recursive Feature Elimination (SVM-RFE) is a
largely exploited category among the wrapper models (Kohavi
and John, 1997) which performs feature selection (Guyon et al.,
2002). Wrapper methodologies are computationally demanding
but they exhibit enhanced performance compared to filter
approaches (Sun, 2007). If SVM-RFE allows deriving an
interpretable feature ranking, the same is not valid when
considering nonlinear SVM (as for RBF-SVM). This relates to
the fact the mapping function ϕ is unknown; thus the vector w
cannot be explicitly computed and consequently cannot be used
to rank features as for SVM-RFE. In this work, we employed a
recent extension of SVM-RFE which performs feature
elimination in the context of nonlinear SVM, namely, RBF-
SVM Recursive Feature Elimination (RBF-SVM-RFE) (Liu
et al., 2011). In a nutshell, RBF-SVM-RFE expands RBF kernel
into its Maclaurin series. The weight vector w is derived from the
series by computing the contribution made to the classification
hyperplane of each feature. The algorithm allows ranking features
by their relative importance starting by including all features and
progressively eliminating each of them until all attributes are
ranked. Moreover, RBF-SVM-RFE allows deriving the most
informative subset of feature among all possible permutations
of the original set. A comprehensive and rigorous description of
the algorithm can be found in Liu et al. (2011).

Performance Assessment
Performance is quantified in terms of the area under receiver-
operation-characteristic (ROC) curve (AUC), sensitivity (SE),
and specificity (SP). In the context of supervised machine
learning approaches as for RBF-SVM, it is usually required to
perform the following: 1) make use of cross-validation (CV) to
identify the best pair of parameters C and c; 2) train the whole
training set using the previously identified Copt and copt and
evaluate the performance; 3) test the validity, replicability, and
stability of the model on a new set of observations which have
never been used in the training phase. The prediction accuracy
obtained from the unknown observations is thought to reflect in a
more precise way the classification performance of the trained
algorithm. In the context of this work, the training set was
obtained by including 60% of the original dataset and utilized
to perform task 1) and task 2), whereas the remaining 40% was
used to derive the independent test set and employed in task 3).
The operation of testing the model performance uniquely on
validation dataset does not guarantee unbiased results as the
model is fitted on the training dataset while tuning model
hyperparameters. On the contrary, the utilization of an
independent test has been shown to provide an unbiased
evaluation of the final model. The ratio between healthy and
IUGR (∼1.5:1) was maintained constant in both sets. Copt and copt

were derived by performing a grid search on C and c using cross-
validation. Specifically, several pairs of (C, c) were tested and the
one achieving the best cross-validation figure of merit was chosen.
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Exponentially growing sequences of C and c were employed in a
the grid search framework (Hsu et al., 2003; Spilka et al., 2017)
along with a 10-Fold CV repeated 5 times on the training set to
identify Copt and copt. In this work, SE was identified as the figure
of merit to be maximized to the aim of deriving a screening tool
suitable to be employed in clinical practice for the identification of
late IUGR. Despite its straightforward implementation compared
to more advanced methodologies, a grid search approach has the
advance of avoiding approximations by performing an exhaustive
parameter search. Additionally, it can be easily parallelized since
each (C, c) pair is independent. On the opposite, iterative
processes can hardly be run simultaneously (Hsu et al., 2003).

RESULTS

Univariate Analysis
For benchmark, the performance in discriminating healthy vs.
IUGR fetuses for each of the previously described features was
computed. Specifically, a set of logistic regression models were
trained including each attribute individually. The optimal cut-off
(c) for a given feature was derived by the maximization of Youden
Index (Fluss et al., 2005) defined as J �maxc (SE (c) + SP (c) – 1). J
allows computing the optimal c and consequently the
corresponding SE (c), SP (c), and AUC (c) values. Table 2
reports the ten best performing features ranked by their
AUCs. Cd features yield the best univariate classification
results, followed by MTd ones. Notably, neither Fd nor FMd
attributes have a significant individual power. The selected
features clearly point to the importance of more sophisticated
analyses of FHR, rather than the traditional time and frequency
approaches. Despite satisfactory values of AUC, the
corresponding SE and SP suggest the need for a multivariate
framework in order to improve and balance the overall
performance. Prior to multivariate classification, correlation
among all pairs of features was performed: 1) short and longer
term MTd features were moderately correlated; 2) short term
variability measured in the different domains: ApEn, SampEn,
HF_pow, LZC_bin, and LZC_ter was highly correlated as
expected given their definitions; 3) ApEn, SampEn, LZC
parameters did not exhibit any relationship with PRSA-derived
features; 4) ACs and DCs at different scales exhibited marked

negative correlations; 5)DRs were weakly positive correlated with
the corresponding DCs but not with ACs.

Multivariate Analysis
The performance of several machine learning classifiers was
tested against the proposed RBF-SVM methodology. An
exhaustive description of the employed techniques is reported
in a previous publication by our group (Signorini et al., 2020b).
Following the procedure illustrated by Zhang et al. (Zhang et al.,
2002), the ROC curves associated with these methodologies were
independently compared to the results of RBF-SVM model in a
paired design. Results showed that all the tested techniques were
statistically inferior to the RBF-SVMmodel. Nonetheless, features
were ranked similarly among the tested machine learning
classifiers, supporting the robustness of the proposed
physiology based heart rate indices.

Feature Selection
The original set of features comprised n � 32 attributes, of which
n � 10 fromMTd, n � 3 from Fd, n � 16 from Cd, and n � 3 from
FMd. The first step prior to multivariate analysis was to reduce
the feature space according to RBF-SVM-RFE, as described in the
Methods section. The minimum and maximum allowed numbers
of features for each subset were n � 1 and n � 32, respectively.
Among the tested subsets, the selected one consisted of 25
retained features and seven eliminated. Specifically, the
features with the least squared weights were FHR_mean, II,
#acc_small, #dec, LF_pow, DR_T1_s2, and mat_age. This result
was in accordance with the findings for the univariate analysis.
Consistently, the dropped attributes exhibited poor
discriminative performance as standalone parameters.
Additionally, the results of the correlation analysis for
FHR_mean, II, and mat_age highlighted their independence of
any other variable included in this analysis. LF_pow and

TABLE 2 | Univariate performance.

AUC Sensitivity Specificity

LZC_bin (bits) 0.78 0.78 0.68
LZC_ter (bits) 0.78 0.88 0.57
#acc_large 0.72 0.84 0.48
AC_T9_s9 (bpm) 0.68 0.76 0.50
AC_T5_s5 (bpm) 0.67 0.66 0.58
FHR_std (bpm) 0.66 0.72 0.55
#Contr 0.65 0.66 0.58
LTI (ms) 0.63 0.66 0.58
Delta (ms) 0.62 0.83 0.40
STV (ms) 0.61 0.98 0.21

Feature cut-offs associated with the optimal values of sensitivity and specificity are
derived based on Youden’s index maximization.

FIGURE 2 | Distribution of J as a function of misclassification cost C and
SVM-RBF kernel parameter c. x- and y-axes are expressed in logarithmic units
for better interpretability of the adopted grid search. Jopt is achieved by
considering the pair (Copt, copt), which is indicated by the red box.
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DR_T1_s2 were highly correlated with frequency and PRSA-
extracted indices; thus it is likely that their contribution in
classification resulted as limited. Lastly, #acc_small and #dec
did not exhibit substantial variations in the two groups.

Radial Basis Function Support Vector Machine
Parameter Optimization
Various pairs of (C, c) were tested to identify the combination
(Copt, copt) which corresponded to the maximization of the figure
of merit J. Each value of J was obtained by training the model on
the whole set of selected features employing a 10-Fold CV
scheme, repeated 10 times. Exponentially growing sequences
of C � c � 2−15, 2−14,. . ., 214, 215 were adopted as practical
implementation of the RBF-SVM grid search previously
described. The distribution of J as a function of C and c is
shown in Figure 2. About half of the tested pairs (corresponding
to positive exponents of c) resulted in an unsatisfactory
performance (J � 0), which is mapped in the lower half of the
plane displayed in Figure 2. The remaining portion of the
investigated two-dimensional space is associated with more
satisfactory values of SE and SP. Specifically, the optimal
combination was achieved by setting Copt � 212 and copt �
2−14. In this case, Jopt was equal to 0.7682 and the
corresponding SE and SP were equal to 0.9287 and 0.8395,
respectively. Noticeably, SE associated with the reported Jopt is
the highest achieved for the presented parameter searching. On
the other hand, the best SP was equal to 0.8881 but the
corresponding SE was 0.7467 (Copt � 25 and copt � 2−15), thus
being unsatisfactory from the perspective of building a
screening tool.

Performance Assessment on Training and Testing
Sets
The pair Copt � 212 and copt � 2−14 was employed as optimal set of
parameters for the final adopted model. This was learned on the
training set by a 10-fold CV scheme repeated 10 times, including
the restricted set of selected features. The resulting AUC was
0.9277 (0.9109, 0.9445), corresponding to SE equal 0.9287
(0.9095, 0.9479) and SP equal 0.8395 (0.8024, 0.8766). Results
are reported as mean and 95% confidence interval. A main
drawback of the proposed pipeline is the opportunity for
overfitting the model on the training data. The practice of
testing the derived model on a validation set aims at
evaluating its robustness and insensitivity to overfitting. As
previously described, the validation set encompasses 40% of
the original dataset with the requirement of a similar ratio of
healthy vs. IUGR cases. The model tested on the validation set
achieved a close agreement with the one obtained on the training
data. In detail, classification accuracy was 0.8462 (0.7622, 0.9094)
and the associated values of SE and SP were 0.8438 and 0.8500,
respectively. The resulting performance did not exhibit a drastic
decrease of AUC, SE, or SP, strengthening the validity of the
proposed model as a screening tool. This assumption was
highlighted by additional figures of merit such Positive
Predicted Value (PP V), 0.9000, and Negative Predictive Value
(NPV), 0.7727.

Feature Importance
The main advantage in employing interpretable fetal heart rate
features becomes evident for the purpose of providingmeaningful
machine learning findings. Specifically, the combination of heart
rate attributes and RFB-SVM-RFE allows investigating the
relative influence of each attribute toward classification. The
results of described approach are displayed in Figures 3, 4.
The operation of ranking features according to the weight
vector w was also found to reflect the mean decrease in
accuracy of classification when a given feature was removed
from the original set employed in the training phase, as shown
in Figure 3. The features that, when removed, generated the
biggest decrease in accuracy were found to belong to different
domain, namely, LZC_ter for Cd, #acc_large for MTd, and
HF_pow for Fd. Additionally, the reported mean decrease in
discriminative power appeared limited if compared to the
reference accuracy achieved in the training set. At the same
time, the associated SE and SP highlighted a more pronounced
decrease in performance as displayed in Figure 4. The feature
specific decreases in SE shown in the left-hand panel in Figure 4
were highly correlated with the results reported in Figure 3. In
fact, LZC_ter, #acc_large, and HF_pow accounted for the greatest
decrease in SE, whereas SE stayed stable once the remaining
features were removed from the model. SP exhibited a similar
behavior as reported in the right-hand panel in Figure 4. The
described evidence suggests that the employed features contribute
similarly to SE and SP. Based on these results, we can conclude
that both SE and SP appear as robust figure of merit in the context
of the proposed model.

DISCUSSION

In this investigation, we provided evidence for the successful
application of a machine learning framework for the
identification of late IUGR condition based on a single routine
CTG examination. Starting from the unsatisfactory results of
traditional univariate analysis (as reported in Table 2) we
proposed an interpretable RBF-SVM model to be employed as
screening tool in a clinical setting. The potential of early
identification of late IUGR represents a noticeable step toward
a better clinical management aimed at improving fetal outcome
(Rosenberg, 2008). Discussing the model performance, the
achieved values of AUC, and the associated SP and SE
demonstrated the consistent ability of the proposed
methodology to discriminate healthy vs. late IUGR fetuses in
the training and in the validation set. This result is a consequence
of the accurate tuning of model parameters (C, c) designed to
prevent overfitting. The proposed grid search for the optimal pair
C, c aimed at balancing the tradeoff between the values of model
variance and bias. As a general consideration, high values of the
misclassification cost (C) contribute to hard margin, thus forcing
the model to a stricter interpretation of training data, potentially
resulting in overfitting the training data. On the opposite, small
values of gamma (c) lead to low bias and high variance models. In
this work, the selected pair consistently points to a high variance
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and low bias model. This translates in a separation hyperplane
characterized by shaper boundaries and a strong penalization of
misclassification error, suitable for the screening tool-oriented

applications. Additionally, the absence of a potential bias toward
overfitting is supported by the presented results on the
validation set.

FIGURE 3 | Feature ranked by mean decrease in accuracy in descending order from top to bottom. Mean decreases in accuracy computed as the difference
between the optimal accuracy (obtained by including the entire set of selected features in the training set) and themodels learned excluding each feature alternatively. The
displayed colors code for the different feature domains: green for MTd, blue for Fd, orange for Cd, and pink for FMd.

FIGURE 4 | Left and right panels show the resulting SE and SP (mean and CI) when each feature is alternatively excluded from the trained model. The reference
values of SE and SP are reported in red, solid and dashed lines correspond to mean and CI, respectively. The displayed colors code for the different feature domains:
green for MTd, blue for Fd, orange for Cd, and pink for FMd.
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A crucial aspect for the clinical application of the presented
model was the possibility to interpret the data-driven results
assessing the features importance. The most noticeable advantage
of RFB-SVM-RFE is its peculiar insight on the individual feature
contribution to classification accuracy, SP, and SE. The feature
ranking reported in Figure 3 highlighted that the combination of
features from different domains is effectively enhancing the
model discriminative performance compared to traditional
univariate analysis. Specifically, the top three features
encompassed Cd, Fd, and MTd domains, respectively. This
finding supports the notion that IUGR condition is effectively
impairing the fetal ANS under different aspects; thus a
comprehensive set of attributes are required for an accurate
determination of such pathological condition. Moreover, the
presented methodology allowed evaluating the contribution of
each feature in terms of SE and SP as reported in Figure 4. If the
SE contributes appeared moderately distributed among the
features included in the model, this was not verified for SP.
This figure of merit achieved the optimal performance only when
all the selected attributes were included in the SVM framework. It
is possible to speculate that the described behavior is a
consequence of the grid search design. Specifically, the
requirement of SE maximization allowed achieving an
adequate SP at the expense of its robustness.

An additional advantage of RFB-SVM is the opportunity to
define the relationship between features as nonlinear; thus, it
allows overcoming the limitation of linearity imposed by
traditional SVM approaches. At the same time, despite
increasing the overall complexity of classification if compared
to more traditional SVM implementations, the radial kernel
tuning is on average of reduced complexity with respect to
polynomial kernel given the fewer hyperparameters to be
optimized. Lastly, RBF kernel is mathematically more stable in
contrast to polynomial kernel which tends to converge to either
infinity or zero for larger degrees (Hsu et al., 2003).

To our knowledge, this work is the first attempt toward a CTG
and quantitative feature-based discrimination of late IUGR
condition. Previous research mainly focused on the
investigation of animal models (Poudel et al., 2015) and
analyses of metabolic (Sanz-Cortés et al., 2013) and Doppler
profiles (Parra-Saavedra et al., 2013) of chronic hypoxia in the
fetal period. Nevertheless, the underpinning and widely reported
consequence of long-lasting oxygen deprivation is responsible for
a delay in the maturation of the branches of ANS and their
subsequent integration with the central nervous system (CNS).
The impairment in ANS maturation was consistently found in
this investigation by various quantitative CTG-derived
parameters which have been extensively associated with the
fetal ANS modulation throughout pregnancy as standalone
features (Signorini et al., 2003; Gonçalves et al., 2018). In
comparison with previous machine learning-derived and
univariate results by our group in different populations of
early IUGR (Ferrario et al., 2007; Fanelli et al., 2013; Signorini
et al., 2020b), it is possible to observe a consistent discriminative
power of features LZC,HF_pow, and LTI. Specifically, the average
value of each feature was greater in the control group vs. late
IUGR fetuses. On the other hand, we also report an enhanced

classification contribution of SampEn, which outperformed
ApEn. Lastly, in the described late IUGR population, short
scale (T � s � 5 and T � s � 9) PRSA-extracted features were
characterized by a greater discriminative power compared to
global ones (T � 40 and s � 1). The reported findings are in
accordance with the univariate results and support the hypothesis
of an impaired fetal beat-to-beat responsiveness regulation in the
context of nutrient restriction and chronic hypoxemia (Fanelli
et al., 2013; Rivolta et al., 2019). Lastly, toward enhancing the
general applicability as well as interpretability of the proposed
RBF-SVM model, we tested its performance once excluding the
information of fetal sex. The knowledge about the sex of the fetus
is banned in several countries across the globe; thus a fetal sex-
independent model is expected to achieve wider applicability.
Additionally, the influence of sex of the fetus over several of the
physiology based heart rate features is object of open debate in the
scientific community. Results showed nonstatistically different
performances of fetal sex-removed RBF-SVM compared to the
reference. Specifically, classification accuracy, sensitivity, and
specificity were equal to 0.9208 (0.9012, 0.9413), 0.9247
(0.9018, 0.9493), and 0.7905 (0.7492, 0.8322); 0.8077 (0.7187,
0.8784), 0.8125, and 0.8000 in the training/testing and validation
sets, respectively.

CONCLUSION

This contribution aims at promoting the application of machine
learning methodologies in the context of fetal and perinatal
medicine, following the growing trend of the artificial
intelligence application in medicine (Topol, 2019; Ghassemi
et al., 2019). The presented approach demonstrated the
reliability of an SVM inspired framework, encompassing the
automatic selection of a subset of CTG-derived features, a
satisfactory classification performance in terms of AUC, SE,
and SP in both the training and validation sets, and
interpretable set results suitable to be translatable in the
clinical environment. Findings reported in this investigation
support the importance of multivariate approaches to
investigate the variety of implications resulting from a
pathological condition such as late IUGR.

Despite satisfactory and promising classification performance,
improvements may be envisioned under various aspects. First, the
inclusion of additional features such as the ones inspired to
multiscale and fractal analysis might further contribute to
classification accuracy as reported in the context of
intrapartum (Spilka et al., 2017). Second, the performance of
different machine learning approaches as well as deep learning
methodologies should be investigated and compared to RFB-
SVM-RFE. Lastly, the validation of the presented approach
should be carried out on external datasets to ultimately test
the model performance as a function of different reference
values of the input features. Additionally, it would be relevant
to evaluate the validity of the proposedmodel in the context of the
early insurgence of the pathology. A recent dataset of FHR indices
extracted from a population of early IUGR fetuses can be found in
Signorini et al. (2020a).
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