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A Novel Machine Learning Model for
Dose Prediction in Prostate
Volumetric Modulated Arc Therapy
Using Output Initialization and
Optimization Priorities
P. James Jensen, Jiahan Zhang, Bridget F. Koontz and Q. Jackie Wu*

Department of Radiation Oncology, Duke Cancer Institute, Durham, NC, United States

Treatment planning for prostate volumetric modulated arc therapy (VMAT) can take

5–30min per plan to optimize and calculate, limiting the number of plan options that

can be explored before the final plan decision. Inspired by the speed and accuracy of

modern machine learning models, such as residual networks, we hypothesized that

it was possible to use a machine learning model to bypass the time-intensive dose

optimization and dose calculation steps, arriving directly at an estimate of the resulting

dose distribution for use in multi-criteria optimization (MCO). In this study, we present a

novel machine learning model for predicting the dose distribution for a given patient with

a given set of optimization priorities. Our model innovates upon the existing machine

learning techniques by utilizing optimization priorities and our understanding of dose

map shapes to initialize the dose distribution before dose refinement via a voxel-wise

residual network. Each block of the residual network individually updates the initialized

dosemap before passing to the next block. Our model also utilizes contiguous and atrous

patch sampling to effectively increase the receptive fields of each layer in the residual

network, decreasing its number of layers, increasingmodel prediction and training speed,

and discouraging overfitting without compromising on the accuracy. For analysis, 100

prostate VMAT cases were used to train and test the model. The model was evaluated by

the training and testing errors produced by 50 iterations of 10-fold cross-validation, with

100 cases randomly shuffled into the subsets at each iteration. The error of the model is

modest for this data, with average dose map root-mean-square errors (RMSEs) of 2.38

± 0.47% of prescription dose overall patients and all optimization priority combinations

in the patient testing sets. The model was also evaluated at iteratively smaller training

set sizes, suggesting that the model requires between 60 and 90 patients for optimal

performance. This model may be used for quickly estimating the Pareto set of feasible

dose objectives, which may directly accelerate the treatment planning process and

indirectly improve final plan quality by allowing more time for plan refinement.

Keywords: dose prediction, multi-criterial optimization, treatment planning, prostate VMAT, machine learning,

artificial intelligence, residual neural networks
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INTRODUCTION

Volumetric modulated arc therapy (VMAT) is a cancer treatment
option that can effectively irradiate a target while minimizing
the nearby healthy tissue irradiation in relatively short delivery
times (Otto, 2008; Teoh et al., 2011). Dual-arc VMAT has been
shown to be an effective treatment technique for prostate cancer
(Guckenberger et al., 2009; Zhang et al., 2010). VMAT treatment
planning relies on inverse planning techniques that perform
dose optimization and dose calculation to create a deliverable
treatment plan. To employ existing single-functionminimization
algorithms, VMAT optimization techniques typically scalarize
the dose objectives into a weighted sum to use as the optimization
loss function, with the weights (priorities) decided by a treatment
planner. Dose objective scalarization allows the treatment
planner to create and evaluate several plans by providingmultiple
priority combinations to the optimizer to create a subjectively
optimal treatment plan. This problem can be formulated as
a multi-criteria optimization (MCO) problem, in which the
treatment planner has to learn about the set of feasible plan doses
which cannot be strictly improved, which is historically named,
the Pareto surface (Hwang and Masud, 1979; Miettinen, 1999).
MCO has been studied extensively and many methods for exactly
sampling the Pareto surface have been implemented for radiation
therapy treatment planning systems (Craft et al., 2007; Monz
et al., 2008; Bokrantz and Forsgren, 2013).

However, these contemporary MCO methods ultimately
require the generation of many treatment plans to sample
the Pareto surface. In this framework, the treatment planner
samples the Pareto surface and linearly interpolates the sampled
plans to infer the feasible ranges of dose trade-offs. However,
VMAT treatment planning using current commercial treatment
planning systems can take 5–30min per plan to optimize and
calculate, so that the exact methods for sampling the Pareto
surface can take a longer time to run. This time cost reduces the
remaining amount of time that the planner has for manual plan
refinement and also limits the precision of the surface sampling,
decreasing the accuracy of any subsequent surface interpolations
and limiting the understanding of the planner with regard to
feasible dose trade-offs. All these factors combine to reduce the
quality of the final treatment plan.

The primary goal of this study is to present a method
for quickly estimating the dose distribution for a given set of
optimization priorities. This method would be able to quickly
and accurately estimate the Pareto surface for a given patient and
indirectly improve the quality of the final plan by allowing the
treatment planner more time for plan refinement.

In recent years, machine learning has seen success in image
classification and processing tasks, due to the ability of modern
convolutional neural network variants, such as residual networks

Abbreviations: VMAT, volumetric modulated arc therapy; MCO, multi-criteria

optimization; TPS, treatment planning system; PTV, planning target volume;

IMRT, Intensity-modulated radiation therapy; HI, homogeneity index; ResNet,

residual network; RMSE, root-mean-square error; APD, average projected

distance; ANPD, average nearest point distance; ICRU, International Commission

on Radiation Units and Measurements; AAPM, the American Association of

Physicists in Medicine; FC, fully connected; L-ReLU, leaky rectified linear unit; SS,

scaled softsign.

(ResNets) and U-Nets, to quickly detect and manipulate learned
image patterns (Simonyan and Zisserman, 2014; Ronneberger
et al., 2015; He et al., 2016). Inspired by the speed and accuracy
of these results, we hypothesized that it was possible to use a
similar model to bypass the time-intensive dose optimization and
dose calculation steps in treatment planning, arriving directly
at the resulting dose distribution and computing the relevant
dose objectives. Such a model would greatly benefit the treatment
planning system (TPS), as it would provide a way to quickly
estimate the dose distributions of many treatment plans to infer
the Pareto surface of a given patient for feasible dose objectives.

In this study, we present a novel machine learning model
for predicting the TPS-simulated dose distribution for a given
patient. Similar models have previously been implemented which
are more directly drawn from the U-Net architecture (Babier
et al., 2019; Nguyen et al., 2019), but these models have
undergone only modest modification for the specific task of dose
prediction. The primary motivation behind our model is to use
our understanding of the general shape of dose distributions to
remove much of the non-linearity of the dose prediction problem
and decreasing the difficulty of subsequent network predictions.
Ourmodel takes the optimization priorities of the treatment plan,
which were taken into account during dose prediction, and infers
feasible dose distributions across a range of optimization priority
combinations, allowing for indirect Pareto surface inference. This
model is also relatively fast (0.05 s per plan), and it is capable of
sampling the entire Pareto surface much faster than commercial
dose optimization and dose calculation engines.

METHODS

Patient Cohort and Treatment Planning
Technique
Hundred prostate cancer patients were retrospectively included
in this study. The data of each patient consisted of an abdominal
CT scan and contours of their planning target volume (PTV), the
bladder, the rectum, the left femoral head, and the right femoral
head. After anonymization, patient datasets were imported to
a commercial treatment planning system for dose optimization
and dose calculation. The PTV dose prescription was set to
70Gy in 29 fractions, as is the current standard for clinical
practice at our institution. During treatment planning, each plan
included two concentric, coplanar VMAT beams centered on
the PTV, with field sizes set to encompass the PTV during a
358-degree beam rotation. Beam collimators were set at 15◦ and
345◦ to reduce the effect of collimator leaf gap overlap. During
optimization, priorities were placed on the PTV homogeneity
index (HI = D2%–D98%), bladder D25%, and rectum D25%.
These objectives were chosen to represent the dimensions of
trade-off during treatment planning, since the primary goals of
prostate VMAT are uniform PTV coverage, bladder sparing,
and rectum sparing. These objectives had different optimization
priority combinations for each plan to sample the Pareto surface
of dose trade-offs. After optimization, plans were normalized
such that PTV D95% equaled 100% of the dose prescription
of the target. Fixed constraints for each plan optimization
included PTV D93% < 101% to reduce the dose-shifting effect
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of plan normalization, as well as D0.01cc < 65% for both
femoral heads in accordance with the standard practice of our
institution for normal critical structure constraints. Variable
constraints included PTV HI < 10%, the bladder D25% < 30%
of prescription, and the rectum D25%. For each patient, the
Pareto surface was sampled by optimizing and calculating 25
plans that follow. Each plan had a different optimization priority
combination and therefore sampled a different location on the
Pareto surface. Bounding points on the surface were chosen
throughmanual plan optimization such that the bounding points
represented clinically feasible plans. Subsequent points on the
surface were created using linear combinations of the objective
priorities of the bounding points; this ensured that all interior
points also represented clinically feasible plans on the Pareto
surface. Beamlet fluence optimization and dose calculation were
performedwith the commercial treatment planning system. After
each plan was calculated, the corresponding dose map, critical
structure maps, and optimization priority combination were
exported for use during model training and evaluation.

Dose Prediction Model Architecture
An overview of the architecture of the dose prediction is
depicted in Figure 1. The inputs of the model are the objective
priorities and structure maps of the PTV, the bladder, and
the rectum, resized to slices of 128 × 128 voxels to increase
model efficiency. These structure maps are binary image-domain
representations of the corresponding structures, indicating for
each pixel whether that pixel is inside the contour of the
structure. These structure maps have been scaled by the objective
priorities of their corresponding structure for each plan. This is a
straightforward way to incorporate objective trade-off priorities
without complicating the architecture of the model.

Dose Initialization

The model begins by creating an initial dose distribution via an
inverse fit of inter-slice and intra-slice PTV distance maps on a
voxel-wise basis. The functional form of the initialized dose fit is
as follows:

Di =
[

1+ a1 ∗ ISD
a2
1 + c ∗ ISD

a3
2

]−1

where ISD1 refers to the inter-slice distance from the voxel to
the nearest PTV location within the slice of the voxel, ISD2

refers to the intra-slice distance from the voxel to the nearest
PTV location at the row and column of the voxel, and a1,
a2, and a3 are variables that need to be fitted. The purpose of
this initialization is to allow the subsequent neural network to
predict the shift between the initialization and the TPS-simulated
dose distribution rather than the dose distribution itself. We
hypothesize that these shifts are more likely linear than the dose
distribution itself and therefore more easily learned.

Patch Extraction

The model proceeds by extracting three sets of 9 × 9 transverse
patches from all structure maps and the initialized dose map at
each voxel. Each set of patches has a different atrous rate, which
is the number of voxels skipped between the sampled voxels.
The first patches have an atrous rate of 1, i.e., they do not skip
any voxel and are contiguous. These patches allow the model to

infer local structure information near the pixels on which they
are centered. For the second patches, the structure maps are
smoothed by convolution with a uniform 3 × 3 kernel, and the
patches are extracted with an atrous rate of 3. Similarly, the third
patches are extracted with an atrous rate of 10 from the structure
maps after smoothing by a 10 × 10 kernel. The smoothing
convolutions are performed to make each voxel within the atrous
patches contain structure information from the nearby voxels
that the atrous sampling skips.

The idea of atrous convolution (also called, dilated
convolution) was originally presented by Yu and Koltun
(2015). The motivation for including multiple patches with
different atrous rates is to capture the features of the input
data at both coarse and fine levels. This removes the need
for traditional downsampling and upsampling layers in the
network. For the patches with atrous rates >1, the combination
of average smoothing and atrous sampling essentially increases
the receptive field size per layer of the model, so that the model
can infer the effect of critical structures at both large and short
distances without significantly increasing the amount of memory
or model parameters required. It is to be noted that the model
architect can choose the number of patches and the atrous
rates of every patch, and a similar model with atrous rates near
1, 3, and 10 will produce results similar to the result of this
model. For this model, the atrous rates were chosen based on
the nature of the input data. The patches with an atrous rate
of 1 captured every fine detail, the patches with an atrous rate
of 10 spanned most of the images and captured every coarser
detail, and the patches with an atrous rate of 3 reflected the
more intermediate features. The patches are then cast into
81-element vectors per voxel, and the vectors and optimization
priorities are all concatenated voxel-wise to serve as input for the
residual network.

Residual Network

The model then uses the patch vectors as inputs for a neural
network, which is inspired by the recently developed ResNet (He
et al., 2016). This network is used to determine an update to the
dose initialization rather than computing the dose from scratch.
The natural choice for the construction of this intermediate
network was the residual network (ResNet), because the residual
blocks of ResNets were originally designed with a similar concept
in mind. As explained by He et al., residual blocks tend to
perform much better than the conventional network blocks at
a higher depth when the effects of the input features resemble
linear residuals. This happens partially because the residual
formalism makes the gradients to be less susceptible to vanishing
or exploding, improving the convergence (He et al., 2016).
Unpublished internal testing confirmed that the performance of
our model degrades when it replaces the residual blocks with
standard convolutional or fully connected (FC) blocks.Moreover,
residual blocks have been shown to make the performance of
the model less dependent on the number of blocks included,
which reduces the need for fine-tuning the number of blocks in
the model.

Our network consists of a series of six residual blocks that
sequentially update the initialized dose map. Each residual block,
depicted in Figure 2, consists of three FC layers. The first two
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FIGURE 1 | Overview of the dose prediction model architecture.

FIGURE 2 | Graphical depiction of a residual block within the neural network.

layers have 100 output units and leaky rectified linear unit (L-
ReLU) activations are defined as follows;

L− ReLU (x ) = x when x > 0 and L− ReLU (x )

= 0.2x when x ≤ 0.

These first two layers extract quasi-linear features from the patch
vectors. The last layer has a single output and scaled softsign (SS)
activation, defined as, SS(x) = 0.3x/(1+|x|). The purpose of this
last activation function is to take the quasi-linear combinations
from the previous layer andmap them to a suitable dose shift with
a limited range. Since each residual block changes the initialized
dose map, the dose map patches need to be reextracted after
each update. The number of residual blocks, layers per block,
and output units per layer were chosen somewhat subjectively,
and we anticipated that the accuracy achieved by this neural

network can be achieved through similar network designs and
hyperparameter tunings.

Model Training
The training loss function was the root-mean-square error
(RMSE) between the predicted dose map and TPS-simulated
dose map, restricted to voxels within the body contour and
restricted to slices containing at least one critical structure.
Dose initialization variables were fit according to the RMSE
between the initialized dose map and the TPS-simulated dose,
and these variables were trained before the residual network
variables. Gradients for the loss function were estimated using
batches of training data, with each batch containing several
slices approximately equal to the typical number of slices that a
patient would have. Slices in the batches were sampled diagonally,
such that the batch slices were located at different levels within
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different patients. This sampling means that each batch contains
slices from most patients in the training set at most slice
positions, such that each batch is a good representation of
the entire cohort. Therefore, the gradients computed from the
batches were in close approximations to the gradients of the loss
function applied to the entire cohort, improving the optimization
of convergence and stability. The model was trained using the
Adam optimization algorithm, which was designed for stochastic
gradient-based optimization (Kingma and Ba, 2014). Kingma
and Ba recommend specific hyperparameters, including step size
α = 0.001, decay hyperparameters β1 = 0.9, and β2 =

0.999, and error epsilon ǫ = 10−8, all of which are used in
the training of our model. The Adam optimizer is particularly
appropriate here because the batch gradient computations are
stochastic. The trainable parameters in each layer were initialized
using the Glorot uniform initializer, which initializes variables
by sampling randomly from a uniform distribution bounded
by ±

√

6 /(number of inputs+ number of outputs) (Glorot and
Bengio, 2010). The Glorot uniform initializer was designed to
model the inherent variance of rectified linear unit activation
functions, similar to the activation functions used in our residual
network. All aspects of the model, including optimization
and evaluation, were implemented using the Tensorflow
machine learning platform with an NVIDIA Quadro M4000.
Optimization proceeded for 2,000 iterations before termination.

Predicted Pareto Surface Evaluation
Pareto surfaces are generated from the model by passing several
optimization priority combinations as inputs and evaluating the
relevant dose-volume metrics from the resulting dose maps. For
analysis, this study compared the Pareto surfaces of the clinical
and predicted dose maps using the same optimization priority
combinations for both surfaces, allowing for direct comparison
of matched plans which should produce the same dose maps
and objective metrics. However, when evaluating the accuracy
of a predicted Pareto surface, we were more interested in the
entire surface as a connected set rather than a few points which
sample the surface. Although we can use the sampled points to
interpolate the Pareto surface, distances between the sampled
points do not necessarily represent the distances between points
which are interpolated from the sampled points (Jensen et al.,
2020). For this reason, we believe that it is insufficient to simply
evaluate the RMSEs between the sampled points in Pareto space
as a metric for the closeness of the represented predicted Pareto
surface to the TPS-simulated Pareto surface. To our knowledge,
no previous publications on dose prediction for radiation therapy
have directly evaluated the distance between the Pareto surfaces
generated by their models.

To overcome this insufficiency, we tested three metrics
in addition to RMSE between the matched points in Pareto
space. The first additional metric is the Hausdorff distance,
mathematically defined between the two sets A and B are
as follows:

dH (A,B) = max

{

sup
xǫA

inf
yǫB

∣

∣x− y
∣

∣ , sup
yǫB

inf
xǫA

∣

∣x− y
∣

∣

}

where A and B, in this case, represent the vertices (sampled
points) of each Pareto surface. One benefit of the Hausdorff
distance is that it is sensitive to outliers so that the Hausdorff
distance between the sets of Pareto surface vertices should be
similar to the Hausdorff distance between the actual Pareto
surfaces as interpolated sets. However, this sensitivity to outliers
causes Hausdorff distances to represent the maximum error
rather than the average error more strongly. In the context of
machine learning, this is a drawback because the outliers which
influence the Hausdorff distance can fluctuate because of the
random initial conditions of the model.

The second additional metric is the average projected
distance (APD) in Pareto space, which addresses some of the
insufficiencies of Pareto space RMSE and Hausdorff distance. A
more abstract discussion has been published about the properties
of the APD and why this metric is superior to the RMSE
in Pareto space (Jensen et al., 2020). The APD examines the
vector displacements between matched points between two sets
and then averages the displacements when projected along the
direction of the average vector displacement. The APD between
two sets, A and B is mathematically defined as follows:

APD (A,B) = E
[(

xi − yi
)

· E
[

xi − yi
]]

/
∣

∣E
[

xi − yi
]∣

∣

where the
(

xi, yi
)

symbols enumerate the matched pairs of points
between sets, A and B (in our case, the TPS-simulated and
predicted Pareto surfaces), and E refers to taking an average over
these matched pairs for one patient. The primary motivation
behind the APD as a Pareto space metric is depicted in Figure 3,
in which we can see that overall Pareto surface interpolation
accuracy is not affected by the pointwise error components
along the respective Pareto surfaces. APDs first remove these
error components, so we expect the APD to better measure the
closeness of the interpolated Pareto surfaces compared to the
RMSE or HD.

The third metric is the average nearest point distance (ANPD)
in the Pareto space, which supersamples the simplicial complex
representations of the Pareto surfaces and averages the distance
from each sampled point of one surface to the simplicial complex
of the other surface. The ANPD between the two sets, A and B is
mathematically defined as follows:

ANPD (A,B) = avg

{

avg
yǫS(B)

inf
xǫS(A)

∣

∣

∣

∣x− y
∣

∣

∣

∣

2
, avg
xǫS(A)

inf
yǫS(B)

∣

∣

∣

∣x− y
∣

∣

∣

∣

2

}

where the sets A and B represent the vertices of each Pareto
surface and S (A) and S(B) represent the simplicial complexes
spanned by the vertices ofA and B, respectively. Here, each Pareto
surface vertex corresponds to one dose distribution generated
by different optimization priorities. The primary motivation
behind the ANPD as a Pareto space metric is that it reflects
the individual distances from each point on one surface to the
other surface, which we imagine to be the “true” distance between
that point and the surface. Like the APD, the ANPD has already
been discussed according to its properties and comparison to
the RMSE in another publication (Jensen et al., 2020). For this
publication, all these metrics are presented because a consensus
about the optimal metric has not yet been established.
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FIGURE 3 | Graphical depiction of the effect of matched point error along the Pareto surfaces on RMSE and APD. Despite the lower surfaces being very similar, the

central matched pair has a much larger contribution to Pareto RMSE in the right case while the APD remains approximately the same.

Model Evaluation
When evaluating this model, a single instance of training and
testing the model is insufficient because the performance of
the model depends on the specific training set and testing
set. To counteract the randomness associated with choosing a
training set and testing set, the following evaluation scheme
was used. After the model was designed and developed, it was
evaluated using a 10-fold cross-validation repeated 50 times.
In this evaluation, one repetition of 10-fold cross-validation
involves randomly partitioning the patient dataset into ten 10-
patient subsets and training the model 10 times, with each
training set using a different subset for testing and the rest of
the subsets for evaluation. In one repetition of 10-fold cross-
validation, each patient appears in training sets exactly nine
times, and each patient appears in the testing sets exactly once.
Therefore, the 10-fold cross-validation partially negates the effect
of randomly assigning patients into training and testing sets. In
this evaluation, 10-fold cross-validation was repeated 50 times,
with the patient dataset partitioned into different subsets for
each repetition. By repeating the cross-validationmany times, the
randomness associated with the random selection of the training
and testing sets is reduced further. Overall, this evaluation
involved training and testing the model 500 times, which is
10 training/testing pairs for each of the 50 cross-validation
repetitions. The results from all 500 model validations were
aggregated by the training set and the testing set using themetrics
described in the sections above.

To test the performance of the model with smaller training
datasets, another set of cross-validations was performed using
different ratios of training data to testing data. These cross-
validations evaluated the performance of the model with
training-to-testing data set ratios of 90%:10%, 80%:20%,
70%:30%, 60%:40%, 50%:50%, 40%:60%, 30%:70%, 20%:80%, and
10%:90%. For example, the second of these cross-validations
used 80 patients to train each model and 20 patients to test
each model. For this cross-validation, the patients were grouped

into ten 10-patient subsets, enumerated #1, #2, #3, #4, #5, #6,
#7, #8, #9, and #10. The first model validation in the cross-
validation was trained on subsets #1-8 and tested on subsets #9
and #10; the second validation was trained on subsets #2-9 and
tested on subsets #10 and #1; the third validation was trained
on subsets #3-10 and tested on subsets #1 and #2; and so on.
In this way, each of the cross-validations at smaller training-to-
testing ratios evaluated the model ten times. This is not strictly
a 10-fold cross-validation, but it is a cross-validation because
every patient appears in the same number of training subsets
and the same number of testing subsets. For comparison, the
cross-validation with an 80%:20% ratio evaluates 10 trainings
of the model, while normal 5-fold cross-validation evaluates 5
trainings of the model. The utility of this approach can be seen
clearly for the 50%:50% case, where the corresponding 2-fold
cross-validation only involves training the model twice. Clearly,
this is not thorough enough, but the other extremity of testing
every possible 50%:50% partition of the data is not feasible due to
time constraints. This approach of cycling through the ten subsets
strikes a compromise between thoroughness and efficiency when
evaluating the model at smaller training set sizes. For each cross-
validation, the performance of the model on the training and
testing sets was aggregated to evaluate the performance of the
model while reducing the randomness associated with grouping
the patients into training and testing subsets.

RESULTS

Direct Dose Map Evaluation
Figure 4 shows the dose map RMSE for the aggregated training
and testing sets during a randomly selected model instance
training. After training, the mean dose map RMSEs were 2.44
± 0.89% and 2.42 ± 0.47% for the training and testing set
dose predictions, respectively, across all cross-validations. These
errors demonstrate that the model can achieve good prediction
accuracy on a voxel-by-voxel basis. The difference between the
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FIGURE 4 | Graph of dose map root-mean-square error for the training set (blue, dashed) and testing set (red, solid) as a function of the number of iterations during

model training.

training and testing dose map RMSEs is less than their standard
deviations, suggesting that the performance of the model is
similar for both the training and testing datasets. The dose map
RMSEs due to the initialization fit alone were 5.12 ± 0.55%,
and 5.54 ± 1.30% for the training and testing sets, respectively.
This indicates that the residual network makes a measurable
improvement to the dose initialization and that the model
successfully learns after the dose initialization. Note that these
values differ from the general dose map RMSE of the model at
0 iterations into training because the residual parameters and
effects of the network on prediction are non-zero and initialized
randomly. For comparison, the International Commission on
Radiation Units and Measurements (ICRU) and Task Group 142
of the American Association of Physicists in Medicine (AAPM)
have stated that a 5% maximum dosimetric uncertainty is
appropriate for standard intensity-modulated radiation therapy
(IMRT) treatments (ICRU, 1976; Klein et al., 2009). Therefore,
these dose map RMSEs are comparable to the maximum error
permitted in treatment delivery.

Figures 5, 6 show side-by-side comparisons between the effect
of prioritizing PTV HI or prioritize rectum D25% in a dose map
prediction and its corresponding TPS simulation. Visually, we
can see that the dose map predictions are jagged compared to
their respective TPS-simulated dose maps, specifically around
the 30% isodose line. We expect this to be the case because the
neural architecture of the network does not explicitly promote
local smoothness in the dose distribution predictions. However,
real dose distributions tend to be smooth and continuous, so
that the artificial jaggedness in the prediction of our model is
a drawback reflecting the artificial nature of the model. Note
that the jaggedness makes the isodose lines look dissimilar, but
the general location of the isodose lines corresponds much more
strongly to voxel-by-voxel error than the precise shape of the

isodose lines. Additionally, we see that the region of the largest
isodose displacement is the low dose region anterior to the PTV.
Note that this region is not near the PTV or the surrounding
critical structures, so that the inaccuracy in this region has a small
impact on the predicted PTV/OAR doses.

Figures 7, 8 show the performance of the model on training
and testing sets as a function of the ratios of training set data
to testing set data, so that they show the effect of decreasing
the number of patients used to train the model. Figure 7 shows
that the training set errors decrease as training set size decreases.
On the other hand, Figure 8 shows that the testing set errors
increase as training set size decreases. From these results, we can
see that the performance of the model degrades slightly as the
amount of training data shrinks because it increases overfitting
to the training data. It is difficult to conclude from these figures
exactly how much data is needed to properly fit to the data,
but that number is likely between 60 and 90 patients based on
the figures (though this number might not generalize to other
treatment sites). Figures 7, 8 also suggest that the spread of errors
becomes larger with smaller training data sizes, indicating that
the performance of the model is more random with smaller
training data sizes.

Model Evaluation Time
Total dose prediction requires an average of 1.26 s to evaluate
an entire 25-plan Pareto surface for one patient, or just
0.05 s per plan. This is significantly faster than current
commercial dose optimization and dose calculation engines,
which can take ∼5–30min per plan. Due to this speed, we
anticipate that this model can be used in real-time without
needing to interpolate plan doses from a set of previously
predicted doses.
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FIGURE 5 | Side-by-side comparisons between the effect of prioritizing PTV HI (a,c) or prioritizing rectum D25% (b,d) in a dose map prediction (a,b) and its

corresponding TPS-simulated dose map (c,d). Transverse slices are taken from the center of the PTV, and the patient was randomly sampled from the testing dataset.

FIGURE 6 | Side-by-side comparisons between the effect of prioritizing PTV HI or prioritizing rectum D25% in a DVH prediction and its corresponding TPS-simulated

DVH.

Predicted Pareto Surface Evaluation
The mean Pareto space RMSEs were 10.33 ± 3.57% and
10.11 ± 4.61% for the training and testing sets, respectively,
when aggregated over the fifty splits of 10-fold cross-validation.

These errors indicate that the training and testing set dose
predictions have similar distances to their corresponding
TPS-simulated doses in objective space. This contrasts the
dose map RMSEs for the training and testing set, which
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FIGURE 7 | Box-and-whisker plots representing the training set errors of the model as a function of decreasing training-to-testing set split ratios. Each

box-and-whisker plot represents the aggregate errors from one split of 10-fold cross-validation.

FIGURE 8 | Box-and-whisker plots representing the testing set errors of the model as a function of decreasing training-to-testing set split ratios. Each

box-and-whisker plot represents the aggregate errors from one split of 10-fold cross-validation.

were more dissimilar than the Pareto space RMSEs. Note
that the Pareto space RMSE combines the errors across the
objectives via accumulation rather than averaging, so we
expected these numbers to be significantly larger than dose
map RMSE.

The mean Pareto space Hausdorff distances were 14.98 ±

5.91% and 14.79 ± 5.77% for the training and testing set dose
predictions, respectively, when aggregated over the fifty splits of
10-fold cross-validation. These errors are notably larger and have
more variance than the corresponding Pareto RMSEs. However,
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Hausdorff distances, in general, are more sensitive to outliers
than set averaged RMSEs, so we expect this increased magnitude
and variance. We see that the training and testing set Hausdorff
distances are also similar, indicating that the errors of our model
primarily occur at low-dose regions away from the PTV and at
critical structures.

The mean Pareto space APDs were 10.17 ± 3.52% and
9.81 ± 4.74% for the training and testing set dose predictions,
respectively, when aggregated over the fifty splits of 10-
fold cross-validation. These results confirm that the model
fitting is not significant, as the training and testing sets had
comparable projected distances. As expected, the Pareto APDs
are slightly lower than the Pareto RMSEs and Pareto space
Hausdorff distance.

The mean Pareto space ANPDs were 8.44 ± 3.29% and
8.85 ± 4.21% for the training and testing set dose predictions,
respectively, when aggregated over the fifty splits of 10-fold cross-
validation. The ANPD results demonstrate that the performance
of the model in Pareto space is similar for both training and
testing set predictions. As expected, the Pareto ANPDs are
lower than the three other distance metrics because the minimal
distance between Pareto surface interpolations tends to be lower
than the distance between their vertices.

DISCUSSION

In this work, we have presented a novel machine learning dose
prediction model which takes optimization objective priorities
into account, allowing for indirect Pareto surface estimation.
Our results indicate that the model can predict doses with good
accuracy, as the predicted dose map RMSEs have few percentages
of their corresponding TPS-simulated doses. These dose map
RMSEs are less than the maximum error tolerance proposed by
the ICRU and AAPM TG 142, suggesting that our predictions
may be appropriate for clinical dose distribution estimation.
Moreover, the model produces just a dose distribution without
actually creating a plan, so the model requires a final real
plan optimization and dose calculation which will correct these
dose map prediction errors prior to treatment delivery. This
means that the error in the results of our model only affects
treatment planning and not treatment delivery. The evaluated
Pareto surface metrics indicate that these dose map predictions
make reasonable translations in Pareto space. Our results also
indicate that the overfitting of the model to training data dose
map RMSE is modest because the training and testing errors
are similar.

The prediction speed of ourmodel is particularly encouraging.
By predicting each plan in ∼0.05 s, our model may be used
for real-time treatment planning without needing to interpolate
between previously sampled points, allowing the treatment
planner to very quickly estimate the doses produced by a given
optimization priority combination. This indirectly gives the
planner more time to plan per patient, which may improve
the quality of the final plan. Moreover, our model only
requires patient anatomy and optimization priorities, so it can
generate samples from the Pareto surface automatically. This is

potentially useful for large-scale automatic theoretical dosimetric
investigations of new treatment planning paradigms, such as
testing the effects of pushing a dose limit past its historical value
or determining the feasibility of treating new structures. More
research is needed to investigate these possibilities.

We believe that the speed, accuracy, and proper fitting of our
model are due to the design of the model. The implementation of
a dose initialization combined with a residual neural network is a
novel proposal that appears to model the dose prediction process
well. Also, the combination of contiguous and atrous patches
during contour processing increases the effective receptive field
size of each layer in the ResNet. Achieving a similar effective
field-of-view in a more traditional convolutional neural network
would involve either increasing the size of each convolution
kernel or adding many more layers to the network. However,
both of these options involve more model parameters, have
increased computational requirements, and are more prone
to overfitting. The patch extraction process of our model
innovates by incorporating local and global information within
each layer without increasing computational requirements or
promoting overfitting.

Despite its potential advantages, our model has some
limitations which hinder its accuracy and utility. The dose
initialization of our model assumes an isotropic inverse
exponential decay of dose as a function of inter-slice and intra-
slice distances from the PTV. Although this assumption is only
appropriate for VMAT plans which involve beam arcs wrapping
nearly 360◦ around the patient, it is likely that other forms of dose
initialization exist which are appropriate for IMRT or VMAT
with significantly fewer than 360◦ per arc. Additionally, the
model required several hyperparameters (i.e., 6 residual blocks
in the neural network, 100 output units for the first two layers in
each block, atrous rates of 1, 3, and 10 in patch sampling, etc.),
and it is not immediately clear how to determine the optimal
values for these hyperparameters aside from trial and error.
However, we expect that slight adjustments from our chosen
values for the hyperparameters should not significantly change
the model performance. Finally, since the output of the model
is a dose distribution without an actual plan optimization or
dose calculation, the model can only be used to determine the
subjectively optimal optimization priorities, which then need
to be used in a real plan optimization and dose calculation to
actually create a deliverable plan.

This study itself also has several shortcomings that make it
difficult to be certain of the performance and generalizability of
the model. Due to time constraints and the size of the dataset,
it was not feasible to compute the gamma index passing rates
of the plans predicted by our model. Gamma index analysis
could be useful for confirming the quality of our results, and
future research should seek to include this data. However, gamma
indices are more generous than their dose difference thresholds
(typically 3%, which is higher than our model’s performance of
2.42%), so we anticipate that the gamma index passing rates of
our data would be quite high. Also, gamma passing rates have
been shown to increase in the presence of random noise, so we
anticipate that the slight noisiness of our data makes gamma
passing rates less useful.
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It is also difficult to confirm whether these results would
extend to other treatment sites. The dataset in this study is
likely large enough to sufficiently represent the population
of prostate VMAT treatment cases because of the similarity
between our training and testing set errors. This coincides with
our expectations because the relevant anatomical structures of
prostate cases all tend to be somewhat similar. However, it is
not immediately clear how this result is generalizable with other
training sets, which may experimentally find that they require
more or less training data. Also, this study does not include
treatment planning data from other treatment sites, so it is
difficult to determine whether this model would generalize well
to model another treatment site. Further research needs to be
done to test this model on other treatment sites. In particular,
the current structure of the model is not built to process the data
frommultiple treatment sites concurrently. However, it is feasible
to modify the structure of this model to learn from multiple
treatment sites by incorporating the structure maps alongside
their DVH constraints. Further research needs to be done to test
these claims.

We have implemented several metrics for evaluating the error
between a predicted Pareto surface and its corresponding TPS-
simulated Pareto surface. Our metrics reported similar values
around 8–15% of dose prescription for both training and testing
sets. Again, it is worth noting that these metrics accumulate the
errors from each dimension rather than averaging them, which is
why these surface metrics are significantly larger than the dose
map RMSE of 2–3%. Most of these metrics have an inherent
limitation in that they measure errors from the matched pairs of
plans which sample their respective surfaces rather than measure
errors from the surfaces themselves. Of the metrics presented,
we hypothesize that the ANPD is the most appropriate of these
metrics due to its use of point-by-point nearest distances between
the surfaces, which likely reflects the actual distance between
the Pareto surfaces. However, a more theoretical investigation is
required to justify the ANPD here as the appropriate metric. Our
results show that these metrics are significantly different from
each other, which provides evidence that there exists an optimal
metric to represent the distance between Pareto surfaces. Also,
to our knowledge, no other body of research has applied Pareto

space metrics to evaluate the Pareto surfaces of radiation therapy
dose predictions. This prevents us from comparing our Pareto
space results with previous dose prediction research. To account
for this, we have included all these metrics for ease of comparison
with future research.

CONCLUSION

We have presented a novel machine learning dose prediction
model which takes optimization objective priorities into account.
The error of the model is modest when applied to our prostate
VMAT cases, with average dose map RMSEs of 2.42 ± 0.47%
overall patients and all optimization priority combinations in
the patient testing set. This model may be used for quickly
estimating the Pareto set of feasible dose objectives, which
may directly accelerate the treatment planning process and
indirectly improve the final plan quality by allowing more
time for plan refinement. Future research needs to be done to
determine the generalizability of this model to other treatment
sites and datasets.
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